Yocto Project and
Embedded OS

1 LINUX FOUNDATION

Yocto Project and Embedded OS

Our guests

Jeffrey Osier-Mixon:

Jeff "Jefro" Osier-Mixon works for Intel Corporation in Intel's Open Source Technology Center,
where his current role is community manager for the Yocto Project.. Jefro also works as a
community architect and consultant for a number of open source projects and speaks regularly at
open source conferences worldwide. He has been deeply involved with open source since the

early 1990s.

Kevin McGrath :

Instructor at Oregon State University. | primarily teach the operating systems sequence and the
senior capstone project sequence, but have taught architecture, assembly programming,
introductory programming classes, and just about anything else that needs someone to teach it.
While my background is in network security and high performance computing (computational
physics), today | mostly live in the embedded space, leading to the “ECE wannabe” title in my
department.

Oleg Verge (Moderator):

Technical Program Manager Intel Higher Education, System Engineer MCSE,CCNA, VCP (intel)"

experience
what's inside”

Intel® loT Developer Kit v1.0

Hardware components [

Software image —

| E\I\/illigdriri

Solutions for (mted Gallleo & (inteD Edson

Support for various IDEs —
-w

ARDUINO

Cloud services —

(inted 10T Analytics [BeTA |

Additional tools and _ . :)
solutions B |ntel System Studio for IoT Wind River” VxWorks” for Makers

inteI' \

https://software.intel.com/en-us/articles/intel-system-studio-for-iot
http://support.windriver.com/formakers

yocto | Qi

PROJECT

Introduction to the
Yocto Project

Accelerating Embedded Product Development

| yoc-to |

The smallest unit of measure,
equal to one septillionth (10-24).

What it is, who we are, and why you should care...

Yocto Project | TheLinux Foun dation

yocto

PROIJECT

The Yocto Project is not an Embedded Linux Distribution.

The Yocto Project is not Single Open Source Project.

The Yocto Project combines the convenience of a ready-to-run
Linux Distribution with the flexibility of a custom Linux operating
system stack.

© 2014 The Linux Foundation. All rights reserved

What is the Yocto Project?

 Open source project with a strong community

« A collection of embedded projects and tooling
= Place for Industry to publish BSPs
= Application Development Tools including Eclipse plug-ins
and emulators
« Key project is the reference distribution build
environment (Poky)
= Complete Build System for Linux OS

» Releases every 6 months with latest (but stable) kernel
(LTSI), toolchain, and package versions

= Full documentation representative of a consistent syste

—:r\?
S

\"\

It’s not an embedded Linux distribution —
it creates a custom one for you

© 2014 The Linux Foundation. All rights reserved

What the Yocto Project Provides

 The industry needed a common build system
and core technology

= Bitbake and OpenEmbedded Core = OE build system

 The benefit of doing so is:
= Designed for the long term
= Designed for embedded
= Transparent Upstream changes
* Vibrant Developer Community

 Less time spent on things which don’t make
money (build system, core Linux components)

 More time spent on things which do make
money (app & product development, ...)

© 2014 The Linux Foundation. All rights reserved

Who iIs the Yocto Project?

Advisory Board and Technical Leadership
* Organized under the Linux Foundation

« Individual Developers LI N Ux
« Embedded Hardware Companies
* Semiconductor Manufacturers FOU N DATlON

 Embedded Operating System Vendors
OpenEmbedded / LTSI Community

W 1exas ENEA gﬁé

INSTRUMENTS

WIND RIVER _paantor Mg}ﬁgg%g echnology mepsge
LS| GI‘CISI"II(‘S o mnldgenun —~ &l#\vsggr(\lsl
s Mg Ao 0 g Minnowboard.org
_/t_D openembedded Junlper PanasoniC rinpspPEeD
tnke - e & o
> OSSYSTEmS IIIIISII}'
L/ “Zfre esgggu!g“e Angstrom gumsiL: secret
. ' S /s°
oS {s DELLOTILERA
bram:h move innovation

http://www.yoctoproject.org/ecosystem

© 2014 The Linux Foundation. All rights reserved

Why Should a Developer Care? (1)

 Build a complete Linux system —from source—in
about an hour (about 90 minutes with X)

= Multiple cores (i.e. quad i7)
= Lots of RAM (i.e. 16 GB of ram or more)
= Fast disk (RAID, SSD, etc...)

 Start with a validated collection of software
(toolchain, kernel, user space)

« Blueprints to get you started quickly and that you
can customize for your own needs

 We distinguish app developers from system
developers and we support both

« Access to agreat collection of app developer tool
(performance, debug, power analysis, Eclipse)

© 2014 The Linux Foundation. All rights reserved

Why Should a Developer Care? (2)

Supports all major embedded architectures
= X86, x86-64, ARM, PPC, MIPS

= Coming soon, MIPS64, ARM Arch 64, PPC64
 Advanced kernel development tools

« Layer model encourages modular development,
reuse, and easy customizations

« Compatibility program that is used to encourage
Interoperability and best practices

© 2014 The Linux Foundation. All rights reserved

Yocto Project Provides Embedded Tools, Best
Practices, and Reference Implementation

Yocto Project

Documentation

Yocto Project Distro

{meta-yocto]

Yocto Project BSP

[meta-yocio-hsp)

Reference BSPs

OpenEmbedded Core

Upstream Projects [

Bitbake

ADT

] Build System Upstream
Components

1 Poky Build Output

] Yocto Project
Components

I Upstream Projects

Autobuil der

ADT Eclipse Plugin

Matchbox

Pseudo

Build Appliance

© 2014 The Linux Foundation. All rights reserved

Swabber

EGLIBC

Yocto Project and OpenEmbedded
OpenEmbedded

Created by merging the work of the OpenZaurus project with
contributions from other projects such as Familiar Linux and
OpenSIMpad into a common code base

Community project focusing on broad hardware and architectures
Large library of recipes to cross-compile over 1000 packages

Switched from flat meta-data architecture (OpenEmbedded Classic) to
layered architecture based on OpenEmbedded Core layer, which is in
common with the Yocto Project and the Angstrom Distribution

Yocto Project

Family of projects for developing Linux-based devices

Self-contained build environment providing tools and blueprints for
building Linux OS stacks

Supported by silicon vendors, OSVs (also providing commercial
support), open source projects for hardware and software, electronics
companies

Standardized components with compliance program
Focused on tooling and maintenance, major release every 6 months

Why not just use OpenEmbedded?

« OpenEmbedded is an Open Source Project providing
a Build Framework for Embedded Linux Systems

= Not a reference distribution
= Designed to be the foundation for others
= Cutting-edge technologies and software packages

 The Yocto Project is focused on enabling Commercial
Product Development

= Provides a reference distribution policy and root file system
blueprints

= Co-maintains OpenEmbedded components and improves
their quality

= Provides additional tooling such as Autobuilder, QA Tests

= Provides tools for application development such as ADT
and Eclipse Plugin

© 2014 The Linux Foundation. All rights reserved

The Yocto Project Community

TECHNICAL LEADERSHIP

ADMINSTRATIVE
LEADERSHIP

Upstream Projects

© 2014 The Linux Foundation. All rights reserved

All you need to know to get your feet wet and a little
beyond...

Yocto Project | TheLinux Foun dation

Quick Start

1.

Go to https://www.yoctoproject.org — click
“Documentation” and read the Quick Start guide

Set up your Linux build system with the necessary
packages (and firewall as needed)

Go to http://www.yoctoproject.org click
“downloads” and download the latest stable
release (Yocto Project 1.6.1 “Daisy” 11.0.1) — extract
the download on your build machine

Source oe-init-build-env script

Edit conf/local.conf and set MACHINE,
BB NUMBER THREADS and PARALLEL MAKE

Run bitbake core-image-sato
Run rungemu gemux86 (if MACHINE=gemux86)

© 2014 The Linux Foundation. All rights reserved

https://www.yoctoproject.org/

Build System Workflow

Source)
(Post) OpenEmbedded Architecture

; Workflow
Upstream Other Lallieles

Project Projects
Sources Sources . Source Files I:l Process Steps

Source . Local File Caches - Output
Pre-Mirrors
. Metadata Input - Build System

Local Storage

User Populate
o 2 sysem
mage

Output Create
Analysis Manifests

Root
Recipes
Unpack

Source
Machine
Configuration
Apply
Distro Policy Patches Configure
Configuration

Shared State Cache

© 2014 The Linux Foundation. All rights reserved

Layers (1)

The build system is composed of layers

[Developer-Specific Layer]

[Commercial Layer (from OSV)]

[Ul-Specific Layer]

Hardware-Specific BSP

Yocto-Specific Layer Metadata (meta-vocto)

[OpenkEmbedded Core Metadata (ce-core)

Layers (2)

 Layers are a way to manage extensions, and
customizations to the system

= Layers can extend, add, replace or modify recipes

= Layers can add or replace bbclass files

= Layers can add or modify configuration settings

= Layers are added via BBLAYERS variable in
build/conf/bblayers.conf

 Best Practice: Layers should be grouped by
functionality

= Custom Toolchains (compilers, debuggers, profiling tools)

= Distribution specifications (i.e. meta-yocto)

= BSP/Machine settings (i.e. meta-yocto-bsp)

= Functional areas (selinux, networking, etc)

* Project specific changes

© 2014 The Linux Foundation. All rights reserved

All starts with the Configuration

?F?:sr:;* OpenEmbedded Architecture
T Workflow
Upstream Other

Project Projects
Sources Sources . Source Files I:l Process Steps

Source . Local File Caches - Output
Pre-Mirrors
. Metadata Input - Build System

Local Storage

User Populate
Configuration System
Root
Unpack
Source
Machine
Configuration
Apply :
Distro Policy Patches Configure
Configuration

Shared State Cache

Create
Image

Create
Manifests

© 2014 The Linux Foundation. All rights reserved

Configuration

Configuration files (*.conf) — global build
settings

* meta/conf/bitbake.conf (defaults)

p = Dbuild/conf/bblayers.conf (layers)

= */conf/layers.conf (one per layer)

P = puild/confflocal.conf (local user-defined)

>

>

User
Configuration

Recipes _ . : :
= meta-yocto/conf/distro/poky.conf (distribution policy)

* meta-yocto-bsp/conf/machine/beagleboard.conf
(BSP)

= meta/conf/machine/include/tune-cortexa8.inc (CPU)
* Recipes (metadata)

Machine
Configuration

Distro Policy
Configuration

© 2014 The Linux Foundation. All rights reserved

User Configuration

build/conf/local.conf is where you override
and define what you are building

= BB NUMBER_THREADS and PARALLEL MAKE
- D= MACHINE settings
Configuration = DISTRO settings
p = INCOMPATIBLE LICENSE =“GPLv3’
= EXTRA IMAGE FEATURES

Machine » build/conf/bblayers.conf is where you
sl configure with layers to use

) - >
SISO O = Add compatible layers to BBLAYERS

Configuration

Recipes

= Default: meta (oe-core), meta-yocto and
meta-yocto-bsp

© 2014 The Linux Foundation. All rights reserved

Recipes

Build Instructions
= Recipes for building packages
= Recipe Files

User > . meta/recipes-core/busybox 1.20.2.bb
Configuration Patches and Supplemental Files
= Location

R = meta/recipes-core/busybox/busybox-1.20.2

> Recipes inherit the system configuration and

Machine
Configuration adjust it to describe how to build and package
Distro Policy } the software
Configuration Recipes can be extended and enhanced through

append-files from other layers

Yocto Project and OpenEmbedded recipes
structures are compatible to each other

© 2014 The Linux Foundation. All rights reserved

Machine Configuration

Configuration files that describe a machine
p = Define board specific kernel configuration
Configuration = Formfactor configurations
P = Processor/SOC Tuning files

Hardware machines and emulated machines
. P (QEMU)
Machine

Configuration For example:
> meta-yocto-bsp/conf/machine/beagleboard.conf

User

Recipes

Distro Polic : : i
Configuratioyn Machine configuration refers to kernel sources

and may influence some userspace software

Compatible with OpenEmbedded

© 2014 The Linux Foundation. All rights reserved

Distribution Policy

Defines distribution/system wide policies
that affect the way individual recipes are built

b " May set alternative preferred versions of recipes
= May enable/disable LIBC functionality (i.e. i18n)
p = May enable/disable features (i.e. pam, selinux)
= May configure specific package rules
Machine > . May adjust image deployment settings
Skl Enabled via the DISTRO setting

Distro Policy < Four predefined settings

= poky-bleeding: Enable a bleeding edge packages
= poky: Core distribution definition, defines the base
= poky-Isb: enable items required for LSB support

»= poky-tiny: construct a smaller then normal system

User

Configuration

Recipes

Configuration

© 2014 The Linux Foundation. All rights reserved

How does it work? In-depth build process

Source)
(Post) OpenEmbedded Architecture

; Workflow
Upstream Other Lallieles

Project Projects
Sources Sources . Source Files I:l Process Steps

Source Local File Caches Output
Pre-Mirrors . -
. Metadata Input

Local Storage

User Populate
Configuration System

Output
Analysis Manifests

Root
Recipes
Unpack

Source
Machine
Configuration
Apply
Distro Policy Patches Configure
Configuration

Shared State Cache

© 2014 The Linux Foundation. All rights reserved

Source Fetching

Source
(Post)
Mirrors

Other

Projects
Sources

Source
Pre-Mirrors

Local Storage

Fetch
Source

User
Configuration

Recipes

Distro Policy
Configuration

 Recipes call out the location of all sources, patches and files.
These may exist on the internal or be local. (See SRC_URI in the
*.bb files)

 Bitbake can get the sources from git, svn, bzr, tarballs, and many
more*

* Versions of packages can be fixed or updated automatically (Add
SRCREV_pn-PN = “${AUTOREV}” to local.conf)

« The Yocto Project mirrors sources to ensure source reliability

* Complete list includes: http, ftp, https, git, svn, perforce, mercurial, bzr, cvs, osc, repo, ssh, and svk and the
unpacker can cope with tarballs, zip, rar, xz, gz, bz2, and so on.

© 2014 The Linux Foundation. All rights reserved

Source Unpacking and Patching

Fetch
Source

Unpack

Source

Apply
Patches

« Once sources are obtained, they are extracted

 Patches are applied in the order they appear in SRC_URI
= quiltis used to apply patches

 This is where local integration patches are applied

« We encourage all patch authors to contribute their patches
upstream whenever possible

 Patches are documented according to the patch guidelines:
http://www.openembedded.org/wiki/Commit_Patch_Message_ Guidelines

© 2014 The Linux Foundation. All rights reserved

Configure / Compile / Install

User
Configuration Install

Recipes
Compile
Machine
Configuration
Configure

Distro Policy

Configuration

* Recipe specifies configuration and compilation rules

= Various standard build rules are available, such as autotools and gettext

» Standard ways to specify custom environment flags

= [nstall step runs under ‘pseudo’, allows special files, permissions and owners/groups

* Recipe example

SUMMARY = "GNU Helloworld Application™

SECTION = "examples"

LICENSE = "GPLv2+"

LIC FILES CHKSUM = "file://COPYING;md5=751419260aa954499f7abaabaa882bbe"
PR = "rQO"

SRC _URI = "S${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

inherit autotools gettext

© 2014 The Linux Foundation. All rights reserved

Output Analysis / Packaging

User
Configuration

Recipes
Output QA
Analysis Tests
Machine
Configuration
Create
Distro Policy Packages

Configuration

« Output Analysis:
= Categorize generated software (debug, dev, docs, locales)
= Split runtime and debug information

 Perform QA tests (sanity checks)

 Package Generation:
= Support the popular formats, RPM, Debian, and ipk
= Set preferred format using PACKAGE_CLASSES in local.conf
» Package files can be manually defined to override automatic settings

© 2014 The Linux Foundation. All rights reserved

Image Generation

User
Configuration

Recipes

Machine
Configuration

Distro Policy
Configuration

 |Images are constructed using the packages built earlier and put
into the Package Feeds

« Decisions of what to install on the image is based on the
minimum defined set of required components in an image
recipe. This minimum set is then expanded based on
dependencies to produce a package solution.

* Images may be generated in a variety of formats (tar.bz2, ext2,
ext3, jffs, etc...)

© 2014 The Linux Foundation. All rights reserved

SDK Generation

User
Configuration

Recipes

Machine
Configuration

Distro Policy
Configuration

« A specific SDK recipe may be created. This allows someone to
build an SDK with specific interfaces in it.
(i.e. meta-toolchain-gmae)

« SDK may be based on the contents of the image generation

« SDK contains native applications, cross toolchain and
installation scripts

« May be used by the Eclipse Application Developer Tool to enable
App Developers

« May contain a QEMU target emulation to assist app developers

© 2014 The Linux Foundation. All rights reserved

Build System Workflow

Source)
(Post) OpenEmbedded Architecture

; Workflow
Upstream Other Lallieles

Project Projects
Sources Sources . Source Files I:l Process Steps

Source . Local File Caches - Output
Pre-Mirrors
. Metadata Input - Build System

Local Storage

User Populate
o 2 sysem
mage

Output Create
Analysis Manifests

Root
Recipes
Unpack

Source
Machine
Configuration
Apply
Distro Policy Patches Configure
Configuration

Shared State Cache

© 2014 The Linux Foundation. All rights reserved

Application Development Toolkit

Core Components
» Cross Development Toolchain
= System Root
= QEMU Emulator
Eclipse Plugin
» Roundtrip Application Development
= Toolchain/System Root Integration
» Emulated and Hardware Targets
= Application Templates
= On-target Debugging e

= Profiling Tools
= LatencyTOP

W
=

= PowerTOP
= Qprofile it s
. Perf H
= SystemTap —— :
= Lttng-ust

The Takeaway

Embedded Systems are Diverse

Unless you are using standard hardware you will have to adapt and build your
own operating system stack.

Building and maintaining every aspect of an OS stack requires a lot of expertise
and resources.

The Yocto Project

Provides a self-contained and rigorously tested build environment with tools,
recipes and configuration data to build custom Linux OS stacks.

Includes distribution blueprints (default configuration and policies) that enable
quick ramp-up.
Is supported and sustained by a growing community of contributors composed

of silicon vendors, Linux OSVs, open source projects etc. providing BSPs,
commercial and community support.

Maintains stable Linux kernels with security and functionality patches.
Provides standard format for BSPs and recipes to make them exchangeable.

Allows you to draw from the expertise and experience of the Yocto developers
while being able to easily customize, modify and extend to meet your own
requirements.

Scales from individual developer to engineering organizations.

Resources and References

Yocto Project
Website: https://www.yoctoproject.org
Wiki: https://wiki.yoctoproject.org/wiki/Main_Page
Downloads: https://www.yoctoproject.org/downloads
GIT Repository: http://git.yoctoproject.org

OpenEmbedded
Website/Wiki: http://www.openembedded.org/wiki/Main _Page
GIT Repository: http://cgit.openembedded.org

Publications

Yocto Project — Big in Embedded Linux:
http://go.linuxfoundation.org/Yocto-Big-In-Embedded

How Engineering Leaders Can Use The Yocto Project to Solve Common
Embedded Linux Challenges:

http://go.linuxfoundation.org/Yocto-Publication

© 2014 The Linux Foundation. All rights reserved

Spend less time and resources to develop and
maintain the commodity software.

Collaborate with other organizations instead
and share the workload.

Be able to spend more time and use the

resources you already have to create your
products and value added components!

© 2014 The Linux Foundation. All rights reserved

Thank you for your participation!

Please feel free to contact me with any questions:

jefro@jefro.net

Jefro on IRC (freenode.net)
@jefro_net on twitter

Jeffrey Osier-Mixon on Google+

Or through the Yocto Project website: https://www.yoctoproject.org

mailto:jefro@jefro.net
https://www.yoctoproject.org/

The Nitty Gritty in Fast Forward Mode

Yocto Project | TheLinux Foun dation

Troubleshooting

*Task Run Files
*BitBake creates a shell script for each task.

«Contains the environment variable settings and the shell and Python
functions that are executed.

*Task Log Files

*Each task produces a log file that contains all the output from the
commands run.

Running Specific Tasks for a Recipe

*bitbake <recipe> -c <task>

Dependency Graphs / Dependency Explorer
bitbake -g <target>

bitbake -g -u depexp <target>

Developer Shell

bitbake <recipe> -c devshell

© 2014 The Linux Foundation. All rights reserved

Customizing Root File System Images

*Extending a Pre-defined Image
Local Configuration Method
EXTRA_IMAGE_INSTALL in conf/local.conf
*Recipe Method

*\Write a recipe that includes another image recipe file

require recipes-core/images/core-image-base.bb
IMAGE_INSTALL += “strace”

sInherit from Core-Image

*Write a recipe that inherits from the core-image class

IMAGE_INSTALL = “packagegroup-core-boot packagegroup-base-extended”
Inherit core-image

Package Groups

*Write package group recipes that combine multiple packages into
logical entities.

*Use the package group in IMAGE_INSTALL.

© 2014 The Linux Foundation. All rights reserved

Package Groups

Package Group Recipe
DESCRIPTION = “My Package Group”
LICENSE = “MIT”
LIC_FILES CHECKSUM = “file://<licfile>;md5=<chksum>
inherit packagegroup
PROVIDES = “${PACKAGES}”
PACKAGES = “packagegroup-mypkg-apps packagegroup-mypkg-tools”

RDEPENDS _packagegroup-mypkg-apps = “sqlite3 python-core python-sqlite3”
RDEPENDS _pacakgegroup-mypkg-tools = “sudo gzip tar’

‘Ilmage Recipe

IMAGE_INSTALL = “packagegroup-core-boot packagegroup-mypkg-apps”
Inherit core-image

../../../../../../../../

Layers Revisited - Conventions

‘Why layers?

Layers were not always supported by BitBake and
OpenEmbedded Classic used a flat hierarchy for all of its meta
data.

Layers provide a mechanism to isolate meta data according to
functionality, for instance BSPs, distribution configuration, etc.

Layers allow to easily to add entire sets of meta data and/or
replace sets with other sets.

Conventions and Best Practices for Layers
*Use layers for your own projects

Name your layer meta-<layername>

*Group your recipes and other meta data

*Append don't overlay

Include don't duplicate

© 2014 The Linux Foundation. All rights reserved

Layers Revisited — Creating a Layer

|l———

meta-<layemame:>

eLayers as easy as 1-2-3

—
. conf
Create layer directory layout
*Add the layer configuration file B A
. . [
*Add the layer to your build environment — | e
Template for layer.conf] ——
We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}" L -
We have recipes-* directories, add to BBFILES
BBFILES +="${LAYERDIR}/recipes-*/*/*.bb |) "
${LAYERDIR}/recipes-*/*/*.bbappend" mem— Y
BBFILE_COLLECTIONS += "layername" I__ recipes-<category 1>
BBFILE_PATTERN_layername = ""${LAYERDIR}/"
BBFILE_PRIORITY_layername ="1" e
| —— <package 1~
This should only be incremented on significant |
changes that will |

T . package Lbb
cause compatibility issues with other layers

LAYERVERSION_ layername = "1 _

<package 2>
LAYERDEPENDS layername = "core" e
—_ package 2.bb

*Correct ordering of layers in
BBLAYERS is important o [—

© 2014 The Linux Foundation. All rights reserved

Yocto Project BSP - Architecture

Yocto Project BSP Anatomy
.Configuration and recipes for hardware platforms
.Dependent on core layers
.Extend core layer recipes and configuration
.Do not contain build system and/or tools

Standardized Layout
.Binary images
.Machine configuration
.Documentation
.Bootloader, kernel, graphics subsystem recipes
.Source patches
.License

BSP Tools

.Create BSP layers for various architectures and kernel
configurations

.Kernel configuration and patch management

Consuming a Yocto Project BSP

Read the README - no kidding

*BSP dependencies

Build instructions

Create and Configure Build Environment
«0e-init-build-env mybuild

Add BSP layer to BBLAYERS variable in
mybuild/conf/bblayers.conf

Correct order of layers in BBLAYERS is of significance:
applications, distribution, BSP, core

*Configure MACHINE in mybuild/conf/local.conf

eLaunch Build
Bitbake -k <image-target>

© 2014 The Linux Foundation. All rights reserved

Building a Yocto Project BSP

*Three Approaches

Manually from Scratch

*Most challenging

«Could make sense if no BSPs for similar hardware exist
*Copying and Modifying an Existing BSP Layer

*For similar hardware but it could make more sense to just extend
the existing BSP

*Using the Yocto Project BSP Scripts

Interactive scripts to build a BSP using the Yocto Project kernel
Infrastructure

A BSP is not required to use the Yocto Project kernel
Infrastructure and tooling

*However, using it provides benefits such as maintenance.

© 2014 The Linux Foundation. All rights reserved

Yocto Project Kernel Development

*There is no Yocto Project Kernel

*Uses upstream Linux kernels from kernel.org and clone them
Into Yocto Project kernel repositories

*Recipes and tooling point to the Yocto Project kernel
repositories.

*Yocto Project adds machine meta data, configuration, patches
on top.

Multiple ways of building the kernel

*Traditional OpenEmbedded Kernel Recipes building from kernel
tarball

*Custom Linux Yocto Kernel Recipes building from any kernel
GIT repository

Linux Yocto Kernel Infrastructure Recipes building from Yocto
Project GIT kernel repository

© 2014 The Linux Foundation. All rights reserved

Traditional OE Kernel Method - Overview

defconfig Kernel Tarball

‘ Kernel Source Tree

CONFIG 64BIT is not set linux
CONFIG_X86_32=y arch

CONFIG X86=y bleock
CONFIG_INSTRUCTION DECODER=y COPYING
CONFIG_OUTPUT FORMAT="elf32-i386" CREDITS
CONFIG_LOCKDEP_SUPPORT=y crypto
CONFIG STACKTRACE SUPPORT=y Documentation
CONFIG HAVE LATENCYTOP_ SUPPORT=y drivers
CONFIG MMU=y

CONFIG NEED_SG_DMA_ LENGTH=y
CONFIG_GENERIC_ISA DMA=y

CONFIG _GENERIC_ BUG=y

CONFIG GENERIC_ HWEIGHT=y
CONFIG_ARCH_MAY_ HAVE_PC_FDC=y
CONFIG_RWSEM_XCHGADD_ ALGORITHM=y
CONFIG GENERIC_ CALIBRATE DELAY=y
CONFIG ARCH_ HAS CPU_RELAX=y
CONFIG_ARCH_HAS_CACHE_LINE_SIZE=y
CONFIG ARCH HAS CPU_AUTOPROBE=y

CONFIG HAVE SETUP_PER_CPU_AREA=y
CONFIG _NEED_ PER_CPU_EMBED FIRST CHUNK=y
CONFIG NEED_PER_CPU_PAGE_FIRST_ CHUNK=y
CONFIG_ARCH_HIBERNATION POSSIBLE=y
CONFIG_ARCH_SUSPEND_POSSIBLE=y

CONFIG_ZONE_DMA32 is not set

CONFIG_AUDIT ARCH is not set

firmware

fs

include
init

ipe

Kbuild Kernel Image
Kconfig
kernel

lib
MAINTAINERS
Makefile
mm

net

README
REPORTING-BUGS
samples
scripts
security
sound

tools

usr

virt

© 2014 The Linux Foundation. All rights reserved

Traditional OE Kernel Method - Recipe

DESCRIPTION ="Bleeding Edge Linux Kernel"
SECTION = "kernel"

LICENSE ="GPLv2"

LIC_FILES CHKSUM = "file://ICOPYING;md5=<chksum>"
inherit kernel

KVER = "${PV}-rc5"

LINUX_VERSION ?="3.11.0"
LINUX_VERSION_EXTENSION ?="-custom"

SRC_FILE = “${KERNELORG_MIRRORY}/linux/kernel/v3.x/testing/linux-${KVER}.tar.xz”
SRC_URI ="${SRC_FILE};name=kernel \

file://defconfig"
S = "${WORKDIR}Mlinux-${KVER}"

SRC_URI[kernel.md5sum] = "<chksum>"
SRC_URI[kernel.sha256sum] = "<chksum>"

Linux Yocto Custom Method - Overview

f

Configuration Fragments
#

Main Defconfig

#

CONFIG_X86_32=y

COHFIG_X86=Y
CONFIG_INSTRUCTION_DECODER=y
CUNFIG_OUTPUT_FOHMAT:“elf3Z—iJEG"
CONFIG_LOCKDEP_SUPPORT=y

CONFIG STACKTRACE_SUPPORT=y
CONFIG_HAVE_LATENCYTOP_SUPPORT=y
CONFIG MMU=y

CONFIG_NEED_SG_DMA LENGTH=y
CONFIG_GENERIC ISA DMA=y
CONFIG_GENERIC_BUG=y

-

#

Kernel Performance Events
And Counters

#

CONFIG_PERF_EVENTS=y
CONFIG_VM_EVENT_COUNTERS=y
CONFIG_PCI_QUIRKS=y
CONFIG_SLUB_DEBUG=y
CONFIG_COMPAT BRK=y

#

Graphics support

L

CONFIG_AGP is not set
CONFIG_VGA_ARB=y
CONFIG_VGA_ARB_MAX GPUS=16

© 2014 The Linux Foundation. All rights reserved

CONFIG 64BIT is not set
CONFIG_X86_32=y

CONFIG_X86=y

CONFIG_INSTRUCTION DECODER=y
CONFIG_OUTPUT_FORMAT="elf32-i386"
CONFIG_LOCKDEP_SUPPORT=y
CONFIG_STACKTRACE_SUPPORT=y
CONFIG_HAVE_LATENCYTOP_SUPPORT=y
CONFIG_MMU=y
CONFIG_NEED_SG_DMA_LENGTH=y
CONFIG_GENERIC ISA DMA=y
CONFIG_GENERIC BUG=y
CONFIG_GENERIC HWEIGHT=y
CONFIG_ARCH_MAY HAVE_PC_FDC=y
CONFIG_RWSEM_XCHGADD ALGORITHM=y
CONFIG_GENERIC_ CALIBRATE_DELAY=y
CONFIG_ARCH_HAS_CPU_RELAX=y
CONFIG_ARCH_HAS CACHE_LINE_SIZE=y
CONFIG_ARCH_HAS_CPU_AUTOPROBE=y
CONFIG_HAVE_SETUP_PER_CPU_AREA=y

CONFIG_NEED_PER_CPU_EMBED FIRST CHUNK=y
CONFIG_NEED_PER_CPU_PAGE_FIRST CHUNK=y

CONFIG_ARCH_HIBERNATION POSSIBLE=y
CONFIG_ARCH_SUSPEND_ POSSIBLE=y
CONFIG_ZONE_DMA32 is not set
CONFIG_AUDIT_ARCH is not set

Kernel GIT Repository

Kemel Source Tree

linux

arch

block
COPYING
CREDITS
crypto
Documentation
drivers
firmware

fs

include
init

ipe

Kbuild
Kconfig
kernel

1lib
MAINTAINERS
Makefile

mm

net

README
REPORTING-BUGS
samples
scripts
security
sound

teoels

usr

virt

Kemnel Image

Linux Yocto Custom Method - Recipe

inherit kernel
require recipes-kernel/linux/linux-yocto.inc

SRC_URI ="git://arago-project.org/git/projects/linux-am33x.git;protocol=git;bareclone=1"

SRC_URI +="file://defconfig"
SRC_URI +="file://lam335x-pm-firmware.bin"

SRC_URI +="file://beaglebone.scc \
file://beaglebone.cfg \
file://beaglebone-user-config.cfg \
file://[beaglebone-user-patches.scc \

KBRANCH = "v3.2-staging"

LINUX_VERSION ?="3.2.31"
LINUX_VERSION_EXTENSION ?="-bbone"

SRCREV ="720e07b4c1f687b61b147b31c698ch6816d72f01"

PR="r1"
PV = "${LINUX_VERSION}+git${SRCPV}"

COMPATIBLE_MACHINE_beaglebone ="beaglebone”

do_compile_prepend() {
cp ${WORKDIR}/am335x-pm-firmware.bin ${S}/firmware/
}

Linux Yocto Kernel Method - Overview

Configuration Fragments

-
]
Kernel Solrce Tree 4 Main Defconfig Kemel Source Tree Kemel Source Tree Kernel Source Tree
[meta branch) i (common-pe branch) (common-pe-64 branch) (preem pt-rt -branch)
CONFIG_X86 32=y
I R RELY, # CONFIG_64BIT is not set Linux Linux
b= bsp CONFIG_INSTRUCTION DECODER=Y CONFIG X86 32=y |— arch |— arch
| | beagleboard CONFIG_OUTPUT_FORMAT="el f32-i386" CONFIG X86=y — block — block
| | ‘common-pe CONFIG_LOCKDEP_SUPPORT=y CONFIG_INSTRUCTION DECODER=y — COPYING — COPYING
| |~ crowmbay CONFIG_STACKTRACE_SUPPORT=y A e S e e |— cREDITS |— crEDITS
I ||: xﬁiﬁiiﬂ CONFIG mwf LATENCYTOP _SUPPORT=y CONFIG_LOCKDEP_SUPPORT=y — erypto |— erypto
- cfg CONFIG_MMU=y CONFIG_STACKTRACE_SUPPORT=y Documentation (— Documentation — Documentation
CONFIG_NEED SG_DMA LENGTH=y COIF'IG HW LATENCYTOP B'I.I?POR'.I"!’ drivers — drivers l— drivers
}_ ktypes CONFIG GE“ERIC ISA Dm-y COIFIG Iﬂl.l'ly firmware t— firmware — firmware
— features CONFIG_GENERIC BUG=Y CONFIG_NEED_SG_DMA_LENGTH=y fs |— fs I— fs
cg.nc G“nlc 1SA_DMA=y inelude — include — include
. CONFIG GENERIC BUG=Y init — init — init
4> CONFIG_GENERIC_HWEIGHT=y ipe — ipe — ipc
CONFIG_ARCH MAY HAVE PC_FDC=y Kbuild — Kbuild — Kbuild
: Kernel Performance Events COI!'IG IIJIBHI XCHGADD MEORIIBH-y Xeentlg [Keonfig — Keonflg
T CONFIG_GENERIC_CALIBRATE_DELAY=y kernel — kernel [— kernel
COAPTO NROR BAeoACEE tane | :;:MM’IIIB — ::nnms — :::II‘IM“RB
_ CONFIG_ARCH_HAS CACHE LINE_SIZE=y — —
z:;:g_:inzh !:z:llz{sn—lir . colm:c mn HAS cw mpm“.y Makefile — Makefile — Makefile
A CONFIG_HAVE SETUP_PER_CPU_AREA=Y mm — mm — mm
T T T CONFIG_NEED PER_CPU_EMBED FIRST CHUNK=y net — net — net
L cwrm msn rn CPU_] rm FIRST ! CHUNK=y RERDME — README _ — README
= = cg."c mn Hlmm]ou PQBEIH.B-! REPORTING-BUGS — REPORTING-BUGS — REPORTING-BUGS
colnc ucn SUSPEND_POSSIBLE=y samples — samples — samples
CONFIG_ZONE DMA32 is not set scripts — scripts [— scripts
§ § CONFIG AUDIT ARCH is not set security — security — security
Graphics support = - sound — sound |— sound
¥ tools — tools — tools
CONFIG_AGP is not set usr — usr L — usr
CONFIG_VGA_ARB=y virt — virt — virt
CONFIG_VGA_ARB MAX GPUS=16

Kernel Image

© 2014 The Linux Foundation. All rights reserved

Linux Yocto Kernel Method - Recipe

require recipes-kernel/linux/linux-yocto.inc

KBRANCH_DEFAULT = "standard/base"
KBRANCH ="${KBRANCH_DEFAULT}"

SRCREV_machine_gemuarm ?="8fb1a478c9a05362e2e4e62fc30f5ef5d6¢c21f49"
SRCREV_machine_gemumips ?="b8870f2b11f4c948ae90a19886335fa8b7fca487"
SRCREV_machine_gemuppc ?="e4c12f12e61a29b6605c4fcbcfd6dbel8bd7b4e4"
SRCREV_machine_gemux86 ?="dd089cb5ba37eal4e8f90a884bf2a5be64ed817d"
SRCREV_machine_gemux86-64 ?="dd089cb5ba37eal4e8f90a884bf2a5be64ed817d"
SRCREV_machine ?="dd089cb5ba37eal4e8f90a884bf2a5be64ed817d"
SRCREV_meta ?="8482dcdf68f9f7501118f4c01fdcb8f851882997"

SRC_URI ="git://git.yoctoproject.org/linux-yocto-3.8.git;protocol=git;bareclone=1;\
branch=${KBRANCH},${KMETA};name=machine,meta"

LINUX_VERSION ?="3.8.11"

PR = "${INC_PR}.1"
PV = "${LINUX_VERSION}+git${SRCPV}"

KMETA = "meta"

COMPATIBLE_MACHINE ="gemuarm|gemux86|gemuppc|gemumips|gemux86-64"

When to Use What Kernel Building Method

*You have a kernel tarball and a defconfig

*Use linux-yocto-custom recipe template

Straightforward and easy to use

*You have a GIT kernel repository and a defconfig
*Use linux-yocto-custom recipe template with GIT

*Gives you the ability to add patches and configuration fragments
using the Yocto Project kernel tooling

*You are starting a new BSP project

«Consider using the Yocto Project kernel infrastructure,
repositories and tooling

*Get the advantage of an continuously updated and maintained
kernel

Leverage the kernel types, feature and configuration pool of the
meta kernel branch

© 2014 The Linux Foundation. All rights reserved

Questions from webinar

What hardware is supported?

* A great deal of hardware is supported. Architectures include ARM, ARM®64, PPC,
PPC64, x86, x86-64, MIPS, and even some others.

Will my resulting OS have access to an app store?

* At the moment, YP does not provide binary package feeds of any kind, including
access to app stores. It is very difficult to offer an app store for a build system that can
build software on so many different architectures, and it is not often requested for
deeply embedded systems that only do one job. That being said, this functionality is
on our roadmap, though it is not currently scheduled for a particular release.

Where can | find other software layers & BSPs?

* You can find layers and BSPs on yoctoproject.org, the OE layer index at
layers.openembedded.org, on silicon manufacturers’ sites, on github and gerrithub,
and in places even we don’t know about!

Questions from webinar

What is the difference between the Yocto Project and OpenEmbedded? How
about Buildroot?

* The Yocto Project is an open source project —an umbrella organization that provides
support and business services to its component projects, which all have the common
goal of enhancing the process for building embedded operating systems based on
Linux. Some of the project managed within the Yocto Project are the OpenEmbedded
build system, the opkg package manager, EGLIBC, and several other tools that help
people build embedded Linux distributions. The Yocto Project is managed by 17
member organizations as a collaborative project under the Linux Foundation.

 OpenEmbedded is a build system comprised of the BitBake build tool and the OE Core
metadata set. It is managed by the OpenEmbedded Project, which also manages a
great number of metadata packages that are technically compatible with the OE
build system (and thus with the Yocto Project).

* Poky is a reference system — a single instantiation of the Yocto Project build tools. In
essence, when you “download the Yocto Project”, you download Poky, which contains
the OE build system, the meta-yocto metadata layer that includes canonical BSPs, and
a few other scripts that make it easy to build embedded Linux. You then customize
this reference system to meet your own needs. Why not just download BitBake and
OE separately? Because Poky is heavily tested as a system.

* The Buildroot build system is a different way of building embedded Linux that is based
on build scripts and kconfig. Buildroot is unrelated to the Yocto Project, but the
systems are not competitors — instead, we refer users to each other when the other
system is more appropriate, in the true spirit of open source.

Questions from webinar

Is there a GUI or is it all command line?

* There is an older GUI called Hob that is now deprecated. There is a new HTML5-based
GUI called Toaster that is still being designed and created. It has a manual as well as
several videos on youtube to show how it works, and you can download it today. We
welcome feedback on it.

Does it run on Windows/Mac or only Linux?

* The Yocto Project tools currently run only on Linux systems with the appropriate
libraries and build tools available (see the Quick Start Guide). However, you can run
the YP tools in a virtual machine on any system. Native Windows and Mac support is
on our roadmap for a future release, but full support has not yet been scheduled or
announced.

Is synopsys ARC HS38 supported?

* | don’t immediately find an ARC HS38 BSP for YP, but | do note that the processor is
supported in the Linux kernel. That means porting is just a few recipes away. You can
see what is required to create your own BSP in the BSP Portlng Guide -
https://www.yoctoproject.org/documentation

What happens if you don’t have a 32gb build machine?

* | frequently run YP builds on a core i7 laptop with 12gb RAM. | can build core-image-
minimal in about 45 minutes, after downloading sources. YP is very good at
capitalizing on available resources.

https://www.yoctoproject.org/documentation

Questions from webinar

Does it work on Backtrack?

* | have never used Backtrack, but | don’t see anything in Backtrack that would be
incompatible. Remember, YP is a set of tools — it is not a platform, and it is not a
distribution.

How hard is it to migrate platforms between different versions of the Yocto
Project?

* You can lock down any part of your build, including the kernel or any package, so that
it continues to build the same version despite updates to the build tools. That being
said, YP (or rather, Poky) is tested with certain kernels, so some users find it easier to
just stick with one version of the YP tools throughout a given project.

Do | need a specific bitbake to generate each version of the os (eg one for
poky-dizzy and other distro) also, What about when new versions of YP
are released?

* | think the above question should answer this, but if not, or with any other questions,
please feel free to send me a note at jeffrey.osier-mixon@intel.com

mailto:Jeffrey.osier-mixon@intel.com

D. Kevin McGrath — Oregon State University School of Electrical Engineering and Computer Science

0SU

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Target audience and structure

Advanced undergraduate or entry level graduate course in operating systems
concepts and implementation

= Use of Linux kernel as the case study

» Implementation projects
— Scheduling
— /O
— Kernel crypto API + block device
— Userspace driver — think libusb
— Memory management/slab

= Concurrency projects

vvvvvvvvvv

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Choice of target platform

There are several questions one must answer before picking a teaching platform:
= Which architecture to target?
= Physical or virtual hardware?

= Physical options: Galileo, Edison, BeagleBone Black, Raspberry Pi 2,
Terasic DE2i-150, MinnowBoard Max

= Virtual options: gemu, VirtualBox, VMware

= What are the learning outcomes to target?

vvvvvvvvvv

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Physical targets
Physical targets work well in smaller classes
= Benefits
= Real platforms, real issues
= Can do real driver development with actual peripheral
= Simplicity of on-host development
= Downsides
= Debugging difficulty
= Cost/attrition of hardware

= Students don't like to carry things

vvvvvvvvvv

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Virtual targets

Virtual targets are ideal for larger class sizes, provided hardware is available
= Benefits

= Easier choice of different platforms

= Myriad debugging options

» Flexible, students can'’t destroy it

» OS development often done on VMs
= Downsides

= Driver projects require more OOB thinking

= Scaling to larger class sizes actually can be more expensive than physical
hardware

Oregon Staf

gon State

vvvvvvvvvv

intel' \

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Using yocto build system + gemu

Ability to target lots of platforms

Yocto build system offers great flexibility
= Cross compilers for all gemu virtualized targets
= Simplicity of centrally managed build system

= Same tools, same host for all students

With proper hardware support, can scale to very large classes

» Qemu+kvm offers significant performance advantages

Cross compilation experience within a single host

Can alternatively target SBCs like Galileo with only minor mods

vvvvvvvvvv

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Demonstration

= Toolchain installation

= Demo image and kernel

= Using gemu, command line options
= Cross compiling the kernel

= Running new kernel

= Adding a module

vvvvvvvvvv

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Steps:

Download and install the toolchain:

. curl -0 http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/toolchain/x86_64/poky-eglibc-x86_64-core-image-
sato-core2-64-toolchain-1.6.1.sh

. sh poky-eglibc-x86_64-core-image-sato-core2-64-toolchain-1.6.1.sh -d ~/yocto -y
Download a kernel — match to toolchain:

. curl -0 http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/machines/qemu/qemux86-64/bzImage-gemux86-64.bin
Download a disk image (takes some time) — there are lots of options, feel free to switch

. curl -0 http://downloads.yoctoproject.org/releases/yocto/yocto-1.6.1/machines/qemu/qemux86-64-1sb/core-image-1sb-sdk-
gemux86-64.ext3

Download kernel source (and immediately expand) — match to that which image is running
. curl https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.14.tar.gz | tar xzvf -
Pull config from VM
= Launch VM:
] source ~/yocto/environment-setup-core2-64-poky-linux

] gemu-system-x86_64 -gdb tcp::5500 -S -smp 4 -m 2048 -nographic -kernel linux-3.14/arch/x86/boot/bzImage -drive
file=core-image-1lsb-sdk-qemux86-64.ext3,if=virtio -enable-kvm -net none -usb -localtime --no-reboot --append
"root=/dev/vda rw console=ttyS@ debug"

= Loginto VM as root (empty password)
Ll zcat /proc/config.gz > ~/config.3.14.txt

= Pull config.3.14.txt out to host, copy to linux source tree as .config

N

vvvvvvvvvv

intel' \

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Steps continued:

= Build the kernel with the standard make —N (replace N with number of build
threads)

= Replace kernel on gemu command line with the kernel you just built
» Use scp to load any modules as necessary
= Add/remove -S flag to gemu to require debugger or not

= All links from , section ‘Using Pre-Built Binaries and
QEMU’

vvvvvvvvvv

http://www.yoctoproject.org/docs/1.6.1/yocto-project-qs/yocto-project-qs.html

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Lessons learned

= Using virtio is great for performance — unless you want to modify the I/O schedulers
= Writing and using modules is important, so how to get the module to the guest?

» Remote debugging is awesome. Mostly.

= KVM support is really necessary. Only root can use it by default.

= Lots of root-only tools. Networking, for instance.

= Guest/host split does cause confusion.

= Whiners gonna whine. Haters gonna hate.

» Detailed setup instructions are a must. Thinking is hard.

vvvvvvvvvv

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Questions/answers

= Why use a cross compiler to build the kernel?

= Not strictly necessary, but allows (for instance) to use a 32bit guest on a 64 bit host, or an ARM guest on an IA host. Further,
allows for mismatched libraries and versions to be used on host and guest (eglibc vs. uclibc, for instance).

= Why use the yocto build system?

= Vastly simplifies toolchain installation for cross-compilation.

» Are there benefits to using yocto+gemu over real hardware?

= Yes. Simplifies course management, no broken hardware, etc. Please see slides 4 and 5.

= Can you adapt this system to using real hardware, such as the Intel Edison?

= Quite easily, in fact. Instead of launching the new kernel with gemu, simply copy to the FAT partition on Edison/galileo. Just
make sure you get the names right, and it should all just work.

= Can you add modules to the used file system?

= Yes, you can either scp them onto the running VM, or use root-only tools to mount the rootfs image and do a direct make
modules_install to that directory. scp is the easier option, in a classroom environment.

= How can networking be enabled?

= Justremove the “-net none’ from the gemu command line

N

vvvvvvvvvv

inteI' \

COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Questions/answers

= How can you load symbols for the kernel to the debugger?
= Launch gdb with the vmlinuz file in the root of the kernel build tree.
= Can KVM/Qemu be useful if | want to pass-through a PCI Network card
directly to the VM?

= Qemu can use physical hardware, but I've never used it that way. I'd recommend consulting the gemu manual for details. That
said, in a classroom environment, unless you had one NIC per student, I'm unsure how you’d do this in any meaningful way.

= Using a vm as the target system, how does one account for peripherals? For
example on a Pi, how would one emulate the SD card, the camera, or the
GPU?

= Thisis very much a question for a gemu expert. I'm really unsure why one would want to in a classroom setting for an OS class,
but each use case is different, after all. If part of your class involves programming those specific peripherals, this might not be the
best approach for your particular class.

N

vvvvvvvvvv

inteI' \

