

AUTHORS

AT&T authors Intel authors

Kartik Pandit Bianny Bian

Vishwa M. Prasad Atul Kwatra

 Patrick Lu

 Mike Riess

 Wayne Willey

 Huawei Xie

 Gen Xu

Challenges in packet-processing

Today’s packet-processing devices face an enormous performance challenge. Not only is more

and more data being transmitted, but packet processing tasks — which need to be executed at

line speed — have become increasingly complex.

Along with the usual forwarding of data, packet processing systems are also responsible for

other functions. These functions include traffic management (shaping, timing, scheduling),

security processing, and quality of service (QoS).

Making the issue even more of a challenge is the proliferation of internet devices and sensors.

Data is now often produced faster than can be transmitted, stored, or processed. Most of this

data is transmitted as packet streams over packet-switched networks. Along the way, various

network devices — such as switches, routers, and adapters — are used to forward and process

the data streams.

Case Study

Modeling the impact of

CPU properties to optimize and

predict packet-processing

performance

Intel and AT&T have collaborated in a proof of concept (POC) to model and analyze

the performance of packet-processing workloads on various CPUs. This POC has

established a highly accurate model that can be used to simulate edge router

workloads on x86 systems. Developers and architects can use this methodology to

more accurately predict performance improvements for network workloads across

future CPU product generations and hardware accelerators. This approach can help

developers gain better insight into the impacts of new software and

x86 hardware components on packet processing throughput.

Intel® CoFluent™ Studio

Intel® CoFluent™ Technology for Big Data

Modeling the impact of CPU properties to optimize and predict packet-processing performance 2

At the same time, technology and customer

requirements are also changing rapidly. These

changes are forcing vendors to seek data-

streaming software solutions that deliver

shorter development cycles. Unfortunately,

shorter development cycles often mean that

developers must make more revisions to

update initial design shortcomings, and/or

allow less time between required updates.

Overall, this is a complex set of conditions

that creates the challenge of optimizing and

predicting packet-processing performance in

future architectures.

Proposed solution: Network

function virtualization (NFV)

One proposed solution to the challenge of

data streaming is network function

virtualization (NFV).

To explore the effectiveness of this potential

NFV solution, Intel and AT&T have

collaborated in a proof of concept (POC)

project. In this POC, we focused on modeling

and analyzing the impact of different CPU

properties on packet processing workloads.1

We performed an extensive analysis of packet

processing workloads via detailed simulations

on various microarchitectures. We then

compared the simulation results to

measurements made on physical hardware

systems. This allowed us to validate the

accuracy of both our model and the POC

simulations.

POC results

The results of our POC show that

performance scales linearly with the number

of cores, and scales almost linearly with core

frequency.1 Packet size did not have a

significant performance impact in terms of

packets per second (PPS) on our workload,

nor did the size or performance of

LLC cache.1

Our study and detailed results tell us that,

when selecting a hardware component for an

edge router workload, developers should

consider prioritizing core number and

frequency.

One of the key components in our POC was

our use of Intel® CoFluent™ Technology

(Intel® CoFluent™), a modeling and

simulation tool for both hardware and

software. We found our Intel CoFluent model

to be highly accurate. The average difference

(delta) in results between the simulation

predictions and comparative measurements

made on actual physical architectures was

under 4%.1

Because of this, we believe similar models

could help developers make faster, better

choices of components for new designs and

optimizations. In turn, this could help

developers reduce risk, minimize time to

market for both new and updated products,

and reduce overall development costs.

Network virtualization

Network function virtualization

(NFV) refers to a network

infrastructure concept. NFV

virtualizes network node functions

to make it easier to deploy and

manange network services. With

NFV, service providers can

simplify and speed up scaling new

network functions and

applications, and better use

network resources.

A virtualized network function

(VNF) refers to a virtualized

function used in an NFV

architecture. These functions used

to be carried out by dedicated

hardware. With VNF, they are

virtualized, performed by

software, and run in one or more

virtual machines. Common VNFs

include routing, load balancing,

caching, intrusion detection

devices, and firewalls.

Modeling the impact of CPU properties to optimize and predict packet-processing performance 3

Table of Contents

Challenges in packet-processing ... 1
Proposed solution: Network function virtualization (NFV) 2
POC results .. 2

Proof of concept for network function virtualization (NFV) 4
Goals of the POC ... 4
Predictive model to meet POC goals .. 4

Key components used in this POC .. 4
Network processing equipment .. 4
Packet processing workload ... 4
DPDK framework for packet processing ... 5
Hardware and software simulation tools .. 5

Traditional hardware and software simulation tools 5
Better solutions model both hardware and software 5

Intel® CoFluent™ Technology .. 6
Simulation at a functional level ... 6
Layered and configurable architecture... 6

Upstream and downstream workloads ... 6
Upstream pipeline .. 6

Execution flow of the upstream pipeline ... 7
6 Stages in a typical upstream pipeline .. 8

Downstream pipeline ... 8

Physical system setup ... 8
Packetgen in the physical DUT .. 9
Generating a packet-traffic profile ... 10
Performance and sensitivities of the traffic profile ... 10

Hyperthreading was disabled to expose the impact of other elements 10
Lookup table size affected performance .. 10

Developing the Intel CoFluent simulation model 11
Simulating the packetgen ... 11
Simulating the network .. 12
Modeling the upstream pipeline ... 12
Implementing lookup algorithms ... 12
Developing a model of the cost of performance ... 12

Hardware performance considerations .. 13
Impact of cache on pipeline performance .. 13
Characterizing the cost model ... 13
Establishing the execution cost of the model ... 14

Simulation constraints and conditions .. 14
Support for the upstream pipeline .. 14
Cache analysis supported for LLC .. 14
Dropping or dumping packets was not supported 14
Critical data paths simulated.. 14

Hardware analysis and data collection ... 14
Hardware analysis tools ... 14

Event Monitor (EMON) tool ... 14
Sampling Enabling Product (SEP) tool ... 14
EMON Data Processor (EDP) tool .. 14

Collecting performance-based data .. 15
Workload performance measurements and analysis for model inputs 15

Results and model validation .. 15
Establishing a baseline for simulation accuracy ... 15
Measuring performance at different core frequencies 15

Analyzing performance for different cache sizes ... 16
Measuring performance for different numbers of cores 17
Simulating hardware acceleration components .. 17
Performance sensitivity from generation to generation 18

Core cycles per instruction (CPI) .. 18
Maximum capacity at the LLC level ... 18
Ideal world versus reality .. 19

Performance sensitivities based on traffic profile .. 19
Performance scaled linearly with the number of cores 19
Execution flow was steady .. 19

Next steps .. 19

Summary .. 20
Key findings .. 20

CPU frequency .. 20
LLC cache ... 20
Performance .. 20
Packet size ... 20

Conclusion ... 20

Appendix A. Performance in the downstream pipeline 21

Appendix B. Acronyms and terminology ... 22

Appendix C. Authors ... 23

List of tables

Table 1. Test configuration based on the pre-production

Intel® Xeon® processor, 1.8GHz (Skylake) 9

Table 2. Test configuration based on the Intel® Xeon® E5-2630,

2.2GHz (Broadwell) ... 9

Table 3. Test configuration based on the Intel® Xeon® processor

E5-2680, 2.5 GHz (Haswell) .. 10

Table A-1. Test configuration based on the Intel® Xeon® processor

Gold 6152, 2.1 GHz .. 21

List of figures

Figure 1. Edge router with upstream and downstream pipelines 5
Figure 2. Edge router’s upstream software pipeline 6
Figure 3. Edge router’s downstream software pipeline 6
Figure 4. Model development ... 11
Figure 5. Model of upstream software pipeline ... 12
Figure 6. Simple models for estimating cycles per instruction 13
Figure 7. Baseline performance measurements. .. 15
Figure 8. Performance measured at different frequencies 16
Figure 9. Performance measured for different LLC cache sizes 16
Figure 10. Measuring performance on multi-core CPUs 17
Figure 11. Performance comparison of baseline configuration versus a

simulation that includes an FPGA-accelerated ACL lookup 17
Figure 12. Comparison of performance from CPU generation

to generation .. 18
Figure A-1. Throughput scaling, as tested on the Intel® Xeon®

processor E5-2680 ... 21
Figure A-2. Throughput scaling at 2000 MHz on different architectures 21

file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d141%20__%20working%20file.docx%23_Toc520444848
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d141%20__%20working%20file.docx%23_Toc520444848
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d141%20__%20working%20file.docx%23_Toc520444849
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d141%20__%20working%20file.docx%23_Toc520444849
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d141%20__%20working%20file.docx%23_Toc520444850
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d141%20__%20working%20file.docx%23_Toc520444850
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d141%20__%20working%20file.docx%23_Toc520444852
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d141%20__%20working%20file.docx%23_Toc520444852
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d162%20__%20FORMATTED%20(6)%20.docx%23_Toc521052723
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d162%20__%20FORMATTED%20(6)%20.docx%23_Toc521052728
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d162%20__%20FORMATTED%20(6)%20.docx%23_Toc521052730
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d162%20__%20FORMATTED%20(6)%20.docx%23_Toc521052731
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d162%20__%20FORMATTED%20(6)%20.docx%23_Toc521052732
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d162%20__%20FORMATTED%20(6)%20.docx%23_Toc521052733
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d162%20__%20FORMATTED%20(6)%20.docx%23_Toc521052733
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d162%20__%20FORMATTED%20(6)%20.docx%23_Toc521052734
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/061418%20ATT_Intel_CoFluent_WP_Rev_0_3__%20d162%20__%20FORMATTED%20(6)%20.docx%23_Toc521052734

Modeling the impact of CPU properties to optimize and predict packet-processing performance 4

Proof of concept

for network function

virtualization (NFV)

The goal of this joint Intel-AT&T POC was to

generate information that could help

developers choose designs that could be best

optimized for network traffic — and make

such choices faster and more accurately. We

also wanted to generate information that

would help developers predict packet-

processing performance for future

architectures more accurately, for both

hardware and software developments.

Goals of the POC

Our joint Intel-AT&T team had two

main goals:

 Quantify and measure the performance

of the upstream traffic pipeline of the

Intel® Data Plane Development Kit

(DPDK) virtual provider edge

router (vPE).

 Identify CPU characteristics and identify

components that have a significant

impact on network performance for

workloads running on an x86 system.

In this paper, we quantify the vPE upstream

traffic pipeline using the Intel CoFluent

modeling and simulation solution. We

validated our model by comparing the

simulation results to performance

measurements on physical hardware.

Predictive model

to meet POC goals

To achieve our goals, our team needed to

develop a highly accurate Intel CoFluent

simulation model of the Intel DPDK vPE

router workload. Such a model would help us

characterize the network traffic pipelines. It

would also allow us to project more accurate

optimizations for future CPU product

generations.

To do this, we first developed a predictive

model based on performance data from an

existing x86 hardware platform. We then

compared network performance on that

physical architecture to the performance

projected by our simulation. These

comparative measurements would help us

determine the accuracy of our simulation

model. A high degree of accuracy would help

build confidence in using Intel CoFluent to

effectively characterize network function

virtualization workloads.

For this POC, our team focused on modeling

upstream pipelines. Upstream traffic moves

from end users toward the network’s core (see

Figure 1, next page). In the future, we hope to

develop a similar predictive model to analyze

the performance of downstream pipelines,

where traffic moves toward the end user.

Longer term, our goal is to use these

predictive models and simulations to identify

performance bottlenecks in various designs of

architecture, microarchitecture, and software.

That future work would model both upstream

and downstream pipelines. We hope to use

that knowledge to recommend changes that

will significantly improve the performance of

future x86 architectures for packet processing

workloads. This information should make it

easier for developers to choose components

that will best optimize NFV workloads for

specific business needs.

Key components used

in this POC

For this NFV POC, we needed to identify

the critical hardware characteristics that had

the most impact on the network processing

equipment and the packet processing

workload. To do this, we modeled and

simulated a hardware system as typically used

for NFV.

Network processing equipment

Network processing equipment can usually be

divided into three categories:

 Easily programmable, general CPUs

 High performance (but hardwired)

application-specific integrated circuits

(ASICs)

 Middle-ground network-processing units

(NPUs), such as field-programmable gate

arrays (FPGAs)

Of those three categories, we focused this

POC on the impact of general CPU

characteristics on packet processing

throughput.

Packet processing workload

Packet-processing throughput is dependent

on several hardware characteristics.

These include:

 CPU speed

 Number of programmable cores in

the CPU

 Cache size, bandwidth, and hit/miss

latencies for level 1 cache (L1), level 2

cache (L2), and level 3 cache (L3; also

called last level cache, or LLC)

 Memory bandwidth and read/write

latencies

 Network interface card (NIC) throughput

In our POC, the packet processing workload is

the DPDK vPE virtual router.

Upstream and downstream

pipeline traffic

Upstream traffic is traffic that

moves from end users toward the

network’s core.

Downstream traffic is traffic that

moves toward the end user.

Modeling the impact of CPU properties to optimize and predict packet-processing performance 5

DPDK framework

for packet processing

The Intel DPDK is a set of libraries and

drivers for fast packet processing. The DPDK

packet framework gives developers a standard

methodology for building complex packet

processing pipelines. The DPDK provides

pipeline configuration files and functional

blocks for building different kinds of

applications. For example, for our POC, we

used the functions to build our internet

protocol (IP) pipeline application.

One of the benefits of DPDK functions is that

they help with the rapid development of

packet processing applications that run on

multicore processors. For example, in our

POC, the edge router pipeline is built on

the IP pipeline application (based on the

DPDK functions), to run on our four

physical hardware DUTs. Our IP pipeline

models a provider edge router between the

access network and the core network

(see Figure 1).

Hardware and software

simulation tools

Optimizing a design for network traffic is

typically done using traditional simulation

tools and a lot of manual effort. We were

looking for a better approach that would make

it easier and faster for developers to choose

the best components for their needs.

Traditional hardware and software

simulation tools

For system analysis, traditional simulation-

based modeling tools range from solely

software-oriented approaches to solely

hardware-oriented approaches. Unfortunately,

these traditional tools have not been able to

meet the complex performance challenges

driven by today’s packet-processing devices.

At one end of the traditional analysis

spectrum are the software-oriented

simulations. In these simulations, software

behavior and interactions are defined against a

specific execution time. However, solutions

based solely on software analyses do not take

hardware efficiency into consideration.

Hardware efficiency has a significant impact

on system performance.

At the other end of the spectrum are

hardware-oriented simulators. These

simulators model system timing on a cycle-

by-cycle basis. These models are highly

accurate, but suffer from very slow simulation

speeds. Because of this, they are not usually

used to analyze complete, end-to-end systems.

Instead, they are used mainly for decision-

making at the microarchitecture level.

Better solutions model

both hardware and software

Solutions that model only software

performance or which model only hardware

performance are not effective for modeling

the performance of a complete system. The

best solution for modeling a complete system

would be:

 Highly configurable

 Able to simulate both software and

hardware aspects of an environment

 Easily execute without the overhead of

setting up actual packet-processing

applications

Figure 1. Edge router with upstream and downstream pipelines. Upstream traffic moves from end users toward the network’s core.

Downstream traffic moves toward the end user(s).

Modeling the impact of CPU properties to optimize and predict packet-processing performance 6

Figure 2. Edge router’s upstream software pipeline.

Figure 3. Edge router’s downstream software pipeline.

Intel® CoFluent™ Technology

For our joint Intel-AT&T POC, we needed a

more effective tool than a software-only or

hardware-only analysis tool. To reach our

goals, we chose the Intel CoFluent modeling

and simulation solution. Intel CoFluent is an

application that helps developers characterize

and optimize both hardware and software

environments. As shown by the results of this

POC, the Intel CoFluent model proved to be

highly accurate when compared to

measurements taken on a physical system.1

Simulation at a functional level

With Intel CoFluent, the computing and

communication behavior of the software stack

is abstracted and simulated at a functional

level. Software functions are then dynamically

mapped onto hardware components. The

timing of the hardware components — CPU,

memory, network, and storage — is modeled

according to payload and activities, as

perceived by software.

Layered and configurable architecture

For our POC, Intel CoFluent was ideal

because the simulator can estimate complete

system designs. Even more, Intel CoFluent

can do so without the need for embedded

application code, firmware, or even a precise

platform description. In our POC, this meant

we did not have to create and set up actual

packet processing applications for our model,

but could simulate them instead.

Another key advantage of using Intel

CoFluent for our POC is the tool’s layered

and configurable architecture. The layered and

configurable capabilities help developers

optimize early architecture and designs, and

predict system performance. Intel CoFluent

also includes a low overhead, discrete-event

simulation engine. This engine enables fast

simulation speed and good scalability.

Upstream and

downstream workloads

For this project, our team examined primarily

the upstream traffic pipeline. Figure 2 shows

the edge router’s upstream software pipeline.

(Figure 3 shows the edge router’s downstream

software pipeline.)

Upstream pipeline

In the edge router’s upstream traffic pipeline

there are several actively running components.

Our POC used a physical model to validate

the results of our simulation experiments. This

physical test setup consisted of three actively

running components:

 Ixia* packet generator (packetgen), or

the software packetgen

 Intel® Ethernet controller (the NIC)

 Upstream software pipeline stages

running on one or more cores

Modeling the impact of CPU properties to optimize and predict packet-processing performance 7

In our physical model, the Ixia packetgen

injects packets into the Ethernet controller.

This simulates the activity of packets arriving

from the access network. The Ethernet

controller receives packets from the access

network, and places them in its internal

buffer.

Execution flow

of the upstream pipeline

The upstream software pipeline can run on a

single core, or the workload can be distributed

amongst several cores. Each core iterates each

pipeline assigned to it, and runs the pipeline’s

standard flow.

Here is the general execution flow of the

typical packet processing pipeline:

 Receive packets from input ports.

 Perform port-specific action handlers and

table look-ups.

Execute entry actions on a lookup hit, or

execute the default actions on a lookup miss.

(The table entry action usually sends packets

to the output port, or dumps or drops the

packets.)

Downstream pipeline stages

Although we did not simulate the

downstream pipeline for this project,

we did collect some data on this

pipeline (see Appendix A).

As shown in Figure 3 (previous page),

the second stage of the downstream

pipeline is the routing stage. This stage

demonstrates the use of the hash and

LPM (longest prefix match) libraries in

the data plane development kit

(DPDK). The hash and LPM libraries

are used to implement packet

forwarding. In this pipeline stage, the

lookup method is either hash-based or

LPM-based, and is selected at runtime.

Hash lookup method

When the lookup method is hash-

based, a hash object is used to emulate

the downstream pipeline’s flow

classification stage. The hash object is

correlated with a flow table, in order to

map each input packet to its flow at

runtime. The hash lookup key is

represented by a unique DiffServ

5-tuple.

The DiffServ 5-tuple is composed of

several fields that are read from the

input packet. These fields are the

source IP address, destination IP

address, transport protocol, source port

number, and destination port number.

The ID of the output interface for the

input packet is read from the identified

flow table entry. The set of flows used

by the application is statically

configured, and is loaded into the hash

upon initialization.

LPM lookup method

When the lookup method is LPM-

based, an LPM object is used to

emulate the pipeline’s forwarding stage

for internet protocol version 4 (IPv4)

packets. The LPM object is used as the

routing table, in order to identify the

next hop for each input packet at

runtime.

Configuration

of downstream pipeline

Below is the configuration code we

used for the first stage in the

downstream pipeline.

Additional information and analysis of

the downstream pipeline will be a

future POC project.

[PIPELINE1]

type = ROUTING

core = 1

pktq_in = RXQ0.0 RXQ1.0

pktq_out = SWQ0 SWQ1 SINK0

encap = ethernet_qinq

ip_hdr_offset = 270

Traffic Manager Pipeline:

This is a pass-through stage

with the following

configuration:

[PIPELINE2]

 type = PASS-THROUGH

core = 1

pktq_in = SWQ0 SWQ1 TM0 TM1

pktq_out = TM0 TM1 SWQ2

SWQ3

Transmit Pipeline: Also a

pass through stage:

[PIPELINE3]

type = PASS-THROUGH

core = 1

pktq_in = SWQ2 SWQ3

pktq_out = TXQ0.0 TXQ1.0

Modeling the impact of CPU properties to optimize and predict packet-processing performance 8

6 Stages in a typical upstream pipeline

In the specific case of the upstream traffic

pipeline of the DPDK vPE, there are usually

6 stages. Figure 2 (earlier in this paper) shows

an overview of the 6 typical stages. The first

pipeline stage drains packets from the

Ethernet controller. The last stage in the chain

queues up the packets and sends them to the

core network through the Ethernet controller.

In our POC, we modeled and simulated all

key stages of the upstream pipeline, and

verified those results against known hardware

configurations.

Downstream pipeline

In the edge router’s downstream traffic

pipeline there are 3 actively running

components and 4 typical pipeline stages.

Figure 3 (earlier in this paper) shows an

overview of the four typical stages. The three

components are:

 DPDK packetgen

 Intel® Ethernet controller (the NIC)

 Downstream software pipeline stages,

running on one or more cores

In our POC, for the downstream pipeline, the

packetgen injects packets into the Ethernet

controller. This simulates packets entering the

access network from the core.

The first stage of the edge router’s

downstream pipeline pops packets from the

internal buffer of the Ethernet controller. The

last stage sends packets to the access network

via the Ethernet controller.

In our POC, the devices under test (DUTs)

used IxNetwork* client software to connect to

an Ixia traffic generator. Ixia generates

simulated edge traffic into the DUT, and

reports measurements of the maximum

forwarding performance of the pipeline. In

our model, we did not include considerations

of packet loss.

Note that the scope of this project did not

allow a complete analysis of the downstream

pipeline. The downstream pipeline uses

different software and has different

functionality and pipeline stages, as compared

to the upstream pipeline.

We do provide some of the data and insights

for the downstream pipeline that we observed

while conducting our POC (see Appendix A).

However, full analysis and verification of

those initial results will have to be a future

project.

Physical system setup

When our team began setting up this POC, we

started with a description of a typical physical

architecture. We then set up a hardware DUT

that would match that architecture as closely

as possible. We set up additional DUTs to

provide configurations for comparisons and

verifications.

Tables 1 and 2 (next page) describe the two

DUTs we built for the first phase of our

NFV POC. We used these DUTs to take

performance measurements on the upstream

pipeline.

We compared those measurements to the

corresponding elements of our Intel CoFluent

simulations. The physical DUTs helped us

determine the accuracy of the virtual Intel

CoFluent model that we used for our

simulations and projections.

Project names for

devices under test (DUTs)

Intel internal project code names are

often used to refer to various processors

during development, proof of concepts

(POCs), and other research projects.

In the joint Intel and AT&T POC, we

used three main test configurations, one

of which was a pre-production

processor (Skylake). Some of the

devices under test (DUTs) were used to

confirm simulation results and establish

the accuracy of the simulations. Some

were used to confirm simulation results

for projecting optimal configurations

for future generations of processors. A

fourth, production version of the

Skylake microarchitecture was used to

characterize some aspects of the

downstream pipeline (see Appendix A).

The three main DUTs for our POC

were based on these processors, with

these project code names:

 Skylake-based DUT:

Pre-production Intel® Xeon®

processor, 1.8 GHz

 Broadwell-based DUT:

Intel® Xeon® processor

E5-2630, 2.2 GHz

 Haswell-based DUT:

Intel® Xeon® processor

E5-2680, 2.5 GHz

Modeling the impact of CPU properties to optimize and predict packet-processing performance 9

The DUT described in Table 1 is based on a

pre-production Intel® Xeon® processor,

1.8 GHz, with 32 cores. The Intel-internal

project code name for this pre-production

processor is “Skylake.”

The DUT described in Table 2 is based on an

Intel® Xeon® processor E5-2630, 2.2 GHz.

The Intel-internal project code name for this

processor is “Broadwell.”

In order to explore the performance sensitivity

of one processor generation versus another,

we set up an additional DUT, as described in

Table 3. This DUT is based on an Intel®

Xeon® processor E5-2680, 2.5 GHz. The

Intel-internal project code name for this

processor is “Haswell.”

Packetgen in the physical DUT

As mentioned earlier in the description of the

upstream pipeline, our physical systems

included the Ixia packetgen. In the upstream

pipeline, the job of this hardware-based

packetgen is to generate packets and work

with the packet receive (RX) and transmit

(TX) functions. Basically, the packetgen

sends packets into the receive unit or out of

the transmit unit. This is just one of the key

hardware functions that was simulated in our

Intel CoFluent model.

Table 1. Test configuration based on the

pre-production Intel® Xeon® processor, 1.8GHz (Skylake)

Component Description Details

Processor

Product
Pre-production Intel® Xeon® processor,

1.8 GHz

Speed (MHz) 1800

Number of CPUs 32 Cores / 64 Threads

LLC cache 22528 KB

Memory

Capacity 64 GB

Type DDR4

Rank 2

Speed (MHz) 2666

Channel/socket 6

Per DIMM size 16 GB

NIC
Ethernet controller X710-DA4 (4x10G)

Driver igb_uio

OS
Distribution Ubuntu 16.04.2 LTS

Kernel 4.4.0-64-lowlatency

BIOS Hyper-threading Off

Table 2. Test configuration based on the

Intel® Xeon® E5-2630, 2.2GHz (Broadwell)

Component Description Details

Processor

Product Intel® Xeon® processor E5-2630, 2.2 GHz

Speed (MHz) 2200

Number of CPUs 10 Cores / 20 Threads

LLC cache 25600 KB

Memory

Capacity 64 GB

Type DDR4

Rank 2

Speed (MHz) 2133

Channel/socket 4

Per DIMM size 16 GB

NIC
Ethernet controller X710-DA4 (4x10G)

Driver igb_uio

OS
Distribution Ubuntu 16.04.2 LTS

Kernel 4.4.0-64-lowlatency

BIOS Hyper-threading Off

Modeling the impact of CPU properties to optimize and predict packet-processing performance 10

Generating a packet-traffic profile

Once we set up our physical DUTs, we

needed to estimate the performance effect of a

cache miss in the routing table lookup on

these architectures. To do this, for each

packet, we increased the destination IP to a

fixed stride of 0.4.0.0. This caused each

destination IP lookup to hit at a different

memory location in the routing table.

For our POC, we chose the following IP range

settings to traverse the LPM (longest prefix

match) table. For lpm24, the memory range

is 64 MB, which exceeds the LLC size, and

can trigger a miss in the LLC cache.

range 0 dst ip start 0.0.0.0

range 0 dst ip min 0.0.0.0

range 0 dst ip max

255.255.255.255

range 0 dst ip inc 0.4.0.0

For the source IP setting, any IP stride should

be appropriate, as long as the stride succeeds

on the access control list (ACL) table lookup.

(The exact relationship of cache misses

and traffic characteristics is not described in

this POC, and will be investigated in a

future study.)

In our physical test model, we used default

settings for other parameters, such as the

media access control (MAC) address, source

(SRC) transmission control protocol (TCP)

port, and destination (DST) TCP port.

Performance and sensitivities

of the traffic profile

In order to get the most accurate results, we

needed to characterize the traffic profile in

detail for both the hardware DUTs and our

Intel CoFluent models and simulations.

Hyperthreading was disabled to

expose the impact of other elements

There are a number of system and application

parameters that can impact performance,

including hyperthreading. For example, when

we ran the workload with hyperthreading

enabled, we gained about 25% more

performance per core.1

However, hyperthreading shares some

hardware resources between cores, and this

can mask core performance issues. Also, the

performance delivered by hyperthreading can

make it hard to identify the impact of other,

more subtle architectural elements. Since we

were looking for the impact of those other

packet-handling elements, we disabled

hyperthreading for this POC.

Lookup table size affected performance

While setting up the experiments, we

observed a performance difference (delta) that

depended on the size of the application’s

lookup table. Because of this, for our POC,

we decided to use the traffic profile described

under “Generating a packet-traffic profile.”

This ensured that we had some LLC misses

in our model.

Table 3. Test configuration based on the

Intel® Xeon® processor E5-2680, 2.5 GHz (Haswell)

Component Description Details

Processor

Product Intel® Xeon® processor E5-2680 v3, 2.5 GHz

Speed (MHz) 2500

Number of CPUs 24 Cores / 24 Threads

LLC cache 30720KB

Memory

Capacity 256 GB

Type DDR4

Rank 2

Speed (MHz) 2666

Channel/socket 6

Per DIMM size 16 GB

NIC
Ethernet controller (4x10G)

Driver igb_uio

OS
Distribution Ubuntu 16.04.2 LTS

Kernel 4.4.0-64-lowlatency

BIOS Hyper-threading Off

Modeling the impact of CPU properties to optimize and predict packet-processing performance 11

Figure 4. Model development. This figure shows how we modeled the flow for the simulation of the entire virtual edge provider (vPE) router pipeline.

Developing the Intel

CoFluent simulation model

To develop the simulation model for this

project, we performed an analysis of the

source code, and developed a behavior model.

We then developed a model of the

performance cost in order to create a

virtualized network function (VNF)

development model (see Figure 4).

To create our VNF simulation, we built an

Intel CoFluent model of actively running

components and pipeline stages that

corresponded to those in the physical DUTs.

We mapped these pipeline stages to a CPU

core as the workload. We then simulated the

behavior of each pipeline stage.

In any performance cost model, underlying

hardware can have an impact on the pipeline

flow. For this reason, we modeled all key

hardware components except storage.

It was not necessary to model storage because

our workload did not perform any actual

storage I/O.

For our project, the actively running

components were the CPU, Ethernet

controller, and packet generator (packetgen).

One of the benefits of using the Intel CoFluent

framework for these simulations is that Intel

CoFluent can schedule these components at a

user-specified granularity of nanoseconds or

even smaller.

Simulating the packetgen

In a simulation, there is no physical hardware

to generate packets, so we needed to add that

functionality to our model in order to simulate

that capability. For this POC, we did not

actually simulate the packetgen. Instead, we

used queues to represent the packetgen.

To do this, we first simulated a queue of

packets that were sent to the Ethernet

controller at a defined rate. In other words, we

created receive (RX) and transmit (TX)

queues for our model. We took a packet off

the RX queue every so many milliseconds for

the RX stage in the pipeline. This simulated a

packet arriving at a specific rate.

We did a similar simulation for the TX stage

in the pipeline.

The rate at which packets entered and exited

the queues was determined by the way the

physical DUT behaved, so the simulation

would model the physical DUT as closely

as possible.

Modeling the impact of CPU properties to optimize and predict packet-processing performance 12

Figure 5. Model of upstream software pipeline. The ACL pipeline stage supports auditing of incoming traffic. Note that, in our proof-of-concept (POC),

the queueing stage has two locations, and performs packet receiving (RX) or packet transmitting (TX), depending on its location in the pipeline.

Simulating the network

In this POC, the Ethernet controller was

simulated based on a very simple throughput

model, which receives or sends packets at a

user-specified rate.

For our POC since we wanted to characterize

the performance impact of CPU parameters on

software packet processing pipeline we did

not implement the internal physical layer

(PHY), MAC, switching, or first-in-first-out

(FIFO) logic. We specifically defined our test

to make sure we would not see system

bottlenecks from memory bus bandwidth or

from the bandwidth of the Peripheral

Component Interconnect Express (PCI-e).

Because of that, we did not need to model the

effect of that network transaction traffic

versus system bandwidth.

Modeling the upstream pipeline

In our POC, we simulated all key stages of the

upstream packet processing pipeline. The

ACL filters, flow classifier, metering and

policing, and routing stages were modeled

individually. The packet RX stage and the

queuing and packet TX stage are also usually

separate pipeline stages. In our POC, we

modeled the packet RX and packet TX stages

as a single packet queueing stage that was

located at both the beginning and the end of

the pipeline (see Figure 5).

Implementing lookup algorithms

One of the things we needed to do for our

model was to implement lookup algorithms.

To do this, we first had to consider the

pipelines. As shown earlier in Figure 2,

an upstream pipeline usually consists

of 3 actively running components

and 6 typical pipeline stages.

Note that the ACL pipeline stage is a

multiple-bit trie implementation (a tree-like

structure). This routing pipeline stage uses an

LPM lookup algorithm which is based on a

full implementation of the binary tree. For our

POC, we implemented the ACL lookup

algorithm and the LPM lookup algorithm to

support auditing of the incoming traffic. We

also implemented these two algorithms to

support routing of traffic to different

destinations.

In addition, the flow classification used a hash

table lookup algorithm, while flow action

used an array table lookup algorithm. We

implemented both of these algorithms

in our model.

Developing a model

of the cost of performance

It’s important to understand that

Intel CoFluent is a high-level framework for

simulating behavior. This means that the

framework doesn’t actually execute CPU

instructions; access cache or memory cells; or

perform network I/O. Instead, Intel CoFluent

uses algorithms to simulate these processes

with great accuracy (as shown in this POC).1

In order to develop a model of the execution

cost of performance, we tested the accuracy of

the simulations in all phases of our POC by

comparing the simulation results to

measurements of actual physical architectures

of various DUTs. The delta between the

estimated execution times from the

simulation, and measurements made on the

physical DUTs, ranged from 0.4%

to 3.3%.1 This gave us a high degree of

confidence in our cost model.

(Specifics on the accuracy of our model and

simulations, as compared to the DUTs, are

discussed later in this paper under “Results

and model validation.”)

With the very small delta seen between

performance on the simulations versus the

physical DUTs, we expect to be able to use

other Intel CoFluent models in the future, to

effectively identify the best components for

other packet-traffic workloads under

development.

Modeling the impact of CPU properties to optimize and predict packet-processing performance 13

Hardware performance considerations

To build an NFV model of the true cost of

performance, we had to consider hardware,

not just software. For example, elements that

affect a typical hardware configuration

include: core frequency, cache size, memory

frequency, NIC throughput, and so on. Also,

different cache sizes can trigger different

cache miss rates in the LPM table or the

ACL table lookup. Any of these hardware-

configuration factors could have a significant

effect on our cost model.

Impact of cache on pipeline performance

Another key consideration in our POC was

how much the packet processing performance

could be affected by different hardware

components. For example, consider the

example of cache. Specifically, look at the

impact on pipeline performance of cache

misses at different cache levels. Besides the

packet RX and packet TX pipelines, all edge

router pipelines must perform a table lookup,

then a table entry handler on a hit — or a

default table entry handler on a miss. These

operations are mostly memory operations.

Cache misses could have very different access

latencies for the memory operations at

different cache levels. For example, latencies

could be as many as 4 cycles in an L1 cache

hit; to 12 cycles in an L2 cache hit; to

hundreds of cycles in a DRAM memory

access. The longer the latency of the memory

access, the greater the impact on the CPU

microarchitecture pipeline.

The impact of latency on the pipeline is called

the blocking probability or blocking factor (as

compared to a zero cache miss). The longer

the memory access latency, the more the CPU

execution pipeline is blocked. The blocking

factor is the ratio of that latency as compared

to zero cache misses.

You might expect the blocking factor to be 1

when memory access cycles aren’t hidden by

the CPU’s execution pipeline, but that is not

actually the case. A miss does not necessarily

result in the processor being blocked. In

reality, the CPU can execute other instructions

even while some instructions are blocked at

the memory access point. Because of this,

some instructions are executed as if

overlapped. The result is that, regardless of

the DUT configuration, the blocking factor is

not usually 1.

The challenge for developers is that the cache

miss rate has a critical impact on performance.

To address this challenge, we needed to

quantify the impact of this miss rate, and

integrate its consequences into our cost

model. To do this, we configured the cache

size via the Intel® Platform Quality of

Service Technology (PQOS) utility. We also

increased the number of destination IPs to

traverse the LPM table. This allowed us to

introduce different LLC cache miss rates into

our model.

 Real-world performance versus ideal

cache miss rate. To estimate the impact

of cache miss rate on performance, we

regressed the equation for core cycles per

instruction (CPI). In regressing the

equation for CPI, we used LLC misses

per instruction (MPI) and LLC miss

latency (ML) as predictor variables (see

Figure 6). In other words, we regressed

the blocking factor and the core CPI

metric. This gave us a way to estimate

the extra performance cost imposed by

different hardware cache configurations.

Note:

L1 and L2 also have a significant impact

on performance. However, the impact of L1

and L2 can’t actually be quantified, since

we cannot change the sizes of the L1

and L2 cache.

 Linear performance. Core frequency

refers to clock cycles per second (CPS),

which is used as an indicator of the

processor's speed. The higher the core

frequency, the faster the core can execute

an instruction. Again we used a

regression model to estimate the packet

processing throughput for the upstream

software pipeline, by using the core

frequency as a predictor variable.

Characterizing the cost model

In our POC, the cost model is a model of the

execution cost of specific functions in the

execution flow of the upstream software

pipeline. In other words, the cost model is the

execution latency.

The cost model for each software pipeline

consists of characterizing the pipeline in terms

of CPI and path length. We determined CPI

using the simple model shown in Figure 6

(above).

Figure 6. Simple models for estimating cycles per instruction (CPI) when cache misses occur;

and for estimating path length for the pipeline.

Modeling the impact of CPU properties to optimize and predict packet-processing performance 14

In order to get the execution latency for a

specific length of the pipeline, we also had to

estimate the path length for that section of the

pipeline. The path length is the number of x86

instructions retired per 1 Mb of data sent.

Again, see Figure 6 (previous page).

In our model, multiplying the two variables —

CPI and path length — gives the execution

time of the software pipeline in terms of CPU

cycles. With that information, we were able to

simulate CPI and path length, using the Intel

CoFluent tool, in order to compute the end-to-

end packet throughput.

Establishing the execution cost

of the model

We began building our Intel CoFluent cost

model based on the DPDK code. With the

previous considerations taken into account,

we used the DPDK code to measure the

instructions and cycles spent in the different

pipeline stages. These cycles were assumed to

be the basic execution cost of the model.

Figure 4, earlier in this paper, shows an

overview of the cost model.

Simulation constraints

and conditions

For the upstream pipeline, we modeled

hardware parameters (such as CPU frequency

and LLC cache size), packet size, pipeline

configurations, and flow configurations. We

focused on the areas we expected would have

the biggest impact on performance. We then

verified the results of our simulations against

performance measurements made on the

physical hardware DUTs.

In order to create an effective model for a

complete system, we accepted some

conditions for this project.

Support for the upstream pipeline

As mentioned earlier, this POC was focused

on the upstream pipeline. The scope of our

model did not support simulating the

downstream pipeline. However, we hope to

conduct future POCs to explore packet

performance in that pipeline. The information

we did collect on the downstream pipeline

is presented in Appendix A, at the end of

this paper.

Cache analysis supported for LLC

In this study, our test setup did not allow us to

change the L1 and L2 size to evaluate the

impact of L1 and L2 on performance. Because

of this, our model supported only the LLC

cache size sensitivity analysis, and not an

analysis of L1 or L2.

Dropping or dumping packets was not

supported

Dropping packets is an error-handling

method; and dumping packets is a debugging

or profiling tool. Dropping and dumping

packets doesn’t always occur in the upstream

pipeline. If it does, it can occur at a low rate

during the running lifetime of that pipeline.

Our test model did not support dropping or

dumping packets. If we had included dropping

packets and/or the debugging tools in our

POC model, they could have introduced more

overhead to the simulator. This could have

slowed the simulation speed and skewed our

results.

We suspect that dropping and dumping

packets might not be critical to performance

in most scenarios, but we would need to

create another model to explore those impacts.

That would be an additional project for

the future.

Critical data paths simulated

With those three constraints in place, we

modeled and simulated the most critical data

paths of the upstream pipeline. This allowed

us to examine the most important performance

considerations of that pipeline.

Hardware analysis and

data collection

Verifying the accuracy of any simulation is an

important phase of any study. In order to test

the accuracy of our Intel CoFluent simulations

against the hardware DUT configurations, we

needed to look at how VNF performance data

would be collected and analyzed.

Hardware analysis tools

We used three hardware analysis tools to help

with our VNF verifications: Event Monitor

(EMON) tool, Sampling Enabling Product

(SEP) tool, and the EMON Data Processor

(EDP) tool. These tools were developed by

Intel, and are available for download from the

Intel Developer Zone.

Event Monitor (EMON) tool

EMON is a low-level command-line tool for

processors and chipsets. The tool logs event

counters against a timebase. For our POC, we

used EMON to collect and log hardware

performance counters.

You can download EMON as part of the

Intel® VTune Amplifier suite. Intel VTune

Amplifier is a performance analysis tool that

helps users develop serial and multithreaded

applications.

Sampling Enabling Product (SEP) tool

SEP is a command-line performance data

collector. It performs event-based sampling

(EBS) by leveraging the counter overflow

feature of the test hardware’s performance

monitoring unit (PMU). The tool captures the

processor’s execution state each time a

performance counter overflow raises an

interrupt.

Using SEP allowed us to directly collect the

performance data — including cache misses

— of the target hardware system. SEP is part

of the Intel VTune Amplifier.

EMON Data Processor (EDP) tool

EDP is an Intel-internal analysis tool that

processes EMON performance samples for

analysis. EDP analyzes key hardware events

such as CPU utilization, core CPI, cache

misses and miss latency, and so on.

https://software.intel.com/en-us

Modeling the impact of CPU properties to optimize and predict packet-processing performance 15

Figure 7. Baseline performance

measurements, with default CPU

frequency and default LLC cache

size of 22 MB.1 The DUT for these

measurements was based on a pre-

production Intel® Xeon® processor,

1.8 GHz (Skylake).

Collecting performance-based data

In general, there are two ways to collect

performance-based data for hardware

counters:

 Counting mode, implemented in

EMON, which is part of the

Intel VTune suite

 Sampling mode, implemented in the

SEP, which is also part of the

Intel VTune suite

Counting mode reports the number of

occurrences of a counter in a specific period

of time. This mode lets us calculate precise

bandwidth and latency information for a given

configuration.

Counting mode is best for observing the

precise use of system resources. However,

counting mode does not report software

hotspots. For example, it does not report

where the code takes up the most cycles, or

where it generates the most cache misses.

Sampling mode is better for collecting that

kind of information.

EMON outputs the raw counter information in

the form of comma-separated values (CSV

data). We used the EMON Data Processor

(EDP) tool to import those raw counter CSV

files, and convert them into higher level

metrics. For our POC, we converted our data

into Microsoft Excel* format, so we could

interpret the data more easily.

Workload performance

measurements and analysis for

model inputs

We used various metrics to collect data from

the hardware platform. Using these metrics let

us input the data more easily into our model

and/or calibrate our modeling output.

Such metrics included:

 Instructions per cycle (IPC)

 Core frequency

 L1, L2, and LLC cache sizes

 Cache associativity

 Memory channels

 Number of processor cores

We also collected application-level

performance metrics in order to calibrate the

model’s projected results.

Results and model validation

Our NFV project provided significant

performance data for various hardware

configurations and their correspondingly

modeled simulations. It also allowed us to

compare the performance of different

simulation models, from real-world

configurations to worst-case configurations,

to ideal configurations.

Our results show that it is possible to use a

VNF model to estimate both best-case and

worst-case packet performance for any given

production environment.

The next several discussions explain how we

established the accuracy of our simulation,

and describe our key results.

Establishing a baseline for

simulation accuracy

To establish a baseline of the accuracy of our

VNF simulation model, we first measured

packet performance on a physical Skylake-

based DUT, versus our Intel CoFluent

simulation model.

Figure 7 shows performance when measured

under the default CPU frequency, with the

default LLC cache size of 22 MB. As you can

see in Figure 7, the simulation measurement

projections (our results) are very close —

within 3.3% — of those made on real-world

architectures.1

Measuring performance at

different core frequencies

Figure 8 (next page) shows the results of

measuring performance at different core

frequencies on both DUTs and simulations.

These measurements include using

Intel® Turbo Boost at maximum frequency,

and adjusting the core frequency using a

Linux* P-state driver.

In Figure 8, the yellow line represents the

difference between measurements of the

simulation as compared to measurements

taken on the physical DUTs. As you can see,

the Intel CoFluent simulation provides

estimated measurements that are within

0.7% to 3.3% of the measurements made on

the actual physical hardware.1

3.72 3.60

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Pre-production
Intel® Xeon®

processor,
1.8GHz

(Skylake)

Intel®
CoFluent™
Technology
simulation

T
h
ro

u
g
h
p
u
t
（

M
P

P
S

)

Baseline delta of performance
on physical hardware versus

simulation

Modeling the impact of CPU properties to optimize and predict packet-processing performance 16

Analyzing performance for

different cache sizes

Figure 9 shows packet performance as

measured for different LLC cache sizes:

2 MB, 4 MB, 8 MB, and 22 MB. In our

simulation, cache size was adjusted using the

Intel PQOS utility.

Our POC showed that a 2 MB LLC cache size

causes a dramatically larger miss rate (32%

miss rate) than a 22 MB LLC cache size

(1.6% miss rate).1 However, almost 90% of

memory access hits are at L1 cache.1

Because of this, adjusting the LLC cache size

decreases performance by a maximum of

only 10%.1

In Figure 9, the yellow line again shows the

difference between measurements made on

the physical DUT, and measurements of the

simulation. The delta remains very small,

between 0.5% and 3.3%.1

2.41 2.60 2.79
3.12 3.35

3.72

5.65

2.44 2.58 2.75
3.09 3.26

3.60

5.69

1.0% 0.7% 1.5% 1.1% 2.9% 3.3%
0.7%

0%

20%

40%

60%

80%

100%

0

1

2

3

4

5

6

1.1 GHz 1.2 GHz 1.3 GHz 1.5 GHz 1.6 GHz 1.8 GHz 3.0 GHz

22 MB

T
h

ro
u
g
h
p
u
t

(M
P

P
S

)

Delta of performance based on core fequency:
physical hardware versus simulation

Intel® Xeon® processor E5-2600, 1.8GHz (Skylake)

Intel® CoFluent™ Technology simulation

Accuracy of simulation

Pre-production Intel® Xeon® processor, 1.8GHz (Skylake)

Intel® CoFluent™ Technology simulation

Delta of measurements made on physical system and simulation

Pre-production Intel® Xeon® processor, 1.8GHz (Skylake)

Intel® CoFluent™ Technology simulation

Delta of measurements made on physical system and simulation

Figure 8. Performance measured at different frequencies for our simulation versus on the physical device under test (DUT).1

The DUT for these measurements was based on a pre-production Intel® Xeon® processor, 1.8 GHz (Skylake).

Figure 8. Performance measured at different frequencies for our simulation versus on the physical device under test (DUT).1

The DUT for these measurements was based on a pre-production Intel® Xeon® processor, 1.8 GHz (Skylake).

3.36 3.47 3.58 3.72
3.33 3.41 3.56 3.60

1.1% 1.6% 0.5% 3.3%

0%

20%

40%

60%

80%

100%

0

1

2

3

4

5

6

1.8 GHz 1.8 GHz 1.8 GHz 1.8 GHz

2 MB 4 MB 8 MB 22 MB

T
h

ro
u
g
h
tp

u
t
(M

P
P

S
)

Delta of performance based on LLC cache size:
physical hardware versus simulation

Intel® Xeon® processor E5-2600, 1.8GHz (Skylake)

Intel® CoFluent™ Technology simulation

Delta between measurements on physical system and simulation

Pre-production Intel® Xeon® processor, 1.8GHz (Skylake)

Intel® CoFluent™ Technology simulation

Delta of measurements made on physical system and simulation

Figure 10. Measuring performance on multi-core

CPUs.1Pre-production Intel® Xeon® processor, 1.8GHz (Skylake)

Intel® CoFluent™ Technology simulation

Delta of measurements made on physical system and simulation

Figure 9. Performance measured for different LLC cache sizes in our simulations

versus the physical DUT.1 The DUT for these measurements was based on

a pre-production Intel® Xeon® processor, 1.8 GHz (Skylake).

Figure 8. Performance measured at different frequencies for our simulation versus

on the physical device under test (DUT).1

Figure 9. Performance measured for different LLC cache sizes

in our simulations versus the physical DUT.1 The DUT for these

measurements was based on a pre-production Intel® Xeon® processor,

1.8 GHz (Skylake).

22 MB cache

Figure 9.

 Performa

nce measured for

different LLC

cache sizes in our

simulations versus

the physical

DUT.122 MB cache

Modeling the impact of CPU properties to optimize and predict packet-processing performance 17

Figure 11. Performance comparison of baseline configuration

versus a simulation that includes a field-programmable

gate array (FPGA)-accelerated access control list

(ACL) lookup.1 The DUT for these measurements was

based on a pre-production Intel® Xeon® processor,

1.8 GHz (Skylake).

Figure 12. Comparison of performance from CPU generation to

generation.1Figure 11. Performance comparison

of baseline configuration versus a simulation that

includes a field-programmable gate array (FPGA)-

accelerated access control list

(ACL) lookup.1 The DUT for these measurements was

based on a pre-production Intel® Xeon® processor, 1.8

GHz (Skylake).

Measuring performance

for different numbers of cores

Figure 10 shows the throughput results for

measurements taken on DUTs with various

numbers of cores. These measurements were

made on the pre-production Skylake-based

DUT, and compared with the results projected

by our simulation. Note that in this POC, the

upstream pipeline ran on a single core, even

when run on processors with multiple cores.

As you can see in Figure 10, the throughput

scales linearly as more cores are added. In this

test, the packets were spread evenly across the

cores by way of a manual test configuration.

In our test, all pipeline stages were bound to

one fixed core, and the impact of core-to-core

movement was very small.

Again, the yellow line represents the

difference between measurements of the

physical system, and measurements of the

simulation. For performance based on cache

size, the delta is still very small, between

0.4% and 3.0% for simulation predictions as

compared to measurements made on

the DUT.1

Simulating hardware

acceleration components

Previously, we showed how we broke down

the distribution of CPU cycles and

instructions amongst different stages of

pipelines. Just as we did in that analysis, we

can do a similar what-if analysis to identify

the best hardware accelerators for our model.

For example, in one what-if analysis, we

replaced the ACL lookup with an FPGA

accelerator that is 10 times as efficient as the

standard software implementation in the

DPDK. We found that swapping this

component sped up the performance of the

overall upstream traffic pipeline by over 15%

(see Figure 11).1

It’s important to note that this performance

result represents only one functionality of the

pipeline that was simulated for FPGA. The

15.5% result we saw here does not represent

the results of the full capability of the FPGA

used for this workload. Still, this kind of

what-if analysis can help developers more

accurately estimate the cost and efficiency of

adopting FPGA accelerators or of using some

other method to offload hardware

functionalities.

Figure 10. Measuring performance on multi-core CPUs.1 The DUT

for these measurements was based on a pre-production

Intel® Xeon® processor, 1.8 GHz (Skylake).

Figure 11. Performance comparison of baseline configuration

versus a simulation that includes a field-programmable

gate array (FPGA)-accelerated access control list

(ACL) lookup.1Figure 10. Measuring performance

on multi-core CPUs.1 The DUT for these measurements

was based on a pre-production Intel® Xeon® processor,

1.8 GHz (Skylake).

4.1

8.2

24.5

4.1

8.3

23.8

0.4% 1.2% 3.0%

0%

20%

40%

60%

80%

100%

120%

0

5

10

15

20

25

30

1 core 2 cores 6 cores

T
h

ro
u
g
h
p
u
t

(M
P

P
S

)

Performance when scaling CPU cores (2.2 GHz)

Pre-production Intel® Xeon® processor, 1.8GHz (Skylake)

Intel® CoFluent™ Technology simulation

Delta between measurements on physical system and simulation

3.80

4.39

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

Baseline hardware
configuration without field-
programmable gate array

(FPGA)-accelerated
access control list (ACL)

lookup

Simulated FPGA-
accelerated ACL lookup

T
h

ro
u
g
h
p
u
t

 (
M

P
P

S
)

Performance without a hardware accelerator and
with a hardware accelerator

Pre-production Intel® Xeon® processor, 1.8GHz (Skylake)

Intel® CoFluent™ Technology simulation

Modeling the impact of CPU properties to optimize and predict packet-processing performance 18

Performance

sensitivity from generation

to generation

Figure 12 shows the performance of the

upstream pipeline on a Broadwell-based

microarchitecture, as compared to a Skylake-

based microarchitecture. The Intel CoFluent

simulation gives us an estimated delta of less

than 4% for measurements of packet

throughput on simulated generations of

microarchitecture, as compared to

measurements on the physical DUTs.1

Core cycles per instruction (CPI)

Our POC results tell us that several specific

factors affect CPI and performance. For

example, the edge routers on both Broadwell

and Skylake microarchitectures have the same

program path length. However, Skylake has a

much lower core CPI than Broadwell (lower

CPI is better). The core CPI on the Broadwell-

based DUT is 0.87; while the core CPI on the

Skylake DUT is only 0.50.1

Broadwell also has only 256 KB of L2 cache,

while Skylake has 2 MB of L2 cache (more

cache is better). Also, when there is a cache

miss in L2, the L2 message-passing interface

(MPI) on the Skylake-based DUT is 6x the

throughput of L2 MPI delivered by

Broadwell.1

Our POC measurements tell us that all of

these factors contribute to the higher core CPI

seen for Broadwell microarchitectures, versus

the greater performance delivered by Skylake.

Maximum capacity at the LLC level

One of the ways we used our simulations was

to understand performance when assuming

maximum capacity at the LLC level. This

analysis assumed an infinite-sized LLC, with

no LLC misses.

Best case and worst case

traffic profiles

At the time of this joint NFV project,

a production traffic profile was not

available for analyzing bottlenecks in a

production deployment. However, we

did analyze both the worst-case profile

and the best case profile. In the worst

case profile, every packet is a new

flow. In the best-case profile, there is

only one flow. We did not set out to

study these scenarios specifically, but

the traffic profile we used provided

information on both best- and worst-

case profiles.

Our results showed that the difference

in performance between worst-case and

best-case profiles was only 7%.1 That

could offer developers a rough

estimation of what performance could

be like between best-case and worst-

case packet performance for any given

production environment.

It’s important to understand that our

results show only a rough estimation

of that difference for our pipeline

model and our particular type of

application. The packet performance

gap between your own actual best- and

worst-case traffic profiles could be

significantly different.

s

Figure 12. Comparison of performance from CPU generation to generation.1

Figure 12. Comparison of performance from CPU generation to generation.1

3.43
3.72

3.35
3.59

0

0.5

1

1.5

2

2.5

3

3.5

4

Intel® Xeon® processor E5-2630L
v4 1.8G (Broadwell)

Pre-production Intel® Xeon®
processor, 1.8GHz (Skylake)

T
h

ro
u
g
h
p
u
t

 (
M

P
P

S
)

Performance comparison of two generations
of hardware platforms versus simulations

Hardware device under test (DUT)

Intel® CoFluent™ Technology simulation

Modeling the impact of CPU properties to optimize and predict packet-processing performance 19

Our analysis shows that packet throughput can

achieve a theoretical maximum of 3.98 MPPS

(million packets per second) per core on

Skylake-based microarchitectures.1

Ideal world versus reality

In an ideal world, we would eliminate all

pipeline stalls in the core pipeline, eliminate

all branch mispredictions, eliminate all

translation lookaside buffer (TLB) misses, and

assume that all memory accesses hit at the

L1 data cache. This would allow us to achieve

the optimal core CPI.

For example, a Haswell architecture can

commit up to 4 fused µOPs each cycle per

thread. Therefore, the optimal CPI for the

4-wide microarchitecture pipeline is

theoretically 0.25 CPI. For Skylake, the

processor’s additional microarchitecture

features can lower the ideal CPI even further.

If we managed to meet optimal conditions for

Haswell, when CPI reaches 0.25, we could

double the packet performance seen today,

which would then be about 8 MPPS

(7.96 MPPS) per core. (Actual CPI is based

on the application, of course, and on how

well the application is optimized for its

workload.)

Performance sensitivities based

on traffic profile

Our POC shows that the packet processing

performance for the upstream pipeline on the

edge router will change depending on the

traffic profile you use.

Performance scaled linearly with

the number of cores

Using the traffic profile we chose, we found

that we could sustain performance at about

4 MPPS per core on a Skylake architecture.1

We tested this performance on systems

with 1, 2, and 6 cores; and found that

performance scaled linearly with the number

of cores (see Figure 10, earlier in this paper).1

Note that, when adding more cores, each

core can use less LLC cache, which may

cause a higher LLC cache miss rate. Also,

as mentioned earlier in this paper, under the

heading, “Impact of cache on pipeline

performance,” adjusting the LLC cache size

could impact performance. So adding more

cores could actually increase fetch latency and

cause core performance to drop.

Our results include the performance analysis

for different cache sizes, from 2MB to 22MB.

We did not obtain results for cache sizes

smaller than 2MB.

Execution flow was steady

We also discovered that our test vPE

application delivered a steady execution flow.

That meant we had a predictable number of

instructions per packet. We can take that

further to mean that the higher the core clock

frequency, the more throughput we could

achieve.

For our POC conditions (traffic profile, 1.8

GHz to 2.1 GHz processors, workload type)

we found that performance of the vPE scales

linearly as frequency increases.1

Next steps

As we continue to model packet performance,

it’s unavoidable that we will have to deal with

hardware concurrency and the interactions

typically seen with various core and non-core

components. The complexity of developing

and verifying such systems will require

significant resources. However, we believe

we could gain significant insights from

additional POCs.

We suggest that next steps include:

 Using our Intel CoFluent model to

identify component characteristics that

have the greatest impact on the

performance of networking workloads.

This could help developers choose the

best components for cluster designs that

are focused on particular types of

workloads.

 Model and improve packet-traffic

profiles to support a multi-core

paradigm. This paradigm would allow

scheduling of different parts of the

workload pipeline onto different cores.

 Model and improve traffic profiles to

study the impact of the number of new

flows per second, load balancing across

cores, and other performance metrics.

 Model and simulate the downstream

pipeline.

Fused µOPs

Along with traditional micro-

ops fusion, Haswell supports

macro fusion. In macro fusion,

specific types of x86

instructions are combined in

the pre-decode phase, and then

sent through a single decoder.

They are then translated into a

single micro-op.

Modeling the impact of CPU properties to optimize and predict packet-processing performance 20

Summary

Most of today’s data is transmitted over

packet-switched networks, and the amount of

data being transmitted is growing

dramatically. This growth, along with a

complex set of conditions, creates an

enormous performance challenge for

developers who work with packet traffic.

To identify ways to resolve this challenge,

Intel and AT&T collaborated to perform a

detailed POC on several packet processing

configurations. For this project, our joint team

used a simulation tool (Intel CoFluent) on a

DPDK packet-processing workload which

was based on the DPDK library, and run on

x86 architectures. The simulation tool

demonstrated results (projections) with an

accuracy of 96% to 97% when compared to

the measurements made on physical hardware

configurations.1

Our results provide insight into the kinds of

changes that can have an impact on packet

traffic throughput. We were also able to

identify the details of some of those impacts.

This included how significant the changes

were, based on different hardware

characteristics. Finally, our POC analyzed

component and processor changes that could

provide significant performance gains.

Key findings

Here are some of our key findings:

CPU frequency

CPU frequency has a high impact on packet

performance — it’s a nearly linear scaling.1

Even if the underlying architecture has

different core frequencies, the execution

efficiency (reflected in core CPI) for these

cores is almost the same.

LLC cache

The size and performance of LLC cache had

little influence on our DPDK packet

processing workload. This is because, in our

POC, most memory accesses hit in L1 and L2,

not in LLC; and there is a low miss rate in

L1 and L2.

Note that the size of LLC cache can cause

higher miss rates on different types of VNF

workloads. However, on the VNF workload

we simulated, the effect was small because of

the high L1 and L2 hit rates.

We did not include studies in our POC to

understand the effects caused by other VNF

workloads running on different cores on the

same socket, and affecting the LLC in

different ways. That was not in the scope of

our POC, and would be a future project.

Performance

Performance scales linearly with the number

of cores.1 Our results show this is due to the

small impact of LLC, since there is such a low

miss rate in L1 and L2. Basically, when a

memory access misses in L1 or L2, the system

will search LLC. Since L1 and L2 are

dedicated for each core, and since LLC is

shared by all cores, the more cores there are,

the higher the potential rate for LLC misses.

Packet size

Packet size does not have a significant

performance impact in terms of packets per

second (PPS).1 For example, look at the edge

router, which is a packet-forwarding

approach. With an edge router, only the

packet header (the MAC/IP/TCP header) is

processed for classifying flow, for

determining quality of service (QoS), or for

making decisions about routing. The edge

router doesn’t touch the packet payload; and

increasing the packet size (payload size) will

not consume extra CPU cycles.

Contrast this with BPS (bytes per second),

where BPS scales with PPS and packet size.

This BPS-to-PPS scaling will continue until

the bandwidth limit is reached, either at the

Ethernet controller, or at the system

interconnect.

Conclusion

Our detailed POC tells us that, when selecting

a hardware component for an edge router

workload, developers should consider

prioritizing core number and frequency.

In terms of scaling for future products, our

model was able to project potential

performance gains very effectively. For

example, our simulation model showed a

detailed distribution of CPU cycles and

instructions of each workload stage.

Developers can use this type of information to

better estimate the performance gains when

FPGA hardware accelerators or other ASIC

off-loading methods are applied.

Our POC also demonstrated that our Intel

CoFluent model is highly accurate in

simulating vPE workloads on x86 systems.

The average correlation between our

simulations and the known-good physical

architectures is within 96%.1 This correlation

holds true even across the scaling of different

hardware configurations.

The accuracy of these Intel CoFluent

simulations can help developers prove the

value of modeling and simulating their

designs. With faster, more accurate

simulations, developers can improve their

choices of components used in new designs,

reduce risk, and speed up development cycles.

This can then help them reduce time to market

for both new and updated products, and help

reduce overall development costs.

Modeling the impact of CPU properties to optimize and predict packet-processing performance 21

Appendix A.

Performance in the

downstream pipeline

Our joint team characterized the downstream

pipeline on two of our devices under test

(DUTs). A full study of the downstream

pipeline was not in the scope of our proof of

concept (POC) study. However, this appendix

provides some preliminary results that we

observed while studying the upstream

pipeline.

Note that the downstream pipeline uses

different software, with different functionality

and has different stages than the upstream

pipeline. Full verification of results seen from

the downstream pipeline will have to be a

future project.

Table 3, earlier in this paper, describes the

hardware DUT configuration for the Haswell-

based microarchitecture used to determine

throughput scaling of the downstream

pipeline. Table A-1 (above, right) describes

the hardware DUT configuration of a fourth,

production version of Skylake-based

microarchitecture on which we also obtained

downstream pipeline results. This fourth

production-version processor was the Intel®

Xeon® processor Gold 6152, 2.1 GHz.

In this POC, we measured throughput on a

single core for all stages of the downstream

pipeline.

Figure A-1 shows throughput scaling as a

function of frequency for the downstream

pipeline. These measurements were made on

the Intel® Xeon® processor E5-2680, 2.5

GHz DUT (Haswell-based architecture).

Figure A-2 shows throughput measured at

2000 MHz on two architectures: the Haswell-

based architcture, and the production version

of the Skylake-based architecture.

As mentioned earlier, our POC focused on the

upstream pipeline. A more detailed analysis of

the downstream pipeline will be the subject of

future work.

Figure A-1. Throughput scaling, as tested on

the Intel® Xeon® processor

E5-2680, 2.5 GHz (Haswell)

device under test.1 Throughput

scaling is measured in million

packets per second (MPPS) as a

function of CPU speed.

Figure A-2. Throughput scaling at 2000 MHz

on different architectures.1

Throughput scaling is measured in

million packets per second (MPPS)

as a function of CPU speed.

Table A-1. Test configuration based on the

Intel® Xeon® processor Gold 6152, 2.1 GHz

Component Description Details

Processor

Product Intel® Xeon® Gold processor 6152, 2.1 GHz

Speed (MHz) 2095

Number of CPUs 44 cores / 88 threads

LLC cache 30976 KB

Memory

Capacity 256 GB

Type DDR4

Rank 2

Speed (MHz) 2666

Channel/socket 6

Per DIMM size 16 GB

NIC
Ethernet controller (4x10G)

Driver igb_uio

OS Distribution Ubuntu 16.04.2 LTS

BIOS Hyper-threading Off

Modeling the impact of CPU properties to optimize and predict packet-processing performance 22

Appendix B.

Acronyms and terminology

This appendix defines and/or explains terms and acronyms used in this paper.

ACL Access control list.

ASICs Application-specific integrated
circuits.

BF Blocking probability, or “blocking
factor.”

BPS Bytes per second.

CPI Cycles per instruction.

CPIcore CPI assuming infinite LLC (no
off-chip accesses).

CPS Clock cycles per second.

CSV Comma-separated values.

DPDK Data plane development kit.

DRAM Dynamic random-access
memory.

DST Destination.

DUT Device under test.

EBS Event-based sampling.

EDP EMON Data Processor tool. EDP
is an Intel-developed tool used
for hardware analysis.

EMON Event monitor. EMON is an Intel-
developed, low-level command-
line tool for analyzing processors
and chipsets.

FIFO First in, first out.

FPGA Field-programmable gate array.

I/O Input / output.

IP Internet protocol.

IPC Instructions per cycle.

IPv4 Internet protocol version 4.

L1 Level 1 cache.

L2 Level 2 cache.

L3 Level 3 cache. Also called last-
level cache.

LLC Last-level cache. Also called
level 3 cache.

LPM Longest prefix match.

MAC Media access control.

ML Miss latency or memory latency,
as measured in core clock cycles.

MPI Message-passing interface. Also
misses per instruction (with
regards to LLC).

MPPS Million packets per second.

NFV Network function virtualization.

NIC Network interface card.

NPU Network-processing unit.

packetgen Packet generator.

PCI-e Peripheral Component
Interconnect Express.

PHY Physical layer.

POC Proof of concept.

PQOS Intel® Platform Quality of Service
Technology utility.

PPS Packets per second.

QoS Quality of service.

RX Receive, receiving.

SEP Sampling Enabling Product, an
Intel-developed tool used for
hardware analysis.

SRC Source.

TCP Transmission control protocol.

TLB Translation lookaside buffer.

TX Transmit, transmitting.

VNF Virtualized network function.

vPE Virtual provider edge (router).

Modeling the impact of CPU properties to optimize and predict packet-processing performance 23

Appendix C.

Authors

AT&T authors Intel authors

Kartik Pandit

AT&T

Vishwa M Prasad

AT&T

 Bianny Bian

Intel

bianny.bian@intel.com

Atul Kwatra

Intel

atul.kwatra@intel.com

Patrick Lu

Intel

patrick.lu@intel.com

Mike Riess

Intel

mike.riess@intel.com

Wayne Willey

Intel

wayne.willey@intel.com

Huawei Xie

Intel

Gen Xu

Intel

gen.xu@intel.com

For information about Intel CoFluent technology, visit intel.cofluent.com

To download some of the test tools used in this POC, visit the Intel Developer Zone.

mailto:bianny.bian@intel.com
mailto:atul.kwatra@intel.com
mailto:patrick.lu@intel.com
mailto:mike.riess@intel.com
mailto:wayne.willey@intel.com
mailto:gen.xu@intel.com
file:///C:/Freelanc_INTEL/bh%20__%20Soumya%20Guptha/intel.cofluent.com
https://software.intel.com/en-us

Modeling the impact of CPU properties to optimize and predict packet-processing performance 24

1 Results are based on Intel benchmarking and are provided for information purposes only.

Tests document performance of components on a particular test, in specific systems. Results have been estimated or simulated using internal Intel analyses or

architecture simulation or modeling, and are provided for informational purposes only. Any differences in system hardware, software, or configuration may affect actual
performance.

Performance results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and
"Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features

or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your

product order.

Information in this document is provided as-is. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel assumes no liability whatsoever, and Intel disclaims all express or implied warranty relating to this information, including liability or warranties relating to fitness

for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and
MobileMark*, are measured using specific computer systems, components, software, operations, and functions. Any change to any of those factors may cause the

results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of

that product when combined with other products.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for

more information regarding the specific instruction sets covered by this notice.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, Xeon, and CoFluent are trademarks of Intel Corporation in the U.S. and/or other countries.

AT&T and the AT&T logo are trademarks of AT&T Inc. in the U.S. and/or other countries.

Copyright © 2018 Intel Corporation. All rights reserved.

Copyright © 2018 AT&T Intellectual Property. All rights reserved.

*Other names and brands may be claimed as the property of others.

Printed in USA

http://www.intel.com/design/literature.htm

