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Challenges in packet-processing 

Today’s packet-processing devices face an enormous performance challenge. Not only is more 

and more data being transmitted, but packet processing tasks — which need to be executed at 

line speed — have become increasingly complex.  

Along with the usual forwarding of data, packet processing systems are also responsible for 

other functions. These functions include traffic management (shaping, timing, scheduling), 

security processing, and quality of service (QoS).  

Making the issue even more of a challenge is the proliferation of internet devices and sensors. 

Data is now often produced faster than can be transmitted, stored, or processed. Most of this 

data is transmitted as packet streams over packet-switched networks. Along the way, various 

network devices — such as switches, routers, and adapters — are used to forward and process 

the data streams. 

 

 

Case Study 

Modeling the impact of  

CPU properties to optimize and 

predict packet-processing 

performance 
 

Intel and AT&T have collaborated in a proof of concept (POC) to model and analyze 

the performance of packet-processing workloads on various CPUs. This POC has 

established a highly accurate model that can be used to simulate edge router 

workloads on x86 systems. Developers and architects can use this methodology to 

more accurately predict performance improvements for network workloads across 

future CPU product generations and hardware accelerators. This approach can help 

developers gain better insight into the impacts of new software and  

x86 hardware components on packet processing throughput. 

 

Intel® CoFluent™ Studio 

Intel® CoFluent™ Technology for Big Data 
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At the same time, technology and customer 

requirements are also changing rapidly. These 

changes are forcing vendors to seek data-

streaming software solutions that deliver 

shorter development cycles. Unfortunately, 

shorter development cycles often mean that 

developers must make more revisions to 

update initial design shortcomings, and/or 

allow less time between required updates. 

Overall, this is a complex set of conditions 

that creates the challenge of optimizing and 

predicting packet-processing performance in 

future architectures. 

Proposed solution: Network 

function virtualization (NFV) 

One proposed solution to the challenge of  

data streaming is network function 

virtualization (NFV).  

To explore the effectiveness of this potential 

NFV solution, Intel and AT&T have 

collaborated in a proof of concept (POC) 

project. In this POC, we focused on modeling 

and analyzing the impact of different CPU 

properties on packet processing workloads.1  

We performed an extensive analysis of packet 

processing workloads via detailed simulations 

on various microarchitectures. We then 

compared the simulation results to 

measurements made on physical hardware 

systems. This allowed us to validate the 

accuracy of both our model and the POC 

simulations. 

 

POC results 

The results of our POC show that 

performance scales linearly with the number 

of cores, and scales almost linearly with core 

frequency.1 Packet size did not have a 

significant performance impact in terms of 

packets per second (PPS) on our workload, 

nor did the size or performance of  

LLC cache.1  

Our study and detailed results tell us that, 

when selecting a hardware component for an 

edge router workload, developers should 

consider prioritizing core number and 

frequency. 

One of the key components in our POC was 

our use of Intel® CoFluent™ Technology 

(Intel® CoFluent™), a modeling and 

simulation tool for both hardware and 

software. We found our Intel CoFluent model 

to be highly accurate. The average difference 

(delta) in results between the simulation 

predictions and comparative measurements 

made on actual physical architectures was 

under 4%.1  

Because of this, we believe similar models 

could help developers make faster, better 

choices of components for new designs and 

optimizations. In turn, this could help 

developers reduce risk, minimize time to 

market for both new and updated products, 

and reduce overall development costs. 

 

 

 

 

 

  

Network virtualization 

Network function virtualization 

(NFV) refers to a network 

infrastructure concept. NFV 

virtualizes network node functions 

to make it easier to deploy and 

manange network services. With 

NFV, service providers can 

simplify and speed up scaling new 

network functions and 

applications, and better use 

network resources. 

A virtualized network function 

(VNF) refers to a virtualized 

function used in an NFV 

architecture. These functions used 

to be carried out by dedicated 

hardware. With VNF, they are 

virtualized, performed by 

software, and run in one or more 

virtual machines. Common VNFs 

include routing, load balancing, 

caching, intrusion detection 

devices, and firewalls. 
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Proof of concept  

for network function 

virtualization (NFV) 

The goal of this joint Intel-AT&T POC was to 

generate information that could help 

developers choose designs that could be best 

optimized for network traffic — and make 

such choices faster and more accurately. We 

also wanted to generate information that 

would help developers predict packet-

processing performance for future 

architectures more accurately, for both 

hardware and software developments.  

Goals of the POC 

Our joint Intel-AT&T team had two  

main goals:  

 Quantify and measure the performance 

of the upstream traffic pipeline of the 

Intel® Data Plane Development Kit 

(DPDK) virtual provider edge  

router (vPE). 

 Identify CPU characteristics and identify 

components that have a significant 

impact on network performance for 

workloads running on an x86 system. 

In this paper, we quantify the vPE upstream 

traffic pipeline using the Intel CoFluent 

modeling and simulation solution. We 

validated our model by comparing the 

simulation results to performance 

measurements on physical hardware. 

Predictive model  

to meet POC goals 

To achieve our goals, our team needed to 

develop a highly accurate Intel CoFluent 

simulation model of the Intel DPDK vPE 

router workload. Such a model would help us 

characterize the network traffic pipelines. It 

 

would also allow us to project more accurate 

optimizations for future CPU product 

generations. 

To do this, we first developed a predictive 

model based on performance data from an 

existing x86 hardware platform. We then 

compared network performance on that 

physical architecture to the performance 

projected by our simulation. These 

comparative measurements would help us 

determine the accuracy of our simulation 

model. A high degree of accuracy would help 

build confidence in using Intel CoFluent to 

effectively characterize network function 

virtualization workloads. 

For this POC, our team focused on modeling 

upstream pipelines. Upstream traffic moves 

from end users toward the network’s core (see 

Figure 1, next page). In the future, we hope to 

develop a similar predictive model to analyze 

the performance of downstream pipelines, 

where traffic moves toward the end user. 

Longer term, our goal is to use these 

predictive models and simulations to identify 

performance bottlenecks in various designs of 

architecture, microarchitecture, and software. 

That future work would model both upstream 

and downstream pipelines. We hope to use 

that knowledge to recommend changes that 

will significantly improve the performance of 

future x86 architectures for packet processing 

workloads. This information should make it 

easier for developers to choose components 

that will best optimize NFV workloads for 

specific business needs. 

Key components used  

in this POC 

For this NFV POC, we needed to identify  

the critical hardware characteristics that had 

the most impact on the network processing 

equipment and the packet processing 

workload. To do this, we modeled and 

simulated a hardware system as typically used 

for NFV. 

Network processing equipment 

Network processing equipment can usually be 

divided into three categories: 

 Easily programmable, general CPUs 

 High performance (but hardwired) 

application-specific integrated circuits 

(ASICs) 

 Middle-ground network-processing units 

(NPUs), such as field-programmable gate 

arrays (FPGAs) 

Of those three categories, we focused this 

POC on the impact of general CPU 

characteristics on packet processing 

throughput.  

Packet processing workload 

Packet-processing throughput is dependent  

on several hardware characteristics.  

These include: 

 CPU speed 

 Number of programmable cores in  

the CPU 

 Cache size, bandwidth, and hit/miss 

latencies for level 1 cache (L1), level 2 

cache (L2), and level 3 cache (L3; also 

called last level cache, or LLC) 

 Memory bandwidth and read/write 

latencies 

 Network interface card (NIC) throughput 

In our POC, the packet processing workload is 

the DPDK vPE virtual router.  

Upstream and downstream  

pipeline traffic 

Upstream traffic is traffic that 

moves from end users toward the 

network’s core. 

Downstream traffic is traffic that 

moves toward the end user. 
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DPDK framework  

for packet processing 

The Intel DPDK is a set of libraries and 

drivers for fast packet processing. The DPDK 

packet framework gives developers a standard 

methodology for building complex packet 

processing pipelines. The DPDK provides 

pipeline configuration files and functional 

blocks for building different kinds of 

applications. For example, for our POC, we 

used the functions to build our internet 

protocol (IP) pipeline application. 

One of the benefits of DPDK functions is that 

they help with the rapid development of 

packet processing applications that run on 

multicore processors. For example, in our 

POC, the edge router pipeline is built on  

the IP pipeline application (based on the 

DPDK functions), to run on our four  

physical hardware DUTs. Our IP pipeline 

models a provider edge router between the 

access network and the core network  

(see Figure 1).  

Hardware and software  

simulation tools 

Optimizing a design for network traffic is 

typically done using traditional simulation 

tools and a lot of manual effort. We were 

looking for a better approach that would make 

it easier and faster for developers to choose 

the best components for their needs.  

Traditional hardware and software 

simulation tools 

For system analysis, traditional simulation-

based modeling tools range from solely 

software-oriented approaches to solely 

hardware-oriented approaches. Unfortunately, 

these traditional tools have not been able to 

meet the complex performance challenges 

driven by today’s packet-processing devices. 

At one end of the traditional analysis 

spectrum are the software-oriented 

simulations. In these simulations, software 

behavior and interactions are defined against a 

specific execution time. However, solutions 

based solely on software analyses do not take 

hardware efficiency into consideration. 

Hardware efficiency has a significant impact 

on system performance.  

 

At the other end of the spectrum are 

hardware-oriented simulators. These 

simulators model system timing on a cycle-

by-cycle basis. These models are highly 

accurate, but suffer from very slow simulation 

speeds. Because of this, they are not usually 

used to analyze complete, end-to-end systems. 

Instead, they are used mainly for decision-

making at the microarchitecture level. 

Better solutions model  

both hardware and software 

Solutions that model only software 

performance or which model only hardware 

performance are not effective for modeling 

the performance of a complete system. The 

best solution for modeling a complete system 

would be: 

 Highly configurable 

 Able to simulate both software and 

hardware aspects of an environment 

 Easily execute without the overhead of 

setting up actual packet-processing 

applications 

Figure 1. Edge router with upstream and downstream pipelines. Upstream traffic moves from end users toward the network’s core.  

Downstream traffic moves toward the end user(s). 



Modeling the impact of CPU properties to optimize and predict packet-processing performance 6  

 

Figure 2. Edge router’s upstream software pipeline. 

 

Figure 3. Edge router’s downstream software pipeline. 

 

Intel® CoFluent™ Technology 

For our joint Intel-AT&T POC, we needed a 

more effective tool than a software-only or 

hardware-only analysis tool. To reach our 

goals, we chose the Intel CoFluent modeling 

and simulation solution. Intel CoFluent is an 

application that helps developers characterize 

and optimize both hardware and software 

environments. As shown by the results of this 

POC, the Intel CoFluent model proved to be 

highly accurate when compared to 

measurements taken on a physical system.1 

Simulation at a functional level 

With Intel CoFluent, the computing and 

communication behavior of the software stack 

is abstracted and simulated at a functional 

level. Software functions are then dynamically 

mapped onto hardware components. The 

timing of the hardware components — CPU, 

memory, network, and storage — is modeled 

according to payload and activities, as 

perceived by software.  

Layered and configurable architecture 

For our POC, Intel CoFluent was ideal 

because the simulator can estimate complete 

system designs. Even more, Intel CoFluent 

can do so without the need for embedded 

application code, firmware, or even a precise 

platform description. In our POC, this meant 

we did not have to create and set up actual 

packet processing applications for our model, 

but could simulate them instead. 

Another key advantage of using Intel 

CoFluent for our POC is the tool’s layered 

and configurable architecture. The layered and 

configurable capabilities help developers 

optimize early architecture and designs, and 

predict system performance. Intel CoFluent 

also includes a low overhead, discrete-event 

simulation engine. This engine enables fast 

simulation speed and good scalability.  

Upstream and  

downstream workloads  

For this project, our team examined primarily 

the upstream traffic pipeline. Figure 2 shows 

the edge router’s upstream software pipeline. 

(Figure 3 shows the edge router’s downstream 

software pipeline.) 

Upstream pipeline 

In the edge router’s upstream traffic pipeline 

there are several actively running components. 

Our POC used a physical model to validate 

the results of our simulation experiments. This 

physical test setup consisted of three actively 

running components: 

 Ixia* packet generator (packetgen), or 

the software packetgen 

 Intel® Ethernet controller (the NIC) 

 Upstream software pipeline stages 

running on one or more cores 
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In our physical model, the Ixia packetgen 

injects packets into the Ethernet controller. 

This simulates the activity of packets arriving 

from the access network. The Ethernet 

controller receives packets from the access 

network, and places them in its internal 

buffer.  

Execution flow  

of the upstream pipeline 

The upstream software pipeline can run on a 

single core, or the workload can be distributed 

amongst several cores. Each core iterates each 

pipeline assigned to it, and runs the pipeline’s 

standard flow. 

Here is the general execution flow of the 

typical packet processing pipeline: 

 Receive packets from input ports. 

 Perform port-specific action handlers and 

table look-ups. 

Execute entry actions on a lookup hit, or 

execute the default actions on a lookup miss. 

(The table entry action usually sends packets 

to the output port, or dumps or drops the 

packets.)  

 

 

 
Downstream pipeline stages 

Although we did not simulate the 

downstream pipeline for this project, 

we did collect some data on this 

pipeline (see Appendix A). 

As shown in Figure 3 (previous page), 

the second stage of the downstream 

pipeline is the routing stage. This stage 

demonstrates the use of the hash and 

LPM (longest prefix match) libraries in 

the data plane development kit 

(DPDK). The hash and LPM libraries 

are used to implement packet 

forwarding. In this pipeline stage, the 

lookup method is either hash-based or 

LPM-based, and is selected at runtime.  

Hash lookup method 

When the lookup method is hash-

based, a hash object is used to emulate 

the downstream pipeline’s flow 

classification stage. The hash object is 

correlated with a flow table, in order to 

map each input packet to its flow at 

runtime. The hash lookup key is 

represented by a unique DiffServ  

5-tuple.  

The DiffServ 5-tuple is composed of 

several fields that are read from the 

input packet. These fields are the 

source IP address, destination IP 

address, transport protocol, source port 

number, and destination port number.  

The ID of the output interface for the 

input packet is read from the identified 

flow table entry. The set of flows used 

by the application is statically 

configured, and is loaded into the hash 

upon initialization. 

LPM lookup method 

When the lookup method is LPM-

based, an LPM object is used to 

emulate the pipeline’s forwarding stage 

for internet protocol version 4 (IPv4) 

packets. The LPM object is used as the 

routing table, in order to identify the 

next hop for each input packet at 

runtime. 

Configuration  

of downstream pipeline 

Below is the configuration code we 

used for the first stage in the 

downstream pipeline. 

Additional information and analysis of 

the downstream pipeline will be a 

future POC project. 

 
 

[  PIPELINE1] 

type = ROUTING 

core = 1 

pktq_in = RXQ0.0 RXQ1.0 

pktq_out = SWQ0 SWQ1 SINK0 

encap = ethernet_qinq 

ip_hdr_offset = 270 

Traffic Manager Pipeline: 

This is a pass-through stage 

with the following 

configuration: 

[PIPELINE2] 

  type = PASS-THROUGH 

core = 1 

pktq_in = SWQ0 SWQ1 TM0 TM1 

pktq_out = TM0 TM1 SWQ2 

SWQ3 

 

Transmit Pipeline: Also a 

pass through stage: 

[PIPELINE3] 

type = PASS-THROUGH 

core = 1 

pktq_in = SWQ2 SWQ3 

pktq_out = TXQ0.0 TXQ1.0 
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6 Stages in a typical upstream pipeline 

In the specific case of the upstream traffic 

pipeline of the DPDK vPE, there are usually  

6 stages. Figure 2 (earlier in this paper) shows 

an overview of the 6 typical stages. The first 

pipeline stage drains packets from the 

Ethernet controller. The last stage in the chain 

queues up the packets and sends them to the 

core network through the Ethernet controller. 

In our POC, we modeled and simulated all 

key stages of the upstream pipeline, and 

verified those results against known hardware 

configurations.  

Downstream pipeline 

In the edge router’s downstream traffic 

pipeline there are 3 actively running 

components and 4 typical pipeline stages. 

Figure 3 (earlier in this paper) shows an 

overview of the four typical stages. The three 

components are: 

 DPDK packetgen  

 Intel® Ethernet controller (the NIC) 

 Downstream software pipeline stages, 

running on one or more cores 

In our POC, for the downstream pipeline, the 

packetgen injects packets into the Ethernet 

controller. This simulates packets entering the 

access network from the core.  

The first stage of the edge router’s 

downstream pipeline pops packets from the 

internal buffer of the Ethernet controller. The 

last stage sends packets to the access network 

via the Ethernet controller.  

In our POC, the devices under test (DUTs) 

used IxNetwork* client software to connect to 

an Ixia traffic generator. Ixia generates 

simulated edge traffic into the DUT, and 

reports measurements of the maximum 

forwarding performance of the pipeline. In 

our model, we did not include considerations 

of packet loss. 

Note that the scope of this project did not 

allow a complete analysis of the downstream 

pipeline. The downstream pipeline uses 

different software and has different 

functionality and pipeline stages, as compared 

to the upstream pipeline.  

We do provide some of the data and insights 

for the downstream pipeline that we observed 

while conducting our POC (see Appendix A). 

However, full analysis and verification of 

those initial results will have to be a future 

project. 

Physical system setup 

When our team began setting up this POC, we 

started with a description of a typical physical 

architecture. We then set up a hardware DUT 

that would match that architecture as closely 

as possible. We set up additional DUTs to 

provide configurations for comparisons and 

verifications. 

Tables 1 and 2 (next page) describe the two 

DUTs we built for the first phase of our  

NFV POC. We used these DUTs to take 

performance measurements on the upstream 

pipeline.  

We compared those measurements to the 

corresponding elements of our Intel CoFluent 

simulations. The physical DUTs helped us 

determine the accuracy of the virtual Intel 

CoFluent model that we used for our 

simulations and projections.  

 

 

  

 

 

Project names for  

devices under test (DUTs) 

Intel internal project code names are 

often used to refer to various processors 

during development, proof of concepts 

(POCs), and other research projects.  

In the joint Intel and AT&T POC, we 

used three main test configurations, one 

of which was a pre-production 

processor (Skylake). Some of the 

devices under test (DUTs) were used to 

confirm simulation results and establish 

the accuracy of the simulations. Some 

were used to confirm simulation results 

for projecting optimal configurations 

for future generations of processors. A 

fourth, production version of the 

Skylake microarchitecture was used to 

characterize some aspects of the 

downstream pipeline (see Appendix A). 

The three main DUTs for our POC 

were based on these processors, with 

these project code names: 

 Skylake-based DUT: 

Pre-production Intel® Xeon® 

processor, 1.8 GHz 

 Broadwell-based DUT:  

Intel® Xeon® processor  

E5-2630, 2.2 GHz 

 Haswell-based DUT:  

Intel® Xeon® processor  

E5-2680, 2.5 GHz 
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The DUT described in Table 1 is based on a 

pre-production Intel® Xeon® processor,  

1.8 GHz, with 32 cores. The Intel-internal 

project code name for this pre-production 

processor is “Skylake.” 

The DUT described in Table 2 is based on an 

Intel® Xeon® processor E5-2630, 2.2 GHz. 

The Intel-internal project code name for this 

processor is “Broadwell.” 

In order to explore the performance sensitivity 

of one processor generation versus another, 

we set up an additional DUT, as described in 

Table 3. This DUT is based on an Intel® 

Xeon® processor E5-2680, 2.5 GHz. The 

Intel-internal project code name for this 

processor is “Haswell.” 

Packetgen in the physical DUT 

As mentioned earlier in the description of the 

upstream pipeline, our physical systems 

included the Ixia packetgen. In the upstream 

pipeline, the job of this hardware-based 

packetgen is to generate packets and work 

with the packet receive (RX) and transmit 

(TX) functions. Basically, the packetgen 

sends packets into the receive unit or out of 

the transmit unit. This is just one of the key 

hardware functions that was simulated in our 

Intel CoFluent model. 

 

 

 

 

 

 

 

 

Table 1. Test configuration based on the 

pre-production Intel® Xeon® processor, 1.8GHz (Skylake) 

Component Description Details 

Processor 

Product 
Pre-production Intel® Xeon® processor, 

1.8 GHz 

Speed (MHz) 1800 

Number of CPUs 32 Cores / 64 Threads 

LLC cache 22528 KB 

Memory 

Capacity 64 GB 

Type DDR4 

Rank 2 

Speed (MHz) 2666 

Channel/socket 6 

Per DIMM size 16 GB 

NIC 
Ethernet controller X710-DA4 (4x10G) 

Driver igb_uio 

OS 
Distribution Ubuntu 16.04.2 LTS 

Kernel 4.4.0-64-lowlatency 

BIOS Hyper-threading Off 
 

Table 2. Test configuration based on the 

Intel® Xeon® E5-2630, 2.2GHz (Broadwell) 

Component Description Details 

Processor 

Product Intel® Xeon® processor E5-2630, 2.2 GHz 

Speed (MHz) 2200 

Number of CPUs 10 Cores / 20 Threads 

LLC cache 25600 KB 

Memory 

Capacity 64 GB 

Type DDR4 

Rank 2 

Speed (MHz) 2133 

Channel/socket 4 

Per DIMM size 16 GB 

NIC 
Ethernet controller X710-DA4 (4x10G) 

Driver igb_uio 

OS 
Distribution Ubuntu 16.04.2 LTS 

Kernel 4.4.0-64-lowlatency 

BIOS Hyper-threading Off 
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Generating a packet-traffic profile  

Once we set up our physical DUTs, we 

needed to estimate the performance effect of a 

cache miss in the routing table lookup on 

these architectures. To do this, for each 

packet, we increased the destination IP to a 

fixed stride of 0.4.0.0. This caused each 

destination IP lookup to hit at a different 

memory location in the routing table.  

For our POC, we chose the following IP range 

settings to traverse the LPM (longest prefix 

match) table. For lpm24, the memory range  

is 64 MB, which exceeds the LLC size, and 

can trigger a miss in the LLC cache. 
 

range 0 dst ip start 0.0.0.0 

range 0 dst ip min 0.0.0.0 

range 0 dst ip max 

255.255.255.255 

range 0 dst ip inc 0.4.0.0 

For the source IP setting, any IP stride should 

be appropriate, as long as the stride succeeds 

on the access control list (ACL) table lookup. 

(The exact relationship of cache misses  

and traffic characteristics is not described in 

this POC, and will be investigated in a  

future study.) 

 

In our physical test model, we used default 

settings for other parameters, such as the 

media access control (MAC) address, source 

(SRC) transmission control protocol (TCP) 

port, and destination (DST) TCP port. 

Performance and sensitivities  

of the traffic profile 

In order to get the most accurate results, we 

needed to characterize the traffic profile in 

detail for both the hardware DUTs and our 

Intel CoFluent models and simulations.  

Hyperthreading was disabled to  

expose the impact of other elements 

There are a number of system and application 

parameters that can impact performance, 

including hyperthreading. For example, when 

we ran the workload with hyperthreading 

enabled, we gained about 25% more 

performance per core.1  

However, hyperthreading shares some 

hardware resources between cores, and this 

can mask core performance issues. Also, the 

performance delivered by hyperthreading can 

make it hard to identify the impact of other, 

more subtle architectural elements. Since we 

were looking for the impact of those other 

packet-handling elements, we disabled 

hyperthreading for this POC. 

Lookup table size affected performance 

While setting up the experiments, we 

observed a performance difference (delta) that 

depended on the size of the application’s 

lookup table. Because of this, for our POC, 

we decided to use the traffic profile described 

under “Generating a packet-traffic profile.” 

This ensured that we had some LLC misses  

in our model. 

 

 

 

 

 

Table 3. Test configuration based on the  

Intel® Xeon® processor E5-2680, 2.5 GHz (Haswell) 

Component Description Details 

Processor 

Product Intel® Xeon® processor E5-2680 v3, 2.5 GHz 

Speed (MHz) 2500 

Number of CPUs 24 Cores / 24 Threads 

LLC cache 30720KB 

Memory 

Capacity 256 GB 

Type DDR4 

Rank 2 

Speed (MHz) 2666 

Channel/socket 6 

Per DIMM size 16 GB 

NIC 
Ethernet controller  (4x10G) 

Driver igb_uio 

OS 
Distribution Ubuntu 16.04.2 LTS 

Kernel 4.4.0-64-lowlatency 

BIOS Hyper-threading Off 
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Figure 4. Model development. This figure shows how we modeled the flow for the simulation of the entire virtual edge provider (vPE) router pipeline. 

 
 

Developing the Intel 

CoFluent simulation model  

To develop the simulation model for this 

project, we performed an analysis of the 

source code, and developed a behavior model. 

We then developed a model of the 

performance cost in order to create a 

virtualized network function (VNF) 

development model (see Figure 4). 

To create our VNF simulation, we built an 

Intel CoFluent model of actively running 

components and pipeline stages that 

corresponded to those in the physical DUTs. 

We mapped these pipeline stages to a CPU 

core as the workload. We then simulated the 

behavior of each pipeline stage.  

In any performance cost model, underlying 

hardware can have an impact on the pipeline 

flow. For this reason, we modeled all key 

hardware components except storage.  

It was not necessary to model storage because 

our workload did not perform any actual 

storage I/O. 

For our project, the actively running 

components were the CPU, Ethernet 

controller, and packet generator (packetgen). 

One of the benefits of using the Intel CoFluent 

framework for these simulations is that Intel 

CoFluent can schedule these components at a 

user-specified granularity of nanoseconds or 

even smaller. 

Simulating the packetgen 

In a simulation, there is no physical hardware 

to generate packets, so we needed to add that 

functionality to our model in order to simulate 

that capability. For this POC, we did not  

 

actually simulate the packetgen. Instead, we 

used queues to represent the packetgen. 

To do this, we first simulated a queue of 

packets that were sent to the Ethernet 

controller at a defined rate. In other words, we 

created receive (RX) and transmit (TX) 

queues for our model. We took a packet off 

the RX queue every so many milliseconds for 

the RX stage in the pipeline. This simulated a 

packet arriving at a specific rate.  

We did a similar simulation for the TX stage 

in the pipeline.  

The rate at which packets entered and exited 

the queues was determined by the way the 

physical DUT behaved, so the simulation 

would model the physical DUT as closely  

as possible. 

 



Modeling the impact of CPU properties to optimize and predict packet-processing performance 12  

 

Figure 5. Model of upstream software pipeline. The ACL pipeline stage supports auditing of incoming traffic. Note that, in our proof-of-concept (POC), 

the queueing stage has two locations, and performs packet receiving (RX) or packet transmitting (TX), depending on its location in the pipeline. 

 

 

Simulating the network 

In this POC, the Ethernet controller was 

simulated based on a very simple throughput 

model, which receives or sends packets at a 

user-specified rate.  

 

For our POC since we wanted to characterize 

the performance impact of CPU parameters on 

software packet processing pipeline we did 

not implement the internal physical layer 

(PHY), MAC, switching, or first-in-first-out 

(FIFO) logic. We specifically defined our test 

to make sure we would not see system 

bottlenecks from memory bus bandwidth or 

from the bandwidth of the Peripheral 

Component Interconnect Express (PCI-e). 

Because of that, we did not need to model the 

effect of that network transaction traffic 

versus system bandwidth. 

Modeling the upstream pipeline 

In our POC, we simulated all key stages of the 

upstream packet processing pipeline. The 

ACL filters, flow classifier, metering and 

policing, and routing stages were modeled 

individually. The packet RX stage and the  

queuing and packet TX stage are also usually 

separate pipeline stages. In our POC, we 

modeled the packet RX and packet TX stages 

as a single packet queueing stage that was 

located at both the beginning and the end of 

the pipeline (see Figure 5). 

Implementing lookup algorithms 

One of the things we needed to do for our 

model was to implement lookup algorithms. 

To do this, we first had to consider the 

pipelines. As shown earlier in Figure 2,  

an upstream pipeline usually consists  

of 3 actively running components  

and 6 typical pipeline stages. 

Note that the ACL pipeline stage is a 

multiple-bit trie implementation (a tree-like 

structure). This routing pipeline stage uses an 

LPM lookup algorithm which is based on a 

full implementation of the binary tree. For our 

POC, we implemented the ACL lookup 

algorithm and the LPM lookup algorithm to 

support auditing of the incoming traffic. We 

also implemented these two algorithms to 

support routing of traffic to different 

destinations.  

In addition, the flow classification used a hash 

table lookup algorithm, while flow action 

used an array table lookup algorithm. We  

implemented both of these algorithms  

in our model.  

Developing a model  

of the cost of performance 

It’s important to understand that  

Intel CoFluent is a high-level framework for 

simulating behavior. This means that the 

framework doesn’t actually execute CPU 

instructions; access cache or memory cells; or 

perform network I/O. Instead, Intel CoFluent 

uses algorithms to simulate these processes 

with great accuracy (as shown in this POC).1  

In order to develop a model of the execution 

cost of performance, we tested the accuracy of 

the simulations in all phases of our POC by 

comparing the simulation results to 

measurements of actual physical architectures 

of various DUTs. The delta between the 

estimated execution times from the 

simulation, and measurements made on the 

physical DUTs, ranged from 0.4%  

to 3.3%.1 This gave us a high degree of 

confidence in our cost model.  

(Specifics on the accuracy of our model and 

simulations, as compared to the DUTs, are 

discussed later in this paper under “Results 

and model validation.”)  

With the very small delta seen between 

performance on the simulations versus the 

physical DUTs, we expect to be able to use 

other Intel CoFluent models in the future, to 

effectively identify the best components for 

other packet-traffic workloads under 

development. 
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Hardware performance considerations 

To build an NFV model of the true cost of 

performance, we had to consider hardware, 

not just software. For example, elements that 

affect a typical hardware configuration 

include: core frequency, cache size, memory 

frequency, NIC throughput, and so on. Also, 

different cache sizes can trigger different 

cache miss rates in the LPM table or the  

ACL table lookup. Any of these hardware-

configuration factors could have a significant 

effect on our cost model. 

Impact of cache on pipeline performance 

Another key consideration in our POC was 

how much the packet processing performance 

could be affected by different hardware 

components. For example, consider the 

example of cache. Specifically, look at the 

impact on pipeline performance of cache 

misses at different cache levels. Besides the 

packet RX and packet TX pipelines, all edge 

router pipelines must perform a table lookup, 

then a table entry handler on a hit — or a 

default table entry handler on a miss. These 

operations are mostly memory operations.  

Cache misses could have very different access 

latencies for the memory operations at 

different cache levels. For example, latencies 

could be as many as 4 cycles in an L1 cache 

hit; to 12 cycles in an L2 cache hit; to 

hundreds of cycles in a DRAM memory 

access. The longer the latency of the memory 

access, the greater the impact on the CPU 

microarchitecture pipeline.  

The impact of latency on the pipeline is called 

the blocking probability or blocking factor (as 

compared to a zero cache miss). The longer 

the memory access latency, the more the CPU 

execution pipeline is blocked. The blocking 

factor is the ratio of that latency as compared 

to zero cache misses. 

You might expect the blocking factor to be 1 

when memory access cycles aren’t hidden by 

the CPU’s execution pipeline, but that is not 

actually the case. A miss does not necessarily 

result in the processor being blocked. In 

reality, the CPU can execute other instructions 

even while some instructions are blocked at 

the memory access point. Because of this,  

some instructions are executed as if 

overlapped. The result is that, regardless of 

the DUT configuration, the blocking factor is 

not usually 1. 

The challenge for developers is that the cache 

miss rate has a critical impact on performance. 

To address this challenge, we needed to 

quantify the impact of this miss rate, and 

integrate its consequences into our cost 

model. To do this, we configured the cache 

size via the Intel® Platform Quality of 

Service Technology (PQOS) utility. We also 

increased the number of destination IPs to 

traverse the LPM table. This allowed us to 

introduce different LLC cache miss rates into  

our model. 

 Real-world performance versus ideal 

cache miss rate. To estimate the impact 

of cache miss rate on performance, we 

regressed the equation for core cycles per 

instruction (CPI). In regressing the 

equation for CPI, we used LLC misses  

per instruction (MPI) and LLC miss 

latency (ML) as predictor variables (see 

Figure 6). In other words, we regressed 

the blocking factor and the core CPI 

metric. This gave us a way to estimate 

the extra performance cost imposed by 

different hardware cache configurations.  

 

Note: 

L1 and L2 also have a significant impact 

on performance. However, the impact of L1 

and L2 can’t actually be quantified, since 

we cannot change the sizes of the L1  

and L2 cache. 

 Linear performance. Core frequency 

refers to clock cycles per second (CPS), 

which is used as an indicator of the 

processor's speed. The higher the core 

frequency, the faster the core can execute 

an instruction. Again we used a 

regression model to estimate the packet 

processing throughput for the upstream 

software pipeline, by using the core 

frequency as a predictor variable. 

Characterizing the cost model 

In our POC, the cost model is a model of the 

execution cost of specific functions in the 

execution flow of the upstream software 

pipeline. In other words, the cost model is the 

execution latency. 

The cost model for each software pipeline 

consists of characterizing the pipeline in terms 

of CPI and path length. We determined CPI 

using the simple model shown in Figure 6 

(above). 

 

Figure 6. Simple models for estimating cycles per instruction (CPI) when cache misses occur; 

and for estimating path length for the pipeline. 



Modeling the impact of CPU properties to optimize and predict packet-processing performance 14  

In order to get the execution latency for a 

specific length of the pipeline, we also had to 

estimate the path length for that section of the 

pipeline. The path length is the number of x86 

instructions retired per 1 Mb of data sent. 

Again, see Figure 6 (previous page). 

In our model, multiplying the two variables — 

CPI and path length — gives the execution 

time of the software pipeline in terms of CPU 

cycles. With that information, we were able to 

simulate CPI and path length, using the Intel 

CoFluent tool, in order to compute the end-to-

end packet throughput. 

Establishing the execution cost  

of the model 

We began building our Intel CoFluent cost 

model based on the DPDK code. With the 

previous considerations taken into account, 

we used the DPDK code to measure the 

instructions and cycles spent in the different 

pipeline stages. These cycles were assumed to 

be the basic execution cost of the model. 

Figure 4, earlier in this paper, shows an 

overview of the cost model. 

Simulation constraints  

and conditions 

For the upstream pipeline, we modeled 

hardware parameters (such as CPU frequency 

and LLC cache size), packet size, pipeline 

configurations, and flow configurations. We 

focused on the areas we expected would have 

the biggest impact on performance. We then 

verified the results of our simulations against 

performance measurements made on the 

physical hardware DUTs. 

In order to create an effective model for a 

complete system, we accepted some 

conditions for this project. 

Support for the upstream pipeline 

As mentioned earlier, this POC was focused 

on the upstream pipeline. The scope of our 

model did not support simulating the 

downstream pipeline. However, we hope to 

conduct future POCs to explore packet 

performance in that pipeline. The information 

we did collect on the downstream pipeline  

is presented in Appendix A, at the end of  

this paper. 

Cache analysis supported for LLC 

In this study, our test setup did not allow us to 

change the L1 and L2 size to evaluate the 

impact of L1 and L2 on performance. Because 

of this, our model supported only the LLC 

cache size sensitivity analysis, and not an 

analysis of L1 or L2.  

Dropping or dumping packets was not 

supported 

Dropping packets is an error-handling 

method; and dumping packets is a debugging 

or profiling tool. Dropping and dumping 

packets doesn’t always occur in the upstream 

pipeline. If it does, it can occur at a low rate 

during the running lifetime of that pipeline.  

Our test model did not support dropping or 

dumping packets. If we had included dropping 

packets and/or the debugging tools in our 

POC model, they could have introduced more 

overhead to the simulator. This could have 

slowed the simulation speed and skewed our 

results.  

We suspect that dropping and dumping 

packets might not be critical to performance 

in most scenarios, but we would need to 

create another model to explore those impacts. 

That would be an additional project for  

the future. 

Critical data paths simulated 

With those three constraints in place, we 

modeled and simulated the most critical data 

paths of the upstream pipeline. This allowed 

us to examine the most important performance 

considerations of that pipeline.  

Hardware analysis and  

data collection 

Verifying the accuracy of any simulation is an 

important phase of any study. In order to test 

the accuracy of our Intel CoFluent simulations 

against the hardware DUT configurations, we 

needed to look at how VNF performance data 

would be collected and analyzed. 

Hardware analysis tools 

We used three hardware analysis tools to help 

with our VNF verifications: Event Monitor 

(EMON) tool, Sampling Enabling Product 

(SEP) tool, and the EMON Data Processor 

(EDP) tool. These tools were developed by 

Intel, and are available for download from the 

Intel Developer Zone. 

Event Monitor (EMON) tool 

EMON is a low-level command-line tool for 

processors and chipsets. The tool logs event 

counters against a timebase. For our POC, we 

used EMON to collect and log hardware 

performance counters.  

You can download EMON as part of the 

Intel® VTune Amplifier suite. Intel VTune 

Amplifier is a performance analysis tool that 

helps users develop serial and multithreaded 

applications. 

Sampling Enabling Product (SEP) tool 

SEP is a command-line performance data 

collector. It performs event-based sampling 

(EBS) by leveraging the counter overflow 

feature of the test hardware’s performance 

monitoring unit (PMU). The tool captures the 

processor’s execution state each time a 

performance counter overflow raises an 

interrupt.  

Using SEP allowed us to directly collect the 

performance data — including cache misses 

— of the target hardware system. SEP is part 

of the Intel VTune Amplifier.  

EMON Data Processor (EDP) tool 

EDP is an Intel-internal analysis tool that 

processes EMON performance samples for 

analysis. EDP analyzes key hardware events 

such as CPU utilization, core CPI, cache 

misses and miss latency, and so on. 

https://software.intel.com/en-us
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Figure 7. Baseline performance 

measurements, with default CPU 

frequency and default LLC cache 

size of 22 MB.1 The DUT for these 

measurements was based on a pre-

production Intel® Xeon® processor, 

1.8 GHz (Skylake). 

 

Collecting performance-based data 

In general, there are two ways to collect 

performance-based data for hardware 

counters: 

 Counting mode, implemented in 

EMON, which is part of the  

Intel VTune suite 

 Sampling mode, implemented in the 

SEP, which is also part of the  

Intel VTune suite 

Counting mode reports the number of 

occurrences of a counter in a specific period 

of time. This mode lets us calculate precise 

bandwidth and latency information for a given 

configuration. 

Counting mode is best for observing the 

precise use of system resources. However, 

counting mode does not report software 

hotspots. For example, it does not report 

where the code takes up the most cycles, or 

where it generates the most cache misses. 

Sampling mode is better for collecting that 

kind of information. 

EMON outputs the raw counter information in 

the form of comma-separated values (CSV 

data). We used the EMON Data Processor 

(EDP) tool to import those raw counter CSV 

files, and convert them into higher level 

metrics. For our POC, we converted our data 

into Microsoft Excel* format, so we could 

interpret the data more easily. 

Workload performance 

measurements and analysis for 

model inputs 

We used various metrics to collect data from 

the hardware platform. Using these metrics let 

us input the data more easily into our model 

and/or calibrate our modeling output. 

Such metrics included:  

 Instructions per cycle (IPC) 

 Core frequency 

 L1, L2, and LLC cache sizes 

 Cache associativity 

 Memory channels 

 Number of processor cores 

We also collected application-level 

performance metrics in order to calibrate the 

model’s projected results.  

Results and model validation 

Our NFV project provided significant 

performance data for various hardware 

configurations and their correspondingly 

modeled simulations. It also allowed us to 

compare the performance of different 

simulation models, from real-world 

configurations to worst-case configurations,  

to ideal configurations.  

Our results show that it is possible to use a 

VNF model to estimate both best-case and 

worst-case packet performance for any given 

production environment.  

The next several discussions explain how we 

established the accuracy of our simulation, 

and describe our key results. 

Establishing a baseline for 

simulation accuracy 

To establish a baseline of the accuracy of our 

VNF simulation model, we first measured 

packet performance on a physical Skylake- 

based DUT, versus our Intel CoFluent 

simulation model.  

Figure 7 shows performance when measured 

under the default CPU frequency, with the 

default LLC cache size of 22 MB. As you can 

see in Figure 7, the simulation measurement 

projections (our results) are very close — 

within 3.3% — of those made on real-world 

architectures.1 

Measuring performance at 

different core frequencies 

Figure 8 (next page) shows the results of 

measuring performance at different core 

frequencies on both DUTs and simulations. 

These measurements include using  

Intel® Turbo Boost at maximum frequency, 

and adjusting the core frequency using a 

Linux* P-state driver.  

In Figure 8, the yellow line represents the 

difference between measurements of the 

simulation as compared to measurements 

taken on the physical DUTs. As you can see, 

the Intel CoFluent simulation provides 

estimated measurements that are within  

0.7% to 3.3% of the measurements made on 

the actual physical hardware.1 
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Analyzing performance for 

different cache sizes 

Figure 9 shows packet performance as 

measured for different LLC cache sizes:  

2 MB, 4 MB, 8 MB, and 22 MB. In our 

simulation, cache size was adjusted using the 

Intel PQOS utility.  

Our POC showed that a 2 MB LLC cache size 

causes a dramatically larger miss rate (32% 

miss rate) than a 22 MB LLC cache size 

(1.6% miss rate).1 However, almost 90% of 

memory access hits are at L1 cache.1  

Because of this, adjusting the LLC cache size 

decreases performance by a maximum of  

only 10%.1 

In Figure 9, the yellow line again shows the 

difference between measurements made on 

the physical DUT, and measurements of the 

simulation. The delta remains very small, 

between 0.5% and 3.3%.1 
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Figure 8. Performance measured at different frequencies for our simulation versus on the physical device under test (DUT).1  

The DUT for these measurements was based on a pre-production Intel® Xeon® processor, 1.8 GHz (Skylake). 
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The DUT for these measurements was based on a pre-production Intel® Xeon® processor, 1.8 GHz (Skylake). 
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Figure 10. Measuring performance on multi-core 
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Figure 9. Performance measured for different LLC cache sizes in our simulations 

versus the physical DUT.1 The DUT for these measurements was based on 

a pre-production Intel® Xeon® processor, 1.8 GHz (Skylake). 
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Figure 9. Performance measured for different LLC cache sizes 

in our simulations versus the physical DUT.1 The DUT for these 

measurements was based on a pre-production Intel® Xeon® processor,  

1.8 GHz (Skylake). 
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Figure 11. Performance comparison of baseline configuration 

versus a simulation that includes a field-programmable 

gate array (FPGA)-accelerated access control list  

(ACL) lookup.1 The DUT for these measurements was 

based on a pre-production Intel® Xeon® processor, 

1.8 GHz (Skylake). 
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accelerated access control list  

(ACL) lookup.1 The DUT for these measurements was 

based on a pre-production Intel® Xeon® processor, 1.8 

GHz (Skylake). 

Measuring performance  

for different numbers of cores 

Figure 10 shows the throughput results for 

measurements taken on DUTs with various 

numbers of cores. These measurements were 

made on the pre-production Skylake-based 

DUT, and compared with the results projected 

by our simulation. Note that in this POC, the 

upstream pipeline ran on a single core, even 

when run on processors with multiple cores. 

As you can see in Figure 10, the throughput 

scales linearly as more cores are added. In this 

test, the packets were spread evenly across the 

cores by way of a manual test configuration. 

In our test, all pipeline stages were bound to 

one fixed core, and the impact of core-to-core 

movement was very small.  

Again, the yellow line represents the 

difference between measurements of the 

physical system, and measurements of the 

simulation. For performance based on cache 

size, the delta is still very small, between 

0.4% and 3.0% for simulation predictions as 

compared to measurements made on  

the DUT.1 

 

 

 

Simulating hardware  

acceleration components 

Previously, we showed how we broke down 

the distribution of CPU cycles and 

instructions amongst different stages of 

pipelines. Just as we did in that analysis, we 

can do a similar what-if analysis to identify 

the best hardware accelerators for our model.  

For example, in one what-if analysis, we 

replaced the ACL lookup with an FPGA 

accelerator that is 10 times as efficient as the 

standard software implementation in the 

DPDK. We found that swapping this 

component sped up the performance of the 

overall upstream traffic pipeline by over 15% 

(see Figure 11).1  

 

 

 

 

 

 

It’s important to note that this performance 

result represents only one functionality of the 

pipeline that was simulated for FPGA. The 

15.5% result we saw here does not represent 

the results of the full capability of the FPGA 

used for this workload. Still, this kind of 

what-if analysis can help developers more 

accurately estimate the cost and efficiency of 

adopting FPGA accelerators or of using some 

other method to offload hardware 

functionalities. 

  

 

 

Figure 10. Measuring performance on multi-core CPUs.1 The DUT 

for these measurements was based on a pre-production 

Intel® Xeon® processor, 1.8 GHz (Skylake). 
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Performance  

sensitivity from generation  

to generation 

Figure 12 shows the performance of the 

upstream pipeline on a Broadwell-based 

microarchitecture, as compared to a Skylake-

based microarchitecture. The Intel CoFluent 

simulation gives us an estimated delta of less 

than 4% for measurements of packet 

throughput on simulated generations of 

microarchitecture, as compared to 

measurements on the physical DUTs.1 

Core cycles per instruction (CPI) 

Our POC results tell us that several specific 

factors affect CPI and performance. For 

example, the edge routers on both Broadwell 

and Skylake microarchitectures have the same 

program path length. However, Skylake has a 

much lower core CPI than Broadwell (lower 

CPI is better). The core CPI on the Broadwell-

based DUT is 0.87; while the core CPI on the 

Skylake DUT is only 0.50.1  

 

Broadwell also has only 256 KB of L2 cache, 

while Skylake has 2 MB of L2 cache (more 

cache is better). Also, when there is a cache 

miss in L2, the L2 message-passing interface 

(MPI) on the Skylake-based DUT is 6x the 

throughput of L2 MPI delivered by 

Broadwell.1 

Our POC measurements tell us that all of 

these factors contribute to the higher core CPI 

seen for Broadwell microarchitectures, versus 

the greater performance delivered by Skylake. 

Maximum capacity at the LLC level 

One of the ways we used our simulations was 

to understand performance when assuming 

maximum capacity at the LLC level. This 

analysis assumed an infinite-sized LLC, with 

no LLC misses. 

 

  

 

 

Best case and worst case  

traffic profiles 

At the time of this joint NFV project,  

a production traffic profile was not 

available for analyzing bottlenecks in a 

production deployment. However, we 

did analyze both the worst-case profile 

and the best case profile. In the worst 

case profile, every packet is a new 

flow. In the best-case profile, there is 

only one flow. We did not set out to 

study these scenarios specifically, but 

the traffic profile we used provided 

information on both best- and worst-

case profiles. 

Our results showed that the difference 

in performance between worst-case and 

best-case profiles was only 7%.1 That 

could offer developers a rough 

estimation of what performance could 

be like between best-case and worst-

case packet performance for any given 

production environment.  

It’s important to understand that our 

results show only a rough estimation  

of that difference for our pipeline 

model and our particular type of 

application. The packet performance 

gap between your own actual best- and 

worst-case traffic profiles could be 

significantly different. 

s 

Figure 12. Comparison of performance from CPU generation to generation.1 
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Our analysis shows that packet throughput can 

achieve a theoretical maximum of 3.98 MPPS 

(million packets per second) per core on 

Skylake-based microarchitectures.1  

Ideal world versus reality 

In an ideal world, we would eliminate all 

pipeline stalls in the core pipeline, eliminate 

all branch mispredictions, eliminate all 

translation lookaside buffer (TLB) misses, and 

assume that all memory accesses hit at the  

L1 data cache. This would allow us to achieve 

the optimal core CPI. 

For example, a Haswell architecture can 

commit up to 4 fused µOPs each cycle per 

thread. Therefore, the optimal CPI for the  

4-wide microarchitecture pipeline is 

theoretically 0.25 CPI. For Skylake, the 

processor’s additional microarchitecture 

features can lower the ideal CPI even further. 

If we managed to meet optimal conditions for 

Haswell, when CPI reaches 0.25, we could 

double the packet performance seen today, 

which would then be about 8 MPPS  

(7.96 MPPS) per core. (Actual CPI is based 

on the application, of course, and on how  

well the application is optimized for its 

workload.) 

Performance sensitivities based  

on traffic profile 

Our POC shows that the packet processing 

performance for the upstream pipeline on the 

edge router will change depending on the 

traffic profile you use.  

Performance scaled linearly with  

the number of cores 

Using the traffic profile we chose, we found 

that we could sustain performance at about  

4 MPPS per core on a Skylake architecture.1 

We tested this performance on systems  

with 1, 2, and 6 cores; and found that 

performance scaled linearly with the number 

of cores (see Figure 10, earlier in this paper).1  

Note that, when adding more cores, each  

core can use less LLC cache, which may 

cause a higher LLC cache miss rate. Also,  

as mentioned earlier in this paper, under the 

heading, “Impact of cache on pipeline 

performance,” adjusting the LLC cache size 

could impact performance. So adding more 

cores could actually increase fetch latency and 

cause core performance to drop. 

Our results include the performance analysis 

for different cache sizes, from 2MB to 22MB. 

We did not obtain results for cache sizes 

smaller than 2MB.  

Execution flow was steady 

We also discovered that our test vPE 

application delivered a steady execution flow. 

That meant we had a predictable number of 

instructions per packet. We can take that 

further to mean that the higher the core clock 

frequency, the more throughput we could 

achieve.  

For our POC conditions (traffic profile, 1.8 

GHz to 2.1 GHz processors, workload type) 

we found that performance of the vPE scales 

linearly as frequency increases.1 

Next steps 

As we continue to model packet performance, 

it’s unavoidable that we will have to deal with 

hardware concurrency and the interactions 

typically seen with various core and non-core 

components. The complexity of developing 

and verifying such systems will require 

significant resources. However, we believe  

we could gain significant insights from 

additional POCs.  

We suggest that next steps include: 

 Using our Intel CoFluent model to 

identify component characteristics that 

have the greatest impact on the 

performance of networking workloads. 

This could help developers choose the 

best components for cluster designs that 

are focused on particular types of 

workloads. 

 Model and improve packet-traffic 

profiles to support a multi-core 

paradigm. This paradigm would allow 

scheduling of different parts of the 

workload pipeline onto different cores. 

 Model and improve traffic profiles to 

study the impact of the number of new 

flows per second, load balancing across 

cores, and other performance metrics. 

 Model and simulate the downstream 

pipeline. 

Fused µOPs 

Along with traditional micro-

ops fusion, Haswell supports 

macro fusion. In macro fusion, 

specific types of x86 

instructions are combined in 

the pre-decode phase, and then 

sent through a single decoder. 

They are then translated into a 

single micro-op. 
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Summary 

Most of today’s data is transmitted over 

packet-switched networks, and the amount of 

data being transmitted is growing 

dramatically. This growth, along with a 

complex set of conditions, creates an 

enormous performance challenge for 

developers who work with packet traffic.  

To identify ways to resolve this challenge, 

Intel and AT&T collaborated to perform a 

detailed POC on several packet processing 

configurations. For this project, our joint team 

used a simulation tool (Intel CoFluent) on a 

DPDK packet-processing workload which 

was based on the DPDK library, and run on 

x86 architectures. The simulation tool 

demonstrated results (projections) with an 

accuracy of 96% to 97% when compared to 

the measurements made on physical hardware 

configurations.1 

Our results provide insight into the kinds of 

changes that can have an impact on packet 

traffic throughput. We were also able to 

identify the details of some of those impacts. 

This included how significant the changes 

were, based on different hardware 

characteristics. Finally, our POC analyzed 

component and processor changes that could 

provide significant performance gains.  

Key findings 

Here are some of our key findings: 

CPU frequency 

CPU frequency has a high impact on packet 

performance — it’s a nearly linear scaling.1 

Even if the underlying architecture has 

different core frequencies, the execution 

efficiency (reflected in core CPI) for these 

cores is almost the same.  

  

 

LLC cache 

The size and performance of LLC cache had 

little influence on our DPDK packet 

processing workload. This is because, in our 

POC, most memory accesses hit in L1 and L2, 

not in LLC; and there is a low miss rate in  

L1 and L2.  

Note that the size of LLC cache can cause 

higher miss rates on different types of VNF 

workloads. However, on the VNF workload 

we simulated, the effect was small because of 

the high L1 and L2 hit rates.  

We did not include studies in our POC to 

understand the effects caused by other VNF 

workloads running on different cores on the 

same socket, and affecting the LLC in 

different ways. That was not in the scope of 

our POC, and would be a future project. 

Performance 

Performance scales linearly with the number 

of cores.1 Our results show this is due to the 

small impact of LLC, since there is such a low 

miss rate in L1 and L2. Basically, when a 

memory access misses in L1 or L2, the system 

will search LLC. Since L1 and L2 are 

dedicated for each core, and since LLC is 

shared by all cores, the more cores there are, 

the higher the potential rate for LLC misses. 

Packet size 

Packet size does not have a significant 

performance impact in terms of packets per 

second (PPS).1 For example, look at the edge 

router, which is a packet-forwarding 

approach. With an edge router, only the 

packet header (the MAC/IP/TCP header) is 

processed for classifying flow, for 

determining quality of service (QoS), or for 

making decisions about routing. The edge 

router doesn’t touch the packet payload; and 

increasing the packet size (payload size) will 

not consume extra CPU cycles.  

Contrast this with BPS (bytes per second), 

where BPS scales with PPS and packet size. 

This BPS-to-PPS scaling will continue until 

the bandwidth limit is reached, either at the 

Ethernet controller, or at the system 

interconnect. 

Conclusion 

Our detailed POC tells us that, when selecting 

a hardware component for an edge router 

workload, developers should consider 

prioritizing core number and frequency. 

In terms of scaling for future products, our 

model was able to project potential 

performance gains very effectively. For 

example, our simulation model showed a 

detailed distribution of CPU cycles and 

instructions of each workload stage. 

Developers can use this type of information to 

better estimate the performance gains when 

FPGA hardware accelerators or other ASIC 

off-loading methods are applied.  

Our POC also demonstrated that our Intel 

CoFluent model is highly accurate in 

simulating vPE workloads on x86 systems. 

The average correlation between our 

simulations and the known-good physical 

architectures is within 96%.1 This correlation 

holds true even across the scaling of different 

hardware configurations.  

The accuracy of these Intel CoFluent 

simulations can help developers prove the 

value of modeling and simulating their 

designs. With faster, more accurate 

simulations, developers can improve their 

choices of components used in new designs, 

reduce risk, and speed up development cycles. 

This can then help them reduce time to market 

for both new and updated products, and help 

reduce overall development costs. 
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Appendix A. 

Performance in the 

downstream pipeline 

Our joint team characterized the downstream 

pipeline on two of our devices under test 

(DUTs). A full study of the downstream 

pipeline was not in the scope of our proof of 

concept (POC) study. However, this appendix 

provides some preliminary results that we 

observed while studying the upstream 

pipeline.  

Note that the downstream pipeline uses 

different software, with different functionality 

and has different stages than the upstream 

pipeline. Full verification of results seen from 

the downstream pipeline will have to be a 

future project. 

Table 3, earlier in this paper, describes the 

hardware DUT configuration for the Haswell-

based microarchitecture used to determine 

throughput scaling of the downstream 

pipeline. Table A-1 (above, right) describes 

the hardware DUT configuration of a fourth, 

production version of Skylake-based 

microarchitecture on which we also obtained 

downstream pipeline results. This fourth 

production-version processor was the Intel® 

Xeon® processor Gold 6152, 2.1 GHz. 

In this POC, we measured throughput on a 

single core for all stages of the downstream 

pipeline.  

Figure A-1 shows throughput scaling as a 

function of frequency for the downstream 

pipeline. These measurements were made on 

the Intel® Xeon® processor E5-2680, 2.5 

GHz DUT (Haswell-based architecture).  

Figure A-2 shows throughput measured at 

2000 MHz on two architectures: the Haswell-

based architcture, and the production version 

of the Skylake-based architecture.  

As mentioned earlier, our POC focused on the 

upstream pipeline. A more detailed analysis of 

the downstream pipeline will be the subject of 

future work. 

 

 

Figure A-1. Throughput scaling, as tested on 

the Intel® Xeon® processor  

E5-2680, 2.5 GHz  (Haswell) 

device under test.1 Throughput 

scaling is measured in million 

packets per second (MPPS) as a 

function of CPU speed. 

 

 

Figure A-2. Throughput scaling at 2000 MHz 

on different architectures.1 

Throughput scaling is measured in 

million packets per second (MPPS) 

as a function of CPU speed. 

 

 

 

  

Table A-1. Test configuration based on the  

Intel® Xeon® processor Gold 6152, 2.1 GHz  

Component Description Details 

Processor 

Product Intel® Xeon® Gold processor 6152, 2.1 GHz 

Speed (MHz) 2095 

Number of CPUs 44 cores / 88 threads 

LLC cache 30976 KB 

Memory 

Capacity 256 GB 

Type DDR4 

Rank 2 

Speed (MHz) 2666 

Channel/socket 6 

Per DIMM size 16 GB 

NIC 
Ethernet controller (4x10G) 

Driver igb_uio 

OS Distribution Ubuntu 16.04.2 LTS 

BIOS Hyper-threading Off 
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Appendix B. 

Acronyms and terminology 

This appendix defines and/or explains terms and acronyms used in this paper. 

 

ACL Access control list. 

ASICs Application-specific integrated 
circuits. 

BF Blocking probability, or “blocking 
factor.” 

BPS Bytes per second. 

CPI Cycles per instruction. 

CPIcore CPI assuming infinite LLC (no  
off-chip accesses). 

CPS Clock cycles per second. 

CSV Comma-separated values. 

DPDK Data plane development kit. 

DRAM Dynamic random-access 
memory. 

DST Destination. 

DUT Device under test. 

EBS Event-based sampling. 

EDP EMON Data Processor tool. EDP 
is an Intel-developed tool used 
for hardware analysis. 

EMON Event monitor. EMON is an Intel-
developed, low-level command-
line tool for analyzing processors 
and chipsets. 

 

FIFO First in, first out. 

FPGA Field-programmable gate array. 

I/O Input / output. 

IP Internet protocol. 

IPC Instructions per cycle. 

IPv4 Internet protocol version 4. 

L1 Level 1 cache. 

L2 Level 2 cache. 

L3 Level 3 cache. Also called last-
level cache. 

LLC Last-level cache. Also called  
level 3 cache. 

LPM Longest prefix match. 

MAC Media access control. 

ML Miss latency or memory latency, 
as measured in core clock cycles. 

MPI Message-passing interface. Also 
misses per instruction (with 
regards to LLC). 

MPPS Million packets per second. 

NFV Network function virtualization. 

NIC Network interface card. 

NPU Network-processing unit. 

 

packetgen Packet generator. 

PCI-e  Peripheral Component 
Interconnect Express. 

PHY Physical layer. 

POC Proof of concept. 

PQOS Intel® Platform Quality of Service 
Technology utility. 

PPS Packets per second. 

QoS Quality of service. 

RX Receive, receiving. 

SEP Sampling Enabling Product, an 
Intel-developed tool used for 
hardware analysis. 

SRC Source. 

TCP Transmission control protocol. 

TLB Translation lookaside buffer. 

TX Transmit, transmitting. 

VNF Virtualized network function. 

vPE Virtual provider edge (router). 
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