Boot Loader Choices for Small and Fast System
Initialization Requirements

ABSTRACT: There are several system initialization solutions for Intel
architecture. Choosing the solution that is best for a given architecture
migration depends on requirements such as boot speed, boot loader size,
and the amount of configurability that the system needs to support. With
these factors in mind, boot loaders either target closed box designs or open
box designs. Other architectures, such as PowerPCt or ARMT, are
accustomed to getting the boot logic solution through open source or from
their silicon vendor. This article provides an overview of the Intel
architecture system initialization solutions, which include custom boot
loaders and Basic Input/Output System (BIOS).

System Initialization Roles and Responsibilities

The system firmware is a layer between the hardware and the operating
system that maintains platform hardware data for the operating system. The
system firmware is customized for the specific hardware requirements of the
platform and perhaps for a given application. Traditionally, platforms based
on Intel architecture boot in three steps:

1. System firmware

2. Operating system loader

3. Operating system

As part of the power on self test (POST), the system firmware begins to
execute out of flash memory to initialize all the necessary silicon
components including the CPU itself and the memory subsystem. Once main
memory is initialized, the system firmware is shadowed from ROM into RAM
and the initialization continues. As part of the advanced initialization stages
the system firmware creates tables of hardware information in main memory
for the operating system to utilize during its installation, loading, and
runtime execution. Hardware workarounds are often implemented during the
power-on self-test (POST) to avoid changing silicon or hardware during later
design phases. There may be an element of the system firmware that
remains active during later stages to allow for responses to various
operating system function calls.

The last task that the system firmware performs is a handoff of control to
the operating system loader. The operating system loader does exactly what
its name implies. It is customized with knowledge about the specific
operating system, how it is ordered, and which blocks of the operating

Copyright © 2010 Intel Corporation 1



system to pull from the OS storage location. The operating system loader
may be configured to extend the platform initialization beyond the system
firmware’s scope in order to allow for additional boot options. Depending on
the system architecture and the firmware solutions that are adopted, the
operating system loader and the system firmware could be part of the same
binary.

The operating system completes the initialization of the hardware as it
executes the software stack and device drivers. It potentially loads the
human/machine interface and finally begins the applications. Care should be
taken when considering combining elements of various components together
as licenses may prohibit linking the objects together in various ways.

Boot Loaders for Closed Box Designs

Some embedded systems use minimized specialized (custom) firmware
stacks created for fast speed, small size, and specific system requirements.
These boot loaders perform static hardware configurations and only initialize
critical hardware features prior to handoff to an operating system. They are
tuned to a targeted OS, specific application, or function set, and support
minimal upgrade and expansion capabilities.

QNXt Fastboot Technology for Intel® Atom™ Processors

QNX fastboot technology integrates system initialization into the QNX
Neutrinot RTOS, eliminating the need for BIOS or other boot loader. It was
developed specifically for use in the QNX Neutrino RTOS, for Intel® Atom™
processor Z5xx series platforms. Systems using QNX fastboot can achieve
boot times of milliseconds while eliminating the BIOS royalty from their bill
of materials. More information about QNX fastboot technology may be found
at http://www.gnx.com/news/pr_3024_1.html.

Develop a Custom Boot Loader for Intel® Architecture

A custom boot loader may be developed for the Intel platform for
architecture migrations where more time and effort is available and a do-it-
yourself model is preferred. Developing your own boot loader requires a
special set of software and hardware knowledge, and you’ll need certain
documents respective to the Intel architecture processor, chipset,
motherboard, and other platform hardware. Additional information that will
be needed includes operating system requirements, industry standards and
exceptions, silicon-specific eccentricities beyond the standards, basic

Copyright © 2010 Intel Corporation 2



configuration, along with compiler and linker details, and software debug
tools. Gather the appropriate documents at the start of the project.

Motherboard schematics are an absolute must. If the design is reusing an
off-the-shelf solution from a vendor it could be more difficult to obtain the
required information. In some cases confidential nondisclosure agreements
(CNDAs) and perhaps restricted secret nondisclosure agreements (RSNDAS)
with the various silicon vendors or motherboard vendors must be signed.
The nondisclosure agreements (NDAs) will require some level of legal advice.
Further, Memory Reference Code (MRC) requires an RSNDA agreement with
Intel.

Refer to the EDC software Web site for other boot loader technology options.

Intel® Architecture System BIOS for Open Box Designs

A common requirement for open, expandable system designs is to provide
the broadest possible system initialization solution, allowing the flexibility to
load a wide range of off -the-shelf operating systems and methodical,
dynamic hardware configurations. These designs will support multiple
standard interfaces and expansion slots, and host mainstream operating
systems with a broad set of pre-OS features and are ready to run multiple
applications. On Intel architecture designs that require the flexibility,
developers can choose from vendor-provided firmware.

Legacy Basic Input/Output System

The legacy Basic Input/Output System (BIOS) initializes the hardware and
boots it to a point where the operating system can load, and it also abstracts
the hardware from the operating system through various industry standard
tables (ACPI, SMBIOS, IRQ routing, memory maps, and so on). Access to
the hardware is directly made through silicon-specific BIOS commands or
industry standards interfaces. Intel architecture has commonly used BIOS
for over twenty years to support designs with multiple use cases,
customizable services, multiple boot paths, native operating systems, or that
are rich in features. BIOS is a common choice for legacy Intel architecture
software design support. Major BIOS vendors include:

= American Megatrends Inc.t

* Insyde Software Corp.t

= Nanjing Byosoft Co., Ltd.t

*» Phoenix Technologies, Ltd.T

Copyright © 2010 Intel Corporation 3



Talking to a BIOS vendor is a great idea when the situation demands ready
solutions and the return on investment merits the costs. The BIOS solution
provides everything needed to get the system initialized and to a successful
production cycle. Obtaining starter code from a BIOS vendor normally
requires various levels of licenses and agreements for evaluation,
production, and follow-on support. Additionally, a commercial BIOS usually
includes a varying amount of nonrecurring engineering (NRE), and/or
royalties per unit or subscription costs.

Many successful and established computer OEM development teams utilize
BIOS vendors to provide a base level of software core competency, basic OS
support, tools, and on-call support. Smaller companies can take advantage
of BIOS starter kits, which consists of a lesser number of features and
limited support.

Unified Extensible Firmware Interface

Unified Extensible Firmware Interface (UEFI) specifications define an
interface layer between the operating system and the platform firmware.
Intel developed the original Extensible Firmware Interface (EFI1) as a C
language based firmware alternative to BIOS, and donated it to the UEFI
forum as a starting point for the creation of the industry specifications,
including UEFI and Platform Interface (Pl). The interface and all of the
platform-related information provide a standard environment for booting an
operating system and running pre-boot applications. Additionally, UEFI
addresses the limitations inherit with BIOS implementations such as 16-bit
addressing mode, 1 MB addressable space, PC AT hardware dependencies
and upper memory block (UMB) dependencies.

In 2005, the Unified EFI Forum, Inc. was formed as a nonprofit corporation
whose goal is to manage and promote a set of UEFI standard specifications.
The UEFI Forum is governed by a board of directors from eleven promoter
companies including AMD, AMI, Apple, Dell, HP, IBM, Insyde, Intel, Lenovo,
Microsoft and Phoenix, and 120 contributor and adopter member companies
(Maclnnis, 20092). The UEFI Forum is responsible for two specifications:
1. Unified Extensible Firmware Interface specification

The UEFI specification defines interfaces between OS, add-in firmware

drivers, and system firmware where the OS and other highlevel

software should only interact with exposed interfaces and services

defined by the UEFI specification. It includes the EFI Byte Code (EBC)

specification, which defines an interpretive layer for portable

component drivers.

Copyright © 2010 Intel Corporation 4



2. Platform Initialization Interface specifications
The Pl specification defines the core code and services that are
required for an implementation of the Pl specifications, hereafter
referred to as the Pl architecture. These are the interoperability
standards between firmware phases and pre-OS components from
different providers.

Figure 1 is a block diagram that illustrates the UEFI software and
specification interfaces.

UEF Specification

tiorm Drivers

Diggrane cowrtesy of Mark Davan, 2000, Iatel Corporation

Figure 1 Unified Extensible Firmware Interface

For more details about the UEFI specifications, writing UEFI drivers, and how
to use the UEFI Sample Implementation and UEFI Application Toolkit, see
the UEFI Web site at http://www.uefi .org/.

Copyright © 2010 Intel Corporation 5



Intel® Platform Innovation Framework for EFI

The Intel® Platform Innovation Framework for EFIl is referred to as the
Framework, and previously code-named Tiano, is a reference code
implementation of UEFI and PI specifications developed by Intel.

The Intel® Platform Innovation Framework for UEFI Web site describes the
Framework as:

“...a set of robust architectural interfaces, implemented in C, which has
been designed to enable the firmware industry and our customers to
accelerate the evolution of innovative, differentiated, platform designs.
The framework is the Intel recommended implementation of the UEFI
specification for platforms based on all members of the Intel®
architecture family” (Intel Corporation Web site. 2010).

BIOS vendors provide a Compatibility Support Module (CSM), which is used
to connect operating systems to the Framework that require legacy BIOS
interfaces. The Framework firmware implementation includes support for
UEFI without the CSM, but does provide interfaces that support adding a
CSM supplied by a BIOS vendor. The Framework is a good solution for
architecture conversions, since these designs would not already use legacy
BIOS interfaces, but can take advantage of the benefits of UEFI, which
include:
= Locate option ROMS above 1 MB — Legacy option ROMs have been
constrained for many years by having to reside below the 1-MB
boundary of 16-bit code, between C0O000h and FFFFFh in system
memory. In server platforms, this limited the number of add-in cards
that could be plugged in. The ability to move the option ROMs above 1
MB enhances their capabilities and size.
» Faster boot — Initialize only the option ROMs needed to boot the OS
and load the rest later through EFI function calls from the OS.
= Faster integration — The modularity of the PEI and DXE modules allow
for faster integration of differing code modules. In some cases the
faster adoption of the code bases’ newer technologies into the
platform.

The EFI Developer Kit is the open source portion of the Framework code
base, referred to as the Foundation, and is available from the TianoCore
project at http://www.tianocore.org/.

A complete Framework implementation is not generally available directly
from Intel, but is offered by participating vendors as products and services

Copyright © 2010 Intel Corporation 6



based on the Framework for both Intel and non-Intel silicon. These
Framework products and vendors include:

= Aptiot by American Megatrends Inc.

* InsydeH20t by Insyde Software Corp.

= Nanjing Byosoft Co., Ltd.

= SecureCore Tianot by Phoenix Technologies, Ltd.

For more information about implementing firmware for embedded Intel
architecture systems see the Intel white paper titled “Implementing
Firmware on Embedded Intel architecture Designs” at
http://download.intel.com/design/intarch/papers/321072.pdf.

Intel Press has also published the book Beyond BIOS: Implementing the
Unified Extensible Firmware Interface with Intel’s Framework, which contains
examples for implementing the EFI specification

For more information about boot loader and architecture options, please
refer to the book Break Away with Intel® Atom™ Processors: A Guide to
Architecture Migration by Lori Matassa and Max Domeika.

About the Authors

Lori Matassa is a Sr. Staff Platform Software Architect in Intel’'s Embedded
and Communications Division and holds a BS in Information Technology. She
has over 25 years experience as an embedded software engineer developing
software for platforms including mainframe and midrange computer system
peripherals, as well as security, storage, and embedded communication
devices. In recent years at Intel she has contributed to driver hardening
standards for Carrier Grade Linux, and has led the software enablement of
multi-core adoption and architecture migration for embedded and
communication applications. Lori is a key contributor to Intel’s Embedded
Design Center, with numerous whitepapers, blogs, and industry
contributions on a variety of topics critical to embedded migration.

Max Domeika is an embedded software technologist in the Developer
Products Division at Intel, creating tools targeting the Intel architecture
market. Over the past 14 years, Max has held several positions at Intel in
compiler development, which include project lead for the C++ front end and
developer on the optimizer and 1A-32 code generator. Max currently
provides embedded tools consulting for customers migrating to Intel
architecture. In addition, he sets strategy and product plans for future
embedded tools. Max earned a BS in Computer Science from the University
of Puget Sound, an MS in Computer Science from Clemson University, and a

Copyright © 2010 Intel Corporation 7



MS in Management in Science & Technology from Oregon Graduate Institute.
Max is the author of Software Development for Embedded Multi-core
Systems from Elsevier. In 2008, Max was awarded an Intel Achievement
Award for innovative compiler technology that aids in architecture
migrations.

Copyright © 2010 Intel Corporation. All rights reserved.

This article is based on material found in book Break Away with Intel®
Atom™ Processors: A Guide to Architecture Migration by Lori Matassa and
Max Domeika. Visit the Intel Press web site to learn more about this book:
http://www.intel.com/intelpress/sum_ms2a.htm

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests
to the Publisher for permission should be addressed to the Publisher,
Intel Press, Intel Corporation, 2111 NE 25 Avenue, JF3-330, Hillsboro,
OR 97124-5961. E-mail: intelpress@intel.com .

Copyright © 2010 Intel Corporation 8



