
1

Jeffrey Osier-Mixon
•What is the Yocto Project and why is it important?
•Working with an open source collaborative project
& community
•Yocto Project concepts in a nutshell: environment,
metadata, tools

• Using Yocto cross-compiler

• Running kernel via qemu

• Module installation, virtio, etc.

• Lessons learned, capabilities

Kevin McGrath

Yocto Project and

Embedded OS

July 28th 2015
11:00 PDT (GMT -7)

Yocto Project and Embedded OS

Our guests

Jeffrey Osier-Mixon:

Jeff "Jefro" Osier-Mixon works for Intel Corporation in Intel's Open Source Technology Center,

where his current role is community manager for the Yocto Project.. Jefro also works as a

community architect and consultant for a number of open source projects and speaks regularly at

open source conferences worldwide. He has been deeply involved with open source since the

early 1990s.

Kevin McGrath :

Instructor at Oregon State University. I primarily teach the operating systems sequence and the

senior capstone project sequence, but have taught architecture, assembly programming,

introductory programming classes, and just about anything else that needs someone to teach it.

While my background is in network security and high performance computing (computational

physics), today I mostly live in the embedded space, leading to the “ECE wannabe” title in my

department.

Oleg Verge (Moderator):

Technical Program Manager Intel Higher Education, System Engineer MCSE,CCNA, VCP

Hardware components

Software image

Support for various IDEs

Cloud services

Additional tools and
solutions

Helpful Linux* tools (GCC tool chain, perf, oProfile,

etc.), required drivers (Wi-Fi*, Bluetooth®, etc.), useful

API libraries, and daemons like LighttPD and Node.js.
+

= +

=

= + +
For C/C++

For java,

node.js.,html5
For Arduino*

sketches

Intel XDK

+
For Visual

Programming

= Intel IoT Analytics includes capabilities for data collection,

storage, visualization, and analysis of sensor data. Free service.

Intel System Studio for IoT Wind River* VxWorks* for Makers= +

+

+

+

+

Intel® IoT Developer Kit v1.0

https://software.intel.com/en-us/articles/intel-system-studio-for-iot
http://support.windriver.com/formakers

Introduction to the

Yocto Project
Accelerating Embedded Product Development

Jeff “Jefro” Osier-Mixon, Intel Corp

Yocto Project Community Manager

The smallest unit of measure,

equal to one septillionth (10-24).

[yoc-to]

6/ Yocto Project | TheLinux Foun dation

The Yocto Project Ecosystem

What it is, who we are, and why you should care...

© 2014 The Linux Foundation. All rights reserved

The Yocto Project is not an Embedded Linux Distribution.
It creates a custom one for You!

The Yocto Project is not Single Open Source Project.
It is an Ecosystem.

The Yocto Project combines the convenience of a ready-to-run
Linux Distribution with the flexibility of a custom Linux operating

system stack.

7/61

© 2014 The Linux Foundation. All rights reserved

What is the Yocto Project?

• Open source project with a strong community

• A collection of embedded projects and tooling

 Place for Industry to publish BSPs

 Application Development Tools including Eclipse plug-ins

and emulators

• Key project is the reference distribution build

environment (Poky)

 Complete Build System for Linux OS

 Releases every 6 months with latest (but stable) kernel

(LTSI), toolchain, and package versions

 Full documentation representative of a consistent system

It’s not an embedded Linux distribution –
it creates a custom one for you

8/61

© 2014 The Linux Foundation. All rights reserved

What the Yocto Project Provides

• The industry needed a common build system

and core technology

 Bitbake and OpenEmbedded Core = OE build system

• The benefit of doing so is:

 Designed for the long term

 Designed for embedded

 Transparent Upstream changes

 Vibrant Developer Community

• Less time spent on things which don’t make

money (build system, core Linux components)

• More time spent on things which do make

money (app & product development, …)

© 2014 The Linux Foundation. All rights reserved

Who is the Yocto Project?

Advisory Board and Technical Leadership
• Organized under the Linux Foundation

• Individual Developers

• Embedded Hardware Companies

• Semiconductor Manufacturers

• Embedded Operating System Vendors

• OpenEmbedded / LTSI Community

Member Organizations

http://www.yoctoproject.org/ecosystem

10/61

Supporting Organizations

© 2014 The Linux Foundation. All rights reserved

Why Should a Developer Care? (1)

• Build a complete Linux system –from source– in

about an hour (about 90 minutes with X)

 Multiple cores (i.e. quad i7)

 Lots of RAM (i.e. 16 GB of ram or more)

 Fast disk (RAID, SSD, etc…)

• Start with a validated collection of software

(toolchain, kernel, user space)

• Blueprints to get you started quickly and that you

can customize for your own needs

• We distinguish app developers from system

developers and we support both

• Access to a great collection of app developer tools

(performance, debug, power analysis, Eclipse)

11/61

© 2014 The Linux Foundation. All rights reserved

Why Should a Developer Care? (2)

• Supports all major embedded architectures

 x86, x86-64, ARM, PPC, MIPS

 Coming soon, MIPS64, ARM Arch 64, PPC64

• Advanced kernel development tools

• Layer model encourages modular development,

reuse, and easy customizations

• Compatibility program that is used to encourage

interoperability and best practices

12/61

© 2014 The Linux Foundation. All rights reserved

Build System Upstream

Components

Yocto Project Provides Embedded Tools, Best

Practices, and Reference Implementation

Poky Build Output

Yocto Project

Components

Upstream Projects

13/61

© 2014 The Linux Foundation. All rights reserved

Yocto Project and OpenEmbedded

• OpenEmbedded

 Created by merging the work of the OpenZaurus project with
contributions from other projects such as Familiar Linux and
OpenSIMpad into a common code base

 Community project focusing on broad hardware and architectures

 Large library of recipes to cross-compile over 1000 packages

 Switched from flat meta-data architecture (OpenEmbedded Classic) to
layered architecture based on OpenEmbedded Core layer, which is in
common with the Yocto Project and the Angstrom Distribution

• Yocto Project

 Family of projects for developing Linux-based devices

 Self-contained build environment providing tools and blueprints for
building Linux OS stacks

 Supported by silicon vendors, OSVs (also providing commercial
support), open source projects for hardware and software, electronics
companies

 Standardized components with compliance program

 Focused on tooling and maintenance, major release every 6 months

14/61

© 2014 The Linux Foundation. All rights reserved

Why not just use OpenEmbedded?

• OpenEmbedded is an Open Source Project providing

a Build Framework for Embedded Linux Systems

 Not a reference distribution

 Designed to be the foundation for others

 Cutting-edge technologies and software packages

• The Yocto Project is focused on enabling Commercial

Product Development

 Provides a reference distribution policy and root file system

blueprints

 Co-maintains OpenEmbedded components and improves

their quality

 Provides additional tooling such as Autobuilder, QA Tests

 Provides tools for application development such as ADT

and Eclipse Plugin

15/61

© 2014 The Linux Foundation. All rights reserved

The Yocto Project Community

16/61

17/ Yocto Project | TheLinux Foun dation

Getting Started

All you need to know to get your feet wet and a little

beyond...

© 2014 The Linux Foundation. All rights reserved

Quick Start

1. Go to https://www.yoctoproject.org – click

“Documentation” and read the Quick Start guide

2. Set up your Linux build system with the necessary

packages (and firewall as needed)

3. Go to http://www.yoctoproject.org click

“downloads” and download the latest stable

release (Yocto Project 1.6.1 “Daisy” 11.0.1) – extract

the download on your build machine

4. Source oe-init-build-env script

5. Edit conf/local.conf and set MACHINE,

BB_NUMBER_THREADS and PARALLEL_MAKE

6. Run bitbake core-image-sato

7. Run runqemu qemux86 (if MACHINE=qemux86)

18/61

https://www.yoctoproject.org/

© 2014 The Linux Foundation. All rights reserved

Build System Workflow

OpenEmbedded Architecture

Workflow

Source Files

Local File Caches

Metadata Input

Process Steps

Output

Build System

19/61

© 2014 The Linux Foundation. All rights reserved

Layers (1)

The build system is composed of layers

20/61

© 2014 The Linux Foundation. All rights reserved

Layers (2)

• Layers are a way to manage extensions, and

customizations to the system

 Layers can extend, add, replace or modify recipes

 Layers can add or replace bbclass files

 Layers can add or modify configuration settings

 Layers are added via BBLAYERS variable in

build/conf/bblayers.conf

• Best Practice: Layers should be grouped by

functionality

 Custom Toolchains (compilers, debuggers, profiling tools)

 Distribution specifications (i.e. meta-yocto)

 BSP/Machine settings (i.e. meta-yocto-bsp)

 Functional areas (selinux, networking, etc)

 Project specific changes

21/61

© 2014 The Linux Foundation. All rights reserved

All starts with the Configuration

OpenEmbedded Architecture

Workflow

Source Files

Local File Caches

Metadata Input

Process Steps

Output

Build System

22/61

© 2014 The Linux Foundation. All rights reserved

Configuration

Configuration files (*.conf) – global build

settings

 meta/conf/bitbake.conf (defaults)

 build/conf/bblayers.conf (layers)

 */conf/layers.conf (one per layer)

 build/conf/local.conf (local user-defined)

 meta-yocto/conf/distro/poky.conf (distribution policy)

 meta-yocto-bsp/conf/machine/beagleboard.conf

(BSP)

 meta/conf/machine/include/tune-cortexa8.inc (CPU)

 Recipes (metadata)

User

Configuration

Recipes

Machine

Configuration

Distro Policy

Configuration

23/61

© 2014 The Linux Foundation. All rights reserved

User Configuration

build/conf/local.conf is where you override

and define what you are building

 BB_NUMBER_THREADS and PARALLEL_MAKE

 MACHINE settings

 DISTRO settings

 INCOMPATIBLE_LICENSE = “GPLv3”

 EXTRA_IMAGE_FEATURES

build/conf/bblayers.conf is where you

configure with layers to use

 Add compatible layers to BBLAYERS

 Default: meta (oe-core), meta-yocto and

meta-yocto-bsp

User

Configuration

Recipes

Machine

Configuration

Distro Policy

Configuration

24/61

© 2014 The Linux Foundation. All rights reserved

Recipes

Build Instructions

 Recipes for building packages

 Recipe Files

 meta/recipes-core/busybox_1.20.2.bb

Patches and Supplemental Files

 Location

 meta/recipes-core/busybox/busybox-1.20.2

Recipes inherit the system configuration and

adjust it to describe how to build and package

the software

Recipes can be extended and enhanced through

append-files from other layers

Yocto Project and OpenEmbedded recipes

structures are compatible to each other

User

Configuration

Machine

Configuration

Distro Policy

Configuration

Recipes

25/61

© 2014 The Linux Foundation. All rights reserved

Machine Configuration

Configuration files that describe a machine

 Define board specific kernel configuration

 Formfactor configurations

 Processor/SOC Tuning files

Hardware machines and emulated machines

(QEMU)

For example:

meta-yocto-bsp/conf/machine/beagleboard.conf

Machine configuration refers to kernel sources

and may influence some userspace software

Compatible with OpenEmbedded

User

Configuration

Recipes

Distro Policy

Configuration

Machine

Configuration

26/61

© 2014 The Linux Foundation. All rights reserved

Distribution Policy

Defines distribution/system wide policies

that affect the way individual recipes are built

 May set alternative preferred versions of recipes

 May enable/disable LIBC functionality (i.e. i18n)

 May enable/disable features (i.e. pam, selinux)

 May configure specific package rules

 May adjust image deployment settings

Enabled via the DISTRO setting

Four predefined settings

 poky-bleeding: Enable a bleeding edge packages

 poky: Core distribution definition, defines the base

 poky-lsb: enable items required for LSB support

 poky-tiny: construct a smaller then normal system

User

Configuration

Recipes

Machine

Configuration

Distro Policy

Configuration

27/61

© 2014 The Linux Foundation. All rights reserved

How does it work? In-depth build process

OpenEmbedded Architecture

Workflow

Source Files

Local File Caches

Metadata Input

Process Steps

Output

Build System

28/61

© 2014 The Linux Foundation. All rights reserved

Source Fetching

• Recipes call out the location of all sources, patches and files.

These may exist on the internal or be local. (See SRC_URI in the

*.bb files)

• Bitbake can get the sources from git, svn, bzr, tarballs, and many

more*

• Versions of packages can be fixed or updated automatically (Add

SRCREV_pn-PN = “${AUTOREV}” to local.conf)

• The Yocto Project mirrors sources to ensure source reliability

* Complete list includes: http, ftp, https, git, svn, perforce, mercurial, bzr, cvs, osc, repo, ssh, and svk and the

unpacker can cope with tarballs, zip, rar, xz, gz, bz2, and so on.

29/61

© 2014 The Linux Foundation. All rights reserved

Source Unpacking and Patching

• Once sources are obtained, they are extracted

• Patches are applied in the order they appear in SRC_URI

 quilt is used to apply patches

• This is where local integration patches are applied

• We encourage all patch authors to contribute their patches

upstream whenever possible

• Patches are documented according to the patch guidelines:
http://www.openembedded.org/wiki/Commit_Patch_Message_Guidelines

30/61

© 2014 The Linux Foundation. All rights reserved

Configure / Compile / Install

• Recipe specifies configuration and compilation rules
 Various standard build rules are available, such as autotools and gettext

 Standard ways to specify custom environment flags

 Install step runs under ‘pseudo’, allows special files, permissions and owners/groups

• Recipe example

SUMMARY = "GNU Helloworld Application“

SECTION = "examples"

LICENSE = "GPLv2+"

LIC_FILES_CHKSUM = "file://COPYING;md5=751419260aa954499f7abaabaa882bbe"

PR = "r0"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

inherit autotools gettext

31/61

© 2014 The Linux Foundation. All rights reserved

Output Analysis / Packaging

• Output Analysis:

 Categorize generated software (debug, dev, docs, locales)

 Split runtime and debug information

• Perform QA tests (sanity checks)

• Package Generation:

 Support the popular formats, RPM, Debian, and ipk

 Set preferred format using PACKAGE_CLASSES in local.conf

 Package files can be manually defined to override automatic settings

32/61

© 2014 The Linux Foundation. All rights reserved

Image Generation

• Images are constructed using the packages built earlier and put

into the Package Feeds

• Decisions of what to install on the image is based on the

minimum defined set of required components in an image

recipe. This minimum set is then expanded based on

dependencies to produce a package solution.

• Images may be generated in a variety of formats (tar.bz2, ext2,

ext3, jffs, etc…)

33/61

© 2014 The Linux Foundation. All rights reserved

SDK Generation

• A specific SDK recipe may be created. This allows someone to

build an SDK with specific interfaces in it.

(i.e. meta-toolchain-gmae)

• SDK may be based on the contents of the image generation

• SDK contains native applications, cross toolchain and

installation scripts

• May be used by the Eclipse Application Developer Tool to enable

App Developers

• May contain a QEMU target emulation to assist app developers

34/61

© 2014 The Linux Foundation. All rights reserved

Build System Workflow

OpenEmbedded Architecture

Workflow

Source Files

Local File Caches

Metadata Input

Process Steps

Output

Build System

35/61

© 2014 The Linux Foundation. All rights reserved

Application Development Toolkit

36/61

Core Components

 Cross Development Toolchain

 System Root

 QEMU Emulator

Eclipse Plugin

 Roundtrip Application Development

 Toolchain/System Root Integration

 Emulated and Hardware Targets

 Application Templates

 On-target Debugging

 Profiling Tools

 LatencyTOP

 PowerTOP

 Oprofile

 Perf

 SystemTap

 Lttng-ust

© 2014 The Linux Foundation. All rights reserved

The Takeaway

Embedded Systems are Diverse
 Unless you are using standard hardware you will have to adapt and build your

own operating system stack.

 Building and maintaining every aspect of an OS stack requires a lot of expertise
and resources.

The Yocto Project
 Provides a self-contained and rigorously tested build environment with tools,

recipes and configuration data to build custom Linux OS stacks.

 Includes distribution blueprints (default configuration and policies) that enable
quick ramp-up.

 Is supported and sustained by a growing community of contributors composed
of silicon vendors, Linux OSVs, open source projects etc. providing BSPs,
commercial and community support.

 Maintains stable Linux kernels with security and functionality patches.

 Provides standard format for BSPs and recipes to make them exchangeable.

 Allows you to draw from the expertise and experience of the Yocto developers
while being able to easily customize, modify and extend to meet your own
requirements.

 Scales from individual developer to engineering organizations.

37/61

© 2014 The Linux Foundation. All rights reserved

Resources and References

Yocto Project

Website: https://www.yoctoproject.org

Wiki: https://wiki.yoctoproject.org/wiki/Main_Page

Downloads: https://www.yoctoproject.org/downloads

GIT Repository: http://git.yoctoproject.org

OpenEmbedded

Website/Wiki: http://www.openembedded.org/wiki/Main_Page

GIT Repository: http://cgit.openembedded.org

Publications

Yocto Project – Big in Embedded Linux:
http://go.linuxfoundation.org/Yocto-Big-In-Embedded

How Engineering Leaders Can Use The Yocto Project to Solve Common
Embedded Linux Challenges:
http://go.linuxfoundation.org/Yocto-Publication

38/61

© 2014 The Linux Foundation. All rights reserved

Collaboration is the key to success

Spend less time and resources to develop and

maintain the commodity software.

Collaborate with other organizations instead

and share the workload.

Be able to spend more time and use the

resources you already have to create your

products and value added components!

39/61

© 2014 The Linux Foundation. All rights reserved

Thank you for your participation!

Please feel free to contact me with any questions:

jefro@jefro.net
Jefro on IRC (freenode.net)
@jefro_net on twitter
Jeffrey Osier-Mixon on Google+

Or through the Yocto Project website: https://www.yoctoproject.org

mailto:jefro@jefro.net
https://www.yoctoproject.org/

41/ Yocto Project | TheLinux Foun dation

Special Topics

The Nitty Gritty in Fast Forward Mode

© 2014 The Linux Foundation. All rights reserved

Troubleshooting

•Task Run Files

•BitBake creates a shell script for each task.

•Contains the environment variable settings and the shell and Python

functions that are executed.

•Task Log Files

•Each task produces a log file that contains all the output from the

commands run.

•Running Specific Tasks for a Recipe

•bitbake <recipe> -c <task>

•Dependency Graphs / Dependency Explorer

•bitbake -g <target>

•bitbake -g -u depexp <target>

•Developer Shell

•bitbake <recipe> -c devshell

42/61

© 2014 The Linux Foundation. All rights reserved

Customizing Root File System Images

•Extending a Pre-defined Image

•Local Configuration Method

•EXTRA_IMAGE_INSTALL in conf/local.conf

•Recipe Method

•Write a recipe that includes another image recipe file

•Inherit from Core-Image

•Write a recipe that inherits from the core-image class

•Package Groups

•Write package group recipes that combine multiple packages into

logical entities.

•Use the package group in IMAGE_INSTALL.

43/61

require recipes-core/images/core-image-base.bb

IMAGE_INSTALL += “strace”

IMAGE_INSTALL = “packagegroup-core-boot packagegroup-base-extended”

Inherit core-image

© 2014 The Linux Foundation. All rights reserved

Package Groups

•Package Group Recipe

•Image Recipe

44/61

DESCRIPTION = “My Package Group”

LICENSE = “MIT”

LIC_FILES_CHECKSUM = “file://<licfile>;md5=<chksum>

inherit packagegroup

PROVIDES = “${PACKAGES}”

PACKAGES = “packagegroup-mypkg-apps packagegroup-mypkg-tools”

RDEPENDS_packagegroup-mypkg-apps = “sqlite3 python-core python-sqlite3”

RDEPENDS_pacakgegroup-mypkg-tools = “sudo gzip tar”

IMAGE_INSTALL = “packagegroup-core-boot packagegroup-mypkg-apps”

Inherit core-image

../../../../../../../../

© 2014 The Linux Foundation. All rights reserved

Layers Revisited - Conventions

•Why layers?

•Layers were not always supported by BitBake and

OpenEmbedded Classic used a flat hierarchy for all of its meta

data.

•Layers provide a mechanism to isolate meta data according to

functionality, for instance BSPs, distribution configuration, etc.

•Layers allow to easily to add entire sets of meta data and/or

replace sets with other sets.

•Conventions and Best Practices for Layers

•Use layers for your own projects

•Name your layer meta-<layername>

•Group your recipes and other meta data

•Append don't overlay

•Include don't duplicate

45/61

© 2014 The Linux Foundation. All rights reserved

Layers Revisited – Creating a Layer

•Layers as easy as 1-2-3

•Create layer directory layout

•Add the layer configuration file

•Add the layer to your build environment

•Template for layer.conf

•Correct ordering of layers in

BBLAYERS is important

We have a conf and classes directory, add to BBPATH

BBPATH .= ":${LAYERDIR}"

We have recipes-* directories, add to BBFILES

BBFILES += "${LAYERDIR}/recipes-*/*/*.bb

${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "layername"

BBFILE_PATTERN_layername = "^${LAYERDIR}/"

BBFILE_PRIORITY_layername = "1"

This should only be incremented on significant

changes that will

cause compatibility issues with other layers

LAYERVERSION_layername = "1"

LAYERDEPENDS_layername = "core"

46/61

© 2014 The Linux Foundation. All rights reserved

Yocto Project BSP - Architecture

Yocto Project BSP Anatomy
●Configuration and recipes for hardware platforms

●Dependent on core layers

●Extend core layer recipes and configuration

●Do not contain build system and/or tools

Standardized Layout
●Binary images

●Machine configuration

●Documentation

●Bootloader, kernel, graphics subsystem recipes

●Source patches

●License

BSP Tools
●Create BSP layers for various architectures and kernel
configurations

●Kernel configuration and patch management

47/61

© 2014 The Linux Foundation. All rights reserved

Consuming a Yocto Project BSP

•Read the README – no kidding

•BSP dependencies

•Build instructions

•Create and Configure Build Environment

•oe-init-build-env mybuild

•Add BSP layer to BBLAYERS variable in

mybuild/conf/bblayers.conf

•Correct order of layers in BBLAYERS is of significance:

applications, distribution, BSP, core

•Configure MACHINE in mybuild/conf/local.conf

•Launch Build

•Bitbake -k <image-target>

48/61

© 2014 The Linux Foundation. All rights reserved

Building a Yocto Project BSP

•Three Approaches

•Manually from Scratch

•Most challenging

•Could make sense if no BSPs for similar hardware exist

•Copying and Modifying an Existing BSP Layer

•For similar hardware but it could make more sense to just extend

the existing BSP

•Using the Yocto Project BSP Scripts

•Interactive scripts to build a BSP using the Yocto Project kernel

infrastructure

•A BSP is not required to use the Yocto Project kernel

infrastructure and tooling

•However, using it provides benefits such as maintenance.

49/61

© 2014 The Linux Foundation. All rights reserved

Yocto Project Kernel Development

•There is no Yocto Project Kernel

•Uses upstream Linux kernels from kernel.org and clone them

into Yocto Project kernel repositories

•Recipes and tooling point to the Yocto Project kernel

repositories.

•Yocto Project adds machine meta data, configuration, patches

on top.

•Multiple ways of building the kernel

•Traditional OpenEmbedded Kernel Recipes building from kernel

tarball

•Custom Linux Yocto Kernel Recipes building from any kernel

GIT repository

•Linux Yocto Kernel Infrastructure Recipes building from Yocto

Project GIT kernel repository

50/61

© 2014 The Linux Foundation. All rights reserved

Traditional OE Kernel Method - Overview

51/61

© 2014 The Linux Foundation. All rights reserved

Traditional OE Kernel Method - Recipe

52/61

DESCRIPTION = "Bleeding Edge Linux Kernel"

SECTION = "kernel"

LICENSE = "GPLv2"

LIC_FILES_CHKSUM = "file://COPYING;md5=<chksum>"

inherit kernel

KVER = "${PV}-rc5"

LINUX_VERSION ?= "3.11.0"

LINUX_VERSION_EXTENSION ?= "-custom"

SRC_FILE = “${KERNELORG_MIRROR}/linux/kernel/v3.x/testing/linux-${KVER}.tar.xz”

SRC_URI = "${SRC_FILE};name=kernel \

file://defconfig"

S = "${WORKDIR}/linux-${KVER}"

SRC_URI[kernel.md5sum] = "<chksum>"

SRC_URI[kernel.sha256sum] = "<chksum>"

© 2014 The Linux Foundation. All rights reserved

Linux Yocto Custom Method - Overview

53/61

© 2014 The Linux Foundation. All rights reserved

Linux Yocto Custom Method - Recipe

54/61

inherit kernel

require recipes-kernel/linux/linux-yocto.inc

SRC_URI = "git://arago-project.org/git/projects/linux-am33x.git;protocol=git;bareclone=1"

SRC_URI += "file://defconfig"

SRC_URI += "file://am335x-pm-firmware.bin"

SRC_URI += "file://beaglebone.scc \

file://beaglebone.cfg \

file://beaglebone-user-config.cfg \

file://beaglebone-user-patches.scc \

"

KBRANCH = "v3.2-staging"

LINUX_VERSION ?= "3.2.31"

LINUX_VERSION_EXTENSION ?= "-bbone"

SRCREV = "720e07b4c1f687b61b147b31c698cb6816d72f01"

PR = "r1"

PV = "${LINUX_VERSION}+git${SRCPV}"

COMPATIBLE_MACHINE_beaglebone = "beaglebone"

do_compile_prepend() {

cp ${WORKDIR}/am335x-pm-firmware.bin ${S}/firmware/

}

© 2014 The Linux Foundation. All rights reserved

Linux Yocto Kernel Method - Overview

55/61

© 2014 The Linux Foundation. All rights reserved

Linux Yocto Kernel Method - Recipe

56/61

require recipes-kernel/linux/linux-yocto.inc

KBRANCH_DEFAULT = "standard/base"

KBRANCH = "${KBRANCH_DEFAULT}"

SRCREV_machine_qemuarm ?= "8fb1a478c9a05362e2e4e62fc30f5ef5d6c21f49"

SRCREV_machine_qemumips ?= "b8870f2b11f4c948ae90a19886335fa8b7fca487"

SRCREV_machine_qemuppc ?= "e4c12f12e61a29b6605c4fcbcfd6dbe18bd7b4e4"

SRCREV_machine_qemux86 ?= "dd089cb5ba37ea14e8f90a884bf2a5be64ed817d"

SRCREV_machine_qemux86-64 ?= "dd089cb5ba37ea14e8f90a884bf2a5be64ed817d"

SRCREV_machine ?= "dd089cb5ba37ea14e8f90a884bf2a5be64ed817d"

SRCREV_meta ?= "8482dcdf68f9f7501118f4c01fdcb8f851882997"

SRC_URI = "git://git.yoctoproject.org/linux-yocto-3.8.git;protocol=git;bareclone=1;\

branch=${KBRANCH},${KMETA};name=machine,meta"

LINUX_VERSION ?= "3.8.11"

PR = "${INC_PR}.1"

PV = "${LINUX_VERSION}+git${SRCPV}"

KMETA = "meta"

COMPATIBLE_MACHINE = "qemuarm|qemux86|qemuppc|qemumips|qemux86-64"

© 2014 The Linux Foundation. All rights reserved

•You have a kernel tarball and a defconfig

•Use linux-yocto-custom recipe template

•Straightforward and easy to use

•You have a GIT kernel repository and a defconfig

•Use linux-yocto-custom recipe template with GIT

•Gives you the ability to add patches and configuration fragments

using the Yocto Project kernel tooling

•You are starting a new BSP project

•Consider using the Yocto Project kernel infrastructure,

repositories and tooling

•Get the advantage of an continuously updated and maintained

kernel

•Leverage the kernel types, feature and configuration pool of the

meta kernel branch

57/61

When to Use What Kernel Building Method

© 2014 The Linux Foundation. All rights reserved

Questions from webinar

What hardware is supported?

• A great deal of hardware is supported. Architectures include ARM, ARM64, PPC,
PPC64, x86, x86-64, MIPS, and even some others.

Will my resulting OS have access to an app store?

• At the moment, YP does not provide binary package feeds of any kind, including
access to app stores. It is very difficult to offer an app store for a build system that can
build software on so many different architectures, and it is not often requested for
deeply embedded systems that only do one job. That being said, this functionality is
on our roadmap, though it is not currently scheduled for a particular release.

Where can I find other software layers & BSPs?

• You can find layers and BSPs on yoctoproject.org, the OE layer index at
layers.openembedded.org, on silicon manufacturers’ sites, on github and gerrithub,
and in places even we don’t know about!

© 2014 The Linux Foundation. All rights reserved

Questions from webinar
What is the difference between the Yocto Project and OpenEmbedded? How

about Buildroot?

• The Yocto Project is an open source project – an umbrella organization that provides
support and business services to its component projects, which all have the common
goal of enhancing the process for building embedded operating systems based on
Linux. Some of the project managed within the Yocto Project are the OpenEmbedded
build system, the opkg package manager, EGLIBC, and several other tools that help
people build embedded Linux distributions. The Yocto Project is managed by 17
member organizations as a collaborative project under the Linux Foundation.

• OpenEmbedded is a build system comprised of the BitBake build tool and the OE Core
metadata set. It is managed by the OpenEmbedded Project, which also manages a
great number of metadata packages that are technically compatible with the OE
build system (and thus with the Yocto Project).

• Poky is a reference system – a single instantiation of the Yocto Project build tools. In
essence, when you “download the Yocto Project”, you download Poky, which contains
the OE build system, the meta-yocto metadata layer that includes canonical BSPs, and
a few other scripts that make it easy to build embedded Linux. You then customize
this reference system to meet your own needs. Why not just download BitBake and
OE separately? Because Poky is heavily tested as a system.

• The Buildroot build system is a different way of building embedded Linux that is based
on build scripts and kconfig. Buildroot is unrelated to the Yocto Project, but the
systems are not competitors – instead, we refer users to each other when the other
system is more appropriate, in the true spirit of open source.

© 2014 The Linux Foundation. All rights reserved

Questions from webinar
Is there a GUI or is it all command line?

• There is an older GUI called Hob that is now deprecated. There is a new HTML5-based
GUI called Toaster that is still being designed and created. It has a manual as well as
several videos on youtube to show how it works, and you can download it today. We
welcome feedback on it.

Does it run on Windows/Mac or only Linux?

• The Yocto Project tools currently run only on Linux systems with the appropriate
libraries and build tools available (see the Quick Start Guide). However, you can run
the YP tools in a virtual machine on any system. Native Windows and Mac support is
on our roadmap for a future release, but full support has not yet been scheduled or
announced.

Is synopsys ARC HS38 supported?

• I don’t immediately find an ARC HS38 BSP for YP, but I do note that the processor is
supported in the Linux kernel. That means porting is just a few recipes away. You can
see what is required to create your own BSP in the BSP Portlng Guide -
https://www.yoctoproject.org/documentation

What happens if you don’t have a 32gb build machine?

• I frequently run YP builds on a core i7 laptop with 12gb RAM. I can build core-image-
minimal in about 45 minutes, after downloading sources. YP is very good at
capitalizing on available resources.

https://www.yoctoproject.org/documentation

© 2014 The Linux Foundation. All rights reserved

Questions from webinar

Does it work on Backtrack?

• I have never used Backtrack, but I don’t see anything in Backtrack that would be
incompatible. Remember, YP is a set of tools – it is not a platform, and it is not a
distribution.

How hard is it to migrate platforms between different versions of the Yocto

Project?

• You can lock down any part of your build, including the kernel or any package, so that
it continues to build the same version despite updates to the build tools. That being
said, YP (or rather, Poky) is tested with certain kernels, so some users find it easier to
just stick with one version of the YP tools throughout a given project.

Do I need a specific bitbake to generate each version of the os (eg one for

poky-dizzy and other distro) also, What about when new versions of YP

are released?

• I think the above question should answer this, but if not, or with any other questions,
please feel free to send me a note at jeffrey.osier-mixon@intel.com

mailto:Jeffrey.osier-mixon@intel.com

Using qemu and yocto in a classroom environment

D. Kevin McGrath – Oregon State University School of Electrical Engineering and Computer Science

Operating Systems

Target audience and structure

Advanced undergraduate or entry level graduate course in operating systems

concepts and implementation

 Use of Linux kernel as the case study

 Implementation projects

– Scheduling

– I/O

– Kernel crypto API + block device

– Userspace driver – think libusb

– Memory management/slab

 Concurrency projects

Choice of target platform

There are several questions one must answer before picking a teaching platform:

 Which architecture to target?

 Physical or virtual hardware?

 Physical options: Galileo, Edison, BeagleBone Black, Raspberry Pi 2,

Terasic DE2i-150, MinnowBoard Max

 Virtual options: qemu, VirtualBox, VMware

 What are the learning outcomes to target?

Physical targets

Physical targets work well in smaller classes

 Benefits

 Real platforms, real issues

 Can do real driver development with actual peripheral

 Simplicity of on-host development

 Downsides

 Debugging difficulty

 Cost/attrition of hardware

 Students don’t like to carry things

Virtual targets
Virtual targets are ideal for larger class sizes, provided hardware is available

 Benefits

 Easier choice of different platforms

 Myriad debugging options

 Flexible, students can’t destroy it

 OS development often done on VMs

 Downsides

 Driver projects require more OOB thinking

 Scaling to larger class sizes actually can be more expensive than physical

hardware

Using yocto build system + qemu

Ability to target lots of platforms

 Yocto build system offers great flexibility

 Cross compilers for all qemu virtualized targets

 Simplicity of centrally managed build system

 Same tools, same host for all students

 With proper hardware support, can scale to very large classes

 Qemu+kvm offers significant performance advantages

 Cross compilation experience within a single host

 Can alternatively target SBCs like Galileo with only minor mods

Demonstration

 Toolchain installation

 Demo image and kernel

 Using qemu, command line options

 Cross compiling the kernel

 Running new kernel

 Adding a module

Steps:
 Download and install the toolchain:

 curl -O http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/toolchain/x86_64/poky-eglibc-x86_64-core-image-
sato-core2-64-toolchain-1.6.1.sh

 sh poky-eglibc-x86_64-core-image-sato-core2-64-toolchain-1.6.1.sh -d ~/yocto -y

 Download a kernel – match to toolchain:

 curl -O http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/machines/qemu/qemux86-64/bzImage-qemux86-64.bin

 Download a disk image (takes some time) – there are lots of options, feel free to switch

 curl -O http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/machines/qemu/qemux86-64-lsb/core-image-lsb-sdk-
qemux86-64.ext3

 Download kernel source (and immediately expand) – match to that which image is running

 curl https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.14.tar.gz | tar xzvf -

 Pull config from VM

 Launch VM:

 source ~/yocto/environment-setup-core2-64-poky-linux

 qemu-system-x86_64 -gdb tcp::5500 -S -smp 4 -m 2048 -nographic -kernel linux-3.14/arch/x86/boot/bzImage -drive
file=core-image-lsb-sdk-qemux86-64.ext3,if=virtio -enable-kvm -net none -usb -localtime --no-reboot --append
"root=/dev/vda rw console=ttyS0 debug"

 Log in to VM as root (empty password)

 zcat /proc/config.gz > ~/config.3.14.txt

 Pull config.3.14.txt out to host, copy to linux source tree as .config

Steps continued:

 Build the kernel with the standard make –jN (replace N with number of build

threads)

 Replace kernel on qemu command line with the kernel you just built

 Use scp to load any modules as necessary

 Add/remove –S flag to qemu to require debugger or not

 All links from Yocto Quick Start Guide, section ‘Using Pre-Built Binaries and

QEMU’

http://www.yoctoproject.org/docs/1.6.1/yocto-project-qs/yocto-project-qs.html

Lessons learned

 Using virtio is great for performance – unless you want to modify the I/O schedulers

 Writing and using modules is important, so how to get the module to the guest?

 Remote debugging is awesome. Mostly.

 KVM support is really necessary. Only root can use it by default.

 Lots of root-only tools. Networking, for instance.

 Guest/host split does cause confusion.

 Whiners gonna whine. Haters gonna hate.

 Detailed setup instructions are a must. Thinking is hard.

Questions/answers
 Why use a cross compiler to build the kernel?

 Not strictly necessary, but allows (for instance) to use a 32bit guest on a 64 bit host, or an ARM guest on an IA host. Further,

allows for mismatched libraries and versions to be used on host and guest (eglibc vs. uclibc, for instance).

 Why use the yocto build system?
 Vastly simplifies toolchain installation for cross-compilation.

 Are there benefits to using yocto+qemu over real hardware?
 Yes. Simplifies course management, no broken hardware, etc. Please see slides 4 and 5.

 Can you adapt this system to using real hardware, such as the Intel Edison?
 Quite easily, in fact. Instead of launching the new kernel with qemu, simply copy to the FAT partition on Edison/galileo. Just

make sure you get the names right, and it should all just work.

 Can you add modules to the used file system?
 Yes, you can either scp them onto the running VM, or use root-only tools to mount the rootfs image and do a direct make

modules_install to that directory. scp is the easier option, in a classroom environment.

 How can networking be enabled?
 Just remove the ‘-net none’ from the qemu command line

Questions/answers

 How can you load symbols for the kernel to the debugger?
 Launch gdb with the vmlinuz file in the root of the kernel build tree.

 Can KVM/Qemu be useful if I want to pass-through a PCI Network card

directly to the VM?
 Qemu can use physical hardware, but I’ve never used it that way. I’d recommend consulting the qemu manual for details. That

said, in a classroom environment, unless you had one NIC per student, I’m unsure how you’d do this in any meaningful way.

 Using a vm as the target system, how does one account for peripherals? For

example on a Pi, how would one emulate the SD card, the camera, or the

GPU?
 This is very much a question for a qemu expert. I’m really unsure why one would want to in a classroom setting for an OS class,

but each use case is different, after all. If part of your class involves programming those specific peripherals, this might not be the

best approach for your particular class.

