Intel® processors power a wide range of server options, from entry-level small business servers, to big data analytic clusters, to scalable, mission-critical enterprise servers designed to support today’s most demanding business intelligence and transactional applications. Intel processors also include a variety of advanced technologies that can help you solve specific business challenges in today’s virtualized data centers and clouds. Choosing the right server configurations to match your specific requirements is essential to ensure the performance, reliability, and security you need, while simultaneously minimizing your total cost of ownership. This guide provides an overview of Intel® server processors to help you make informed decisions based on your workloads, your data center deployment models, and your budget.
Choose the Right Server for the Job

Based on Your Applications and Workloads:

<table>
<thead>
<tr>
<th>SERVER REQUIREMENT</th>
<th>PAGE</th>
<th>APPLICATIONS AND WORKLOADS</th>
<th>INTEL® PROCESSOR FAMILY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Critical</td>
<td>6 7</td>
<td>• Real-time big-data analytics</td>
<td>• Intel® Xeon® processor E7 v2 family</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Large-scale database (in-memory and back-end)</td>
<td>• Intel® Itanium® processor 9500 family</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data warehousing</td>
<td></td>
</tr>
<tr>
<td>Data Demanding</td>
<td>6 7</td>
<td>• Business Intelligence (BI)</td>
<td>• Intel Xeon processor E7 v2 family</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Large-scale virtualization and consolidation</td>
<td></td>
</tr>
<tr>
<td>Standard Infrastructure</td>
<td>6 7</td>
<td>• Infrastructure virtualization, Big data analytics, Mail and web, Networking</td>
<td>• Intel® Xeon® processor E5 v3 family</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• File/print</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Office and departmental databases</td>
<td></td>
</tr>
<tr>
<td>Cloud</td>
<td>6 7</td>
<td>• All business applications, from standard infrastructure to mission-critical</td>
<td>• Intel® Xeon® processor E7 v2 family</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ultra-low-end web serving, Static content delivery, Basic dedicated hosting</td>
<td>• Intel® Xeon® processor E7 v2 family</td>
</tr>
<tr>
<td>Small Business and</td>
<td>6 7</td>
<td>• Server consolidation/virtualization, All business applications</td>
<td>• Intel® Xeon® processor E3 v3 family</td>
</tr>
<tr>
<td>Departmental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Performance and</td>
<td>7 8</td>
<td>• Digital manufacturing, Energy</td>
<td>• Intel® Xeon® processor E5 v3 family</td>
</tr>
<tr>
<td>Technical Computing</td>
<td></td>
<td>• Financial services, Healthcare and life sciences, Scale-up HPC</td>
<td>• Intel® Xeon® processor E5 v3 family</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Intel® Xeon Phi™ coprocessor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Intel® Xeon processor E7 v2 family</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Intel® Xeon processor E3 v3 family</td>
</tr>
<tr>
<td>Based on Your Data Center Requirements:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT REQUIREMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability, Data Security</td>
<td>6 7</td>
<td>Good</td>
<td>Best</td>
</tr>
<tr>
<td>Performance, Memory, and</td>
<td>6 7</td>
<td>1-4 sockets, 1.5 TB memory (2 sockets)</td>
<td>2-256 sockets (up to 8 sockets natively without 3rd party node controllers)</td>
</tr>
<tr>
<td>I/O Scalability</td>
<td></td>
<td></td>
<td>6 TB memory (4 sockets); 12 TB memory (8 sockets)</td>
</tr>
<tr>
<td>Targeted Deployment Models</td>
<td></td>
<td>Scale OUT: Rapid, incremental addition of servers to meet business growth demands.</td>
<td>Scale UP: Fewer, more powerful servers with headroom for demanding applications,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pedestal, Rack, Blade</td>
<td>heavier peak periods, and business growth.</td>
</tr>
<tr>
<td>Specialized Requirements</td>
<td></td>
<td></td>
<td>Rack and Blade platforms that scale with the help of third-party node controllers</td>
</tr>
<tr>
<td>Extreme Density (Microservers)</td>
<td>7</td>
<td>1-Processor Servers: Intel® Xeon® processor E3 v3 family or Intel® Atom™ processor C2000 product family</td>
<td></td>
</tr>
<tr>
<td>Extreme Parallelism (HPC)</td>
<td>8 7</td>
<td>Intel® Xeon Phi™ product family</td>
<td></td>
</tr>
<tr>
<td>Media Servers</td>
<td>6 7</td>
<td>Intel Xeon processor E3 v3 product family</td>
<td></td>
</tr>
</tbody>
</table>
The latest Intel® Xeon® processors take performance, energy-efficiency, and compute density to new heights, while delivering best-in-class support for virtualization, cloud computing, in-memory computing, big-data analytics, and technical computing. Servers based on these processors provide the foundation for a standardized, efficient, and agile data center that can help you drive down space, power, cooling, and management costs, while providing exceptional performance and reliability across the full range of workloads.

Energy-Efficient Performance
Intel Xeon processors offer leadership performance and energy efficiency across multiple industry benchmarks in servers that range in size from 1 to 256 sockets.

- **Ongoing Performance Gains.** The latest Intel processors increase performance by up to 100 percent versus the prior generation and Intel is committed to boosting performance in every new generation across all server types and deployment models.

- **Intelligent Workload Optimization.** Processor frequencies adapt dynamically to workloads to optimize performance per watt at all operating points. Frequencies can be increased beyond rated values for compute-constrained workloads and power consumption is virtually eliminated for inactive portions of the chip.

Advanced Functionality
Advanced features are built into Intel Xeon processors to help you keep pace with escalating business requirements.

- **Hardware-Enhanced Security.** Hardware-assisted encryption and advanced launch-time and runtime protections help you protect systems, applications, and data more effectively, at lower cost, and with less impact on application performance.

- **Superior Reliability.** All Intel® Xeon® processor-based servers are designed, tested, and validated for superior reliability. The Intel® Xeon® processor E7 v2 family extends this advantage, providing advanced reliability, availability, and serviceability (RAS) capability through Intel® Run Sure Technology to support mission-critical applications.
Better for Virtualization – and the Cloud
The broad range of cloud-optimized Intel Xeon processor-based servers provides a flexible and efficient foundation for virtualizing all enterprise applications and for moving confidently toward next-generation private, public, and hybrid cloud solutions.

- **Near-native performance.** With extensive hardware assists for virtualization, even large databases and transactional workloads can be virtualized with confidence. Ongoing improvements in performance and virtualization efficiency in the latest Intel® Xeon® processors—plus the flexible bandwidth provided by 10/40 Gigabit Intel® Ethernet Converged Network Adapters—can help IT organizations sustain high performance across all workloads in demanding cloud environments, while reducing total cost of ownership (TCO) through greater workload consolidation.

- **Seamless workload mobility.** Virtual machines can be migrated without downtime across multiple server generations, so you can establish a single pool of virtualized resources to maximize flexibility and efficiency in your cloud.

- **Secure multitenancy.** Hardware-enhanced security (see page 5) enables sensitive data and workloads to be deployed with greater confidence on shared infrastructure.

- **Intelligent, scale-out storage solutions.** Intel Xeon processors combine high performance and scalability with advanced data protection features for scaling out storage cost-effectively as data volumes grow. Intel® Solid-State Drives and Intel® Cache Acceleration Software add to these advantages by delivering higher performance and greater efficiency through transparent storage tiering.

Performance and Security for Real-Time, Big Data Analytics
High-performing and secure clusters are essential for cost-effectively storing and analyzing today’s fast-growing, poly-structured data sets. Powerful, large-memory systems are equally important for delivering real-time insights through scalable, in-memory analytics. Intel offers exceptional performance and value for both of these usage models.

- The combination of the Intel® Xeon® processor E5 family, 10/40 Gigabit Intel® Ethernet Converged Network Adapters, Intel SSDs, and the Intel® Distribution for Apache Hadoop® software provides enterprise-class support for security and manageability, and has been shown to deliver up to 30 times higher performance compared with a less optimized solution stack.

- The Intel Xeon processor E7 v2 product family provides up to 120 cores, 240 threads and 12 TB of memory capacity per 8-socket server, providing outstanding performance and scalability for real-time, in-memory analytics.

A Compelling Alternative to High-End RISC
According to IDC, over 85 percent of higher end workloads are now running on industry-standard servers, including business intelligence, data warehousing, database, and enterprise resource planning applications. Servers based on the Intel Xeon processor E7 v2 family offer robust mission-critical capability with significant system price and price/performance advantages versus IBM POWER7. Businesses are migrating onto these new servers to reduce costs for their most critical applications, and to provide a more flexible foundation for growth and innovation.

High Performance Technical Computing – at Every Scale
From entry-level workstations to massive high performance computing (HPC) clusters, technical computing systems based on Intel Xeon processors provide leadership performance and energy-efficiency to help engineers and scientists push the boundaries of knowledge and innovation. That’s why more than 85 percent of the world’s 500 largest supercomputers—and 111 out of the last 114 to join the TOP500 list—run on Intel® architecture.

Intel provides the same high value across the full range of technical computing needs, with a comprehensive array of processors, coprocessors, storage solutions, networking devices, and software tools that are optimized for technical computing. Whether you are a small design shop or a global research center, you can tailor your workstations and clusters to address your specific needs at the lowest cost. And you can take advantage of high-performance Intel innovations, such as Intel® Solid-State Drives, Intel® True Scale fabric, and a highly scalable Intel® Lustre® file system.
Advanced Intel Server Technologies

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>DESCRIPTION</th>
<th>BENEFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalable, Energy-Efficient Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel® Turbo Boost Technology(^{10}) 2.0</td>
<td>Increases processor frequencies beyond rated values to take advantage of power and thermal headroom.</td>
<td>Delivers peak performance for compute-constrained workloads without increasing power consumption for other workloads.</td>
</tr>
<tr>
<td>Intel® Advanced Vector Extensions(^{11}) (Intel® AVX)</td>
<td>Accelerates vector and floating point computations, including 16/32-bit data conversions.</td>
<td>Delivers up to 2x higher performance for vector and floating point operations.(^{4,12})</td>
</tr>
<tr>
<td>Intel® Advanced Vector Extensions 2(^{11}) (Intel® AVX2)</td>
<td>Improves compute-intensive performance through Fused Multiply Add (FMA) operations.</td>
<td>Delivers up to 1.9x higher performance for the integer vector operations used in a broad range of enterprise workloads.(^{4,13})</td>
</tr>
<tr>
<td>Intel® Integrated I/O</td>
<td>Integrates I/O onto the processor die to support faster data movement in today’s dense, I/O-intensive environments.</td>
<td>Reduces I/O latency by up to 32 percent(^{4,14}) and support for the PCIe 3.0 specification increases I/O bandwidth by as much as 2x.(^{4,15})</td>
</tr>
<tr>
<td>Intel® Data Direct I/O Technology (Intel® DDIO)</td>
<td>Enables direct data transfers from storage to cache.</td>
<td>Increases I/O performance by up to 2.3 times(^{4,16}) and reduces the need for performance-sapping memory accesses.</td>
</tr>
<tr>
<td>Intel® Intelligent Power Technology(^{17})</td>
<td>Dynamically conserves power and enables advanced power management.</td>
<td>Helps to reduce operating costs and improve system reliability through power optimization and management.</td>
</tr>
<tr>
<td>Intel® Hyper-Threading Technology(^{18}) (Intel® HT Technology)</td>
<td>Doubles the number of execution threads that can be supported by each processor core.</td>
<td>Increases processing efficiency for multi-threaded applications and for multiple simultaneous tasks.</td>
</tr>
<tr>
<td>Intel Resource Director Technology</td>
<td>Allows the hypervisor to monitor Last Level Cache usage at the application and VM levels.</td>
<td>Helps to improve performance and efficiency by providing better information for scheduling, load balancing, and workload migration.</td>
</tr>
<tr>
<td>Intel® Node Manager 3.0 (Intel® NM) with power/thermal-aware scheduling (PTAS)</td>
<td>Enables dynamic monitoring and limiting of server power consumption and provides visibility into thermal profiles across node, rack, and data center.</td>
<td>Allows IT organizations to run more and heavier workloads per server while guarding against server overheating.</td>
</tr>
</tbody>
</table>

Advanced Reliability, Availability, and Serviceability (RAS)

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>DESCRIPTION</th>
<th>BENEFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® Run Sure Technology(^{a})</td>
<td>Enhances reliability and uptime for your most business-critical workloads. Helps reduce the frequency and cost of planned/unplanned downtime while also protecting data integrity.</td>
<td>Supports data integrity and uptime equivalent to or better than best-in-class RISC-based platforms, with greater flexibility and better cost models.</td>
</tr>
<tr>
<td>• Resilient System Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Resilient Memory Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• More than 20 additional RAS features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel Data Protection Technology:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Intel® Advanced Encryption Standard New Instructions(^{18}) (Intel® AES-NI)</td>
<td>• Intel AES-NI provides seven new instructions to accelerate and strengthen encryption and decryption.</td>
<td>Improves encryption security and performance and reduces overhead to enable the pervasive use of encryption for strong data security—without compromising application performance.</td>
</tr>
<tr>
<td>• Intel® Secure Key(^{20})</td>
<td>• Intel Secure Key provides high quality security keys using an integrated random number generator.</td>
<td></td>
</tr>
<tr>
<td>Intel Platform Protection Technology:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Trusted Execution Technology(^{19}) (Intel® TXT)</td>
<td>• Intel TXT ensures that physical servers and virtual machines boot only into cryptographically verified “known good states.”</td>
<td>Allows IT to establish trusted pools of virtual resources and to protect systems, applications, and data more effectively from launch-time through runtime.</td>
</tr>
<tr>
<td>• OS Guard</td>
<td>• OS Guard provides enhanced protection against escalation-of-privilege attacks.</td>
<td></td>
</tr>
</tbody>
</table>

Hardware-Enhanced Security

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>DESCRIPTION</th>
<th>BENEFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Intel® Virtualization Technology(^{22}) (Intel® VT)</td>
<td>Provides hardware-assists for virtualization in Intel processors, chipsets, and network adapters.</td>
<td>Enables near-native application performance in virtual environments, with improved reliability and enhanced workload isolation.</td>
</tr>
<tr>
<td>Intel® VM Control Structure (VCMS) Shadowing</td>
<td>Enables a hypervisor to run efficiently within a virtual machine (VM) managed by a second hypervisor—by eliminating most nesting-induced VM exits/entries.</td>
<td>Provides ultra-high isolation for financial applications and other critical workloads.</td>
</tr>
</tbody>
</table>
Optimized Processors for Your Server Requirements

Affordable Servers for Small Businesses and More

Intel® Xeon® Processor E3-1200 v3 Product Family

1-processor servers ideal for:
- Most small business workloads
- Some departmental workloads for larger companies
- Certain lightweight or graphics-intensive data center workloads

Servers based on the Intel Xeon processor E3-1200 v3 product family are designed to meet the needs of small businesses, providing responsive performance and hardware-assisted reliability and security—all at affordable prices. In addition to the Intel server technologies listed below, these servers include Intel® Rapid Storage Technology enterprise (Intel® RSTe), which protects against hard drive failures, and ECC memory, which automatically corrects memory errors. They also include two security technologies—Intel® Data Protection Technology with AES-NI and Secure Key, and Intel® Platform Protection Technology with OS Guard, BIOS Guard, and Trusted Execution Technology (TXT)—to support stronger safeguards against today's increasingly sophisticated malware attacks.

Although designed primarily for small businesses, the outstanding energy-efficiency, density, and graphics performance of these servers make them ideal for certain data center workloads, such as media serving, virtual desktop hosting, and static web serving.

Flexible and Efficient Servers for Standard Infrastructure

Intel® Xeon® Processor E5-2600 v3 Product Family

2-processor servers ideal for most workloads, including:
- Standard infrastructure
- Virtualization, cloud, and big data
- Technical computing

The Intel Xeon processor E5 v3 family provides the versatility you need at the heart of your data center, so you can improve agility, efficiency, and performance, while establishing a better foundation for security across all your deployments—native, virtualized, and cloud. Based on Intel's industry-leading 22nm, 3-D transistor technology, these processors provide 50 percent more cores and cache than the previous generation. They also provide improved virtualization efficiency and support industry-leading DDR4 memory, which enables faster data access with reduced power consumption. Compared with typical four-year old servers based on the Intel Xeon processor 5600 series, you can expect to see up to 6x higher performance across a range of benchmarks.

KEY INTEL SERVER TECHNOLOGIES:

- Intel Turbo Boost Technology 2.0
- Intel Resource Director Technology
- Intel AVX 2
- Intel NM 3.0 with PTAS
- Intel Integrated Power Technology
- Intel HT Technology
- Intel Integrated I/O
- Intel DDIO
- OS Guard
- Secure Key
- AES-NI
- TXT
- Intel VT

Flexible and Efficient Servers for Standard Infrastructure

Intel® Xeon® Processor E5-2600 v3 Product Family

2-processor servers ideal for most workloads, including:
- Standard infrastructure
- Virtualization, cloud, and big data
- Technical computing

The Intel Xeon processor E5 v3 family provides the versatility you need at the heart of your data center, so you can improve agility, efficiency, and performance, while establishing a better foundation for security across all your deployments—native, virtualized, and cloud. Based on Intel's industry-leading 22nm, 3-D transistor technology, these processors provide 50 percent more cores and cache than the previous generation. They also provide improved virtualization efficiency and support industry-leading DDR4 memory, which enables faster data access with reduced power consumption. Compared with typical four-year old servers based on the Intel Xeon processor 5600 series, you can expect to see up to 6x higher performance across a range of benchmarks.

KEY INTEL SERVER TECHNOLOGIES:

- Intel Turbo Boost Technology 2.0
- Intel Resource Director Technology
- Intel AVX 2
- Intel NM 3.0 with PTAS
- Intel Integrated Power Technology
- Intel HT Technology
- Intel Integrated I/O
- Intel DDIO
- OS Guard
- Secure Key
- AES-NI
- TXT
- Intel VT

Scalable Servers for Business Intelligence and Other Mission-Critical Workloads

Intel® Xeon® Processor E7-8800/4800/2800 v2 Product Families

2-256 processor servers ideal for:
- Real-time business intelligence/business analytics
- RISC replacement
- Mission-critical enterprise computing
- Large in-memory or back-end databases
- Heavy workloads in native, virtual, and private cloud deployments
- Large-scale virtualization and consolidation
- Scale-up high performance computing (HPC)

Servers based on the Intel Xeon processor E7-8800/4800/2800 v2 product families deliver leadership performance for real-time business intelligence and other demanding, mission-critical applications. They have more processors, memory, I/O, cache, and RAS capability than standard 2-socket or 4-socket EP systems. The top-of-the-line Intel Xeon processor E7 v2 product family provides up to twice the performance of the previous generation Intel® Xeon® processor E7 product family, with 50 percent more cores and threads, 25 percent more cache, three times the memory capacity, four times the system bandwidth, and additional reliability and security features. Each socket provides up to 30 threads, 37.5 MB of on-die cache, and supports up to 24 64 GB LR-DIMMS.

As businesses race to deploy real-time analytic solutions, the exceptional performance, large memory capacity, and world-class reliability provided by these servers offer essential new capabilities.

KEY INTEL SERVER TECHNOLOGIES:

- Intel Turbo Boost Technology 2.0
- Intel Intelligent Power Technology
- Intel HT Technology
- Technology
- Intel Integrated I/O
- Intel DDIO
- Intel AVX
- OS Guard
- Secure Key
- Intel AES-NI
- Intel TXT
- Intel VT
- Intel VT

Optimized Processors for Your Server Requirements

Intel® Xeon® Processor E3-1200 v3 Product Family

1-processor servers ideal for:
- Most small business workloads
- Some departmental workloads for larger companies
- Certain lightweight or graphics-intensive data center workloads

Servers based on the Intel Xeon processor E3-1200 v3 product family are designed to meet the needs of small businesses, providing responsive performance and hardware-assisted reliability and security—all at affordable prices. In addition to the Intel server technologies listed below, these servers include Intel® Rapid Storage Technology enterprise (Intel® RSTe), which protects against hard drive failures, and ECC memory, which automatically corrects memory errors. They also include two security technologies—Intel® Data Protection Technology with AES-NI and Secure Key, and Intel® Platform Protection Technology with OS Guard, BIOS Guard, and Trusted Execution Technology (TXT)—to support stronger safeguards against today's increasingly sophisticated malware attacks.

Although designed primarily for small businesses, the outstanding energy-efficiency, density, and graphics performance of these servers make them ideal for certain data center workloads, such as media serving, virtual desktop hosting, and static web serving.

KEY INTEL SERVER TECHNOLOGIES:

- Intel Turbo Boost Technology 2.0
- Intel Resource Director Technology
- Intel AVX 2
- Intel NM 3.0 with PTAS
- Intel Integrated Power Technology
- Intel HT Technology
- Intel Integrated I/O
- Intel DDIO
- OS Guard
- Secure Key
- AES-NI
- TXT
- Intel VT

Flexible and Efficient Servers for Standard Infrastructure

Intel® Xeon® Processor E5-2600 v3 Product Family

2-processor servers ideal for most workloads, including:
- Standard infrastructure
- Virtualization, cloud, and big data
- Technical computing

The Intel Xeon processor E5 v3 family provides the versatility you need at the heart of your data center, so you can improve agility, efficiency, and performance, while establishing a better foundation for security across all your deployments—native, virtualized, and cloud. Based on Intel's industry-leading 22nm, 3-D transistor technology, these processors provide 50 percent more cores and cache than the previous generation. They also provide improved virtualization efficiency and support industry-leading DDR4 memory, which enables faster data access with reduced power consumption. Compared with typical four-year old servers based on the Intel Xeon processor 5600 series, you can expect to see up to 6x higher performance across a range of benchmarks.

KEY INTEL SERVER TECHNOLOGIES:

- Intel Turbo Boost Technology 2.0
- Intel Resource Director Technology
- Intel AVX 2
- Intel NM 3.0 with PTAS
- Intel Integrated Power Technology
- Intel HT Technology
- Intel Integrated I/O
- Intel DDIO
- OS Guard
- Secure Key
- AES-NI
- TXT
- Intel VT

Scalable Servers for Business Intelligence and Other Mission-Critical Workloads

Intel® Xeon® Processor E7-8800/4800/2800 v2 Product Families

2-256 processor servers ideal for:
- Real-time business intelligence/business analytics
- RISC replacement
- Mission-critical enterprise computing
- Large in-memory or back-end databases
- Heavy workloads in native, virtual, and private cloud deployments
- Large-scale virtualization and consolidation
- Scale-up high performance computing (HPC)

Servers based on the Intel Xeon processor E7-8800/4800/2800 v2 product families deliver leadership performance for real-time business intelligence and other demanding, mission-critical applications. They have more processors, memory, I/O, cache, and RAS capability than standard 2-socket or 4-socket EP systems. The top-of-the-line Intel Xeon processor E7 v2 product family provides up to twice the performance of the previous generation Intel® Xeon® processor E7 product family, with 50 percent more cores and threads, 25 percent more cache, three times the memory capacity, four times the system bandwidth, and additional reliability and security features. Each socket provides up to 30 threads, 37.5 MB of on-die cache, and supports up to 24 64 GB LR-DIMMS.

As businesses race to deploy real-time analytic solutions, the exceptional performance, large memory capacity, and world-class reliability provided by these servers offer essential new capabilities.

KEY INTEL SERVER TECHNOLOGIES:

- Intel Turbo Boost Technology 2.0
- Intel Intelligent Power Technology
- Intel HT Technology
- Technology
- Intel Integrated I/O
- Intel DDIO
- Intel AVX
- OS Guard
- Secure Key
- Intel AES-NI
- Intel TXT
- Intel VT
- Intel VT

Powerful Servers for Mission-Critical Environments (Mainframe and UNIX)

Intel® Itanium® Processor Family

2-32 processor servers ideal for:
- Mission-critical enterprise computing
- Large-scale data center consolidation

Intel® Itanium® Processor 9500 Series

Intel® Itanium® processor-based servers deliver powerful and scalable performance with world-class availability. The Intel Itanium processor 9500 series provides more than twice the performance per socket of the previous-generation Intel® Itanium® processor 9300 series with 33 percent higher per-socket bandwidth, improved reliability, enhanced energy efficiency, and support for more than 16 terabytes of LV DIMM memory.

- **Mainframe-Class Reliability.** Advanced features include Intel® Cache Safe Technology, advanced Machine Check Architecture, end-to-end processor error detection, and new Intel® Instruction Replay Technology, which reissues errant instructions to enable automated recovery from severe errors.

- **Exceptional Processing Efficiency.** Enhancements to Intel® Hyper-Threading Technology18 improve multi-threading efficiency and performance through dual-domain multi-threading. Intel Itanium New Instructions simplify common tasks and branch operations and will help take Itanium performance to new levels for many generations to come.

- **Efficient Data Center Consolidation.** Intel® Virtualization Technology23 hard partitioning, and support for dynamic resource management provide a powerful, flexible platform for consolidating mission-critical workloads.

Microservers for Lightweight, Highly-Parallel Workloads

Intel® Xeon® Processor E3 v3 | Intel® Atom™ Processor C2000 Product Family

Most data center workloads run best on two-socket or larger Intel Xeon processor-based servers. However, some lightweight, web-scale workloads such as entry-level dedicated hosting, simple content delivery and static web serving run more efficiently on large numbers of smaller server cores. To improve TCO for these workloads, Intel has worked with server manufacturers to deliver a new low-power, high-density server form factor—microservers.

Microservers based on the Intel Xeon processor E3-1200 v3 product family provide up to 5.8x greater performance per SSI rack compared to a rack of 1U servers,4,28 and support thermal design points (TDPs) as low as 13W per node. Platforms based on the Intel® Atom™ processor C2000 product family support TDPs down to 6W per node and deliver highest node density, with up to 7 times higher performance4,29 and 6 times better energy efficiency4,30 than the previous generation Intel® Atom™ Processor S1200 family. All of these servers are built for the data center, with support for 64-bit software, Intel Virtualization Technology and error-correcting code (ECC) memory. They offer valuable TCO advantages for sufficiently lightweight workloads in large-scale Internet and service-provider data centers.
High-Performance Servers and Workstations for Technical Computing

From entry-level workstations to massive supercomputers, Intel® Xeon® processors support the full range of technical computing requirements to help businesses and research centers achieve desired results faster and at lower cost.

Intel Xeon Processor E5-2600 v3 Family. These processors are the ideal choice for powerful, dual-processor workstations and for high-performance server nodes in HPC clusters. They provide greater bandwidth and stronger per core performance than the previous generation, along with deeper buffers and twice the floating point capacity. You can expect real-world performance gains of up to 1.9x versus prior-generation processors4,13 and up to 6.3x versus typical four year old processors.31 Compelling features include up to 18 cores, 36 threads, 45 MB last-level cache, support for large memory configurations (up to 1.5 TB per 2S server), fast memory options (up to 2133 MHz with DDR4 memory), 4 memory channels, and up to 40 lanes of PCIe* 3.0 per socket for low node-to-node latency. These are the processors of choice for most technical applications.

Intel® Xeon Phi™ Product Family. Use these powerful coprocessors to accelerate workstation and cluster performance for highly-parallel and vector-oriented applications. Intel Xeon Phi coprocessors provide up to 61 cores and 244 threads, are IP addressable, can run their own Linux® OS, and deliver up to 1.2 teraflops of double-precision performance.4,32 They support a variety of execution modes (dependent, independent, and symmetrical), and come in multiple configurations and form factors (including standard PCIe x16 cards with or without cooling). They are fully compatible with software written for Intel Xeon processors.

Intel® Xeon® processor E5-1600 v3 Product Family. This is Intel’s most powerful processor for single-processor workstations. It offers more cores, cache, memory and I/O bandwidth than the Intel Xeon processor E3-1200 v3 product family (see below), so engineers and researchers get faster results when running complex applications and interacting with large data sets.

Intel® Xeon® Processor E3-1200 v3 Product Family. These processors are ideal for entry-level workstations, which provide a major leap in performance and capacity versus standard business desktops. Server-class features deliver higher performance and scalability, enhanced reliability, and superior data integrity. Intel® HD P4600 graphics are built-in, providing professional-grade data visualization without the cost or complexity of an add-in graphics card.

Intel® Xeon® Processor E7 v2 Family. These expandable two-to-eight-socket servers deliver scalable performance for data-demanding, transaction-intensive, technical computing workloads requiring large individual systems or clustered supernodes. With up to 15 cores and 37.5 MB of shared on-die cache per processor, up to 6 TB of memory in a four-socket system, Intel AVX for CPU-bound workloads, and unique data traffic optimization features, the Intel Xeon processor E7 v2 family is ideal for accelerating performance on complex, time-critical calculations, and for design analysis, fluid dynamics, life sciences, and more.

8. Source: Intel internal measurements. Benchmark run is Terasort with 1 TB of data on Intel® Xeon® E5-2600 product family. Results have been simulated and are provided for information purposes only. Results were derived using simulations run on an architecture simulator or model. Any difference in system hardware or software design or configuration may affect actual performance. Intel product plans in this document do not constitute Intel plan of record product roadmaps. Please consult your Intel representative to obtain Intel's current plan of record product roadmaps. For more information, go to http://intel.com/performance.

7. New Intel configuration: 4-Socket Intel® C602J Chipset-based Server with four Intel® Xeon® processors E7-4890 v2 (37.5M Cache, 2.80 GHz, 15 Cores) using 64x 8 GB DDR3-1333 (running at 2666MHz) memory (1 TB) scoring estimated 2288 baseline (+2.26x).

5. New Intel configuration: 4-Socket Intel® C602J Chipset-based Server with four Intel® Xeon® processors E7-4890 v2 (37.5M Cache, 2.80 GHz, 15 Cores) using 64x 8 GB DDR3-1333 (running at 2666MHz) memory (1 TB) scoring estimated 1675 baseline (+2.26x).

2. For the latest Intel processor-based server performance benchmarks, including test descriptions, results, and disclaimers, visit the Intel web site at: http://www.intel.com/performance/server/.

1. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number for details.
30. 29. 7x higher performance based on Dynamic Web Benchmark Performance: Atom S1260 (8GB, SSD, 1GbE), Score=1522. Atom C2750 (32GB, SSD, 10GbE), Score=8778, est node power=19W, PPW=462. Intel Internal measurements as of August 2013.

27. 26. On a 4-socket natively-connected platform: Intel® Xeon® processor E7 family supports 64 DIMMs, max memory per DIMM of 32GB RDIMM; Intel® Xeon® processor E7 v2 family supports 96 DIMMs, max memory per DIMM of 64GB RDIMM. This enables a 3x increase in memory.

20. 19. No computer system can provide absolute security. Requires an enabled Intel® processor and software optimized for use of the technology. Consult your system manufacturer and/or software vendor for more information.

16. 15. Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer.

12. 11. Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality or other benefits may vary depending on hardware implementation and may require a BIOS and/or operating system update. Please check with your system vendor for details.

8. 7. Up to 4x I/O bandwidth claim based on Intel internal measurements comparing 1-switch SNB data for an I/O device read to local memory hierarchy under idle conditions for the Intel® Xeon® processor E5-2600 product family versus the Intel® Xeon® processor 5600 series.

6. 5. 6x better energy efficiency based on performance per Watt measurements using the Dynamic Web Benchmark. Results: Intel Atom S1260 processor (8GB, SSD, 1GbE), Score=1522. Atom C2750 processor (32GB, SSD, 10GbE), Score=8778, est node power=20W, PPW=76.1; Intel Atom processor C2730 (8GB, SSD), Score=7878, est node power=19W, PPW=462. Intel Internal measurements as of August 2013.

4. 3. Intel® AES-NI requires a computer system with an AES-NI enabled processor, chipset, BIOS, Authenticated Code Modules, and an Intel® or other compatible measured virtual machine monitor. Intel® AES-NI is designed to achieve higher throughput to certain integer and floating point operations. Depending on processor power and thermal characteristics and system power and thermal conditions, AVX/AVX2 floating point instructions may run at lower frequency to maintain reliable operations at all times.

0. Source: The claim of up to 32% reduction in I/O latency is based on Intel internal measurements of the average time for an I/O device read to local memory hierarchy under idle conditions for the Intel® Xeon® processor E5-2600 product family versus the Intel® Xeon® processor 5600 series.

8 GT/s and 128b/130b encoding in PCIe 3.0 specification enable double the interconnect bandwidth over the PCIe 2.0 specification. Source: http://www.pcisig.com/news_room/November_18_2010_Press_Release/.

8. 7. Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-Threading Technology enable for CPU, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.info/hyperthreading/ for more information including details on which processors support HT Technology.

6. 5. Hyper-Threading Technology requires a computer system with an enabled Intel® processor, chipset, and BIOS for an operating system enabled cpu, BIOS and operating system. Functionality or other benefits may vary depending on hardware implementation and may require a BIOS and/or operating system update. Please check with your system vendor for details.

4. 3. Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer.

8. 7. Trusted Execution Technology is a security technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, an Intel® Trusted Execution Technology-enabled processor, chipset, BIOS, Authenticated Code Modules, and an Intel® or other compatible measured virtual machine monitor. In addition, Intel Trusted Execution Technology requires the system to contain a TPMv2 as defined by the Trusted Computing Group and specific software for some uses. See http://www.intel.com/technology/security/ for more information.

6. 5. Hyper-Threading Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

2. 1. No computer system can provide absolute security. Requires an enabled Intel® processor, enabled chipset, firmware, software, may require a subscription with a capable service provider (may not be available in all countries). Intel assumes no liability for lost or stolen data and/or systems or any other damages resulting thereof. Consult your Service Provider for availability and functionality. For more information, visit http://www.intel.com/go/anti-theft. Consult your system manufacturer and/or software vendor for more information.