Legal Disclaimer

Notice: This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All Rights Reserved.
Purpose

- Material characterization is a critical step in PCB ecosystem enabling
 - Need to have a robust yet accurate method for the industry
 - Available industry methods have limitations in efficiency and accuracy

- Delta-L+ can provide:
 - accurate de-embedding with full S parameter extraction
 - material extraction capability
 - allow for flexibility/capability of HVM Monitoring by smaller coupon
PCB Characterization Process

Accurate Characterization /Material Selection

Material Selection
- Intel (requirement)
- Testing House
- ODM/OEM
- Material Vendor
- PCB Manufacturer

Production Board Samples
- ODM/OEM
- PCB Manufacturer
- Testing House

Quality Control
- High Volume Manufacture Production
- PCB Manufacturer
What’s New in Delta-L+ compared to Delta-L 2.0?

• Three-category approach to address the need of PCB characterization at different stages

• Major enhancements from Delta-L 2.0:
 • Three-length (3L) method to self-check and ensure the accuracy of the de-embedding results
 • One-length (1L) method for HVM monitoring

• Future enhancements (Working In Progress):
 • Dk/Df extraction methodology
 • Surface roughness characterization methodology
Delta-L+ Metrology

Choose coupons with different length combinations at different stages of PCB Characterization

Note: Actual length may vary

<table>
<thead>
<tr>
<th>Material Selection</th>
<th>Board Sampling</th>
<th>HVM Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typically <5 Boards</td>
<td>Typically 5-30 Boards</td>
<td>Sample size varies</td>
</tr>
</tbody>
</table>

Best accuracy

Most suitable for:
Material Characterization
DK/DF Extraction, Insertion Loss & Surface Roughness characterization

Cost effective

Most suitable for:
Board Quality Validation
Insertion loss & Impedance validation

Small Coupon

Most suitable for:
HVM Monitoring
Insertion loss and impedance variation, by one-length approach
Delta-L+ (3L) Three-Line Method

3L method
1. A de-embedded by C using 2X-thru de-embedding
2. B de-embedded by C using 2X-thru de-embedding
3. dB/in comparison of (A-C) and (B-C)
4. Dk/Df extraction

Note: Other de-embedding method, such as TRL, can be implemented as well

This is an important step to validate the de-embedded results.
Criteria: < 5% (TBD) error @ up to the highest frequency of interest
Delta-L+ (2L) Two-Line Method

Delta-L Methodology

- **Direct through measurement for insertion loss.**
 - Insertion of structure A: IL(A) -- X1 inches + vias
 - Insertion of structure B: IL(B) -- X2 inches + vias
 - dB/inch loss = (IL(A) - IL(B)) / (X1-X2)
 - X2 cannot be too short, and X1-X2 better to bigger than 3-4".
 - **Recommendation:** The routing length of X1 is twice of X2

- No full SOLT or TRL calibration needed; compatible to TRL calibration or AFR.
- VNA or TDR/TDT measurement
 - If TDT/TDT measured is performed, it needs to be converted to S parameter first.

Category 2 (two-line)
Direct A – B subtraction using Delta-L 2.0

Reference: *Delta-L Methodology for Electrical Characterization, Rev. 330223-001*
Delta-L+ (1L) One-Line Method

Material Selection/Board Sampling

- Use two lines to get accurate loss characterization

HVM Monitoring

- Use only one line to monitor the HVM variation

Keep track of performance of “A”

Criteria: < 10% (TBC) variation @ Nyquist frequency for at least x samples
Delta-L+ Usage Model

<table>
<thead>
<tr>
<th>Category</th>
<th>Primary Usage</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L</td>
<td>PCB house, HVM monitoring</td>
<td>Lowest cost solution, TDR/TDT or VNA is ok</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 inch</td>
</tr>
<tr>
<td>2L</td>
<td>PCB House (optional) OxM seeking low cost “de-embedding”</td>
<td>This is Delta-L 2.0, TDR/TDR or VNA is ok, VNA is preferred</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 inch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 inch</td>
</tr>
<tr>
<td>3L</td>
<td>Material vendor OxMs</td>
<td>VNA preferred. Prefer rigorous de-embedding (AFR, SFD, TRL, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 inch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 inch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 inch</td>
</tr>
</tbody>
</table>

Other names and brands may be claimed as the property of others. Copyright © 2016, Intel Corporation.
Summary

3L:
for best accuracy
Self-validation of results

2L:
cost effective approach to
remove test fixture impact

1L
Focus on relative comparison
(for high volume manufacture)