intel)

OS Machlne Check Recovery on
Itanium®-Based Systems

Application Note

August 2008

Document Number: 320482-001

Notice: This document contains information on products in the design phase of development. The information here is subject to change without
notice. Do not finalize a design with this information.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or

infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Itanium® processors and E8870 chipset may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, and the Intel logo are trademarks of Intel Corporation in the US and other countries.
Copyright © 2002-2008, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2 0S Machine Check Recovery on Itanium®-Based Systems Application Note

Contents
1 o Yo 16 ot [PP 5
1.1 oS (=] = oL PP 5
3] o 117 oY PP 6
2 Understanding ReCOVErable MCAS . .ovitiiiiitii ittt et et e e a s e e e e e e rneanannans 9
2.1 (O o T Y A= o[PS 9
2.2 Local versus Global Maching ChecCkccviiiiiiiiiiii i e 10
G T - =12 o [Lo T U = 11
DA S =l o e ol o] o) =1 0 0 0= o) 11
2.5 Min-State Save Area I-Resources and X-ReSOUICESccvvuviiriiniiiniineiineniernnernesnnannens 12
2. JIARIC 1720 1 15 o Lo o o o I ot C= o |] o 12
3 N CTol o)V o= Yol [l o o Yol tY Yo]l = o o] PP 13
3.1 Translation Register and Translation Cache Errors......c.covviiiiiiiiiiiiiiiiineneeeeees 13
T A U= To [1] gl TSN = o o] = PP 15
3.3 Recoverable Cache and MemOrY ErTOrS....o.cieiiiiiiiiiiiiii et e e 15
3.4 Other RECOVErabIE ErTOrS .uviueiieiite it ee s st taeese e sneean s saneanesaneaneannernraaneannns 18
4 (O T (7N <= T 1 0] o1 = PN 21
4.1 Processor ROIES DUFNG RECOVEIY ..iuuiuiiiititiit ettt ssaassae s e saeaeareneaneanens 21
4.2 Handling Multiple SIMultaneous MCASiiiiiiiiii i aeaaans 23
LG B o g o Tot === o] ol @ g =Tl G I o PP 24
4.4 Recovery Steps for LOCal MCA ... i e e aae s 25
4.5 Recovery Steps for Global MCA ... e 25
4.6 Terminating the Precise Threado e e eeens 27
4.7 Cleaning a Poisoned MemOry Pagecuuiieiiiiiiiiii it aes e e sae e e raneans 28
4.8 Maintaining Error Statistics for Error Prediction........cooviiiiiiiiiiii s 29
Figures
4-1 MP Synchronization — OS_MCA RECOVEIY ...uiiiiiiiiiiiii i it ate ittt aaeaieaaaeeaes 22
Table
2-1 Processor State Parameter Machine Check Values.........ccooiiiiiiiiiiiiic e 9
2-2 PAL_MC_ERROR_INFO bus_check.bsi Values.........cccoiiiiiiiiiiiiiini e 11
3-1 Itanium® Processor RecoOVErable TLB EFTOrSuueeurrrrrrrsrsieeieeeseeeesererssssssssnensnnnn 13
3-2 Dual-Core Itanium® Processor Recoverable TLB EFTOrS ...uuuue.eeieeeeeeeeeeeerererereeesnennnns 14
3-3 Dual-Core Itanium® Processor Recoverable Register File ErTOrsSoeevvvvreureeeereeennnnns 15
3-4 Itanium® Processor Recoverable CAChe/MEmMOrY EMTOIS ...uvuueeeererriieseeeresisiesseeseennns 17
3-5 Dual-Core Itanium® Processor Recoverable Cache/Memory Errorsueeveeeeeeeveennns 18
3-6 Other Itanium® Processor RECOVErable EITOrSuuuurrurureieieieeeeeeeerereessssserenennnnans 18
3-7 Other Dual-Core Itanium® Processor OS Recoverable Errorsccceeeveevrvvvveevevennnns 19
L R Y 1 a0 =T 1= T8 3 1 P 24
4-2 CpulnMcaList Data StruCtUreviiii i e anneaaneeas 25

0S Machine Check Recovery on Itanium®-Based Systems Application Note 3

intel)

Revision History

Revision Number Description Date

-001 Public release. August 2008

4 0S Machine Check Recovery on Itanium®-Based Systems Application Note

intel)

1 Introduction

The Intel® Itanium® processor family supports an advanced machine architecture,
which allows processors to cooperate with the chipset, firmware, and operating system
to contain, signal, correct, and log machine check errors. Most errors are corrected by
processor or chipset hardware, but multilevel error handling allows Processor
Abstraction Layer (PAL) firmware and System Abstraction Layer (SAL) firmware to
provide additional error correction capabilities. To further enhance system availability
and reliability, errors that cannot be corrected by hardware or firmware are handed off
to the operating system for recovery.

This document primarily deals with recoverable machine check aborts (MCAs) and
describes the actions SAL firmware and the operating system can take to successfully
handle recoverable MCAs. This document explains how to distinguish between different
MCAs, describes some MCA conditions that can be successfully recovered at the OS
level, and provides guidelines for recovery. High-level pseudocode for the OS_MCA
handler is provided to illustrate the OS actions needed to recover from an MCA. This
document can benefit OS developers implementing MCA handling and recovery. SAL
developers can benefit from better understanding the OS actions needed for recovery.

1.1 References

This document should be read in conjunction with the following documents:

o Intel® Itanium® Architecture Software Developer’s Manual available at http://
developer.intel.com.

e Itanium® Processor Family System Abstraction Layer Specification available at
http://developer.intel.com.

e Itanium® Processor Family Error Handling Guide available at http://
developer.intel.com.

OS Machine Check Recovery on Itanium®-Based Systems Application Note 5

intel)

1.2

Glossary

This section defines some of the basic terminology used in this document.

BERR#

Bus error signal. On most platforms, BERR# is routed globally. Processors may drive
BERR# on contained fatal errors to bring the system into MCA. Unlike BINIT#,
processor-asserted BERR# permits more complete logging than BINIT#, since bus

agents do not lose internal state. The platform can assert BERR# to bring processors
into a “corrected” MCA.

BINIT#
Bus initialization signal. The processor or platform may assert this signal to indicate a

fatal machine check condition that requires bus agents to drop in-flight transactions to
preserve error containment. This signal is routed globally and results in a global MCA.

bus_check

A structure within the processor error section of the SAL error record describing errors
related to the system bus.

cache_check

A structure within the processor error section of the SAL error record describing cache
errors.

Continuable
Error severity indicating that the error was isolated and contained and

microarchitectural state captured at the time of the MCA allows the interrupted process
to be resumed if any necessary corrective action has been taken.

Corrected

Error severity indicating the error (if any) has been corrected by the processor or
platform hardware or firmware. The error may have been corrected without
interruption to the executing process. If the processor or platform were configured to

bring the affected processor(s) into MCA on corrected errors, the currently executing
process may be resumed without taking any corrective action.

Data Poisoning
Upon identifying an uncorrectable memory error, processor or platform hardware may

use ECC encoding to indicate that data has an uncorrectable error and defer MCA
handling until the error is consumed.

Fatal

Error severity indicating the error cannot be corrected by hardware, firmware, or the
operating system. Error logs can be stored to NVRAM, but the system must be rebooted
to restore the system to a known good state.

Global MCA

An MCA which brings all processors in the system into MCA.

Hard Fail Response

System bus response for a transaction failure.

0OS Machine Check Recovery on Itanium®-Based Systems Application Note

OS Machine Check Recovery on Itanium®-Based Systems Application Note

IPI

Interprocessor interrupt.

PEM

Processor experiencing machine check.

PLO

Operating system privilege level 0 - operating system execution.
PL3

Operating system privilege level 3 — application execution.

POM

Processor observing machine check.

PRM

Processor rendezvoused during machine check.

Recoverable

Error severity indicating the error has not been corrected by hardware or processor

firmware. Firmware or the operating system must take corrective action such as using
redundancy to restore state or terminating the currently executing application process.

Rendezvous
As an alternative to global MCA, SAL can bring slave processors into rendezvous spin-
loop for global error handling. PAL or the OS may request that SAL bring processors

into rendezvous. See the Itanium® Processor Family System Abstraction Layer
Specification for more information.

reg_file_check

A structure within the processor error section of the SAL error record describing
register errors.

tib_check

A structure within the processor error section of the SAL error record describing TLB
errors.

TC

Translation cache portion of the translation lookaside buffer.
TR

Translation register portion of the translation lookaside buffer.
uarch_check

A structure within the processor error section of the SAL error record describing
microarchitectural errors.

8§

OS Machine Check Recovery on Itanium®-Based Systems Application Note

intel.

Understanding Recoverable
MCAs

2.1

This section describes MCA severity levels, local versus global machine check, and
other concepts relevant to error recovery.

MCA Error Severities

The OS_MCA handler should first check the error severity that SAL reports in the SAL
error record header ERR_SEVERITY field:

e Corrected
e Recoverable

o Fatal

If OS_MCA determines the error is recoverable, it can determine whether the error is
continuable by examining the Processor State Parameter (PSP) software recovery bits,
which are defined in Table 11-8 of the Inte/® Itanium® Architecture Software
Developer’s Manual, Volume 2. An explanation of PSP interpretation for error recovery

is provided in Table 2-1, “Processor State Parameter Machine Check Values”.

Table 2-1. Processor State Parameter Machine Check Values
. PSP
PAL Severity Expected SAL Action Expected OS Action
cm | us ci co | sy

Corrected 1 0 0 0 0 Unless promoted, Log error upon CMCI or
corrected errors do not poll for errors.
result in MCA hand-off to
SAL.

Recoverable, 0 0 1 1 0 Log error in NVRAM. Hand | If possible, correct the

Continuable off to OS_MCA if the error and resume the
handler has been interrupted context or
registered. terminate applications to

contain the error.
Otherwise, shut down the
system.

Recoverable, 0 0 1 0 0 Log error in NVRAM. Hand | Terminate applications to

Not Continuable off to OS_MCA if the contain the error or shut
handler has been down the system.
registered.

Fatal 0 1 1 0 0 Log error in NVRAM. If the | If SAL hands off to
system has adequate OS_MCA, report the error
functioning resources, to the user and reset the
SAL may hand off to system.

OS_MCA. Otherwise, reset
the system.

For platform errors, SAL determines the

error severity by examining the platform error

logging registers in addition to the record header ERR_SEVERITY field and the PSP.

OS Machine Check Recovery on Itanium®-Based Systems Application Note

intel)

2.2

10

Section B.2.2 of the SAL specification defines a Section Header field,
ERROR_RECOVERY_INFO, that provides additional information about recoverable
errors.

Even when SAL classifies an MCA as recoverable, the OS outcome depends upon the
type of MCA that occurred, the context of the MCA, and the capabilities of the OS_MCA
handler. In some cases, the OS can correct the error and continue execution of the
interrupted process, changing the recoverable error to a corrected error. In other cases,
the OS can terminate the affected application processes to allow the OS kernel to
continue execution.

In cases where the OS is not able to recover, the error must be treated as fatal. Some
examples of errors classified as recoverable by the firmware for which OS recovery may
not be feasible are:

e The error is consumed in the OS kernel, and the OS is unable to recover.

e System bus hard fail response on outgoing IPI: The processor and platform may
not be able to signal the MCA on the instruction that caused the MCA. If visible
stores have occurred after the IPI instruction, the OS may be unable to restart the
instruction sequence from the failed IPI instruction.

e The processor hardware logs provide physical addresses, but the OS needs the
virtual address to affect recovery. The OS may not have accurate physical to virtual
mapping for all addresses, which may prevent recovery from some MCAs.

e The MCA is caused by a software programming error (for example, TR purge) - not
a hardware error.

Local versus Global Machine Check

A global MCA occurs when all the processors in the system enter the MCA flow. (A
machine check rendezvous involves all processors, but does not result in all processors
starting MCA flows.)

Bus-based Itanium processors provide bus initialization (BINIT#) and bus error
(BERR#) signals to signal global MCAs. Although BINIT# assertion allows errors to be
logged, the condition is always fatal and global. BERR# is routed globally on most
systems, but this is not required architecturally. BERR# has two different uses. Itanium
processors assert BERR# to bring processors into MCA to maintain error containment
without reinitializing the bus. Platforms may assert BERR# to bring processors into a
“corrected” MCA - the processors are brought into MCA, but no corrective action needs
to be taken for the processors. Thus, a bus_check structure will always be present
when a global MCA occurs. However, the presence of a bus_check structure on one
processor does not imply a global MCA event.

In some MCA recovery situations, the OS may want to know whether the MCA is local
to the processor or global so it can anticipate which processors will enter the handler

and ensure that processors do not exit the OS_MCA handler until logging and handling
is complete.

The bus_check.ib field indicates that either an error occurred on an internal bus or the
processor asserted a BERR# or BINIT#. The bus_check.eb field is set when a processor
receives a BERR#, BINIT#, or hard-fail bus response.

0OS Machine Check Recovery on Itanium®-Based Systems Application Note

intel)

The implementation-specific bus_check.bsi allow the OS to determine whether a
BERR#, BINIT#, or hard fail bus response occurred:

Table 2-2. PAL_MC_ERROR_INFO bus_check.bsi Values

Value Description
0 Unknown/unclassified
1 BERR#
2 BINIT#
3 Hard Fail response received on the bus

If two of the defined bus_check.bsi conditions occur together, the condition with the
highest encoding is reported. For example, if a BINIT# and a Hard Fail response occur
together, a Hard Fail response is reported.

If BERR# or BINIT# is observed on the bus and the processor also has a bus error to
report (in addition to the observation of BERR# or BINIT# on the bus), two bus checks
are reported. The observation of BERR# or BINIT# is reported first and the other next.

2.3 Rendezvous

PAL can branch to SALE_ENTRY with a non-zero return vector address in GR19 to
indicate that SAL should rendezvous slave processors and send the monarch back to
PALE_CHECK to provide error containment without reinitializing bus agents for a fatal
MCA.

If BERR# is not routed globally, SAL may signal a rendezvous interrupt to the slave
processors on a platform-asserted BERR# to bring slave processors into rendezvous for
global error handling.

The SAL to OS handoff indicates the rendezvous status in GR11. The handoff values
are:

e -1 = Rendezvous unsuccessful
e 0
o 1

Rendezvous not required

Rendezvous successful using rendezvous interrupt

e 2 = Rendezvous successful using a combination of rendezvous interrupt and INIT

The OS may specify that SAL rendezvous slave processors for all MCAs by using the
rz_always flag argument during the invocation of the SAL_MC_SET_PARAMS
procedure. OS_MCA can check GR11 to determine whether rendezvous was successful
and it gained control of all processors for MCA handling.

2.4 Error Containment

In most cases, Itanium processors check ECC or parity on data accesses and will
correct a 1-bit error before putting a transaction on the bus. In some performance
critical cases, the processor will check ECC or parity in parallel with forwarding the
transaction to the bus; if a data error is detected in this situation, Itanium processors
maintain error containment by asserting BINIT#. On BINIT#, processor and memory
controller bus agents are responsible for dropping in-flight transactions and resetting
their bus state.

Since Itanium processors and platform hardware maintains error containment, system
firmware and operating systems do not have any error containment responsibilities.

OS Machine Check Recovery on Itanium®-Based Systems Application Note 11

2.6

12

Min-State Save Area I-Resources and X-Resources

On an interruption (either PAL-based or IVA-based), the processor stores architectural
state to the I-resources (IIP, IPSR, IIM, and IFS). During interrupt handling, interrupt
collection is masked with PSR.ic = 0, but PSR.mc = 1 and machine check aborts can be
delivered.

To permit error recovery when PSR.ic = 0, current Itanium processor implementations
provide optional X-resources (XIP, XPSR, XFS, XR0 - XR4). (Availability of X-resources
on a processor implementation can be identified using PAL_PROC_GET_FEATURE bits
41 and 42.) If an MCA occurs while PSR.ic = 0, the I-resources are saved to the X-
resources and the processor state at the time of the MCA is stored to the I-resources.

The PAL MCA handler will copy I-resources and X-resources to the min-state save area.
SAL_CHECK saves the min-state save area to NVRAM in the processor error section and
provides the error record to OS_MCA when SAL_GET_STATE_INFO is called. OS_MCA
can determine if an interruption was in progress at the time of the MCA by examining
IPSR.ic. If IPSR.ic = 0, the X-resources provide information about the processor state
at the time the original interruption was taken. If IPSR.ic = 1, the X-resources are
undefined.

After successful error recovery, OS_MCA can return to SAL_CHECK with an indication to
resume execution of the MCA-interrupted context. SAL_CHECK will call
PAL_MC_RESUME, which will restore X-resources to the I-resources and will allow any
interruption that was in progress when the MCA was taken to continue execution.

IA-32 Instruction Execution

If the IPSR.is =1, indicating IA-32 instruction execution at the time of the machine
check, MCAs are not continuable and the error will be handed off as recoverable, not
continuable.

Note that the OS-based IA-32 Execution Layer operates with ISPR.is = 0, so MCAs that
occur when IA-32 applications are running can be handed off as continuable.

8

0OS Machine Check Recovery on Itanium®-Based Systems Application Note

intel)

3 Recoverable Processor Errors

This section describes recoverable processor errors and how to identify them.

3.1 Translation Register and Translation Cache Errors

On Itanium processors, the translation lookaside buffer consists of translation caches
(TCs) co-managed by hardware/software and software-controlled translation registers.

If a translation results in multiple hits in the TRs and/or TCs, which could be due to
hardware errors or misprogrammed TRs, the processor initiates an MCA. For example,
if one of the bits in a TR gets corrupted and the OS attempts to install a TC, the
erroneous TR may result in multiple hits in the TLB and an MCA. A similar problem may
be caused by the OS programming the TCs or TRs incorrectly. Processor error logging
does not allow software to determine whether the multi-hit collision was due to a
hardware error or an OS error.

The dual-core Itanium processor also provides parity protection on TRs and TCs. An
MCA will be initiated if a parity error is detected on the TRs or TCs. Note that processor
error logging does not allow software to determine whether the TLB errors were caused
by multi-hit collisions or parity errors.

Hardware TLB errors can be addressed by flushing the TCs and reloading TRs from a
redundant copy maintained by the OS to restore the TLB to a known good state. This
document assumes that multi-hit collisions due to OS programming errors would be
addressed by correcting the faulty OS code. If a TLB MCA due to OS programming
occurs, flushing the TCs and reloading TRs will not correct the error and a subsequent
MCA will occur after execution resumes.

Table 3-1 and Table 3-2 specify how to identify recoverable TLB errors:

Table 3-1. Itanium® Processor Recoverable TLB Errors

Event Severity Cr_\eck Check Field Values
Field

ITLB2 Data Parity error OR Multiple Hits - recov. tlb level=1, itr=1, op=3, is=IPSR.is, iv=1
Errors On TRs (Ifetch, prefetch)!
ITLB2 - TR purge (any operation that can recov. tib level=1, itr=1, op=8, is=IPSR.is, iv=1
cause a TR to be purged)?!/ 2
DTLB2- TR purge (any operation that can recov. tib level=1, dtr=1, op=8, is=IPSR.is, iv=1
cause a TR to be purged)! 2
DTLB2 - Page mask overflow (localpurge)!, | recov. tlb level=1, dtr=1, dtc=1, op=8, is=IPSR.is,
2 iv=1

Notes:
1. Recoverable if OS can re-install the TRs.
2. The TR is purged. Recoverable only if the OS can re-install the TRs. However, the firmware will return to the

interrupted context and re-execute the offending instruction and the MCA will recur. This pattern will likely
continue indefinitely until the code is fixed.

OS Machine Check Recovery on Itanium®-Based Systems Application Note 13

intel.

Table 3-2. Dual-Core Itanium® Processor Recoverable TLB Errors

Event Severity Cr_leck Check Field Values
Field

DTLB2- Parity error OR Multiple Hits - recov. tib level=1, dtr=1, dtc=1, is=IPSR.is, iv=1,
Error on either TCs or TRs - caused by pl=IPSR.cpl, pv=1, pi=1
active thread (detected on lookups)?!
DTLB2- Illegal TR purge caused by active cont. tlb level=1, dtr=1, op=8, is=IPSR.is, iv=1
thread (detected on any operation that
can cause a TR to be purged)
DTLB2- Page mask overflow caused by cont. tib level=1, dtr=1, op=8, is=IPSR.is, iv=1
active thread (detected on local purge)
ITLB2 Data Parity error OR Multiple Hits - cont. tlb level=1, itr=1, op=3, is=IPSR.is, iv=1,
Errors on TRs! pl=IPSR.cpl, pv=1, pi=1
ITLB2- Illegal TR purge caused by active cont. tib level=1, itr=1, op=8, is=IPSR.is, iv=1
thread (detected on any operation that
can cause a TR to be purged)

Notes:
1. Not possible to log whether TR or TC affected.

Since the error is TLB related, the OS must avoid virtual addressing during recovery to
avoid causing a nested TLB machine check abort.
OS_MCA can use the following steps to recover from a TLB error:

1. Examine the PSP.tc bit and the reported severity to determine if a recoverable TLB
error occurred.

2. Purge all TCs by executing the pTC.e instruction in a loop, using parameters
returned by the PAL_PTCE_INFO procedure. Note that current PAL implementations
perform this operation during firmware error handling before transferring control to
the OS MCA handler.

3. The OS_MCA handler must then purge and reinstall all the TRs for the context from
a redundant copy.

4. Switch to virtual mode.

5. Check the detailed information in the TLB error record to confirm that a recoverable
TLB error occurred. If not, return to SAL_CHECK with an uncorrected status value
and an indication to halt or reboot the system.

6. Switch back to physical mode.
7. Return back to SAL_CHECK with a “corrected status” indicating that SAL should
resume execution of the interrupted context.

To perform recovery from TR errors, the OS needs to maintain a data structure
containing a redundant copy of TR values. Here are the recommended steps for
revising the OS data structure, however, not all operating systems require these steps:

1. Remove the TR information for the old context from the OS data structures.
Execute a memory fence instruction to ensure visibility of the stores.
Remove the TRs from the processor TLBs using the pTR. i/d instruction.
Store the TR information for the new context into the OS data structures.

Execute a memory fence instruction to ensure visibility of the stores.

o U s WD

Install TRs into the processor using the ITR.i/d instruction.

14 0OS Machine Check Recovery on Itanium®-Based Systems Application Note

3.2

Table 3-3.

3.3

3.3.1

intel)

Register File Errors

Dual-Core Itanium processors provide register file parity protection. If the register
error MCA occurs in an application context, OS_MCA can terminate the application to
maintain system availability.

For register parity errors, the MCA the interrupted context will be the precise context
that caused the MCA to occur.

Dual-Core Itanium® Processor Recoverable Register File Errors

Event Severity CI_\eck Check Field Values
Field
Parity error on GR! recov. reg_file | id=1,2; is=IPSR.is, iv=1, pl=IPSR.cpl
Parity error on FR recov reg_file | id=3, is=IPSR.is, iv=1, pI=IPSR.cpl, pv=1,
pi=1

Notes:
1. General register NaT bits are not protected.

Recoverable Cache and Memory Errors

Errors related to memory may arise during loads from memory as well as during stores
to memory.

Data Poisoning

Itanium processors implement a data poisoning model for handling uncorrectable
multibit errors, which allows for deferred handling.

Itanium processors provide ECC on the system bus, L3 cache, and L2 data cache.
These processor structures will correct 1-bit errors. For multibit errors, the observation
of the multibit error will be signaled to the operating system using a CMCI with the
bus_check.dp or cache_check.dp bit set. If processor execution results in transfer of
the multibit error to a register or lower-level cache that only has parity encoding and
cannot maintain the data poisoning encoding, the error is “consumed” and an MCA will
occur.

Inbound multibit errors from the processor bus may either be directly consumed or
transferred to L3 cache. Multibit errors in the L3 cache are not directly consumed, but
they can be transferred to lower levels of cache. Multibit errors can be directly
consumed from the L2 data cache, resulting in an MCA.

Note that by default data poisoning events are signaled using CMCI and handed off
showing a “Corrected” state to indicate that no immediate action is required, however,
the error is actually uncorrected. PAL_PROC_SET_FEATURES bit 53, introduced on the
dual-core Itanium processor, changes the signaling of data poisoning detection from
CMCI to MCA.

Data poisoning CMCI to MCA promotion was originally defined to change the signaling
but hand off the error unchanged as a "Corrected” error. Specification Change 17
published in the Intel® Itanium® Architecture Software Developer’s Manual
Specification Update, June 2008 will change the PAL_PROC_SET_FEATURES bit 53
definition to an MCA hand-off with a “"Recoverable/Continuable” status on future
Itanium processors.

OS Machine Check Recovery on Itanium®-Based Systems Application Note 15

intel)

3.3.2

3.3.3

16

The MCAs due to consuming poisoned data will be signaled at or before the use of the
load. For example, in the code sequence below:

LabelA: 1d8 rl1l5 = [rlé6]

LabelB: mov rl7 = rl8

LabelC: add rl1l9 = r20, r2l1;;

LabelD: mov r22 = rl5 // MCA is signaled at or before this instruction

If the data pointed to by register GR16 is poisoned in memory, a local MCA will surface
at any point during the interval from instruction LabelA through LabelD, with the data
being consumed at LabelD, since the application registers only have parity protection

and are unable to maintain the data poisoning encoding.

Precise and Interrupted Contexts

Memory operations have a long latency relative to processor execution, and the OS
may switch contexts before the error is consumed. It is important to distinguish
between the “precise” context, which is the context that caused the MCA to occur and
the “interrupted” context, which is the context that was running when the MCA was
raised. To recover from a multibit memory error, OS_MCA should terminate the precise
context — not the interrupted context. The precise context and the interrupted context
are independent, and they may even have different privilege levels.

Current Itanium processors do not report the precise instruction pointer of the
instruction that caused the MCA to occur (LabelA: in the above example code) or the
precise privilege level.

Itanium processors report the target address associated with the MCA (r16 value in the
above example), but the target address generally can’t be used to identify the precise
context, since register values may have changed since the memory operation was
initiated.

Itanium processors report information about the interrupted context in the I-resources.
Although the interrupted context is independent of the precise context, OS_MCA can
make conservative decisions about how to recovery from multibit memory errors using
an understanding of the OS design.

On a context switch, the OS kernel must store all process register state to memory,
which would cause any latent memory errors to be consumed. If unconsumed user data
is consumed by the OS kernel during a context switch, OS_MCA can be conservative
and treat the condition as a fatal MCA. If unconsumed kernel data gets consumed after
a context switch to an application, we may be able to assume that the kernel didn’t
expect to consume the data and OS_MCA can conservative by killing the consuming
application. Although the interrupted application wasn't at fault in this case, killing the
application is safe and maintains system availability.

Errors During Stores to Memory
When poisoned data from cache is written back to memory with a multibit error, the

processor will signal a CMCI, and the platform should poison the data in memory. Some
chipsets may signal a CPEI on receipt of the poisoned memory data.

0OS Machine Check Recovery on Itanium®-Based Systems Application Note

3.3.4

Table 3-4.

intel)

Any consumers of the data will incur a local MCA. Current Itanium processors provide
data poison promotion which is configurable by SAL. If data poisoning promotion is
enabled, data poison entering or leaving the processor will signal an MCA instead of a
CMCI.

Errors During Loads and Fetches from Memory

SAL will report multibit errors in data loaded from memory as local MCAs. Memory
reads may occur due to data loads or instruction fetches. Data loads may also occur
during stores if the processor uses write-allocate caching.

Note that data poisoning detection will be signaled by a bus_check CMCI, and data
poisoning consumption will be reported as a cache_check MCA. The data poisoning
detection CMCI will be reported as an external bus error in the Bus_Check structure
within the SAL processor error section (Bus_Check.eb = 1). The type of transaction
should be a “full line read” (Bus_Check.type = 3) or “partial read”
(Bus_Check.type=1).

The physical address of the load will be marked as valid in the Bus_Check structure
(Bus_Check.tv = 1), and the physical address will exist in the SAL error record
(MOD_TARGET_IDENTIFIER field in the BUS MOD_ERROR_INFO_STRUCT structure).
The OS must verify that the physical address of the load is within the memory range to
ensure that the operation was a load from memory, rather than from a memory-
mapped device.

Following the processor error section, the SAL error record may have a memory error
section indicating the physical address of the error logged by the memory controller.
This section will also have the field replaceable unit information of the failing memory
component (card, DIMM, bank, row, column, and so on). The field replaceable unit
information is important if the OS maintains threshold statistics.

There are situations where the memory error section may not be present. It is possible
for two local MCAs to surface simultaneously in a multiprocessor configuration due to
loads by independent applications. If SAL handles these MCAs in sequence, SAL might
first retrieve all the errors logged by the chipset. Many chipsets have two levels of error
logs. SAL might report two memory error sections for the first local MCA and none for
the second local MCA. The OS, using the processor error section, can terminate both
the affected applications.

Table 3-4 and Table 3-5 document how to identify MCAs resulting consumption of

memory errors. Note that memory errors consumed directly from the bus will be
reported as an L2D cache error.

Itanium® Processor Recoverable Cache/Memory Errors

. Check .
Event Severity Field Check Field Values
Poison filled to L2 cache from the bus! recov. bus op=382, level=1, dl=1, dc=1, way=3,
wiv=1, index=3, is=IPSR.ir, iv=1

Notes:

1. Signalled by L2 logic, but reported as a bus error
2. 3= don't care

OS Machine Check Recovery on Itanium®-Based Systems Application Note 17

intel.

Table 3-5.

3.4

Table 3-6.

18

Dual-Core Itanium® Processor Recoverable Cache/Memory Errors

Event Severity Ct.'e‘:k Check Field Values
Field

L2D data multibit error on consumed recov. cache op=1,3; level=1, dl=1, dc=1, way=81,
poison wiv=1, index=3, is=IPSR.is, iv=1, tv=1
L2D data multibit error on non-WB/non- recov. cache op=1,3; level=1, dl=1, dc=1, way=5§,
snoop, not on 4-byte aligned store, line wiv=1, index=3§, is=IPSR.is, iv=1, tv=1
has not been replaced
L2D data multibit error on non-WB/ non- recov. cache op=1,3; level=1, dl=1, dc=1, way=5§,
snoop, not on 4-byte aligned store, line wiv=1, index=3, is=IPSR.is, iv=1
has been replaced? or no valid min state
save pointer
L1I poison consumption - happening recov. cache dl=1 if data error; tl=1 if tag error; ic=1;
twice is=IPSR.is, iv=1, pl=IPSR.cpl, pv=1, pi= 1

Notes:

1. 8= don't care
2. The target address is not reported.

The OS keeps track of the pages that have poisoned memory. When there are no
applications referring to the page with poisoned memory, the OS may clear the
poisoned page and recycle the page for use by other applications. These steps are
described in Section 4.7, “Cleaning a Poisoned Memory Page”.

Until the poisoned page is cleared, the OS can avoid additional MCAs from arising from
the poisoned memory page by marking the poisoned page as not eligible for I/O write.
This would prevent that page from being written to backing store, which would
generate another MCA. This step is unnecessary if the OS or device driver can recover
from MCAs during transfer of data from the poisoned memory page to the device.

Other Recoverable Errors

Other Itanium® Processor Recoverable Errors

Event Severity Cl.leck Check Field Values
Field
FSB hard failure response: outgoing ptc.g! | cont. bus size=3§2, eb=1, type=7, bsi=3, is=IPSR.is,
iv=1, tv=1
FSB hard failure response: 1/O port space | recov. bus size=3§, eb=1, type=9, bsi=3, is=IPSR.is,
read3 iv=1, tv=1
FSB hard failure response: I/O port space | recov. bus size=9, eb=1, type=10, bsi=3, is=IPSR.is,
write3 iv=1, tv=1
FSB hard failure response: outgoing IPI, recov. bus size=§, eb=1, type=11, bsi=3, is=IPSR.is,
incoming IPI not directed at detecting iv=1, tv=1; (size, type, tv cannot be
processor3 safely reported if incoming IPI)
FSB hard failure response: read, rfo, ifetch | recov. bus size=§, eb=1, type=3, bsi=3, is=IPSR.is,
(prefetch, demand)?2: 3 iv=1, tv=1
Watchdog timer half-expiration4 recov. uarch sid=1, op=4, is=IPSR.is, iv=1
Illegal ISA transfer> recov. uarch op=3, is=1, iv=1
Notes:
1. Recoverable if OS flushes all TCs in the system
2. 8= don't care
3. System needs to decide whether its feasible to restart the transaction or application.
4. The timeout counter is reset every time an instruction is retired. It continues to count down after the MCA is

signalled; if it expires before the first instruction of PALE_CHECK is retired, the BINIT# event (error “"Timeout
counter expiration”) occurs. In most cases, if the half-expiration MCA occurs, a deadlock condition has been
encountered that would probably prevent PALE_CHECK from being fetched; the BINIT# would therefore most
probably occur.

5. A change between Itanium® Architecture and IA-32 execution that does not comply with the rules described
in the Intel® Itanium® Architecture Software Developer’s Manual.

0OS Machine Check Recovery on Itanium®-Based Systems Application Note

intel.

Table 3-7. Other Dual-Core Itanium® Processor OS Recoverable Errors
. Check .
Event Severity Field Check Field Values
FSB Hard Fail response: outgoing ptc.g! cont. bus eb=1, type = 7, bsi=3, is=IPSR.is, iv=1
FSB hard failure response: I/0 port space | recov. bus size=§3, eb=1, type=9, bsi=3, is=IPSR.is,
read? iv=1, tv=1
FSB hard failure response: I/0 port space | recov. bus size=3, eb=1, type=10, bsi=3, is=IPSR.is,
write2 iv=1, tv=1
FSB Hard Fail response: outgoing IPI, recov. bus size=3, eb=1, type=11, bsi=3, IPSR.is=is,
incoming IPI not directed at detecting iv=1, tv=1; (size, type, tv cannot be
processor? safely reported if incoming IPI)
Timeout counter half expiration recov. uarch sid=1, op=4, is=IPSR.is, iv=1
Illegal ISA transfer> recov. uarch op=3, is=1, iv=1
Notes:
1. Continuable if OS flushes all TCs in the system.
2. System needs to decide whether feasible to restart the application.
3. 8= don't care.
4. The timeout counter is reset every time an instruction is retired. It continues to count down after the MCA is

signalled; if it expires before the first instruction of PALE_CHECK is retired, the BINIT# event (error “Timeout
counter expiration”) occurs.

5. Recoverable by terminating the affected application, if it can be determined without a target address. This is
intended mainly for recovering from livelock in the midst of an IA- 32 instruction. If the timeout counter
expires during execution of an Itanium instruction, it is highly unlikely that the MCA would break the locking
condition.

8

OS Machine Check Recovery on Itanium®-Based Systems Application Note 19

20

OS Machine Check Recovery on Itanium®-Based Systems Application Note

intel)

OS_MCA Example

4.1

This chapter describes a sample OS_MCA implementation to illustrate the actions an
0OS_MCA handler must consider during recovery. This sample implementation considers
multiprocessor error recovery, which increases complexity. OS_MCA implementations
may choose to limit error recovery to local MCAs, which simplifies recovery.

Processor Roles During Recovery

The OS may classify processors involved in an MCA recovery event using the SAL error
records to determine their role in the recovery.

¢ Processors Experiencing the Machine Check (PEMs)

PEMs are processors that initiated a machine check abort. If the platform initiated
the machine check abort by asserting BERR# or BINIT#, there will be no PEMs. If
concurrent errors occurred, there may be multiple PEMs. The SAL error record for
PEMs would have:

— One or more of tlb_check, cache_check, reg_file_check, or uarch_check
structures or

— A bus_check structure with the bus_check.ib field set to 1, indicating an
internal bus error
Processors Observing the Machine Check (POMs)

POMs are either processors that received a BERR# or BINIT# signaled by another
processor. The SAL error record for POMs meet the following requirements:

— A processor error section with a bus_check.eb = 1 and bus_check.bsi = 1
(BERR#) or = 2 (BINIT#)

Processors Rendezvoused during Machine Check (PRMs)

PRMs are processors rendezvoused using the SAL rendezvous interrupt or the INIT
IPI. The OS typically maintains a list of such processors during the processing of
the rendezvous interrupt, so that the PRMs may be woken up at the end of the MCA
recovery.
The PRMs wait in a loop within the SAL handler with machine checks unmasked, in
order to recognize a subsequent global MCA event.

Processors that could not be rendezvoused successfully

If SAL cannot successfully rendezvous the processors, rendezvous failure will be
indicated at the handoff to the OS_MCA handler. Operating systems may consider
this to be a fatal condition.

Table 4-1, "MP Synchronization — OS_MCA Recovery” provides an overview OS_MCA
handler actions on PEMs and POMs.

OS Machine Check Recovery on Itanium®-Based Systems Application Note 21

intel.

Figure 4-1. MP Synchronization — OS_MCA Recovery

Do

Fi SAL
rom OS Recovery*

MCAI Global/MCA with
Rendezvous

Wait for All
to Check In

Not All
Checked In

Monarch

GR11
Handoff

Trigger
Do OS Recovery
Signal

Monarch
Selection

Non-Monarchs

A

Wait for Pid
Do OS Recovery W
Signal

Wait for
Completed Recovery*

Recover

Do OS
Recovery

Trigger
Do Clear Log

Indicate Completed Recovery

Wait for Do Clear Log Signal

Do Clear Log

Clear Data
Structures

Indicate Clear Log Done

Wait for Exit Signal

* In status indicates failure,
Monarch shuts down the system.

Indicate
Exiting

Back To
SAL

Clear Data
Structures

001226

All PEMs and POMs will enter the OS_MCA handler. Note that OS_MCA cannot identify
the SAL monarch from the order in which processors enter OS_MCA. In a rendezvous
situation, the PRMs will be waiting in a SAL rendezvous loop. The OS handles the
rendezvous interrupt sent by SAL. If the OS maintains a data structure indicating which
processors received the rendezvous interrupt, it can determine the identity of the other
processors that will enter the OS_MCA entry point. Such a list of rendezvoused
processors is maintained in an array called PRMCpulList[cr.lid].

The Itanium architecture follows the release consistency memory ordering model. In

the discussion below, multiple processors will need to manipulate global data structures
in writeback memory. The OS_MCA code must follow appropriate fencing steps to

22 0OS Machine Check Recovery on Itanium®-Based Systems Application Note

ensure visibility of loads and stores across the system. In general, loads should have
acquire semantics, and stores should follow the release semantics. If a data variable
needs to be revised atomically, the Fetchadd instruction should be used.

Suggested data structures below are shown using an array index “[cr.lid].” This does
not imply the need to support all possible combinations of processor ID and EID. The
OS may implement a sparse matrix based on the maximum supported system
configuration.

4.2 Handling Multiple Simultaneous MCAs

This section describes the SAL and OS requirements for handling multiple simultaneous
MCAs. SAL and the OS must be capable of handling different MCA conditions such as:
one or more simultaneous local MCAs, a local MCA followed by a global MCA, a global
MCA followed by a local MCA or another global MCA, MCAs involving rendezvous, and
SO on.

An MCA involving rendezvous affects all processors, but some of the processors (PRMs)
may be in the SAL rendezvous loop waiting for the wake-up signal from the OS
monarch processor. If a machine check occurs during such a wait, the PRM processor
will begin execution at the machine check layer within PAL, and its MCA type no longer
fits the PRM classification.

If a PRM were to experience a BINIT#, the current MCA would be interrupted and the
processor would be steered to a new MCA for the BINIT#. However BINIT# is global,
and the PEMs and POMs would also experience the BINIT# and their execution would
also be steered to a new MCA. The SAL and the OS on the PEMs and POMs would
process the BINIT# condition, resulting in a system reset.

OS Machine Check Recovery on Itanium®-Based Systems Application Note 23

intel.

The handling of simultaneous machine check events is described in Table 4-1,

“Simultaneous MCAs".

Table 4-1. Simultaneous MCAs
Second Event/Comments
First Event
Local MCA On Another BERR# MCA On Another Processor
Processor Involving Rendezvous
Local MCA on Handle as independent MCA 1. SAL waits for check-in by all 1. SAL waits for check-in by all

Processor P1

events.

processors. P1 will not check
into SAL yet.

2. If timeout in SAL, jump to
OS_MCA with fatal handoff
status.

3. If no timeout, and current PEM
(P1) exits out of PAL, the global
MCA is recognized on P1, and
P1 will re-enter PAL MCA.

4. SAL MCA executes, SAL to OS

transition indicates Global MCA.

processors. P1 will not check
into SAL_MC_RENDEZ yet.

2. If timeout in SAL, jump to
OS_MCA with rendezvous
failure status.

3. If no timeout, and current PEM
(P1) exits out of PAL, the
rendezvous/INIT interrupt is
recognized on P1 and P1 will
check into SAL_MC_RENDEZ.

4. SAL MCA executes, SAL to OS
transition indicates successful

e Recognize MCA as occurring
during rendezvous.

e Wait in SAL until previous
MCA is completed on other
PEMs/POMs, then jump to
OS_MCA or

e Jump to OS_MCA with Fatal
error status.

e Recognize MCA as occurring
during rendezvous.

e Wait in SAL until previous MCA
is completed on other PEMs/
POMs, then jump to OS_MCA
or

e Jump to OS MCA with Fatal
error status.

rendezvous.
BERR# Nested MCA handled when Nested MCA handled when current Nested MCA handled when current
current MCA concludes. MCA concludes. MCA concludes.
MCA 1. If PEM/POM, nested MCA 1. If PEM/POM, nested MCA 1. If PEM/POM, nested MCA
Involving handled when current MCA handled when current MCA handled when current MCA
Rendezvous concludes. concludes. concludes.
2. If PRM: 2. If PRM: 2. If PRM:

e Recognize MCA as occurring
during rendezvous.

e Wait in SAL until previous
MCA is completed on other
PEMs/POMs, then jump to
OS_MCA or

e Jump to OS MCA with Fatal
error status

4.3

Processor Check-In

Each processor entering the OS_MCA entrypoint (that is, the PEMs and POMs) saves its
state in a unique save area.

Each processor stores its identification in an array, CpulnMcalist[cr.lid]. This is an array
of structures with fields for ID, EID, Local/Global indication, Error Severity, type of
MCA, state of MCA processing, status of OS_MCA recovery, status of Clear Log, and so
on. An example organization of this structure is depicted in Table 4-2, “"CpulnMcalList
Data Structure”.

24 0OS Machine Check Recovery on Itanium®-Based Systems Application Note

intel)

Table 4-2. CpulnMcalist Data Structure
valid os
Bt | P | TS| i | Errorseverity | YRS, | SHeSIMEr | mecovery | Cgalos
Value of 1 From From 0= 0 = Invalid 0= 0 = Invalid 0 = Invalid 0 = Invalid
Indicates | CR.lid CR.lid Invalid 1= Invalid 1 = Waiting for 1 = Success | 1 = Success
Field 1 = Local | Recoverable 1 =POM | Monarch Selection | 2 = Fajlure 2 = Failure
Presence 2 = Fatal 2=PEM | (SyncPoint-1)
2= 2 = Waiting to do
Global OS Recovery
(SyncPoint-2)
3 = Proceed to OS
Recovery
4 = Completed OS
Recovery, Waiting
to do Clear Log
(SyncPoint-3)
5 = Do Clear Log
6 = Clear Log
complete, Waiting
for Exit signal
(SyncPoint-4)
7 = Exit from
OS_MCA
8 = Exiting from
OS_MCA
(SyncPoint-5)
Initially, the ID, EID, and local/global indication (from GR11) are stored to indicate the
check-in to the other processors in the OS_MCA handler. Valid bits are set as fields are
stored into the table. The type of MCA and the error severity from the SAL error record
will be filled after parsing the SAL error record.
Each processor retrieves its SAL error record by calling SAL_GET_STATE_INFO. The
SAL_CLEAR_STATE_INFO procedure may be invoked immediately or deferred,
depending on the OS implementation. If the error severity is fatal, some operating
systems may choose to retrieve the error record from SAL during the next reboot and
hence will not invoke the SAL_CLEAR_STATE_INFO procedure in the OS_MCA path. The
OS image on each processor parses the SAL error record and fills in the error severity
and the type of MCA (PEM/POM) fields into the CpulnMcalist[cr.lid] array. The
processors set their MCA processing status to “"Waiting for Monarch Selection”
(SyncPoint-1).
4.4 Recovery Steps for Local MCA
If the MCA is local, there is no need for coordination with other processors. The OS
recovery code will recover from the MCA, clear the SAL error log, and return to the
interrupted context. If the recovery is unsuccessful, the OS may display an error
message and should return to SAL_CHECK with an uncorrected status value to indicate
whether SAL should halt or reboot the system.
4.5 Recovery Steps for Global MCA

If the MCA is global, each processor examines the CpulnMcalist array and waits for all
PEM/POM classifications and error severities to be registered.

OS Machine Check Recovery on Itanium®-Based Systems Application Note 25

4.5.1

4.5.2

4.5.3

4.5.4

26

If a processor is classified as a non-OS monarch POM, it sets its MCA processing status
to “Completed OS Recovery, Waiting to Do Clear Log” (see SyncPoint-3 below). The
POMs then wait for the OS monarch to change the MCA processing status to "Do Clear
Log.”

OS Monarch Selection

All PEM processors examine the error severity of all the PEMs and elect one with the
highest severity to be the OS monarch. If the MCA was a platform-asserted BERR# or
BINIT# and no PEM exists, the OS monarch will be elected from the POMs. The OS
monarch then acquires the semaphore OS_Monarch_Semaphore. Since fatal and
recoverable are only two severity levels, if a fatal error is noticed on any of the PEMs,
that PEM would become the OS monarch, display an error message and shut down the
system.

There are some situations where the error severity must be promoted to fatal. The OS
monarch needs to examine register GR11 at SAL to OS handoff. If this value is -1,
rendezvous was unsuccessful. The OS monarch must treat this condition as a fatal MCA
regardless of the error severity in the SAL error records.

If the MCA is recoverable, the OS monarch proceeds with the recovery. The non-0S
monarch PEMs revise their MCA processing status to "Waiting to Do OS Recovery” and
then wait for the OS monarch to change this status to "Proceed to OS Recovery”
(SyncPoint-2).

Error Recovery

At this point, the OS monarch proceeds with OS recovery. Error records of all the
processors are available, and the OS monarch can decide on the recovery steps by
examining all the error records. For the recoverable cases that we have identified, there
is no need for such interprocessor coordination.

The OS monarch takes necessary recovery steps, then revises the OS_Recovery_Status
field to indicate the completion status of its recovery. The OS monarch then revises the
state of MCA processing field of PEMs to "Proceed to OS Recovery,” one PEM at a time
to cause the PEMs to go through the OS recovery steps appropriate for each PEM’s SAL
error record. The OS monarch must monitor the PEM’s state of MCA processing field to
be changed to "Completed OS Recovery, Waiting to Do Clear Log.”

The OS monarch and each PEM takes the appropriate recovery steps including setting
the new context for resumption from MCA. At the end, the PEM stores the completion
status for the recovery in the OS_Recovery_Status field of the CpulnMcalList[cr.lid]
array. Different values indicate the success or failure of the recovery operation. The
non-0OS monarch PEMs then change their state of MCA processing to "Completed OS
Recovery, Waiting to Do Clear Log” and wait on their state to be changed by the OS
monarch to "Do Clear Log” (SyncPoint-3).

Check Status of Recovery

When the monarch and the PEMs have finished their recovery and reached SyncPoint-
3, the OS monarch examines the OS_Recovery_Status fields of the monarch and PEMs
to determine if recovery was successful. If unsuccessful, the OS monarch can display
an error message using one of the error records that caused the failure in the OS_MCA
and then shut down the system.

Perform Error Logging
If all the PEMs report a successful MCA recovery, the OS monarch revises the state of

MCA processing field of other PEMs and POMs to “Do Clear Log” to direct them to
perform the logging functions. This may be done on one PEM/POM at a time or

0OS Machine Check Recovery on Itanium®-Based Systems Application Note

4.5.5

4.5.6

4.6

simultaneously on all. All PEMs and POMs must invoke the SAL_CLEAR_STATE_INFO
procedure to clear the SAL error record, although the OS may not choose to log POM
error records.

If the OS_MCA is not capable of logging the MCA event to disk from the OS_MCA
context, it may copy the SAL error record to a separate buffer and trigger an OS event
for saving the buffer to disk. For some operating systems, this may be just moving the
error record to a separate OS buffer and triggering the write later.

The processors deposit the completion status of their Clear Log into the
CpulnMcalist[cr.lid] array, revise their state of MCA processing to "Clear Log complete,
Waiting for Exit signal” and then wait for this state to be changed by the OS monarch to
“"Exit from OS_MCA” (SyncPoint-4). The OS monarch performs similar logging
functions.

Direct Other Processors to Exit OS_MCA or SAL

When all the PEMs and POMs have finished their logging and reached SyncPoint-4, the
OS monarch examines the status of their Clear Log for success/failure of logging
operation. If unsuccessful, the OS monarch can display an error message and shut
down the system.

If the error recovery and logging are successful, the OS monarch revises the state of
MCA processing field to “Exit from OS_MCA” to direct them to exit from the OS_MCA
handler through SAL and PAL. The PEMs and POMs revise their state of MCA processing
to "Exiting from OS_MCA” as they exit to indicate their progress of MCA processing
(SyncPoint-5).

When the OS monarch verifies that all other PEMs and POMs have left the OS_MCA
handler, the OS monarch wakes up all the PRMs using the wakeup interrupt (IPI or
memory semaphore specified in SAL_MC_SET_PARAMS procedure).

Reinitialize Data Structures for the Next MCA

The OS monarch reinitializes the data structures for use during the next MCA. The
variables to be initialized include (more may be needed depending on OS_MCA
implementation):

0S_Monarch_Semaphore
CpulnMcalList[cr.1id]

PRMCpuList[cr.1lid]

Terminating the Precise Thread

Once the OS_MCA handler has made a decision to terminate the precise thread, it must
return to the SAL_MCA handler with the address of a new min-state save area pointer
that should be supplied to the PAL_MC_RESUME procedure.

PAL_MC_RESUME allows the OS to resume to a new context and set new values for
both the IIP (IP at the time of MCA) and the XIP (IIP at the time of MCA) registers
within the new min-state save area without losing state information. Since only the
affected thread (PL3 application) is being terminated, and at the time of MCA, the
application would have been executing with the PSR.ic set to 1. In such a context, the
application’s IIP and IPSR values are volatile.

The OS needs to call PAL_PROC_GET_FEATURES to determine whether the processor
implements the min-state save area X-resources (XFS, XPSR, and XIP). (The Itanium
and dual-core Itanium processors implement X-resources.)

OS Machine Check Recovery on Itanium®-Based Systems Application Note 27

4.7

28

On exit from the machine check, the OS can transfer control to a fault handler by
setting values in the new min-state save structure as follows:

e The IIP will point to the OS fault handler.

e The IPSR will have values appropriate for the fault handler. The IPSR.i and IPSR.ic
must be 0 to ensure that the fault handler is not preempted. The IPSR.bn, in most
OS implementations, would be 0 to enable use of Banked GRs 24-31 without
performing any register saves.

e The XIP will point to an address within the offending application.
e The XPSR will have the value of the PSR at the time of MCA.

The normal termination code within the OS may be employed to terminate the precise
thread.

Cleaning a Poisoned Memory Page

Once the OS has terminated the applications that had a mapping to the poisoned
memory page, it may choose to keep the page offline or recycle the page for use by
other applications.

The OS generally cannot determine whether an error occurring in a memory page is
due to a transient error resulting from a random radiation strike or a persistent failure
due to a manufacturing error or wear-out phenomena. In most cases, the
uncorrectable memory error rate is low enough that poisoned memory pages can be
left offline for the remaining OS uptime and the pages can be examined at reboot self-
test.

If an OS does choose to recycle poisoned memory pages, care must be taken to
successfully clear the error and avoid an inadvertent secondary MCA. If the OS were to
attempt a store of zeroes to the problem memory area, there will be a read of the
cache line from poisoned memory resulting in another local MCA on processors with
write-allocate caches. The recommended procedure is to first change the memory
attribute of the problem page from writeback to uncacheable and then storing zeroes to
the poisoned memory area. Please refer to the description of “Disabling Prefetch and
Removing Cacheability” in the Inte/® Itanium® Architecture Software Developer’s
Manual for the detailed steps. This procedure requires execution of the
PAL_PREFETCH_VISIBILITY and the PAL_MC_DRAIN procedure calls on all the
processors within the system. Poisoned cache lines that are modified are flushed to
memory, however the flush generates only a Corrected Machine Check Interrupt
(CMCI) and does not result in another MCA.

The OS must allow for the fact that ECC methods differ across platforms. For example,
the memory controller on the E8870 chipset uses single device data correction ECC (12
check bits cover 32 bytes), while the Itanium processor system bus uses a different
number of check bits and covered bytes. An uncorrectable memory error will always
have larger footprint than 8 bytes, whether the source of the error is a real multibit
error or data poisoning. The OS must clear a minimum of 4K bytes at the poisoned
memory location.

When the page has been cleared of poison, the OS can revise its data structures for
poisoned memory pages. Some OS implementations may choose not to recycle such
pages based on thresholding statistics. SAL may provide such an indication in the SAL
error record using the “Error threshold exceeded” bit in the ERROR_RECOVERY_INFO
field of the memory error section.

0OS Machine Check Recovery on Itanium®-Based Systems Application Note

4.8 Maintaining Error Statistics for Error Prediction

The OS may maintain memory error statistics and avoid using pages that generate too
many corrected errors. This prevents corrected single bit errors from degenerating to
uncorrectable multibit errors. 0S-based management applications and the platform
controller may share this information and avoid use of such memory pages during the
next reboot.

It is recommended that the SAL implementation not probe platform error information
during an MCA condition unless the PSP.bc bit is set (BusCheck presence). This
minimizes the commingling problem between an MCA and a CPE.

8§

OS Machine Check Recovery on Itanium®-Based Systems Application Note

29

30

OS Machine Check Recovery on Itanium®-Based Systems Application Note

	Cover
	Table of Contents
	1 Introduction
	1.1 References
	1.2 Glossary

	2 Understanding Recoverable MCAs
	2.1 MCA Error Severities
	2.2 Local versus Global Machine Check
	2.3 Rendezvous
	2.4 Error Containment
	2.5 Min-State Save Area I-Resources and X-Resources
	2.6 IA-32 Instruction Execution

	3 Recoverable Processor Errors
	3.1 Translation Register and Translation Cache Errors
	3.2 Register File Errors
	3.3 Recoverable Cache and Memory Errors
	3.4 Other Recoverable Errors

	4 OS_MCA Example
	4.1 Processor Roles During Recovery
	4.2 Handling Multiple Simultaneous MCAs
	4.3 Processor Check-In
	4.4 Recovery Steps for Local MCA
	4.5 Recovery Steps for Global MCA
	4.6 Terminating the Precise Thread
	4.7 Cleaning a Poisoned Memory Page
	4.8 Maintaining Error Statistics for Error Prediction

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

