

mPGA604 Socket

Mechanical Design Guide

March 2005

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The mPGA604 socket may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents, which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting [Intel's Web Site](#).

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © 2003-2005, Intel Corporation. All rights reserved.

* Other brands and names may be claimed as the property of others.

Contents

1	Introduction	7
	1.1 Objective	7
	1.2 Purpose.....	7
	1.3 Scope	7
2	Assembled Component and Package Description.....	9
3	Mechanical Requirements.....	11
	3.1 Attachment	11
	3.2 Materials.....	11
	3.2.1 Socket Housing	11
	3.2.2 Color.....	11
	3.3 Cutouts for Package Removal	11
	3.4 Socket Standoffs Height	11
	3.5 Markings.....	12
	3.5.1 Name.....	12
	3.5.2 Lock (Closed) and Unlock (Open) Markings.....	12
	3.5.3 Lot Traceability.....	12
	3.6 Socket Size	12
	3.7 Socket/Package Translation During Actuation	13
	3.8 Orientation in Packaging, Shipping and Handling	13
	3.9 Contact Characteristics	13
	3.9.1 Number of contacts	13
	3.9.2 Base Material	13
	3.9.3 Contact Area Plating	13
	3.9.4 Solder Ball Attachment Area Plating.....	13
	3.9.5 Solder Ball Characteristics	13
	3.9.6 Lubricants.....	13
	3.10 Material and Recycling Requirements	13
	3.11 Lever Actuation Requirements.....	14
	3.12 Socket Engagement/Disengagement Force	14
	3.13 Visual Aids	14
	3.14 Socket BGA Co-Planarity.....	14
	3.15 Solder Ball True Position	14
	3.16 Critical-to-Function Dimensions	14
4	Electrical Requirements	17
	4.1 Electrical Resistance.....	18
	4.2 Determination of Maximum Electrical Resistance	22
	4.3 Inductance.....	23
	4.3.1 Design Procedure for Inductance Measurements	24
	4.3.2 Correlation of Measurement and Model Data Inductance	25
	4.4 Pin-to-Pin Capacitance	25
	4.5 Dielectric Withstand Voltage	25
	4.6 Insulation Resistance	25
	4.7 Contact Current Rating	25
5	Environmental Requirements	27
	5.1 Mixed Flowing Gas	27

5.2	Solvent Resistance	28
5.3	Durability	28
6	Validation Testing Requirements	29
6.1	Applicable Documents	29
6.2	Testing Facility	29
6.3	Funding	29
6.4	Socket Design Verification	29
6.5	Reporting	29
6.6	Process Changes	29
6.7	Quality Assurance Requirements	30
6.8	Socket Test Plan	30
6.8.1	Submission of an mPGA604 Socket for Validation Testing	30
6.9	Mechanical Samples	30
6.10	Socket Validation Notification	30
6.11	Production Lot Definition	30
6.12	Socket Validation	30
7	Safety Requirements	31
8	Documentation Requirements	33
9	Mechanical Drawings	35

Figures

4-1	Methodology for Measuring Total Electrical Resistance	18
4-2	Methodology for Measuring Electrical Resistance of the Jumper	18
4-3	Electrical Resistance Fixtures Superimposed	19
4-4	Inductance Measurement Fixture Cross-Section	23
4-5	Inductance and Capacitance Fixture	23
5-1	Flow Chart of Knowledge-Based Reliability Evaluation Methodology	27
9-1	mPGA604 Socket Drawing (Sheet 1 of 4)	35
9-2	mPGA604 Socket Drawing (Sheet 2 of 4)	36
9-3	mPGA604 Socket Drawing (Sheet 3 of 4)	36
9-4	mPGA604 Socket Drawing (Sheet 4 of 4)	37
9-5	603-Pin Interposer Assembly Drawing (Sheet 1 of 6)	38
9-6	603-Pin Interposer Assembly Drawing (Sheet 2 of 6)	39
9-7	603-Pin Interposer Assembly Drawing (Sheet 3 of 6)	40
9-8	603-Pin Interposer Assembly Drawing OLGA Keepout (Sheet 4 of 6)	41
9-9	603-Pin Interposer Assembly Drawing FCBGA2 Keepout (Sheet 5 of 6)	42
9-10	603-Pin Interposer Assembly Drawing (Sheet 6 of 6)	43

Tables

3-1	Package Critical-To-Function (CTF) Dimensions	15
4-1	Electrical Requirements for Sockets	17
4-2	Definitions (Sheet 1 of 2)	17
4-3	Resistance Test Fixture Netlist (Sheet 1 of 2)	21
4-4	Net list for FSETV4 Rev 1 Edge Fingers	26
5-1	Use Conditions Environment	27

Revision History

Revision Number	Description	Date
001	<ul style="list-style-type: none">Initial release of the document.	October 2003
002	<ul style="list-style-type: none">Updated for 2005 Intel® Xeon™ products.	March 2005

Note: Note all revisions may be published.

Re-Validation Notice to Socket Vendors

Any significant change to the socket will require submission of a detailed explanation of the change at least 60 days prior to the planned implementation. Intel will review the modification and establish the necessary re-validation procedure that the socket must pass. Any testing that is required MUST be completed before the change is implemented.

Typical examples of significant changes include, **but are not limited to, the following:** plastic material changes including base material or color; contact changes including base material, plating material or thickness; and design modifications.

For details on validation testing requirements, see [Section 6](#).

1 *Introduction*

1.1 **Objective**

This document defines a surface mount, Zero Insertion Force (ZIF) socket intended for workstation and server platforms based on Intel microprocessors. The socket provides I/O, power and ground contacts. The socket contains 604 contacts arrayed about a cavity in the center of the socket with solder balls/surface mount features for surface mounting with the motherboard. The mPGA604 Socket contacts have 1.27mm pitch with regular pin array, to mate with a 604-pin processor package. A 604-pin package will be mated with a 603 solder ball socket. The dummy pin is a key that allows either the 603-pin processor package or the 604-pin processor package to be used in the same socket.

1.2 **Purpose**

To define functional, quality, reliability, and material (that is, visual, dimensional and physical) requirements and design guidelines of the mPGA604 Socket in order to provide low cost, low risk, robust, high volume manufacturable (HVM) socket solution available from multiple sources.

1.3 **Scope**

This design guideline applies to all 604-pin ZIF sockets purchased to the requirements of this design guideline.

§

2 *Assembled Component and Package Description*

The mPGA604 socket dimensions and characteristics must be compatible with that of the processor package and related assembly components. Processors using flip-chip pin grid array (FC- mPGA4) package technology are targeted to be used with the mPGA604 socket.

The assembled component may consist of a cooling solution (heatsink, fan, and retention mechanism), and processor package. The processor Thermal/Mechanical Design Guidelines document provides information for designing components compliant with the Intel reference design.

Relevant processor FC-mPGA4 package and pin-out information is given in the processor Electrical, Mechanical and Thermal Specifications document.

§

3 *Mechanical Requirements*

3.1 Attachment

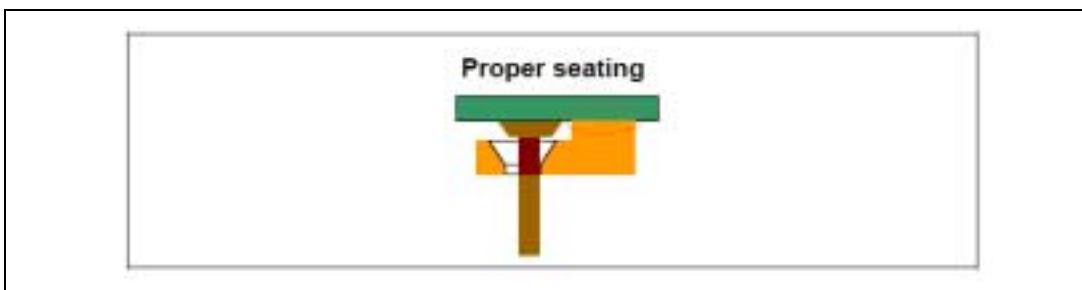
A retention system needs to isolate any load in excess of 222.41 N, compressive, from the socket during the shock and vibration conditions outlined in [Section 5](#). The socket must pass the mechanical shock and vibration requirements listed in [Section 5](#) with the associated heatsink and retention mechanism attached. Socket can only be attached by the 603 contacts to the motherboard. No external (i.e. screw, extra solder, adhesive....) methods to attach the socket are acceptable.

3.2 Materials

3.2.1 Socket Housing

Thermoplastic or equivalent, UL 94V-0 flame rating, temperature rating and design capable of withstanding a temperature of 240°C for 40sec (minimum) typical of a reflow profile for solder material used on the socket. The material must have a thermal coefficient of expansion in the XY plane capable of passing reliability tests rated for an expected high operating temperature, mounted on FR4type motherboard material.

3.2.2 Color


The color of the socket can be optimized to provide the contrast needed for OEM's pick and place vision systems. The base and cover of the socket may be different colors as long as they meet the above requirement.

3.3 Cutouts for Package Removal

Recessed cutouts are required in the side of the socket to provide better access to the package substrate, and facilitate the manual removal of inserted package (see [Section 9](#)).

3.4 Socket Standoffs Height

Socket stand off height, cover lead in and cover lead in depth must not interfere with package pin shoulder at worst-case conditions. The processor (not the pin shoulder) must sit flush on the socket standoffs and the pin field cannot contact the standoffs (see [Section 9](#)).

3.5 Markings

All markings required in this section must be able to withstand a temperature of 240 °C for 40 seconds (minimum) typical of a reflow profile for solder material used on the socket, as well as any environmental test procedure outlined in [Section 5](#).

3.5.1 Name

mPGA604 (Font type is Helvetica Bold – minimum 6 point).

This mark shall be molded or Laser Marked into the processor side of the socket housing.

Manufacturer's insignia (font size at supplier's discretion).

This mark will be molded or laser marked into the socket housing. Both marks must be visible when first seated in the motherboard. Any request for variation from this marking requires a written description (detailing size and location) to be provided to Intel for approval.

3.5.2 Lock (Closed) and Unlock (Open) Markings

The universal symbols for 'Lock' and 'Unlock' are to be marked on the socket in the appropriate positions. Clear indicator marks must be located on the actuation mechanism that identifies the lock (closed) and unlock (open) positions of the cover as well as the actuation direction. These marks should still be visible after a package is inserted into the socket.

3.5.3 Lot Traceability

Each socket will be marked with a lot identification code that will allow traceability of all components, date of manufacture (year and week), and assembly location. The mark must be placed on a surface that is visible when mounted on a printed circuit board. In addition, this identification code must be marked on the exterior of the box in which the units ship.

3.6 Socket Size

The socket size must meet the dimensions as shown in [Section 9](#), allowing full insertion of the pins in the socket, without interference between the socket and the pin field. The mPGA604 Socket and actuation area must fit within the keep-in zone defined in [Section 9](#).

3.7 **Socket/Package Translation During Actuation**

The socket shall be built so that the post-actuated package pin field displacement will not exceed 1.27 mm. Movement will be along the Y direction. No Z-axis travel (lift out) of the package is allowed during actuation.

3.8 **Orientation in Packaging, Shipping and Handling**

Packaging media needs to support high volume manufacturing.

3.9 **Contact Characteristics**

3.9.1 **Number of contacts**

Total number of contacts: 603.

Total number of contact holes: 604.

3.9.2 **Base Material**

High strength copper alloy.

3.9.3 **Contact Area Plating**

0.762 μm (min) gold plating over 1.27 μm (min) nickel underplate in critical contact areas (area on socket contacts where processor pins will mate) is required. No contamination by solder in the contact area is allowed during solder reflow.

3.9.4 **Solder Ball Attachment Area Plating**

3.81 μm (min) Tin/Lead (typically 85+-5Sn/Pb balance).

3.9.5 **Solder Ball Characteristics**

Tin/Lead (63/37 + 0.5% Sn).

3.9.6 **Lubricants**

For the final assembled product, no lubricant is permitted on the socket contacts. If lubricants are used elsewhere within the socket assembly, these lubricants must not be able to migrate to the socket contacts.

3.10 **Material and Recycling Requirements**

Cadmium shall not be used in the painting or plating of the socket.

CFCs and HFCs shall not be used in manufacturing the socket. It is recommended that any plastic component exceeding 25g must be recyclable as per the European Blue Angel recycling design guidelines.

3.11 Lever Actuation Requirements

- Lever closed direction—right.
- Actuation direction called out in [Section 9](#).
- 135° lever travel max.
- Pivot point in the center of the actuation area on the top of the socket. [Section 9](#).

3.12 Socket Engagement/Disengagement Force

The force on the actuation lever arm must not exceed 44N to engage or disengage the package into the mPGA604 socket. Movement of the cover is limited to the plane parallel to the motherboard. The processor package must not be utilized in the actuation of the socket. Any actuation must meet or exceed SEMI S8-95 Safety Guidelines for Ergonomics/Human Factors Engineering of Semiconductor Manufacturing Equipment, example Table R2-7 (Maximum Grip Forces).

3.13 Visual Aids

The socket top will have markings identifying Pin 1. This marking will be represented by a clearly visible triangular symbol (see [Section 9](#)).

3.14 Socket BGA Co-Planarity

The co-planarity (profile) requirement for all solder balls on the underside of the socket is located in [Section 9](#).

3.15 Solder Ball True Position

The solder ball pattern has a true position requirement with respect to Datum A, B, and C (see [Section 9](#)).

3.16 Critical-to-Function Dimensions

The mPGA604 socket shall accept a 604-pin processor pin field. All dimensions are metric. Asymmetric features are designed to properly align the socket to the motherboard and prevent the socket from being assembled incorrectly to the motherboard.

Critical-to-function (CTF) dimensions are identified in [Table 3-1](#). The CTF values are detailed on the mPGA604 socket drawing in [Section 9](#) and take precedence over all values presented in this document. Dimensional requirements identified in the drawing and in [Table 3-1](#) must be met. These dimensions will be verified as part of the validation process. Also, supplier will provide and

maintain Critical Process Parameters controlling these CTFs or will provide direct measurements to meet ongoing quality requirements.

Table 3-1. Package Critical-To-Function (CTF) Dimensions

Dimension
Socket Length
Socket Width
Socket Height (Interposer surface from MB)
Assembled Seating Plane Flatness
Ball Diameter
True Position of Balls (pattern relating)
Co-planarity (profile) of Balls
Actuation Distance (Cover Travel)
Through Cavity X
Through Cavity Y
Cover Hole Diameter (Must guarantee ZIF)
Cover Hole Countersink Depth (Must guarantee ZIF)
Cover Hole Countersink Diameter (Must guarantee ZIF)
Cover Hole Virtual Condition (Pattern Locating)
Cover Hole Virtual Condition (Feature Relating)
Cover Hole Field Depth wrt Seating Plane
Cover Thickness in Hole Area
Au Thickness
Ni Thickness
Alignment Post Virtual Condition
Contact Depth from Seating Plane

§

4 Electrical Requirements

Socket electrical requirements are measured from the socketed-seating plane of the processor test vehicle (PTV) to the component side of the socket PCB to which it is attached. All specification are maximum values (unless otherwise stated) for a single socket pin, but includes effects of adjacent pins where indicated. Pin and socket inductance includes exposed pin from mated contact to bottom of the processor pin field.

Table 4-1. Electrical Requirements for Sockets

1	Mat lloop inductance, Loop	<4.33 nH	Refer to Table 4-2 , Item 1
2	Mated partial mutual inductance, L	NA	Refer to Table 4-2 , Item 2a
3	Maximum mutual capacitance, C	<1 pF	Refer to Table 4-2 , Item 3
4	Maximum Ave Contact Resistance	$\leq 17 \text{ m}\Omega$	Refer to Table 4-2 , Item 4. Refer to Section 4.1 for more detail. Refer to <i>mPGA603 Socket Design Guidelines</i> for electrical parameters with INT3 packages.
5	Measurement frequency(s) for Pin-to-Pin/Connector-to-Connector capacitance.	400 MHz	
6	Measurement frequency(s) for Pin-to-Pin/Connector-to-Connector inductance.	1 GHz	
7	Dielectric Withstand Voltage	360 Volts RMS	
8	Insulation Resistance	800 M Ω	
9	Contact Current Rating	Read & record	

Table 4-2. Definitions (Sheet 1 of 2)

1	Mated loop inductance, Lloop Refer to Table 4-1 , Item 1	The inductance calculated for two conductors, considering one forward conductor and one return conductor.
2a	Mated mutual inductance, L Refer to Table 4-1 , Item 2	The inductance on a conductor due to any single neighboring conductor.
3	Maximum mutual capacitance, C Refer to Table 4-1 , Item 3	The capacitance between two pins/connectors.

Table 4-2. Definitions (Sheet 2 of 2)

4	Maximum Average Contact Resistance. Refer to Table 4-1 , Item 4	The max average resistance target is originally derived from max resistance of each chain minus resistance of shorting bars divided by number of pins in the daisy chain. This value has to be satisfied at all time. Thus, this is the spec valid at End of Line, End of Life and etc. Socket Contact Resistance: The resistance of the socket contact, interface resistance to the pin, and the entire pin to the point where the pin enters the interposer; gaps included.
5	Measurement frequency(s) for capacitance.	Capacitively dominate region. This is usually the lowest measurable frequency. This should be determined from the measurements done for the feasibility.
6	Measurement frequency(s) for inductance.	Linear region. This is usually found at higher frequency ranges. This should be determined from the measurements done for the feasibility.

4.1 Electrical Resistance

[Figure 4-1](#) and [Figure 4-2](#) show the proposed methodology for measuring the final electrical resistance. The methodology requires measuring interposer flush-mounted directly to the motherboard fixtures, so that the pin shoulder is flush with the motherboard, to get the averaged jumper resistance, R_{jumper} . The R_{jumper} should come from a good statistical average of 30 package fixtures flush mounted to a motherboard fixture. The same measurements are then made with a package fixture mounted on a supplier's socket, and both are mounted on a motherboard fixture; this provides the R_{Total} . The resistance requirement, R_{Req} , can be calculated for each chain as will be explained later.

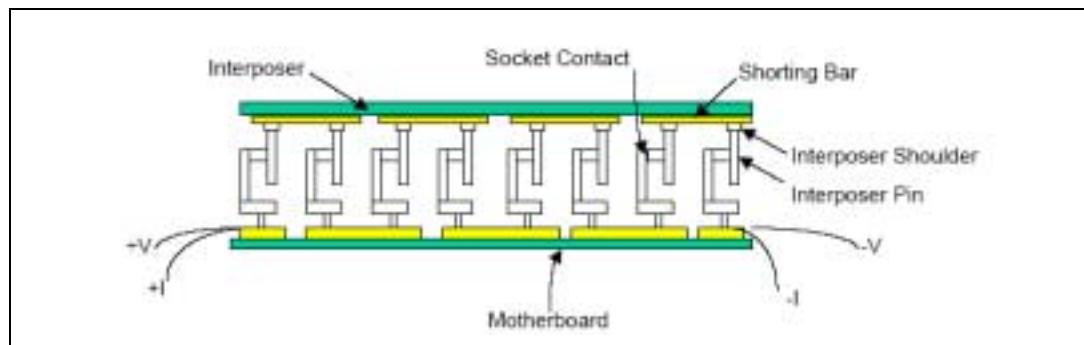
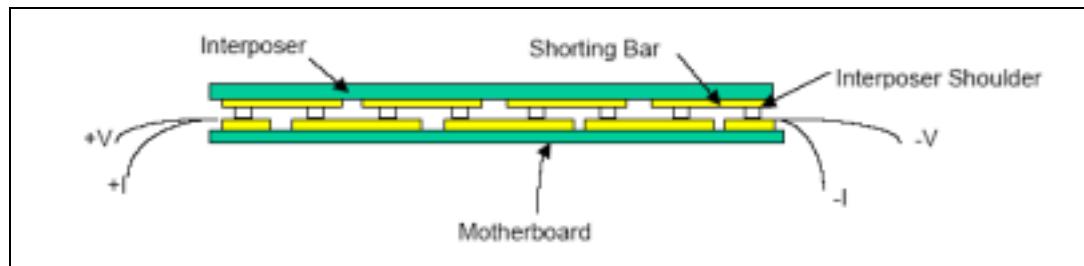
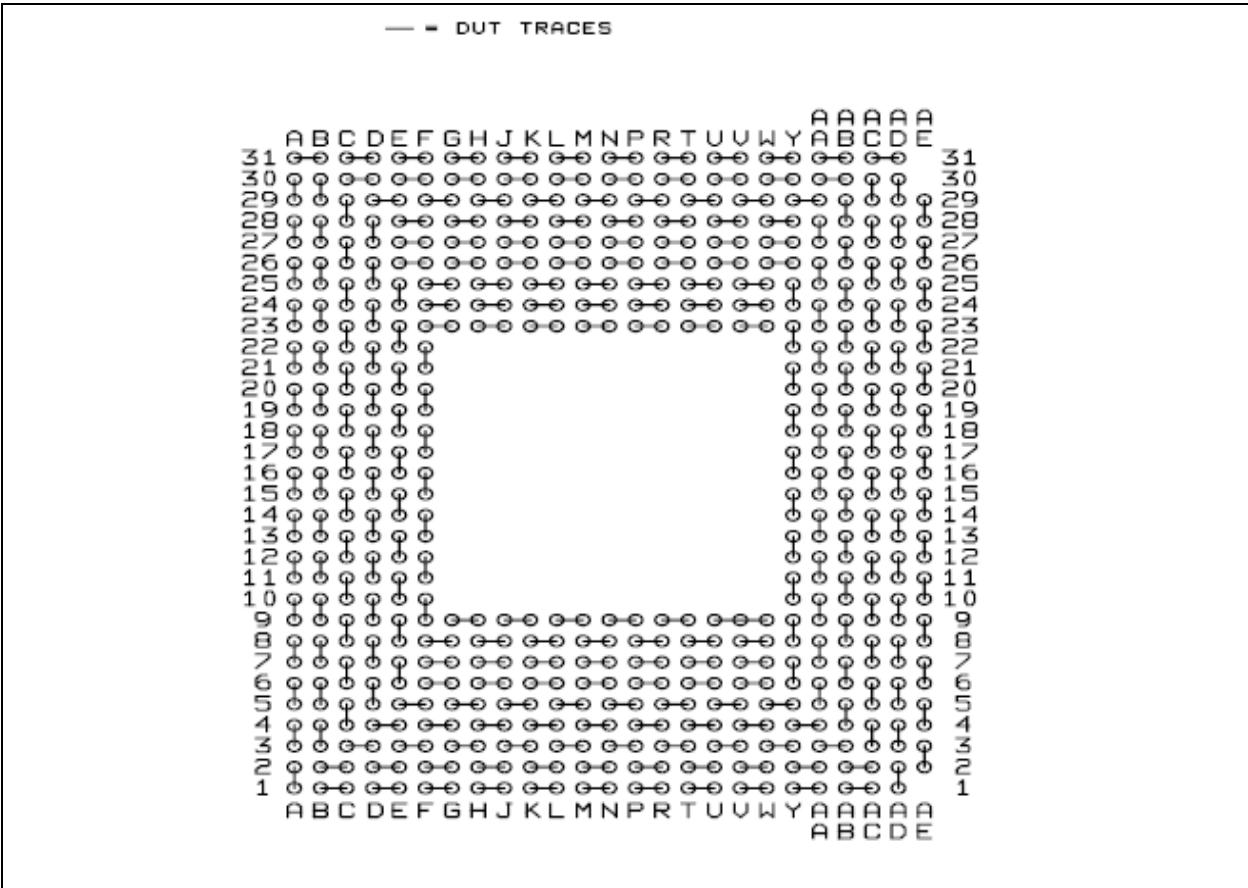
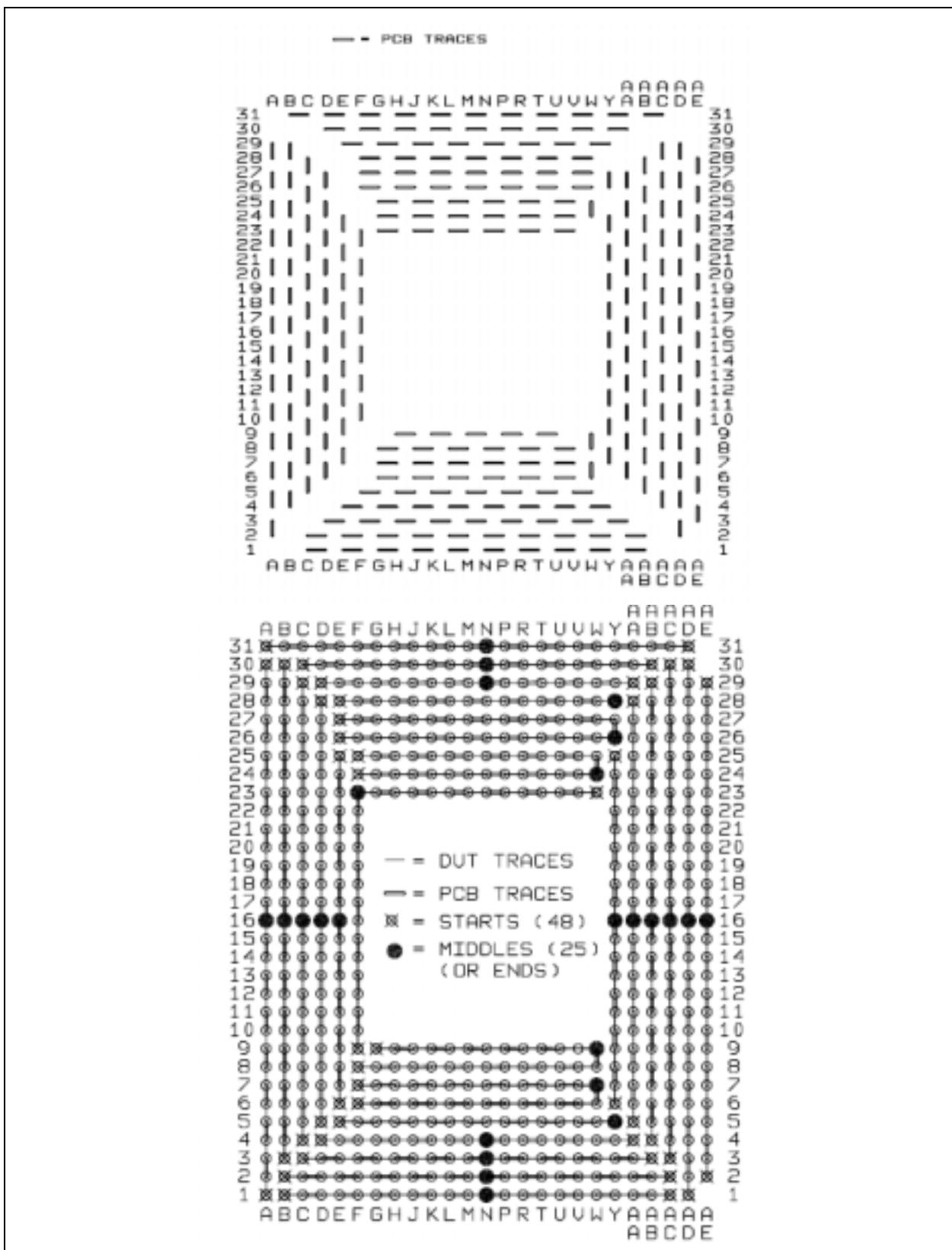




Figure 4-1. Methodology for Measuring Total Electrical Resistance.**Figure 4-2. Methodology for Measuring Electrical Resistance of the Jumper**

Figure 4-3 shows the resistance test fixtures separately and superimposed. The upper figure is the package. The next figure is the baseboard. There are 48 daisy chain configurations on resistance test board. The bottom figure is the two parts superimposed. Table 4-3 shows these configurations with the number of pins per each chain and netlist.

Figure 4-3. Electrical Resistance Fixtures Superimposed

Table 4-3. Resistance Test Fixture Netlist (Sheet 1 of 2)

Daisy Chain	# of © per chain	DC Endpoints		Edgefingers: Hi		Edgefingers: Low	
		Hi	Low	+I	+V	-V	-I
1	14	AE2	AE16	A94	A93	A118	A117
2	14	AE29	AE16	A136	A135	A118	A117
3	16	AD1	AD16	A92	A91	A116	A117
4	14	AD30	AD16	A138	A137	A116	A117
5	14	AC30	AC16	A96	A95	A114	A117
6	14	AC30	AC16	A142	A141	A114	A113
7	12	AB4	AB16	A98	A97	A112	A111
8	14	AB29	AB16	A134	A133	A112	A111
9	12	AA5	AA16	A100	A99	A110	A109
10	12	AA28	AA16	A132	A131	A110	A109
11	10	Y6	Y16	A102	A101	A108	A107
12	10	Y25	Y16	A130	A129	A108	A107
13	10	AC1	N1	A90	A89	A46	A45
14	12	B1	N1	A64	A63	A46	A45
15	10	AC2	N2	A88	A87	A48	A47
16	12	B2	N2	A66	A65	A48	A47
17	10	AB3	N3	A86	A85	A50	A49
18	10	C3	N3	A68	A67	A50	A49
19	8	AA4	N4	A84	A83	A52	A51
20	10	D4	N4	A70	A69	A52	A51
21	16	E5	Y5	A72	A71	A120	A119
22	14	F6	W7	A74	A73	A104	A103
23	14	F7	W7	A76	A75	A104	A103
24	14	F8	W9	A78	A77	A106	A105
25	12	G9	W9	A82	A81	A106	A105
26	16	A1	A16	A62	A61	A42	A41
27	14	A30	A16	A18	A17	A42	A41
28	14	B3	B16	A60	A59	A40	A39
29	14	B30	B16	A14	A13	A40	A39
30	12	C4	C16	A58	A57	A38	A37
31	14	C29	C16	A20	A19	A38	A37
32	12	D5	D16	A56	A55	A36	A35
33	12	D28	D16	A22	A21	A36	A35
34	10	E6	E16	A54	A53	A44	A43
35	10	E25	E16	A24	A23	A44	A43
36	14	F9	F23	A80	A79	A28	A27
37	14	W23	F23	A128	A127	A28	A27
38	14	F24	W24	A26	A25	A126	A125
39	14	F25	W24	A2	A1	A126	A125
40	16	E26	Y26	A4	A3	A124	A123
41	16	E27	Y26	A6	A5	A124	A123

Table 4-3. Resistance Test Fixture Netlist (Sheet 2 of 2)

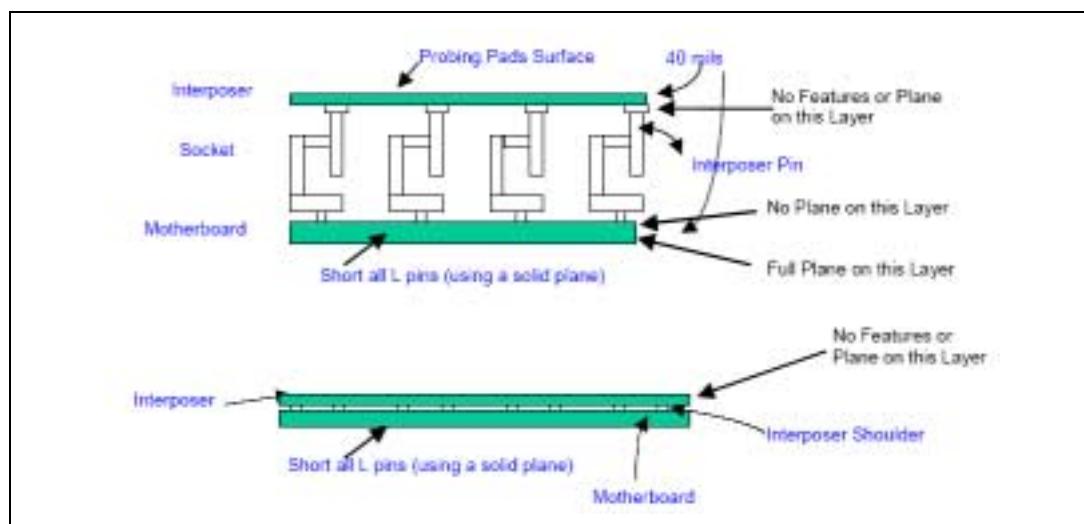
Daisy Chain	# of © per chain	DC Endpoints		Edgefingers: Hi		Edgefingers: Low	
		Hi	Low	+I	+V	-V	-I
42	16	E28	Y28	A8	A7	A122	A121
43	10	D29	N29	A10	A9	A34	A33
44	8	AA29	N29	A146	A145	A34	A33
45	10	C30	N30	A12	A11	A32	A31
46	10	AB30	N30	A144	A143	A32	A31
47	12	A31	N31	A16	A15	A30	A29
48	12	AD31	N31	A140	A139	A30	A29

4.2 Determination of Maximum Electrical Resistance

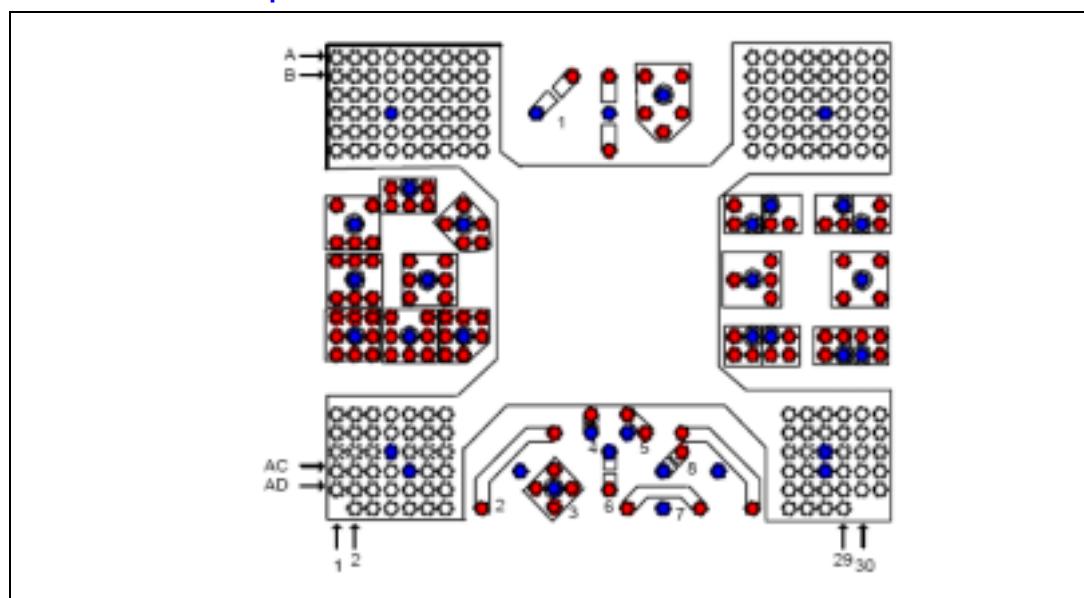
This section provides a guideline for the instruments used to take the measurements.

Note: The instrument selection should consider the guidelines in EIA 364-23A.

1. These measurements use a 4-wire technique, where the instruments provide two separate circuits. One is a precision current source to deliver the test current. The other is a precision voltmeter circuit to measure the voltage drop between the desired points.
2. These separate circuits can be contained within one instrument, such as a high quality micro-ohmmeter, a stand-alone current source and voltmeter, or the circuits of a data acquisition system.
3. Measurement accuracy in Ω is specified as $\pm 0.1\%$ of reading, or $\pm 0.1 \text{ m}\Omega$, whichever is greater. The vendor is responsible for demonstrating that their instrument(s) can meet this accuracy.
4. Automation of the measurements can be implemented by scanning the chains through the edge or cable test connector using a switch matrix. The matrix can be operated by hand, or through software.
5. Measure R_{Total} for each daisy chain of “package + socket + motherboard” unit.
6. Measure R_{jumper} for each daisy chain of 30 “package + motherboard” units. Calculate \bar{R}_{jumper} for each daisy chain (There is 30 data for each daisy chain).
7. For each socket unit, calculate


$$R_{\text{Req}} = \frac{R_{\text{Total}} - \bar{R}_{\text{jumper}}}{N}$$

R_{Req} is the average contact resistance for socket pin.


4.3 Inductance

The bottom fixture for the inductance measurement is a ground plane on the secondary side of the motherboard with all pins grounded. The component side of the socket PCB does not contain a plane. The top fixture is the package, which contains pins that will connect to the socket. [Figure 4-4](#) shows the inductance measurement fixture cross-section and the inductance measurement methodology. The first figure shows the entire assembly. The second figure shows the assembly without the socket; the socket-seating plane of the package is directly mounted to the component side of the socket PCB. This is used to calibrate out the fixture contribution. The materials for the fixture must match the materials used in the processor. Note the probe pad features exist on the topside of the top fixture, and the shorting plane exists only on the bottom side of the bottom fixture. [Figure 4-5](#) presents the inductance and capacitance fixture design.

Figure 4-4. Inductance Measurement Fixture Cross-Section

Figure 4-5. Inductance and Capacitance Fixture

4.3.1 Design Procedure for Inductance Measurements

The measurement equipment required to perform the validation is:

- Equipment - HP8753D Vector Network Analyzer or equivalent.
- Robust Probe Station (GTL4040) or equivalent.
- Probes - GS1250 & GSG1250 Air-Co-Planar or equivalent.
- Calibration – Cascade Calibration Substrates or equivalent.
- Measurement objects - Sockets, Motherboards.

Measurement Steps:

1. Equipment Setup:
 - a. Cables should be connected to the network analyzer and to the probes using the appropriate torque wrench to ensure consistent data collection every time the measurement is performed.
2. Set VNA:
 - a. Bandwidth = 300KHz – 3GHz with 801 points.
 - b. Averaging Factor = 16.
3. Perform Open/Short/Load Calibration:
 - a. Calibration should be performed at the start of any measurement session.
 - b. Create Calibration Kit if necessary for 1st time.
 - c. Do not perform port extension after calibration.
4. Check to ensure calibration successfully performed.
5. Measure the inductance of the socket mounted to the motherboard fixture by probing the locations on the PGA Adapter and socket assembly:
 - a. Call this $L_{\text{socket assembly}}$.
 - b. Export data into MDS/ADS or (capture data at frequency specified in item 6 of [Table 4-1](#)).
6. Measure the inductance of the PGA Adapter by probing on the pads. Call this $\bar{L}_{\text{sandwich}}$:
 - a. Measure 30 units.
 - b. The test board for 30 units must be chosen from different lots. Use 5 different lots, 6 units from each lot.
 - c. Export data into MDS/ADS or (capture data at frequency specified in item 6 of [Table 4-1](#)).
 - d. Calculate $\bar{L}_{\text{sandwich}}$.
 - e. For each socket unit, calculate

$$L_{\text{socket}} = L_{\text{socket assembly}} - \bar{L}_{\text{sandwich}}$$

It means $\bar{L}_{\text{sandwich}}$ will be subtracted from each $L_{\text{socket assembly}}$ and the result will be compared with spec value for each individual socket unit.

4.3.2 Correlation of Measurement and Model Data Inductance

To correlate the measurement and model data for loop inductance, one unit of measured socket assembly (socket and shorted test fixture) and one unit of measured sandwich (shorted test fixture) will be chosen for cross sectioning. Both units will be modeled based on data from cross sectioning using Ansoft* 3D. The sandwich inductance will be subtracted from socket assembly inductance for both measured and modeled data. This procedure results in loop inductance for socket contact. This final result can be compared with the loop inductance from the supplier model for the socket. If there is any difference between them, it will be called the de-embedded correction factor. Adding the test board to the socket and then eliminating the contribution of the fixture creates this correction factor because inductance is not linear.

4.4 Pin-to-Pin Capacitance

Pin-to-pin capacitance shall be measured using configuration 4, with the motherboard not connected and only the measurements with the package mounted on the socket will be taken. Capture data at frequency specified in item 5 of [Table 4-1](#).

4.5 Dielectric Withstand Voltage

No disruptive discharge or leakage greater than 0.5 mA is allowed when subjected to 360 V RMS. The sockets shall be tested according to EIA-364, Test Procedure 20A, Method 1. The sockets shall be tested unmounted and unmated. Barometric pressure shall be equivalent to Sea Level. The sample size is 25 contact-to-contact pairs on each of 4 sockets. The contacts shall be randomly chosen.

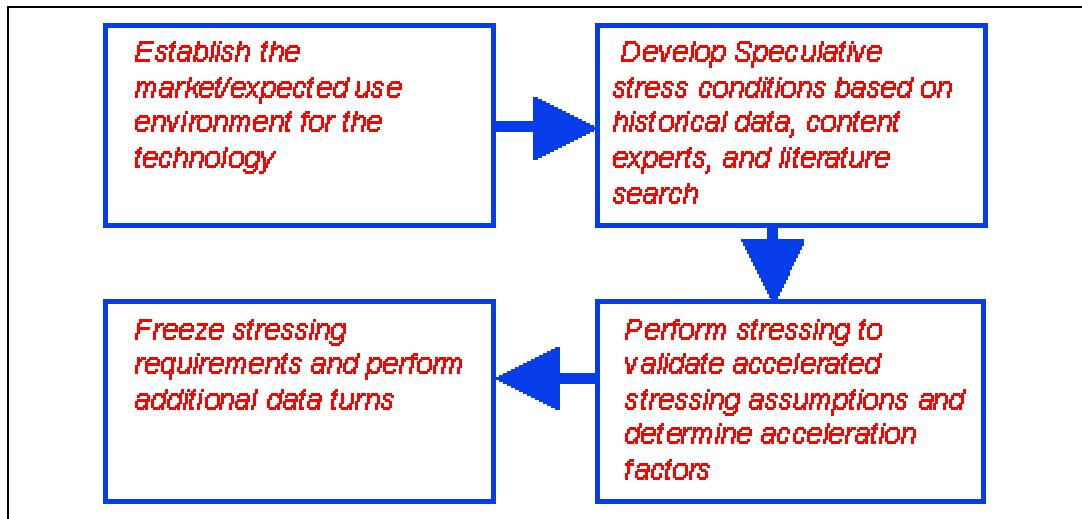
4.6 Insulation Resistance

The Insulation Resistance shall be greater than 800 M Ohm when subjected to 500 V DC. The sockets shall be tested according to EIA-364, Test Procedure 21. The sockets shall be tested unmated and unmounted. The sample size is 25 contact-to-contact pairs on each of 4 sockets. The contacts shall be randomly chosen.

4.7 Contact Current Rating

Measure and record the temperature rise when the socket is subjected to rated current of 0.8A. The sockets shall be tested according to EIA-364, Test Procedure 70A, Test Method 1. The sockets shall be mounted on a test-board and mated with a package so those 370 pins are connected in series. The recommended Test-board is the FSETV4 Rev 1 and the recommended package is FSETV5 Rev 1. The wiring list is shown below. Mount the thermocouple as near to contact N3 or N 7 as possible. Short the daisy chains by means of the edge fingers if possible. Sample size is one socket.

Table 4-4. Net list for FSETV4 Rev 1 Edge Fingers


Edge Fingers			
+I: A61	Jumpers:		
-I: A145	A85-A89	A45-A17	A135-A141
	A59-A57	A129-A133	A7-A5
	A87-A95	A15-A13	A139-A143
	A49-A47	A131-A137	A3-A1
	A101-A99	A11-A9	

5 Environmental Requirements

Design, including materials, shall be consistent with the manufacture of units that meet the following environmental reference points.

The reliability targets in this section are based on the expected field use environment for a desktop product. The test sequence for new sockets will be developed using the knowledge-based reliability evaluation methodology, which is acceleration factor dependent. A simplified process flow of this methodology can be seen in Figure 5-1.

Figure 5-1. Flow Chart of Knowledge-Based Reliability Evaluation Methodology

A detailed description of this methodology can be found at:
<http://developer.intel.com/design/packtech/245162.htm>.

The use environment expectations assumed are for desktop processors, based on an expected life of 7 years, are listed in Table 5-1. The target failure rates are <1% at 7 years (and <3% at 10 years).

Table 5-1. Use Conditions Environment

Speculative Stress Condition	7 Year Life Expectation
Temperature Cycle	1500 cycles with a mean $\Delta T = 40^{\circ}\text{C}$
THB / HAST	62,000 hrs at 30°C , 85%RH
BAKE	62,000 hrs at 100°C
Power Cycle	7,500 cycles

For additional information on mechanical shock and vibration testing conditions, refer to the *Thermal Mechanical Design Guidelines*.

5.1 Mixed Flowing Gas

Test will be defined in a future revision of this document.

5.2 Solvent Resistance

Requirement: No damage to ink markings if applicable. EIA 364-11A

5.3 Durability

Use per EIA-364, test procedure 09. Measure contact resistance when mated in 1st and 30th cycles. The package should be removed at the end of each de-actuation cycle and reinserted into the socket. The socket's pick-and-place cover must be able to be inserted and removed from the socket at least 30 times.

6 *Validation Testing Requirements*

This section of the document outlines the tests that must be successfully completed in order for the supplier's socket to pass the design guidelines validations. It provides the test plan and procedure required for validation.

6.1 **Applicable Documents**

- EIA-364-C
- Applicable processor Datasheet*
- Applicable processor Thermal Design Guidelines Documents*

Note: *For details on ordering this document, contact your Intel field sales representative.

6.2 **Testing Facility**

Testing will be performed by Intel's designated test facility.

6.3 **Funding**

Socket supplier will fund socket validation testing for their socket. Any additional testing that is required due to design modifications will also be at the expense of the supplier.

6.4 **Socket Design Verification**

At the earliest possible date, a detailed drawing of the socket supplier's mPGA604 Socket must be provided to Intel for review. This drawing should include all of the features called out in this design guideline (marking, pinout, cam location, date code location and explanation, etc.) as well as dimensional and board layout information. This drawing will be used to confirm compliance to this design guideline.

6.5 **Reporting**

Test reports of the socket validation testing will be provided directly from the independent test facility to Intel. Intel will also be given access to contact the test facility directly to obtain socket validation status, explanation of test results and recommendations based on the test results.

6.6 **Process Changes**

Any significant change to the Socket will require submission of a detailed explanation of the change at least 60 days prior to the planned implementation. Intel will review the modification and establish the necessary re-validation procedure that the socket must pass. Any testing that is required MUST be completed before the change is implemented.

Typical examples of significant changes include, **but are not limited to, the following:** Plastic material changes including base material or color; contact changes including base material, plating material or thickness; and design modifications.

6.7 Quality Assurance Requirements

The OEM's will work with the socket supplier(s) they choose to ensure socket quality.

6.8 Socket Test Plan

6.8.1 Submission of an mPGA604 Socket for Validation Testing

The socket supplier's mPGA604 socket will be sent to Intel's independent test facility for socket validation testing. The sockets submitted must be per the drawing required in [Section 6.4](#). Refer to [Section 6.11](#) and [6.12](#) for production lot definition and number of samples required for validation testing.

6.9 Mechanical Samples

A mechanical sample of mPGA604 Socket, package, and heat sink (or suitable mockups that approximate size and mass of the planned heat sink) will be used during the mated socket validation testing. The maximum mass for mPGA604 Socket package heat sink is recommended as (but not limited to) 450g with the stipulation that the requirements of [Section 3.1](#) be met. See data sheet and related documentation for further information on heat sinks, thermal solutions and mechanical support.

6.10 Socket Validation Notification

Upon completion of the testing and receipt of test data, Intel and/or the Intel designated test facility will prepare a summary report for the socket supplier and Intel that will provide notification as to whether the socket has passed or failed socket validation testing

6.11 Production Lot Definition

A production lot is defined as a separate process run through the major operations including modeling, contact stamping, contact plating and assembly. These lots should be produced on separate shifts or days of the week. Lot identification marking needs to be provided to Intel as verification of this process.

6.12 Socket Validation

Socket validation must meet or exceed all guidelines called out in this spec which include: Visual Inspection, CTF Dimensional Verification, Electrical Resistance, Loop Inductance, Pin to Pin Capacitance, Contact Current Rating, Dielectric Withstand Voltage, Insulation, Durability, Porosity, Plating Thickness, Solvent Resistance (If Applicable), Solderability (Applicable for leaded sockets), Post Reliability Visual and use conditions. The use conditions target failure rates are <1% at 7 years and <3% at 10 years. Statistical sample sizes, taken randomly from multiple lots, for each test is required.

7 *Safety Requirements*

Design, including materials, shall be consistent with the manufacture of units that meet the following safety standards:

- UL 1950 most current editions.
- CSA 950 most current edition.
- EN60 950 most current edition and amendments.
- IEC60 950 most current edition and amendments.

§

8 *Documentation Requirements*

The socket supplier shall provide Intel with the following documentation:

- Multi-Line Coupled SPICE models for socket.
- Product design guidelines incorporating the requirements of these design guidelines.
- Recommended board layout guidelines for the socket consistent with low cost, high volume printed circuit board technology.

The test facility shall provide Intel and the supplier with the following document:

- Validation Testing and Test Report supporting successful compliance with these design guidelines.

§

9 *Mechanical Drawings*

These drawings refer to the mPGA604 socket.

Note: Intel reserves the right to make changes and modifications to the design as necessary.

Note: Figures may not be to scale.

Figure 9-1. mPGA604 Socket Drawing (Sheet 1 of 4)

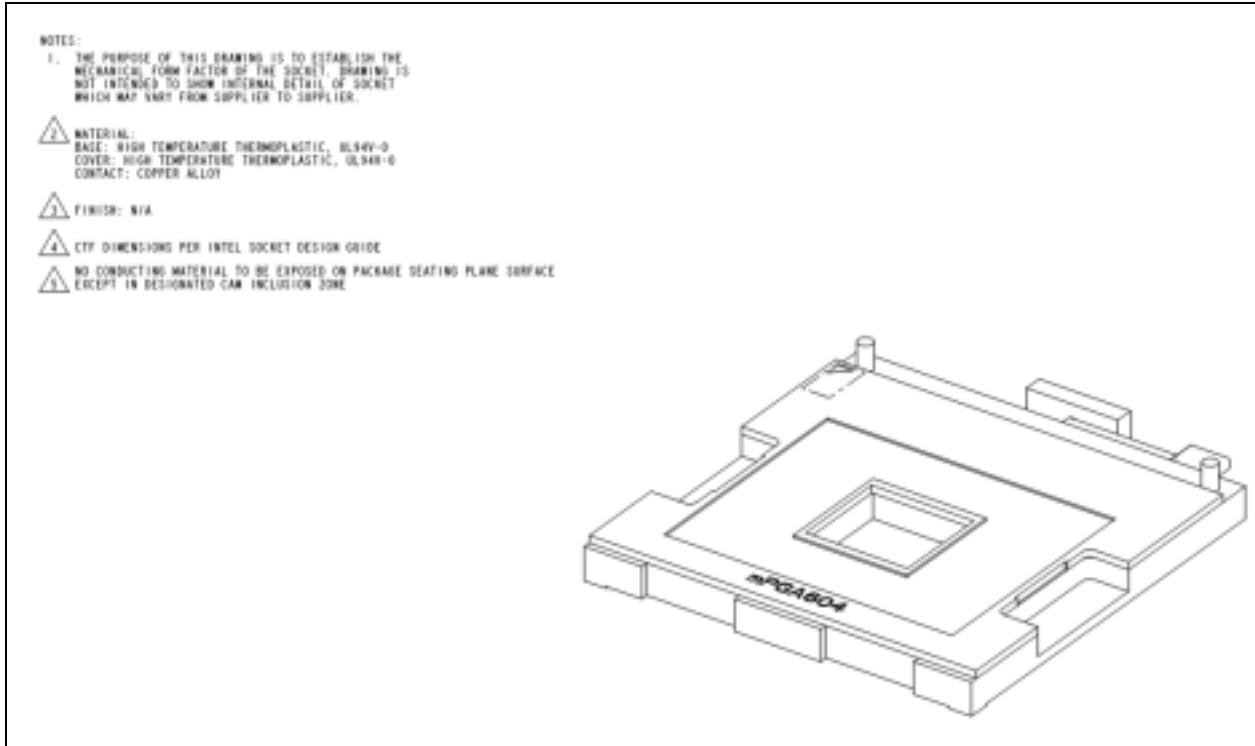


Figure 9-2. mPGA604 Socket Drawing (Sheet 2 of 4)

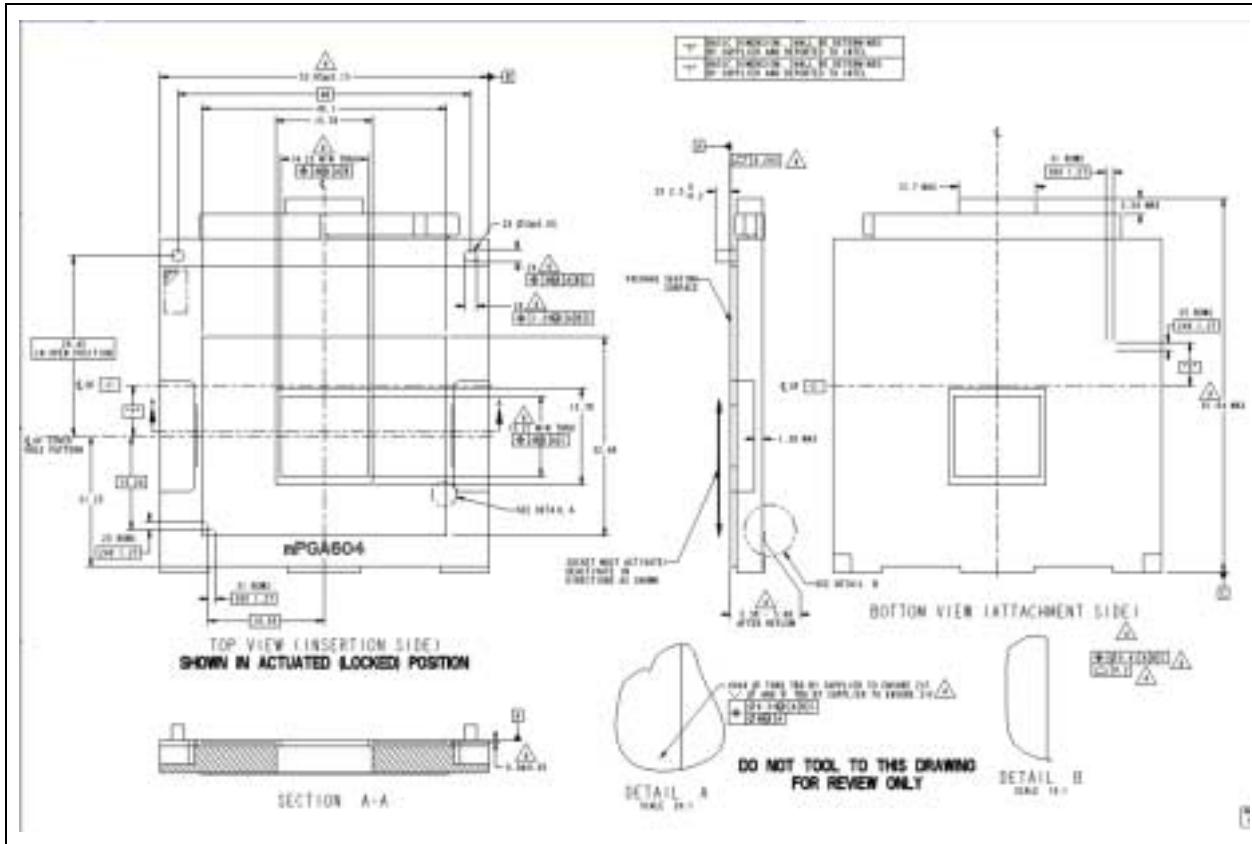


Figure 9-3. mPGA604 Socket Drawing (Sheet 3 of 4)

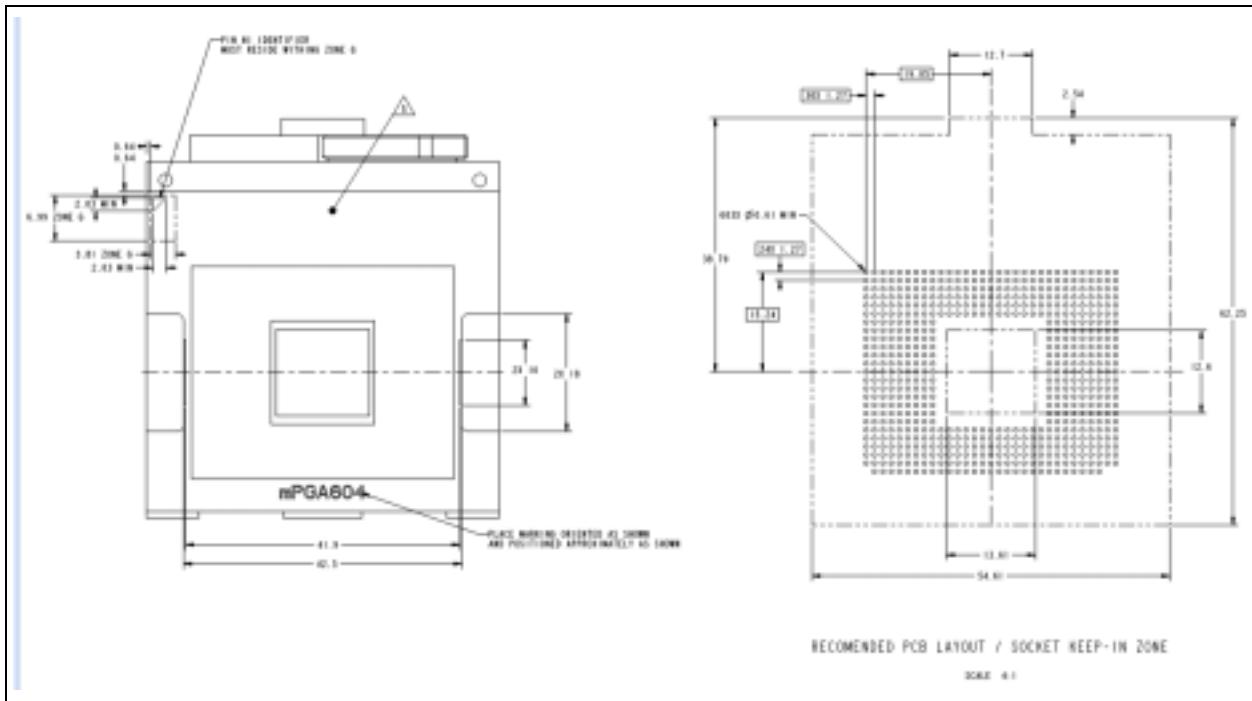
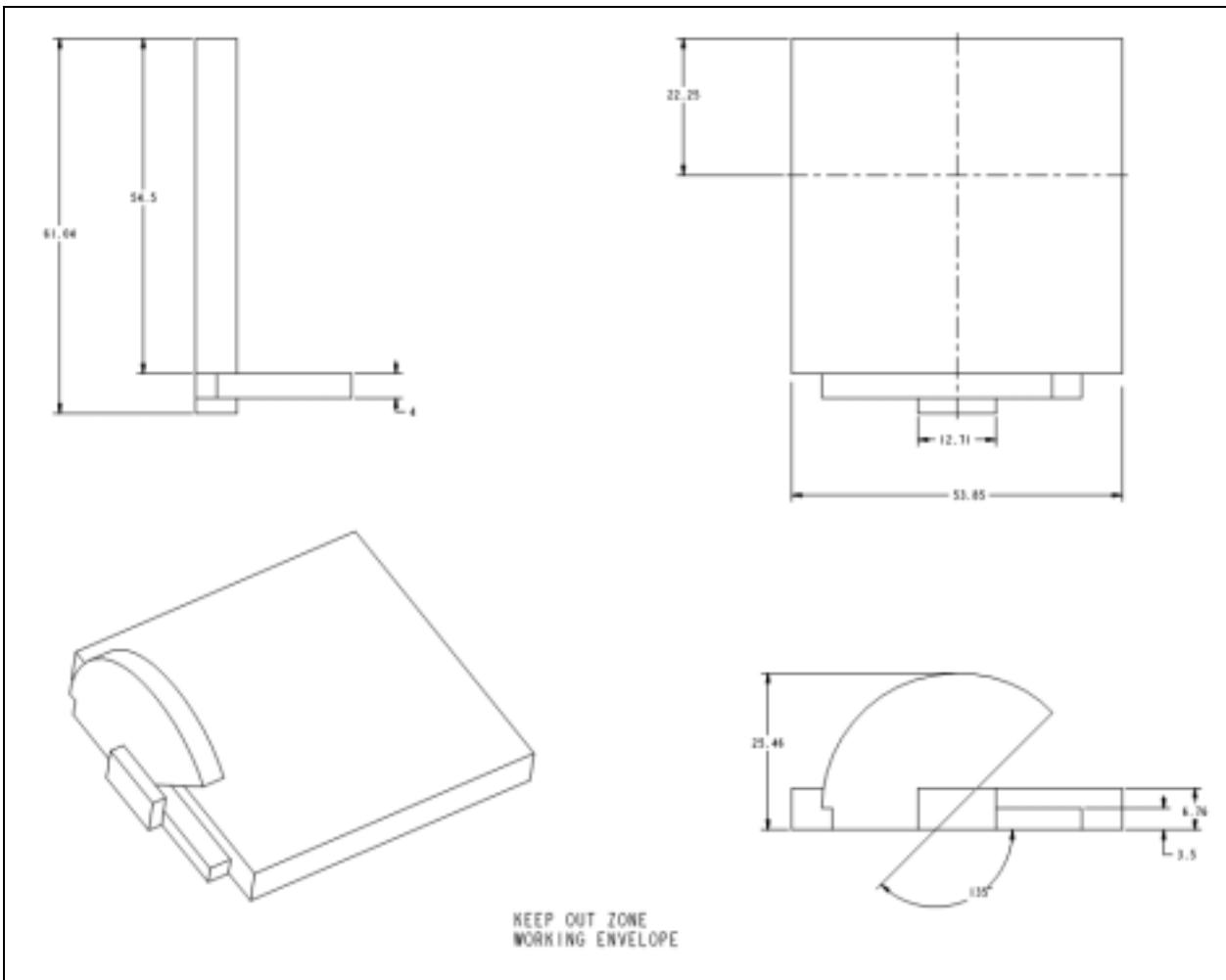
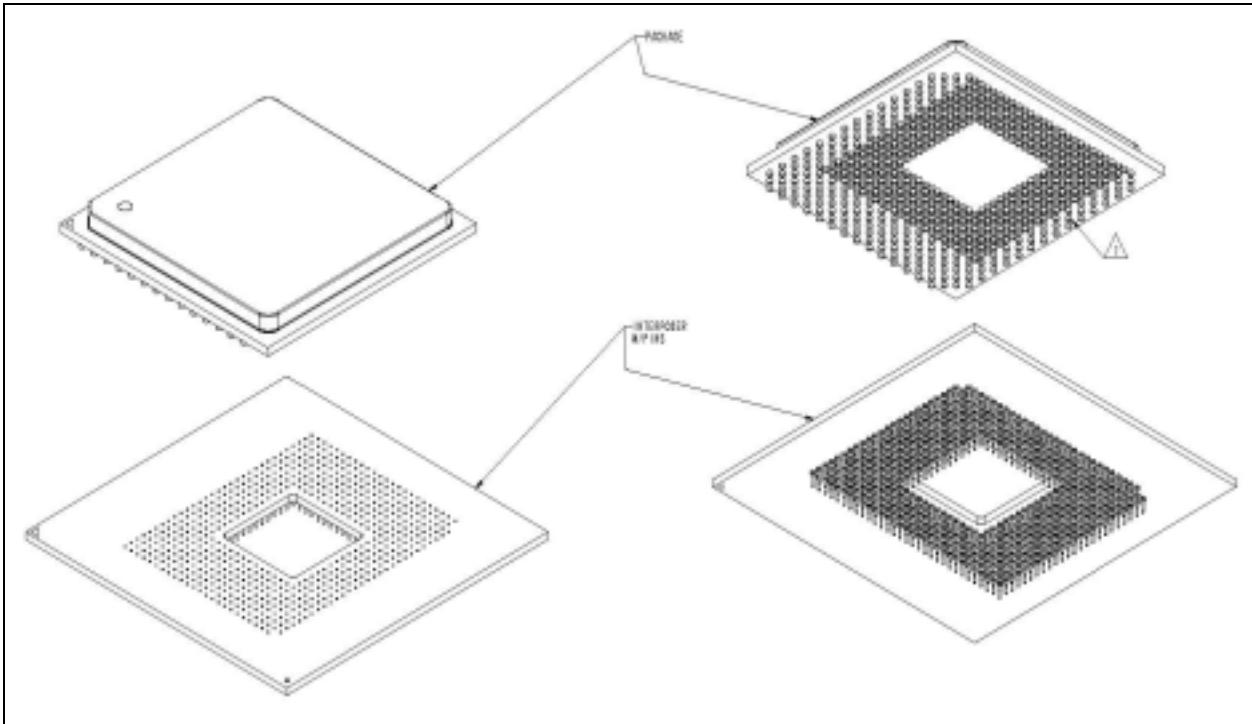
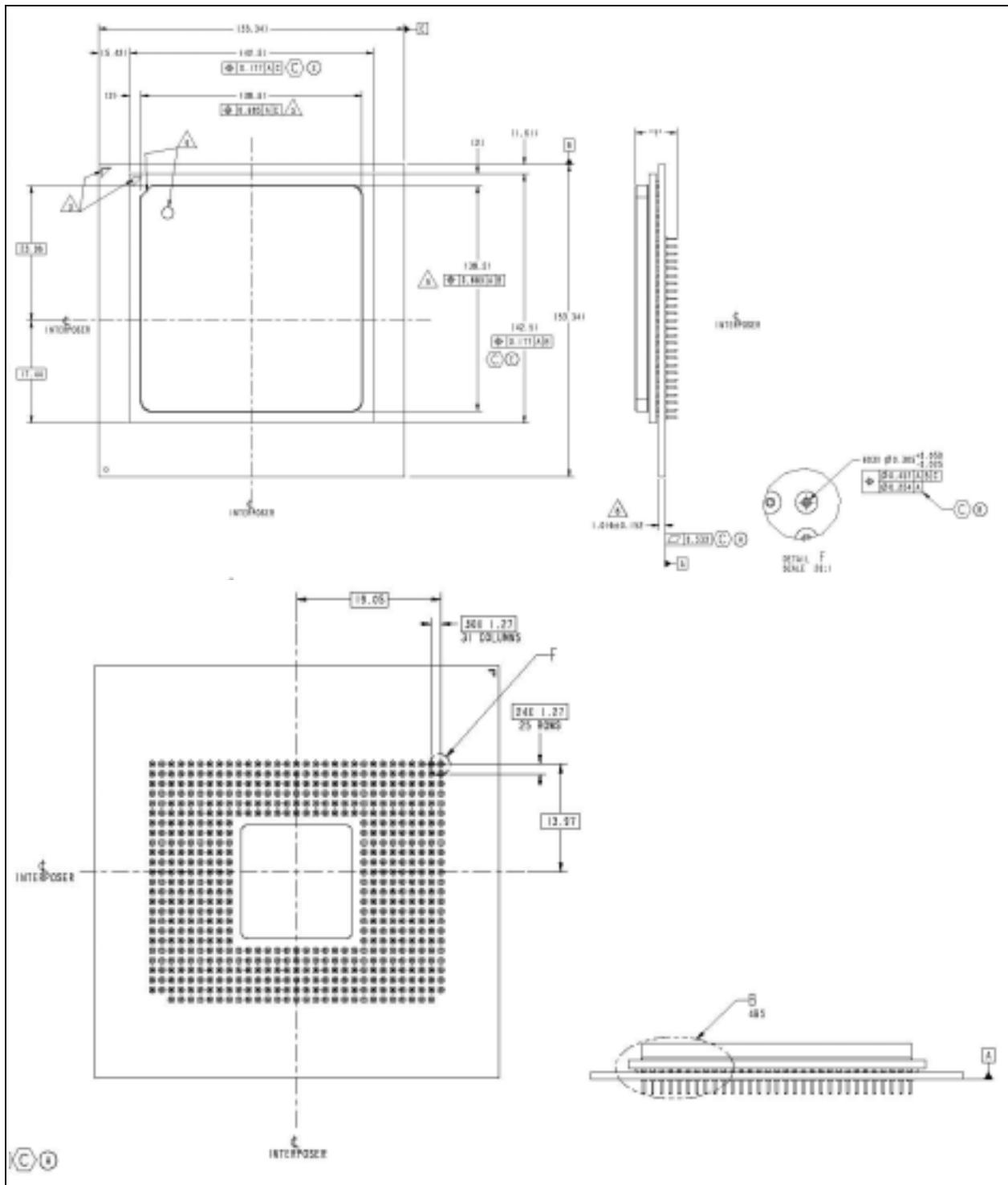





Figure 9-4. mPGA604 Socket Drawing (Sheet 4 of 4)

Figure 9-5. 603-Pin Interposer Assembly Drawing (Sheet 1 of 6)

Figure 9-6. 603-Pin Interposer Assembly Drawing (Sheet 2 of 6)

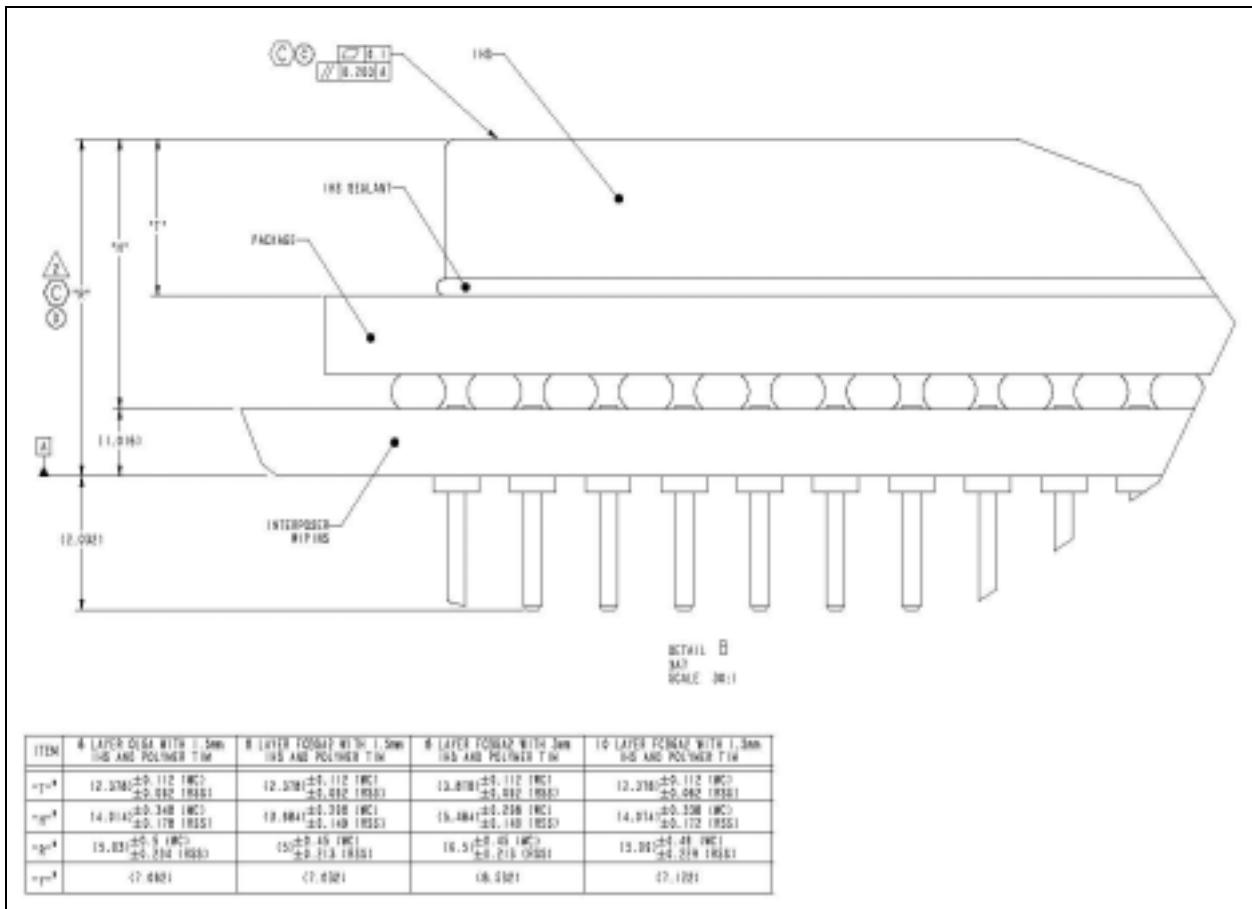
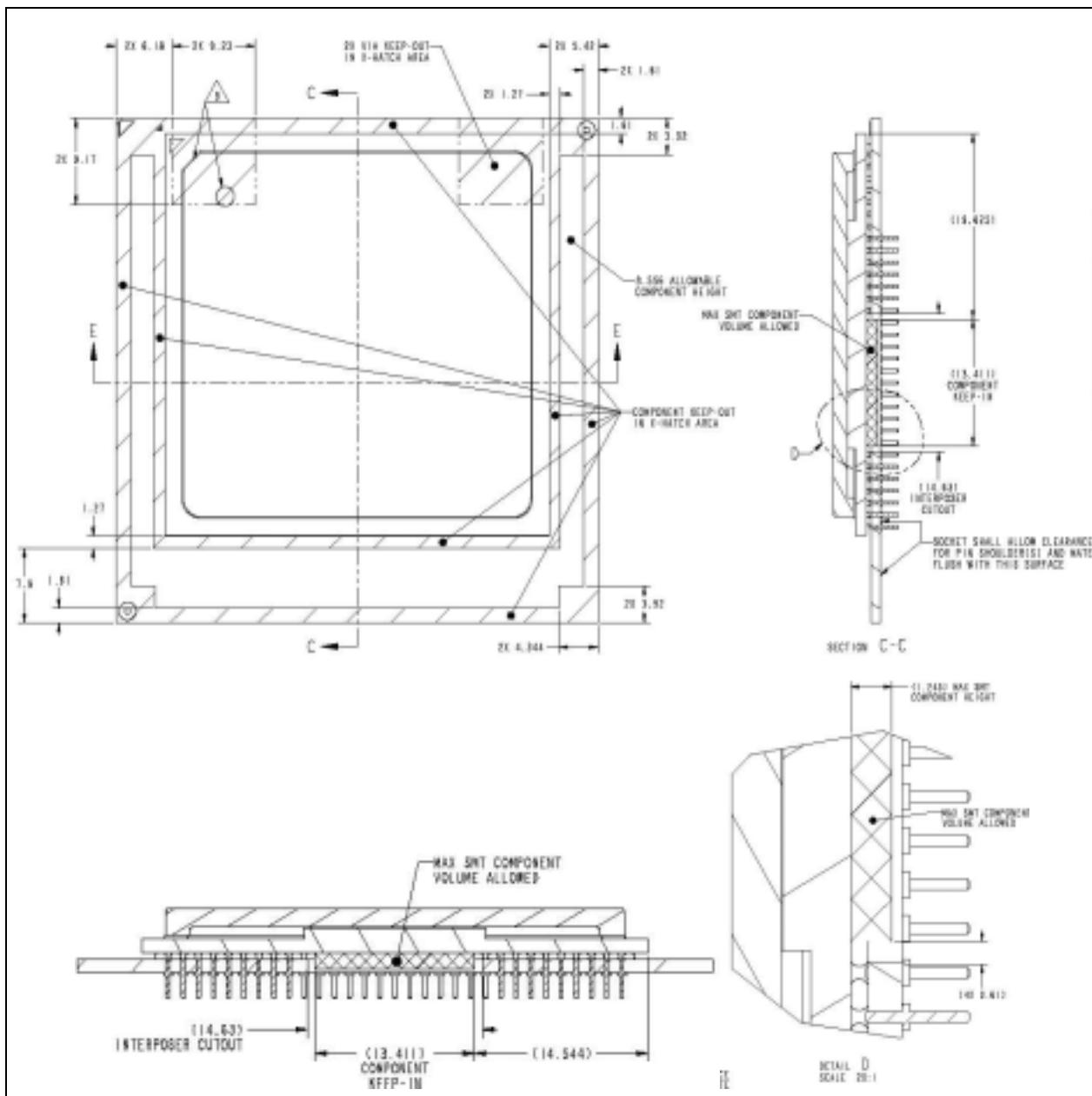


Figure 9-7. 603-Pin Interposer Assembly Drawing (Sheet 3 of 6)

Figure 9-8. 603-Pin Interposer Assembly Drawing OLGA Keepout (Sheet 4 of 6)

Figure 9-9. 603-Pin Interposer Assembly Drawing FCBGA2 Keepout (Sheet 5 of 6)

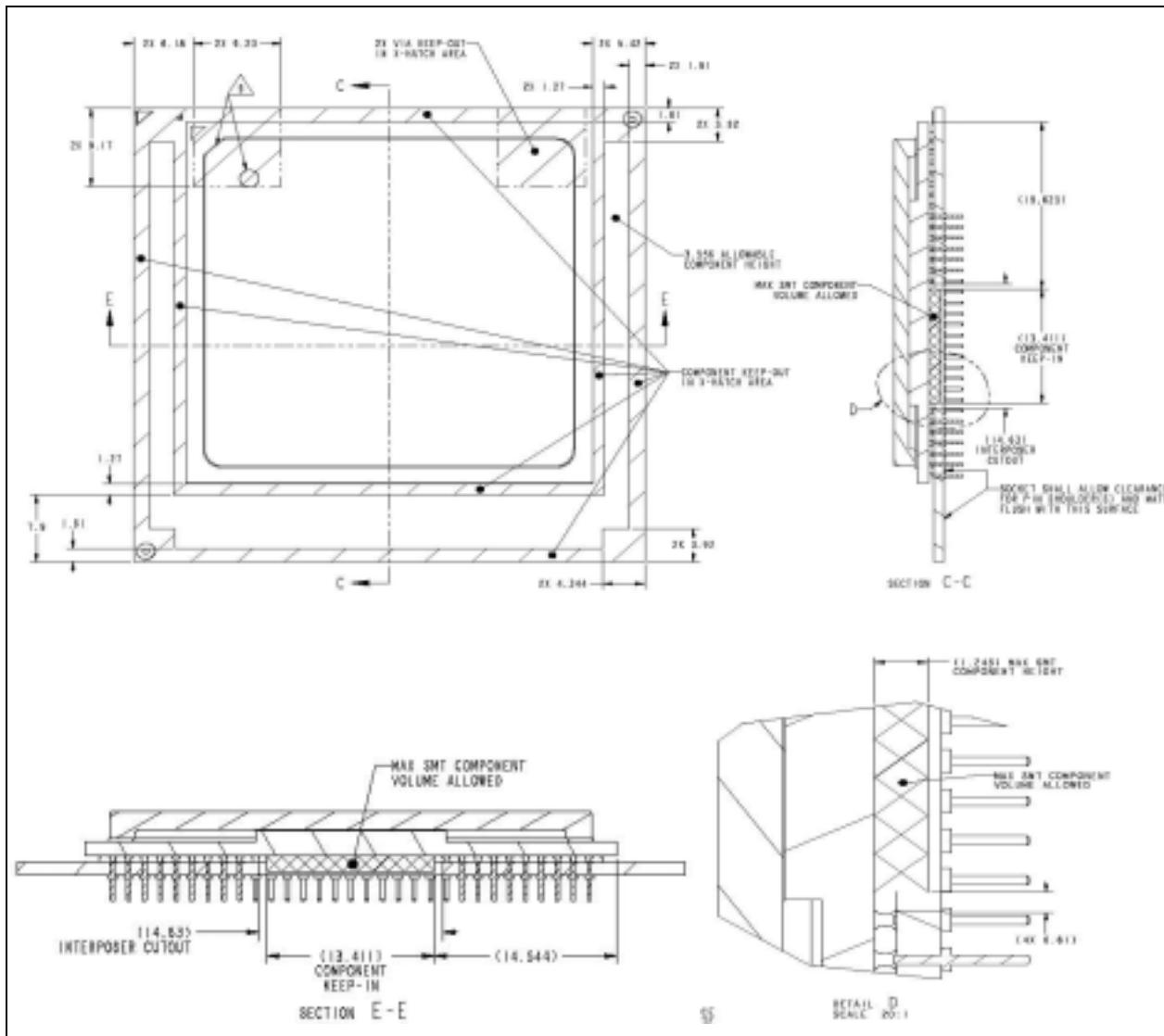
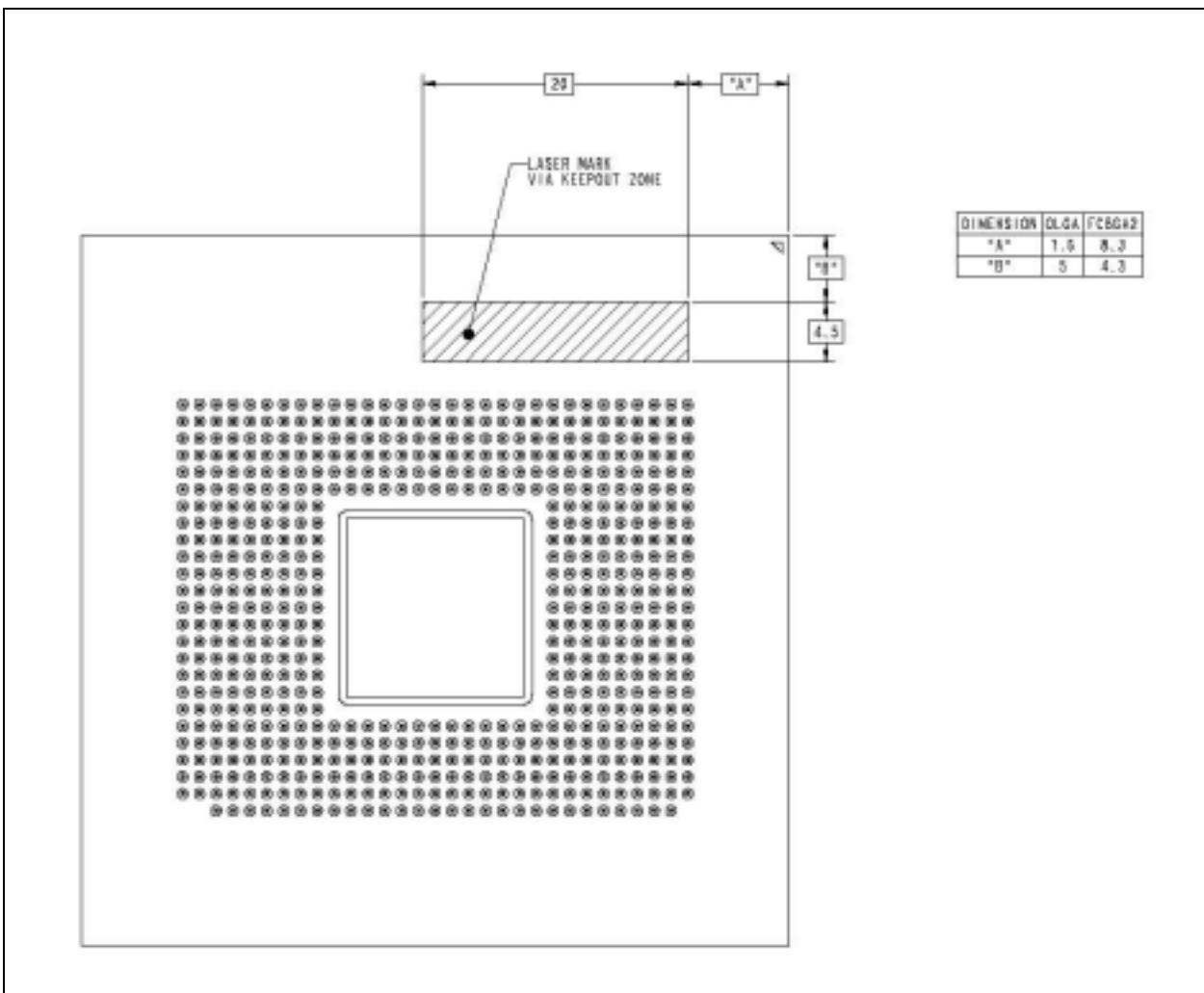



Figure 9-10. 603-Pin Interposer Assembly Drawing (Sheet 6 of 6)

§

