IMPLEMENTATION GUIDE

Data Center
Rack Scale Design

intel.

Dynamic Container Scaling with Intel®
Rack Scale Design

Summary

This document describes several ways that container environments like Kubernetes can take advantage of the
capabilities of Intel® Rack Scale Design (Intel® RSD) compatible hardware to deliver more dynamic scaling of
container resources.

Why Containers?

Containers are similar to virtual machines, but abstract the operating system environment down to the very
specific components needed to run the application or service rather than virtualization of hardware. Containers
provide several advantages: they are consistent across environments, enable deployment automation, and make
efficient use of resources. Container hosting systems, such as SUSE CaaS Platform?*, provide an environment for
creating and running containers. They typically include a cluster of worker servers for running containers, and one
(or more) servers for administration. The SUSE CaaS Platform includes orchestration (e.g., Kubernetes), hardware
management, software deployment, and other services.

How Intel® RSD Complements Containers

Although containers and other forms of virtualization provide much better use of resources than the old “one-
application-one-server” paradigm, they are still constrained by the lack of flexibility of traditional server hardware.
A hyperscale data center based on racks of preconfigured servers is still limited in its ability to achieve full
utilization while adapting to changing requirements. Data center operators need a more flexible hardware
architecture that is open, composable and interoperable, plus they need it to work with their orchestration
software.

This is exactly what Intel® Rack Scale Design (Intel® RSD) provides: a new, open architecture that improves
productivity, performance, agility and efficiency. Intel RSD is an industry-aligned architecture for hyperscale data
centers that provides physically disaggregated, modular building blocks that can be managed as resource pools and
composed on demand to meet specific workload requirements. It also exposes open, scalable and secure
management APIs that support interoperability across hardware and software vendors.

Intel RSD delivers “hyper flexibility,” which enables operators to reduce overprovisioning and achieve higher
utilization and reduced capex. It also makes equipment refresh more economical by avoiding the need to replace
entire servers. Intel RSD is a natural complement to a container hosting platform, resulting in more efficient
utilization of hardware, and increased automation of hardware configuration tasks. Intel RSD makes the data
center more economical, flexible, simpler to manage, and easier to scale out on demand. Products based on the
Intel® RSD architecture are available today from major OEMs and ODM:s.

https://www.suse.com/products/caas-platform/

Dynamic Container Scaling with Intel® Rack Scale Design 2

8 Orchestration
§ e.g., OpenStack®, Kubernetes®, custom
t POD Management API
POD Manager

Software

Discovery/Boot/Configuration/Telemetry

I

PSME API

Firmware

‘ t ‘ Firmware API

Compute Storage Accelerator
Resources Resources Resources

Figure 1. Intel Rack Scale Design Architecture

Dynamic Container Scaling with Intel® RSD

Intel® RSD supports dynamic composition of physical hardware resources in the most optimal configuration for a
targeted workload. Intel RSD RESTful APIs allow orchestration software to implement a variety of dynamic use
models in a containerized environment.

Use Case 1 —on-demand addition of servers to scale out a container cluster (dynamic

scaling)

In this scenario, Kubernetes (sometimes abbreviated as K8s) requests deployment of additional containers, but the
existing cluster doesn't have adequate capacity. Based upon an interactive reaction to an alert or, if allowed, full-
stack automation with K8s, Intel® RSD can automate the process of adding a worker server to the cluster:

1. A composition request is sent to Intel RSD Pod Manager (PODM) using Intel RSD APIs.

2. PODM composes a new node, presenting it to the container hosting platform.

3. The container hosting platform deploys the new node, installs the necessary software, incorporates the
node into the container cluster, and then deploys the requested containers.

Conversely, if the needed resource capacity subsides, these steps can be done in a reverse order: the extra node
can be cordoned from the K8s cluster scheduling, the container workloads are drained off, the node is removed
from the cluster, and the node’s resources are returned to the available resource pools.

Use Case 2 —on-demand deployment of servers with pre-defined roles (template-based

dynamic scaling)

Usually, a cluster deployment requires a number of worker nodes for running containers, as well as an
administration server, which typically only needs modest hardware (e.g., fewer cores and DIMMs). We assume the
container hosting platform has templates for two roles: one for worker servers, and one for administration servers.
The Intel® RSD composition request APl accepts parameters that describe a composed server in terms of CPU,
DRAM, storage, and other requirements. So an administrator or K8s (if allowed to request such infrastructure
changes) can use the role templates to determine the correct composition parameters to send to PODM, which
then creates a new node from the available recourse pools with the desired characteristics.

Dynamic Container Scaling with Intel® Rack Scale Design 3

We can extend this scenario by assuming that the data center manager plans to deploy ten container clusters over
time, each with 10 workers and one admin server. She might purchase Intel RSD-compatible hardware for one
hundred workers and ten administration servers, and initially deploys the ten clusters with one administration
server and six worker servers each to meet current workload demand. The remaining forty servers are placed in
available resource pools, which makes them immediately available for on-demand expansion as needed, whether
the need is for more clusters, workers or admin servers.

A data center operator can set up a script to automate the deployment of these Intel RSD based clusters:
1. Request PODM (via Intel RSD APIs) to compose a server using the administration template.
2. Install the operating system and other software (via network/PXE or other means) for the administration
node.
3. Request PODM to compose 6 servers using the worker template.
4. Install operating system and request container hosting platform software from the administration node to
incorporate the worker servers into the container hosting cluster.

Other templates could define composed servers for other roles, for example, servers with higher storage capacity
(or multiple storage tiers) for software defined storage (SDS) clusters.

Use Case 3 —on-demand reconfiguration to scale performance of a containerized, data

intensive workload (dynamic optimization)

In this scenario, we assume that a Kubernetes container cluster is already installed and running on an assortment
of hardware including an Intel RSD compatible rack. Kubernetes runs a container with a data intensive
application. K8s has a template associated with the container image that specifies a worker with
additional persistent storage volumes (NVMe) and uses it to request Intel RSD Pod Manager (PODM) to
attach two NVMe drives to the node on which the container is running. PODM reconfigures the node as
requested and the container now has the resources needed to deliver the required performance and resources.

There are many other dynamic use models that are enabled by Intel RSD, but let’s turn now to an exploratory
concept demo that shows how a container orchestration environment might interact with Intel RSD.

Intel RSD and the SUSE CaaS Platform—Concept Demo

Intel RSD can work with a wide range of orchestration software to manage bare metal, virtual machine and
containerized environments. In this concept prototype, SUSE and Intel collaborated on a simple interface between
Intel RSD APIs and the SUSE CaaS Platform* to demonstrate the third use case described above, i.e., adding
resources to an already composed and running node in a Kubernetes cluster.

In this demonstration SUSE Caa$ Platform accesses Intel RSD Pod Manager (PODM) APIs to add two host storage
drives to an existing composed node connected over PCle for a containerized SMuFin* (Somatic MUtation
FINder) genomics application'. It also demonstrates how these resources can be easily returned to resource pools,
ready for use elsewhere.

Dynamic Container Scaling with Intel® Rack Scale Design

-

SUSE. Caas Platform*

Intel® RSD Pod
Manager (PODM)
)

Containerized
microservice
workload

PCle Gen 3

RSD Reference Rack /

Containerized
microservice
workload

SMuFin

workload

Compute Blade 1 (CB1)

Compute Blade 2 (CB2)

—————————————————————————————— Compute Blade 3 (CB3
Kubernetes (K8s) RSDN1 RSD N1 associated with F (CB3)

@ B3 & 2 NVMe drives Compute Blade 4 (CB4) \

K8: k
y > PSME Storage Controller

JBOF sled

Cluster
Manager®

K8s worker

NVMe drives

Figure 2. Composing a node to add NVMe drives to a containerized workload.

The interaction goes like this:
1.
2.
3.

4.

SMuFin app running on node RSDN1 requires hot storage.

K8s requests PODM to add two host storage drives to the existing composed node RSDN1.
PODM sends “AttachEndpoint” POST action to the PSME storage controller, which configures the PCle
switch in the JBOF chassis.

2 NVMe drives are attached to CB3 via PCle3, and associated with RSDN1 node.

From an operator’s point of view, here are the underlying steps and commands issued to the SUSE CaaS Platform
(this is just a demo—in an integrated production solution, these steps could be automated and transparent to the
operator):

1.

The first step is to minimize the impact on the SUSE CaaS Platform cluster by removing the node to be
modified from the Kubernetes scheduler’s view to make sure Kubernetes doesn’t try to schedule the
node during the reconfiguration.

kubectl cordon RSDN1
Next the running containers are moved off the target node.

kubectl drain RSDN1

SUSE CaaS requests PODM software to add two host storage drives from a JBOF sled in the rack to
the existing composed node RSDN1, which is using compute blade 3 (CB3).

curl -k -u admin:admin -X POST -H "Content-Type: application/json"™ -d
'{"Resource" : {"Qodata.id"
"/redfish/v1/Chassis/<JBOF Chassis ID>/Drives/<Drive-ID>"}}"'
https://<PODM IP>:8443/redfish/v1/Nodes/RSD1/Actions/ComposedNode.Attac
hEndpoint B

PODM send commands to the JBOF controller to attach two NMVe drives to compute blade CB3; the
PCle Gen 3 switch in the JBOF connects the drives to CB3 via PCle Gen 3 cables.

Enable Kubernetes to utilize these new volumes for the containerized SMuFin workload.

Dynamic Container Scaling with Intel® Rack Scale Design

For example:

e Create a PersistentVolume (keying off capacity for differentiation and matching the mount
points)

e Create a PersistentVolumeClaim (again keying off capacity and setting read/write attributes)
6. Re-enable the node for scheduling of container workloads.

kubectl uncordon <node>

7. Launch the containerized workload (and specifying the volume claim mounts to match the container
workload's configuration needs) with the K8s manifest for the SmuFin application container.

8. Letthe workload run to completion.

The cool thing about Intel RSD is that the resources of a composed nodes can be returned to the available
resources pools when they are no longer needed for a specific use, allowing them to be recomposed to a different
node later, or for a different set of requirements. In this case, the NVMe drives can be detached and returned to
the available resource pools, while the node remains intact. The SUSE CaaS Platform to Intel RSD interactions are:

1. SMuFin workload completes execution in container hosted on RSD node RSDN1.
SUSE CaaS Platform requests PODM to “detach” 2 NVMe drives from RSDN1.

2
3. PODM sends “DetachEndpoint” POST action to storage controller.
4

The connection between the 2 NVMe drives and RSDN1 is removed while maintaining RSDN1 node
association with CB3.

SUSE. Caas Platform*

Intel® RSD Pod
Containerized Manager (PODM)
microservice v.2.1.3
workload

PCle Gen 3

Containerized
microservice
workload

SMuFin

workload

RSD Reference Rack /
Compute Blade 1 (CB1)

Compute Blade 2 (CB2)

Kubernetes (K8s)
Cluster
Manager*

--------------- ‘= me o=~ Compute Blade 3 (CB3)
RSDN1 RSD N1 associated with

@ B3 Compute Blade 4 (CB4)
K8: ki
\i\"y > PSME Storage Controller

K8s worker

NVMe drives

Figure 3. Releasing resource back to the pools when no longer needed.

From the operator’s point of view, the steps involved are:
1. All containers are moved off the target node.
kubectl drain RSDN1

2. Delete the workload pod, volume claim and volumes.

Dynamic Container Scaling with Intel® Rack Scale Design 6

3. Unmount the NVMe drives and detach them from the node RSDN1 via RSD APIs (i.e., request PODM to
remove the previously added NVMe drives).

curl -k -u admin:admin -X POST -H "Content-Type: application/json" -d
'{"Resource" : {"Qodata.id"
"/redfish/v1/Chassis/<JBOF Chassis ID>/Drives/<Drive-ID>"}}'
https://<PODM IP>:8443/redfish/v1/Nodes/RSD1/Actions/ComposedNode.Detac
hEndpoint

4. PODM send commands to the JBOF controller to detach the two NMVe drives from blade CB3.
5. Enable Kubernetes to utilize the node RSDN1 for other workloads.

kubectl uncordon <node>

Conclusion

By leveraging Intel RSD capabilities, it is possible for container orchestration environments to deliver dynamic
container scaling and optimization in the data center. That is, container platforms could determine a workload’s
resource needs, either from a template or performance indicators, and employ RESTful APIs on Intel RSD
compatible hardware to dynamically configure a mix of CPUs, DRAM, accelerators (e.g., Intel® FPGAs), hot storage
(e.g., NVMe resources), and hard disk storage required to optimize the application’s performance or other
characteristics. As workloads change, a container platform could reconfigure systems to adapt to the new
requirements.

"SMuFin (Somatic MUtation FINder) is a reference-free method designed to identify somatic variation on tumor
genomes by direct comparison with a corresponding normal genome of the same patient. It is available from the
Computational Genomics Group at the Barcelona Supercomputing Center. http://cg.bsc.es/smufin/

Product Availability

Intel RSD compatible products are available now from major vendors including Dell EMC*, Ericsson*, HPE*,
Huawei*, Inspur*, Quanta*, Radisys*, Supermicro*, Wiwynn* and others. Learn more about how the Intel RSD
architecture can accelerate your transition to an open, modular, software-defined Data Center at:
https://www.intel.com/intelrsd. Or contact your local Intel representative to discuss how Intel® can help you to
meet the demands of the Digital Transformation.

intel.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document. Copyright © 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, and Optane are trademarks of Intel Corporation
in the U.S. and/or other countries.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request. No license (express or implied, by estoppel or otherwise) to any
intellectual property rights is granted by this document. Intel technologies’ features and benefits depend on system configuration and may
require enabled hardware or service activation. Performance varies depending on system configuration. No computer system can be absolutely
secure. Check with your system manufacturer or retailer.

The Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

http://cg.bsc.es/smufin/
https://www.intel.com/intelrsd

