
Intel® IXP42X Product Line of
Network Processors and IXC1100
Control Plane Processor: Using
CompactFlash
Application Note

December 2004

Order Number: 302456-003

2 Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Contents

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel's Web site at http://www.intel.com.

BunnyPeople, CablePort, Celeron, Chips, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel
Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo,
OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, SmartDie,
Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VTune, and Xircom are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2004

http://www.intel.com
http://www.intel.com

Application Note 3

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Contents

Contents
1.0 Introduction...5

1.1 Related Documentation... 5
1.2 References .. 5
1.3 Acronyms .. 6

2.0 Hardware Overview..6
2.1 The Processor ... 6
2.2 Expansion Bus Overview .. 7

2.2.1 Expansion Bus Interface Signals.. 8
2.3 Expansion Bus Control and Configuration Registers 8
2.4 CompactFlash ... 8

2.4.1 Interface Signals... 10

3.0 Hardware Interface Considerations..11
3.1 True IDE Mode Hardware Interface .. 11
3.2 Memory Mode Hardware Interface.. 13
3.3 I/O Mode Hardware Interface .. 14

4.0 Expansion Bus Operation...16
4.1 Expansion Bus Configuration .. 16
4.2 Switching Data Bus Width ... 18
4.3 Reading/Writing Expansion Bus.. 19

5.0 CompactFlash Operations..20
5.1 Access to the CompactFlash Registers .. 20
5.2 Wait for CompactFlash To Get Ready .. 21
5.3 Switching Expansion Bus Data Width ... 21
5.4 Little and Big Endian Conversion .. 22
5.5 Read from a Sector ... 22
5.6 Write to a Sector.. 23
5.7 Read the Identify Information .. 23

6.0 FAT16 File System on the CF Card ...23
6.1 Master Boot Record .. 23
6.2 BIOS Parameter Block .. 25
6.3 Root Directory Location.. 25
6.4 FAT Directory Structure... 25
6.5 List the Root Directory... 26
6.6 List a Subdirectory... 26
6.7 Get Access to File Content.. 27

7.0 CompactFlash Linux* Device Driver...27
7.1 Read the Device.. 28
7.2 Write the Device .. 28
7.3 Control the Device... 28

8.0 Application Code ..28

9.0 Platform Used for Testing...30

4 Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Contents

10.0 Demo and ‘Screen Shot’ .. 30
10.1 CompactFlash Demo Screen Shot...31

A Source Code... 35
A.1 CompactFlashModuleSymbols.c..36
A.2 CompactFlashIDE.c ...41
A.3 CompactFlash.h ...53
A.4 CompactFlashIDE.h ...54
A.5 component.mk..56
A.6 CompactFlashFat16.c ..56
A.7 CompactFlashFat16.h..75
A.8 CompactFlashApp.c...75
A.9 Makefile..86

Figures
1 Intel® IXP42X Product Line of Network Processors and IXC1100 Control

Plane Processor System Block Diagram.. 7
2 CF Storage Card Block Diagram .. 9
3 CompactFlash – True IDE Mode Interface ... 12
4 CompactFlash – Memory Mode Interface .. 13
5 CompactFlash – I/O Mode Interface... 15

Tables
1 Expansion Bus Interface Signals.. 8
2 Expansion Bus Register Overview ...8
3 Interface Signal Description.. 10
4 CE1# and CE2# Control Logic ... 14
5 CE1# and CE2# Control Logic ... 16
6 Timing and Control Registers for Chip Select 1 ... 16
7 Timing and Control Registers for Chip Select 2 ... 17
8 Bit Level Definition for the Timing and Control Registers ... 17
9 True IDE Mode I/O Decoding ... 20
10 MBR Structure .. 24
11 Partition Entry (Part of MBR) .. 24

Revision History

Date Revision Description

November 2004 003 Updated product branding. Change bars were retained from
the previous release of this document (002).

August 2004 002 Added Section 1.2 and Section 6.0, plus replaced Appendix A,
“Source Code”.

June 2004 001 Initial release.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Introduction

Application Note 5

1.0 Introduction

This application note describes the hardware interface to a CompactFlash (CF) card connected in
‘True IDE’ mode to the Expansion Bus of Intel® IXP42X Product Line of Network Processors and
IXC1100 Control Plane Processor, and presents a Linux* device driver with basic functions to
access the CF card. The device driver initializes the Expansion Bus timing and control registers to
set up the interface that allows reading/writing the CF card. A simple Linux application program is
provided to view directories, change directories, and view files in a CF card that has a FAT16 file
system. This application note also briefly reviews the CF architecture, FAT16 file system,
Expansion Bus architecture, and the platform used to test the device driver.

The basic functions in the device driver are necessary to connect the CF card to system-level
software. The device driver can also be used to debug the platform, and although it is written for
Linux, the details can pertain to most operating systems.

The following sections cover: Expansion Bus and CF architecture, Expansion Bus initialization,
reading/writing the Expansion Bus, accessing the CF registers, reading/writing the sectors in the
CF card, FAT16 file system on CF card, device driver architecture, and functions in the application
code used to test the driver.

1.1 Related Documentation

1.2 References

1. “CF+ and CompactFlash Specification Revision 2.0”, CompactFlash Association, May 2003.

2. “Microsoft Extensible Firmware Initiative, FAT32 File System Specification, FAT: General
Overview of On-Disk Format”, Microsoft Corp., version 1.03, December 6, 2000.

3. “FAT16 Structure Information”, Jack Dobiash, June 17, 1999, http://home.teleport.com/
~brainy/fat16.htm.

1.3 Acronyms

ATA AT Attachment

CF CompactFlash

CFA CompactFlash Association

Title Document Number

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor Developer’s Manual 252480

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor Datasheet 252479

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor Specification Update 252702

Intel® IXP400 Software Programmer’s Guide 252539

CompactFlash Specification (www.compactflash.org)

http://home.teleport.com/~brainy/fat16.htm
www.compactflash.org

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Hardware Overview

6 Application Note

CFI CompactFlash Interface

DMA Direct Memory Access

GPIO General-Purpose Input/Output

IDE Integrated Device Electronics

FAT File Allocation Table

LBA Logical Block Addressing

LSP Linux Support Package

MVL MontaVista* Linux

PIO Programmed Input/Output

PHY Physical Layer Device

PLL Phase Lock Loop

SoC System-on-Chip

XCVR Transceiver

2.0 Hardware Overview

This section provides an overview of how to connect a CF card to the Intel® IXP42X Product Line
of Network Processors and IXC1100 Control Plane Processor Expansion Bus.

2.1 The Processor

The Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor are
highly integrated System-on-a-Chip (SoC) designs that provide greater flexibility and reduce
system-development costs. These devices include features such as the UARTs, watchdog timers
(WDT), general-purpose timers, three Network Processor Engines (NPEs) for two Ethernet and
one UTOPIA interface, PC133 SDRAM, GPIO, PCI 2.2, and Expansion Bus controllers that can be
interfaced and implemented in many applications such as embedded networking and
communications. Figure 1 illustrates an example of the system interfaces of the IXP42X product
line processors.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Overview

Application Note 7

2.2 Expansion Bus Overview

The Expansion Bus of the IXP42X product line processors supports a variety of types and speeds
of I/O accesses for devices such as flash, SRAM, CF, Intel and Motorola*–style microprocessor
interfaces, and the Texas Instruments* (TI) DSP standard Host-Port Interfaces (HPI). In most
cases, these devices are supported seamlessly, without any additional glue logic.

The Expansion Bus provides a 24-bit address bus and an 8- or 16-bit-wide data interface for each
of its eight independent chip-selects, and maps transfers between the internal bus and the external
devices. Multiplexed and non-multiplexed address/data buses are both supported. Devices with a
wider than 16-bit data bus interface are not supported; however, TI DSPs with internal bus widths
of 32 bits can be integrated using the multiplexed HPI-16 interface. Please refer to the Intel®
IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor Developer’s
Manual for more details regarding the Expansion Bus Controller. The Expansion Bus interface
signals are described in Table 1.

Figure 1. Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor System Block Diagram

Pow er
Supply

Intel(R) IXP42X
Product Line of

Network
Processors and
IXC1100 Control
Plane Processor

SDRAM
16Mx4x16
256 Mbyte

(Four Chips)

D[31:0]

BA[1:0]

A[12:0]

RAS, CAS, WE, CS

10/100
PHY

FLASH
16 Mbyte

Board
Configuration

RS232B
XCVR

D
B9

D[15:0]

Ex
pa

ns
io

n
B

us

33.33 MHz
OSC

Transparent PCI
Bridge

Clock Buffer

PLL

33.33 MHz

JTAG
Header

A[23:0]

R
J1

1
R

J4
5

USB
Connector

PCI
Clock

PC
I Slots

Ethernet
Clocks

CompactFlash

SD
R

A
M

M

em
ory

B
us

cPCI Bus

PC
I B

U
S

CS_N0

(2) HSS
Interface

Ports

UTOPIA
Interface

CS_N[1:2]

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Hardware Overview

8 Application Note

2.2.1 Expansion Bus Interface Signals

2.3 Expansion Bus Control and Configuration Registers

The Expansion Bus is controlled and configured by ten registers: eight timing and control registers,
and two configuration registers.

2.4 CompactFlash

CompactFlash (CF) is a standard specification maintained by the CompactFlash Association (CFA)
(www.compactflash.org). The CF Specification describes the connectivity and communications
with I/O, storage modules, and compact memory devices. It is widely used in many applications
such as portable and desktop computers, digital cameras, handheld data collection scanners, PCS
phones, Pocket PCs, PDAs, handy terminals, personal communicators, audio recorders, MP3

Table 1. Expansion Bus Interface Signals

Name Type Description

EX_CLK I Input clock signal – Not used in this application note.

EX_ALE O Address-latch enable – Not used in this application note.

EX_ADDR[23:0] I/O Expansion Bus address lines. Only EX_ADDR[10:0] are used in this
application note.

EX_WR_N O Write strobe signal.

EX_RD_N O Read strobe signal.

EX_CS_N[7:0] O External chip selects for Expansion Bus. Only EX_CS1_N and
EX_CS2_N are used in this application note.

EX_DATA[15:0] I/O Expansion Bus, bidirectional data.

EX_IOWAIT_N I Data ready/acknowledge from Expansion Bus devices – Not used in
this application note.

EX_RDY[3:0] I Ready signals – Not used in this application note.

Table 2. Expansion Bus Register Overview

Address R/W Name Description

0xC4000000 R/W EXP_TIMING_CS0 Timing and Control Register for Chip Select 0

0xC4000004 R/W EXP_TIMING_CS1 Timing and Control Register for Chip Select 1

0xC4000008 R/W EXP_TIMING_CS2 Timing and Control Register for Chip Select 2

0xC400000C R/W EXP_TIMING_CS3 Timing and Control Register for Chip Select 3

0xC4000010 R/W EXP_TIMING_CS4 Timing and Control Register for Chip Select 4

0xC4000014 R/W EXP_TIMING_CS5 Timing and Control Register for Chip Select 5

0xC4000018 R/W EXP_TIMING_CS6 Timing and Control Register for Chip Select 6

0xC400001C R/W EXP_TIMING_CS7 Timing and Control Register for Chip Select 7

0xC4000020 R/W EXP_CNFG0 General Purpose Configuration Register 0

0xC4000024 R/W EXP_CNFG1 General Purpose Configuration Register 1

0xC4000028 – – Reserved

www.compactflash.org

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Overview

Application Note 9

players, monitoring devices, and set-top boxes. A block diagram of a CF storage card is shown in
Figure 2. The controller interfaces with a host system allowing data to transfer to and from the flash
memory module.

The CF card is a small-form-factor, PCMCIA-compatible, storage and I/O card based on the
PCMCIA PC Card ATA specification, and includes a True IDE mode, which is compatible with the
ATA/ATAPI-4 standard. CF cards function in three basic interface modes:

• True IDE Mode

• PC Card I/O Mode

• PC Card Memory Mode

The following generic descriptions of these modes should help designers choose one of them for
connection to the Expansion Bus of the IXP42X product line processors.

TRUE IDE – A CF storage card also runs in True IDE mode that is electrically compatible with an
IDE disk drive. A CF storage card is configured in True IDE mode only when the OE# pin (also
called ATA SEL#) is grounded by the host during the power-off to power-on cycle. In this mode,
the task file registers are also mapped into I/O address space, and the control signals IORD# and
IOWR# are used to access I/O locations.

PC Card I/O – The control signals IORD# and IOWR# are also used to access I/O locations in
the PC Card I/O mode, and the task file registers are mapped into I/O address space.

PC Card Memory – The control signals OE# and WE# are also used to access memory locations,
and the task file registers are mapped into the memory space. In this mode, REG# pin is used
during Memory Cycles to distinguish between Common Memory and Register (Attribute) Memory
accesses. When REG# pin is High (H), it is used to denote a Common Memory access. When
REG# is Low (L), it is used to denote an Attribute Memory access.

Figure 2. CF Storage Card Block Diagram

FLASH
Module(s)

Controller

Data
In/Out

Control

Host
Interface

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Hardware Overview

10 Application Note

2.4.1 Interface Signals
Table 3 lists the CF interface signals. Note that the signals listed are for all three common modes of
the CF card: PC Card I/O, True IDE and PC Card Memory. Some uncommon control signals,
which may not be used in some modes, are also listed.

Table 3. Interface Signal Description

Signal Name Type Description

RESET# I Active Low – Reset CF. When the pin is high, this resets the
CompactFlash Card.

RESET I Active High – Reset CF

CS0# (CE1) I Chip Select 0 (Card Select 0)

CS1# (CE2) I Chip Select 1 (Card Select 1)

A10-A0 I Address Bits [10:0]

D15-D0 I/O Data Bits [15:0]

INTRQ O Interrupt Request to the Host

REG# I Register Select

OE#/ATA SEL# I Output Enable/IDE Mode Enable

CSEL# I Cable Select

IOWR# I I/O Write Strobe

IORD# I I/O Read Strobe

VS1#, VS2# O Voltage Sense

WE# I Write Enable

INPACK# O Input. Acknowledge

IOIS16#/IOCS16# O 16-Bit Transfer

PDIAG# I/O Pass Diagnostic

CD1#, CD2# O Card Detect

DASP# I/O Drive Active/Slave Present

Wait/IORDY O Wait/Ready

BVD1 I/O Bus Voltage

BVD2 I/O Bus Voltage

SPKR I/O Speaker

STSCHG# I/O Status Changed

RDY/BSY# O Ready/Busy

IREG# O Interrupt Request

WP O Write Protect

VCC 3.3 V

Ground (GND) Ground

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Interface Considerations

Application Note 11

3.0 Hardware Interface Considerations

In every embedded application, implementations and requirements are different from one platform
to another. Choosing which mode of the CF card to interface to the Expansion Bus depends upon
product requirements. This section describes how to interface all three basic modes of the CF card
to the Expansion Bus, but note that only the True IDE mode is supported by the device driver
described in this application note.

CF cards supports both 3.3V and 5.0V operation and can interchange between 3.3V and 5.0V
systems. Compatible with CF card 3.3V signals, the Expansion Bus operates at 3.3V I/O; therefore,
the interface between the two requires no voltage-shift-level conversion. However, when
interfacing a 5.0V CF card, voltage-shift-level converters are required. The Expansion Bus I/O
buffers are designed to support up to eight loads, but the devices on the bus may not be able to
quickly drive the large load. To account for this, timing on the Expansion Bus may be adjusted
using the Expansion Bus timing and control registers for each control signal and chip select. If an
edge rises slowly due to low drive strength, the IXP42X product line processors should wait an
extra cycle before the value is read.

3.1 True IDE Mode Hardware Interface

This section describes the physical and logic interface of the CF card in True IDE mode to the
Expansion Bus. The device driver presented in this application note assumes the CF card is
connected in this mode. A CF card is configured in a True IDE mode of operation only when the
OE# (ATASEL#) input signal is grounded by the host during the power-up sequence. In this mode,
the CF card is accessible as if it were an IDE drive operating in PIO mode (non-DMA), and neither
Memory nor Attribute registers are accessible. Figure 3 shows the interface of the Expansion Bus
to the CF card in True IDE mode. The details of this interface signals are covered in the following
paragraphs.

In True IDE mode, the CF card can simply be interfaced to the IXP42X product line processors
through the Expansion Bus.

Note: The interface shown in Figure 3 does not support the IDE DMA mode. The Expansion Bus does
not have DMA capabilities.

The CF chip select CS0# and CS1# are enabled by two chip select signals (EX_CS_N1 and
EX_CS_N2) from the Expansion Bus, and IORD# and IOWR# are controlled by EX_RD_N and
EX_WR_N from the Expansion Bus. To meet the timing required by the CF Specification, the chip
select is deasserted at least 20 ns after the IORD# or IOWR# is deasserted. Note that in True IDE
mode, the CF CS0# is used for the Task File registers, and the chip select CS1# is used for the
Device Control registers.

In True IDE mode, the CF IOIS16# is asserted low when the CF card is expecting a 16-bit data
transfer. All Task File operations take place in byte mode using D7-D0, while all data transfers are
using 16-bit word data. It is not necessary to control this signal; as shown in Figure 3, IOIS16# is
not used. The A2-A0 address lines are used to select one of eight registers in the Task File. The
usage of the required interface signals (in True IDE mode) are described and shown below.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Hardware Interface Considerations

12 Application Note

• A2-A0 – The address lines from the CF card are directly connected to EX_ADDR[2:0] on the
Expansion Bus.

• A10-A3 – The address lines from the CF card are not used and connected to Ground (GND).

• D15-D0 – The data lines from the CF card are directly connected EX_DATA[15:0] on the
Expansion Bus.

• CS0 – Chip Select 0 line from the CF card is connected EX_CS_N1 on the Expansion Bus.

• CS1 – Chip Select 1 line from the CF card is connected EX_CS_N2 on the Expansion Bus.

• IORD# – The IO Read Strobe line from the CF card is connected to EX_RD_N on the
Expansion Bus.

• IOWR# – The IO Write Strobe line from the CF card is connected to EX_WR_N on the
Expansion Bus.

• RESET# – The Reset line from the CF card is directly connected to the power-on reset
circuitry to reset the CF device every power-up sequence.

• (ATASEL#) OE# – The Output Enable line from the CF card is connected to Ground. To
ensure the CF device operates in True IDE mode, this pin has to be grounded.

• CSEL# – The Card Select line from the CF card is not used and connected to Ground.

• REG# – The Register Select line from the CF card is not used in True IDE mode and
connected to Ground.

• WE# – The Write Enable line from the CF card is not used in True IDE mode and connected to
Ground.

Figure 3. CompactFlash – True IDE Mode Interface

Ex
pa

ns
io

n
Bu

s
In

te
rfa

ce EX_D AT A[15:0]
EX_AD D R [2:0]

EX_C S_N 1

EX_W R _N

EX_R D _N

N C

T ru e ID E M o d e In t erf ace C F D ev ice

R ESET _IN _N

Sys tem R eset

D [15:0]

A [2:0]
C S0#

IN PAC K

W E#
R EG #

R ESET #

O E#

IO R D #
C S1#

IO W R #

C SEL# C D 1#
C D 2#

IO IS16#
SPKR #

ST SC H G #
W AIT #
IR EQ #

VS1#
VS2# N C

N C
N C
N C
N C
N C
N C
N C
N C

N CW P

EX_C S_N 2

A[10:3]

3.3V

In t el(R) IXP42X
Pro d u ct L in e o f

N et wo rk
Po rcesso rs an d
IXC 1100 C o n t ro l
P lan e Pro cesso r

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Interface Considerations

Application Note 13

CSEL# - The Card Select line from the CF card is not used and connected to Ground. This signal is
used to select Master or Slave drive. In this hardware interface, CSEL# is connected to ground to
indicate there is only one drive — the master drive — can be connected.

As discussed, the interface between the CF card and the IXP42X product line processors through
the Expansion Bus in True IDE mode requires no external glue logic. Unused signals and control
signals are also shown and designated as “NC” (No Connection). Only power and ground signals
are not shown. The RESET# signal is required to directly connect to the power-on reset circuitry to
reset the CF device every power-up sequence.

3.2 Memory Mode Hardware Interface

This section covers the physical and logic interface of the CF cards in Memory mode to the
Expansion Bus. A CF card is configured in a Common Memory mode of operation only when the
OE# (ATASEL#) input signal is high during the power-up sequence.

According to the CF Specification, the interface of the CF card to the host and access in Memory
mode is similar to True IDE mode. The ATA registers are accessible through an external memory
address generated by the host. However, True IDE mode is a 16-bit scheme, and Memory mode
supports either 8- or 16-bit interface. True IDE mode and Memory mode use different Read/Write
control signals to transfer data. In Memory mode, the REG# signal is used during Memory Cycles
to distinguish between Common Memory and Register (Attribute) Memory accesses. When REG#
is High (H), it is used to denote a Common Memory access. When REG# is Low (L), it is used to
denote an Attribute Memory access. Common Memory mode is the default mode for the CF, and in
this mode, the control signals OE# and WE# are also used to access memory locations, and the
task file registers are mapped into direct addressing space. Figure 4 shows the main signal-to-signal
connections between the Expansion Bus.

Figure 4. CompactFlash – Memory Mode Interface

Ex
pa

ns
io

n
Bu

s
In

te
rfa

ce EX_DATA[15:0]
EX_AD DR[10:0]

EX_CS_N1

EX_WR _N

EX_R D_N

N C

Intel(R) IXP42X
Product Line of

Network
Processors and
IXC 1100 Control
Plane Processor

M emory M ode Interface C F Dev ice

RESET_IN _N

System Reset

D [15:0]

A[10:0]
C E1#

IN PACK

WE#

R EG#

R ESET#

OE#/ATA SEL#

IORD#

C E2#

IOWR#

C SEL# CD1#
CD2#

IOIS16#
SPKR#

STSCHG#
WAIT#
IR EQ#

VS1#
VS2# N C

N C
N C
N C
N C
N C
N C
N C
N C

N C
N C

WP N C

GPIO9

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Hardware Interface Considerations

14 Application Note

As shown in Figure 4, the implementation requires no external glue logic for 16-bit interface. All
the required interface signals are as follows:

• A10-A0 – The address lines from the CF card are directly connected to EX_ADDR[10:0] on
the Expansion Bus.

• D15-D0 – The data lines from the CF card are directly connected EX_DATA[15:0] on the
Expansion Bus.

• CE1#(CS0#) and CE2#(CS1#) – Both CE1# and CE2# lines from the CF card are connected
EX_CS_N1 on the Expansion Bus.

• IORD# – The I/O Read Strobe line from the CF card is not used.

• IOWR# – The I/O Write Strobe line from the CF card is not used.

• RESET# – The Reset line from the CF card is directly connected to the power-on reset
circuitry to reset the CF card at every power-up sequence.

• OE# – The Output Enable line from the CF card is connected EX_RD_N on the Expansion
Bus.

• CSEL# – The Card Select line from the CF card is not used and connected to Ground.

• REG# – The Register Select line from the CF card is connected to GPIO pin 9 of the IXP42X
product line processors.

• WE# – The Write Enable line from the CF card is connected to EX_RD_N on the Expansion
Bus.

The NC (No Connection) signals can be ignored in this application, and in this I/O mode, both the
IOS16# and CSEL# signals are not used and left NC.

The hardware control of the bus width is selected through the control of the CE1# and CE2# pins
as summarized in Table 4.

3.3 I/O Mode Hardware Interface

The previous sections have discussed the interfaces and the required signals between the CF device
and the Expansion Bus in True IDE and Memory modes. This section presents the physical and
logic interface of the CF devices to the Expansion Bus in I/O mode. In this mode, the control
signals IORD# and IOWR# are used to access I/O locations in the PC Card I/O mode, and the task
file registers are mapped into I/O address space. Note that in Memory mode, the CF card requires
the OE# (ATASEL#) and WE# signals to access attribute memory when the REG# signal is low
and access to common memory when the REG# signal is high. The OE# and WE# signals are
needed in I/O mode to access to attribute memory, and the IORD# and IOWR# signals are used to
access to common memory. Since the Expansion Bus has only two control signals — EX_WR_N
and EX_RD_N — to implement and meet the logic interface and requirements between the CF
card and the Expansion Bus, a decoder is needed. This decoder demuxes the EX_WR_N and

Table 4. CE1# and CE2# Control Logic

CE1# CE2# Access Mode

0 0 D0-D15

1 0 D8-D15

0 1 D0-D7

1 1 Standby

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Interface Considerations

Application Note 15

EX_RD_N signals to OE# and WE# or IORD# and IOWR#. As illustrated in Figure 5, GPIO pin
8 of the IXP42X product line processors controls the selections of the OE# and WE# or IORD#
and IOWR# signals. If GPIO pin 8 is high, the IORD# and IOWR# are selected, and the OE# and
WE# are selected when GPIO pin 8 is low.

As shown in Figure 5, the interface requires a 74HC139 Decoder or equivalent device. Unused
control and status signals in this mode as well as the other two modes are designated NC “No
Connection”. The power signals are not shown. The following are the descriptions of the signals
used for the interface:

• A10-A0 – The address lines from the CF card are directly connected to EX_ADDR[10:0] on
the Expansion Bus.

• D15-D0 – The data lines from the CF card are directly connected EX_DATA[15:0] on the
Expansion Bus.

• CE1#(CS0#) and CE2#(CS1#) – Both CE1# and CE2# lines from the CF card are connected
EX_CS_N1 on the Expansion Bus.

• IORD# – The IO Read Strobe line from the CF card is connected to Pin 11 of the 74HC139
decoder.

• IOWR# – The IO Write Strobe from line the CF is connected to Pin 5 of the 74HC139
decoder.

• RESET# – The Reset line from the CF card is directly connected to the power on reset
circuitry in reset the CF card every power up sequence.

• OE# – The Output Enable line from the CF card is connected to Pin 12 of the 74HC139
decoder.

Figure 5. CompactFlash – I/O Mode Interface
Ex

pa
ns

io
n

Bu
s

In
te

rfa
ce EX_DATA[15:0] D [15:0]

EX_AD DR [10:0] A[10:0]
EX_C S_N1

EX_WR _N
EX_RD _N

N C

CE1#

IN PAC K

WE#

REG#

RESET#

OE#/ATA SEL#

IORD #

I/O M ode Interface

CE2#

IOWR#

C F D ev ice

RESET_IN_N

System Reset
CSEL#

C D1#
C D2#

IOIS16#
SPKR #

STSC HG#
WAIT#
IREQ#

VS1#
VS2# N C

N C
N C
N C
N C
N C
N C
N C

N C

12
11
4
5

74H C139

1
15

2
14

GPIO8

3
13

GPIO9

Intel(R) IXP42X
Product Line of

Network
Processors and
IXC1100 Control
Plane Processor

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Expansion Bus Operation

16 Application Note

• CSEL# – The Card Select line from the CF card is not used and connected to Ground.

• REG# – The Register Select line from the CF card is connected to GPIO pin 9 of the IXP42X
product line processors.

• WE# – The Write Enable line from the CF card is connected to Pin 4 of the 74HC139 decoder.

Eight- or 16-bit mode access refers to whether the data lines D0-D15 are used to present one
complete word transfer. 8/16-bit access controlled by CE1# and CE2# of the CF card is shown in
Table 5.

4.0 Expansion Bus Operation

This section describes how to configure the CF and how to read/write from/to registers and sectors
in a CF card.

4.1 Expansion Bus Configuration

In this application note, the device driver assumes the CF card is connected in True IDE mode to
the Expansion Bus as shown in Figure 3 in Section 3.1.

In this application note it is assumed the CF chips selects are connected to Expansion Bus chip
select 1 and 2. The bit-level layout for these two particular registers are shown below. For current
information, please see the Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor Specification Update and Intel® IXP42X Product Line of Network
Processors and IXC1100 Control Plane Processor Developer’s Manual):

Table 6. Timing and Control Registers for Chip Select 1

Table 5. CE1# and CE2# Control Logic

CE#1 CE2# Access Mode

0 0 D0-D15

1 0 D8-D15

0 1 D0-D7

1 1 Standby

Register Name: EXP_TIMING_CS1

Hex Offset Address: 0XC4000004 Reset Hex Value: 0x00000000

Register Description: Timing and Control Registers

Access: Read/Write

31 30 29 28 27 26 25 22 21 20 19 16 15 14 13 10 9 6 5 4 3 2 1 0

C
Sx

_E
N

(R
sv

d)

T1 T2 T3 T4 T5

C
Y

C
LE

_
TY

P
E

CNFG[3:0] (Rsvd)

B
Y

TE
_R

D
16

H
R

D
Y

_P
O

L

M
U

X
_E

N

S
P

LT
_E

N

(R
sv

d)

W
R

_E
N

BY
TE

_E
N

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Expansion Bus Operation

Application Note 17

Table 7. Timing and Control Registers for Chip Select 2

Register Name: EXP_TIMING_CS2

Hex Offset Address: 0XC4000008 Reset Hex Value: 0x00000000

Register Description: Timing and Control Registers

Access: Read/Write.

31 30 29 28 27 26 25 22 21 20 19 16 15 14 13 10 9 6 5 4 3 2 1 0

C
S

x_
E

N

(R
sv

d)

T1 T2 T3 T4 T5

C
Y

C
LE

_
TY

P
E

CNFG[3:0] (Rsvd)

B
Y

TE
_R

D
16

H
R

D
Y

_P
O

L

M
U

X
_E

N

S
P

LT
_E

N

(R
sv

d)

W
R

_E
N

B
Y

TE
_E

N

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Expansion Bus Operation

18 Application Note

Table 8. Bit Level Definition for the Timing and Control Registers

Bits Name Description

31 CSx_EN
0 = Chip Select x disabled
1 = Chip Select x enabled

30 (Reserved)

29:28 T1 – Address timing
00 = Generate normal address phase timing
01 - 11 = Extend address phase by 1 - 3 clocks

27:26 T2 – Setup / Chip Select
Timing

00 = Generate normal setup phase timing
01 - 11 = Extend setup phase by 1 - 3 clocks

25:22 T3 – Strobe Timing
0000 = Generate normal strobe phase timing
0001-1111 = Extend strobe phase by 1 - 15 clocks

21:20 T4 – Hold Timing
00 = Generate normal hold phase timing
01 - 11 = Extend hold phase by 1 - 3 clocks

19:16 T5 – Recovery Timing
0000 = Generate normal recovery phase timing
0001-1111 = Extend recovery phase by 1 - 15 clocks

15:14 CYC_TYPE

00 = Configures the Expansion Bus for Intel cycles.
01 = Configures the Expansion Bus for Motorola* cycles.
10 = Configures the Expansion Bus for HPI cycles.
 (HPI reserved for chip selects [7:4] only)
11 = Reserved

13:10 CNFG[3:0]

Device Configuration Size. Calculated using the formula:
 SIZE OF ADDR SPACE = 2(9+CNFG[3:0])

For Example:
0000 = Address space of 29 = 512 Bytes
 …
1000 = Address space of 217 = 128 Kbytes
 …
1111 = Address space of 224 = 16 Mbytes

9:7 (Reserved)

6 BYTE_RD16
Byte read access to Half Word device
0 = Byte access disabled.
1 = Byte access enabled.

5 HRDY_POL
HPI HRDY polarity (reserved for exp_cs_n[7:4] only)
0 = Polarity low true.
1 = Polarity high true.

4 MUX_EN
0 = Separate address and data buses.
1 = Multiplexed address / data on data bus.

3 SPLT_EN
0 = AHB split transfers disabled.
1 = AHB split transfers enabled.

2 (Reserved)

1 WR_EN
0 = Writes to CS region are disabled.
1 = Writes to CS region are enabled.

0 BYTE_EN
0 = Expansion Bus uses 16-bit-wide data bus.
1 = Expansion Bus uses only 8-bit data bus.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Expansion Bus Operation

Application Note 19

These two timing and control registers, EXP_TIMING_CS1 and EXP_TIMING_CS2, are
configured as follows:

• Bit 31 will be set to ‘1’ to enable the Expansion Bus.

• Bits 13 to 10 are set to ‘0’ because the CF control registers only occupy a very small amount of
memory space (512 bytes is ample)

• Bit 6 will be set to ‘1’ to allow byte read access in the bus.

• Bit 1 will be set to ‘1’ to allow write operation in the bus.

• Bit 0 will be set to ‘1’ or ‘0’, depending on 8-bit-wide or 16-bit-wide data bus is used.

• All other bits are set to 0

Note: When the data register in the CF card is accessed, 16-bit-wide data bus will be used, while 8-bit-
wide data bus will be used for other register in the CF card. Refer to Section 5.3.

Configuration of these two registers is done in function CompactFlashExpBusInit() in Appendix
A.2, on page 42. They are initialized with value 0xbfff0043:

cs = (unsigned int *)IXP425_EXP_CS1;

*cs = 0xbfff0043;// 8-bit data bus as default

cs = (unsigned int *)IXP425_EXP_CS2;

*cs = 0xbfff0043;// 8-bit data bus as default

where IXP425_EXP_CS1 and IXP425_EXP_CS2 are defined in ixp425.h.

4.2 Switching Data Bus Width

The CF card has both 8-bit and 16-bit registers, which are explained in Section 5.3. The data bus
width of the Expansion Bus must be switched to match the width of the CF register before the
device driver tries to access the register.

The Expansion Bus can be switched into 16-bit-wide data bus with the following instructions (as in
function setExpBusCS1To16BitDataBus() in Appendix A.2, on page 42):

cs = (unsigned int *)IXP425_EXP_CS1;

value = *cs;

*cs = value&(~1); // set bit 0 to 0

Or switched into 8-bit-wide data bus with the following instructions (as in function
setExpBusCS1To8BitDataBus() in Appendix A.2, on page 42):

cs = (unsigned int *)IXP425_EXP_CS1;

value = *cs;

*cs = value|1; // set bit 0 to 1

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Expansion Bus Operation

20 Application Note

4.3 Reading/Writing Expansion Bus

Reading/writing the Expansion Bus is done by first calling the ioremap() function defined in
#include <asm/io.h> to prompt the memory management to update its page attributes tables and
map the memory space for Chip Select 1 of the Expansion Bus to pointer ixp_exp_bus_cs1, and
memory space for Chip Select 2 to ixp_exp_bus_cs2, as is done in function
CompactFlashExpBusInit() in Appendix A.2, on page 42:

ixp_exp_bus_cs1=(unsigned

long)ioremap(IXP425_EXP_BUS_CS1_BASE_PHYS,512);

ixp_exp_bus_cs2 = (unsigned

long)ioremap(IXP425_EXP_BUS_CS2_BASE_PHYS, 512);

where IXP425_EXP_BUS_CS1_BASE_PHYS and IXP425_EXP_BUS_CS2_BASE_PHYS
are defined in ixp425.h.

Then a call to one of the following functions, defined in #include <asm/io.h>
__raw_writew(data,__mem_pci(addr))
__raw_writeb(data,__mem_pci(addr))
__raw_readw(__mem_pci(addr))
__raw_readb(__mem_pci(addr))

where addr=ixp_exp_bus_cs1+offset or ixp_exp_bus_cs2+offset, will read/write a word or a byte
from/to the Expansion Bus. The application note provides the following four functions in
Appendix A.2, on page 42 to perform these operations easily:

• CompactFlashExpBusWriteW()

• CompactFlashExpBusWriteB(),

• CompactFlashExpBusReadW(),

• CompactFlashExpBusReadB();

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

CompactFlash Operations

Application Note 21

5.0 CompactFlash Operations

Note: The functions described in this section are shown in Appendix A.2, on page 42,
“CompactFlashIDE.c”.

5.1 Access to the CompactFlash Registers

Control and access to the CF card in True IDE mode is done through a set of registers, the so-called
CF-ATA registers or ‘task file’:

These registers are addressed by three address lines and two chip select lines: A0, A1, A2, CS0,
and CS1. To get access to these registers, a 8-bit value is used as offset. The two most significant
bits of the offsets are used to distinguish Chip Select 1 or 2, and the four least significant bits are
address offsets of the registers. Based on Table 9, these registers are hence denoted as follows:

#define CF_DATA 0x20

#define CF_ERROR 0x21

#define CF_SECT_CNT 0x22

#define CF_SECT_NUM 0x23

#define CF_CYL_L 0x24

#define CF_CYL_H 0x25

#define CF_DRV_HEAD 0x26

#define CF_STATUS 0x27

#define CF_FEATURES 0x21

#define CF_COMMAND 0x27

#define CF_ALTSTATUS 0x16

#define CF_DEV_CTR 0x16

These are used to read/write the CF registers, as in the following example for setting the CF card
into Logical Block Address (LBA) mode:

Table 9. True IDE Mode I/O Decoding

-CS1 -CS0 A2 A1 A0 -IORD=0 -IOWR=0 Note

1 0 0 0 0 RD Data WR Data 8 or 16 bit

1 0 0 0 1 Error Register Features 8 bit

1 0 0 1 0 Sector Count Sector Count 8 bit

1 0 0 1 1 Sector No Sector No 8 bit

1 0 1 0 0 Cylinder Low Cylinder Low 8 bit

1 0 1 0 1 Cylinder High Cylinder High 8 bit

1 0 1 1 0 Select Card/Head Select Card/Head 8 bit

1 0 1 1 1 Status Command 8 bit

0 1 1 1 0 Alt Status Device Control 8 bit

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
CompactFlash Operations

22 Application Note

WriteRegB(CF_DRV_HEAD, 0xE0);

where WriteRegB() is one of the following four functions in Appendix A.2, on page 42 that make
use of the functions at the end of Section 4.3:

• WriteRegW()

• WriteRegB()

• ReadRegW()

• ReadRegB()

5.2 Wait for CompactFlash To Get Ready

Before any command is issued to the CF card, the card needs to be checked for readiness. The
CF_STATUS register provides this status information. When the CF card is ready, the ready bit (bit
6 of the CF_STATUS register) must be 1, and the Busy bit (bit 7 of the CF_STATUS register) must
be zero.

The application note provides a function Waiting_RDY_TO() in Appendix A.2, on page 42 calling
ReadRegB(CF_STATUS) to check if the CF card is ready.

5.3 Switching Expansion Bus Data Width

In True IDE mode all CF registers are 8 bits wide and reside on byte-aligned addresses except for
the CF_DATA register, which is 16 bits wide. The CF_DATA register is used by the host to read/
write the CF data buffer.

In order to read/write from the CF_DATA register, the Expansion Bus must be configured to
produce 16-bit-wide data access. In order to read/write the other CF internal register, the Expansion
Bus must be configured to produce 8-bit-wide data access. Hence, depending on which CF
registers are being accessed, it is necessary to switch the Expansion Bus data width.

Before the Expansion Bus data width is switched the code must ensure the last Expansion Bus
transaction has completed. This is done by reading a CF internal register then using the returned
value to force the host to stall until the data is returned.

The two functions in Appendix A.2, on page 42, setExpBusCS1To16BitDataBus()) and
setExpBusCS1To8BitDataBus(), are used to switch the Expansion Bus data width.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

CompactFlash Operations

Application Note 23

5.4 Little and Big Endian Conversion

The data in the CF card is stored in little-endian format, while the host CPU is set into big-endian
mode. It is therefore required to convert the data by calling the following function when reading
from or writing to the CF card, as described in Section 5.5 and Section 5.6.

unsigned short byteSwap(unsigned short data)

{

 unsigned short tmp;

 tmp=(data<<8)|(data>>8);

 return tmp;

}

Note: The byte order is maintained when reading from or writing to the CF card.

5.5 Read from a Sector

Once a read command is issued by the host, the CF card fills the internal data buffer inside the CF
with one sector worth of data. The host then repeatedly reads the CF_DATA register to retrieve that
sector worth of data from the CF internal data buffer.

When reading from CF, logical block addressing (LBA) is used. The next sequence of steps show
how this is set up.

• The LBA is written to the following registers:

— Sector number: CF_SECT_NUM=LBA7~0

— Cylinder Low: CF_CYL_L = LBA15~8

— Cylinder High: CF_CYL_H = LBA23~16

— Head: CF_DRV_HEAD(LSB3~0) = LBA27~24

• The sector count register CF_SECT_CNT is loaded with a value to indicate how many sectors
to read.

• A read sectors command 0x20 is written to the command register CF_COMMAND to start the
reading process:
 WriteRegB(CF_COMMAND, 0x20);

• The CF card will put a sector of data in the internal buffer, and then set the DRQ bit and clear
the BSY bit in the CF_STATUS register.

• The host then can read the data from the internal buffer by repeatedly reading the CF_DATA
register, as follows:
 ReadRegW(CF_DATA)

This application note provides the function ReadSectorW()in Appendix A.2, on page 42 to
read a sector. This function also makes use of the operations described in Section 5.3 and Section
5.4.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
FAT16 File System on the CF Card

24 Application Note

5.6 Write to a Sector

In write operation, the host (after issuing a write sector command to the CF card) repeatedly writes
to the CF_DATA register. Once the CF card’s internal buffer is filled, the buffer’s content is then
written to a sector.

Steps to write to a sector are similar to those in Section 5.5 except that (after setting up all the other
registers) a write sector command 0x30 is written to the CF_COMMAND register:

WriteRegB(CF_COMMAND, 0x30);

After this command is issued, the CF card will indicate it is ready by setting the DRQ bit and
clearing the BSY bit in the CF_STATUS register. The host then can repeatedly write data to the
internal buffer using:

WriteRegW(CF_DATA, val);

When finishing writing the data, the Expansion Bus is switched back to 8-bit width after issuing a
read instruction (ReadRegW(CF_STATUS)) to make sure the Expansion Bus write operation is
completed.

This application note provides function WriteSectorW()in Appendix A.2, on page 42 to write
to a sector.

5.7 Read the Identify Information

When a value 0xEC is written to the CF_COMMAND register of the CF card:
WriteRegB(CF_COMMAND, 0xEC);

the internal buffer of the CF card is filled with 512 bytes of information, including the signature of
the CF card, the default number of heads, cylinders, sectors per track, capability, as well as other
parameters. To show the identify information, this application note provides function
ReadIdenfyInformationW() in Appendix A.2, on page 42.

6.0 FAT16 File System on the CF Card

Note: The functions described in this section are shown in Section A.6, “CompactFlashFat16.c” on
page 64.

This section discusses the File Allocation Table (FAT) file system and how it is used on the CF
card. The demo code in this application note does not implement all the functions required to
support the file system. The code only provides the basic functions to process the information in
the CF card for the FAT16 file system, and to view directories, change directories, or view files in
the CF card.

6.1 Master Boot Record

Depending on how the CF card is formatted, the first sector in a CF card contains either a Master
Boot Record (MBR), or a BIOS Parameter Block (BPB). Before the CF card can be used, it must
be formatted. This application note does not provide information about formatting the CF card,

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

FAT16 File System on the CF Card

Application Note 25

which can be done on a PC. The MBR contains code to boot the computer and partition tables
defining different sections of the drive. The MBR also provides information about where the BPB
is located. The BPB contains parameters for the FAT file system.

After the CF card is initialized, the first thing to do is to call function checkMBR() in the demo
code to check if an MBR exists in the CF Card. This function makes use of the fact that the first
sector can only be an MBR or a BPB, and if it is a BPB, the first byte can only be 0xeb or 0xe9
which are jump instructions.

If a MBR does not exist, the first sector must be the boot sector that contains the BPB. Hence in
this case the sector number for BPB is 0, BPB_LBA=0;

If a MBR exists, the 32-bit word starting at byte 0x1c6 in the first sector on the CF card is the
sector number for the BPB of the first partition, namely, BPB_LBA=*(0x1c6);

The byte in 0x1c2 indicates the FAT file system type. There are three file system types: FAT12,
FAT16, and FAT32. This application note only covers FAT16.

Table 10 and Table 11 show the MBR structure.

Table 10. MBR Structure

Offset Description Size

000h Executable Code (Boots Computer) 446 Bytes

1BEh 1st Partition Entry (See Table 11) 16 Bytes

1CEh 2nd Partition Entry 16 Bytes

1DEh 3rd Partition Entry 16 Bytes

1EEh 4th Partition Entry 16 Bytes

1FEh Executable Marker (55h AAh) 2 Bytes

Table 11. Partition Entry (Part of MBR)

Offset Description Size

00h Current State of Partition (00h=Inactive, 80h=Active) 1 Byte

01h Beginning of Partition - Head 1 Byte

02h Beginning of Partition - Cylinder/Sector (See Below) 1 Word

04h Type of Partition (See List Below) 1 Byte

05h End of Partition - Head 1 Byte

06h End of Partition - Cylinder/Sector 1 Word

08h Number of Sectors Between the MBR and the First
Sector in the Partition 1 Double Word

0Ch Number of Sectors in the Partition 1 Double Word

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
FAT16 File System on the CF Card

26 Application Note

6.2 BIOS Parameter Block

The BPB is at the beginning of the boot sector (see reference for the detailed BPB structure). The
location of the boot sector is discussed in Section 6.1. The BPB contains parameters for the file
system. The function ProcessBPB() in the demo code uses the information in BPB to calculate
parameters, such as location of the root directory, etc.

6.3 Root Directory Location

After the parameters for the file system is obtained from the BPB, the first thing to do is to locate
the root directory. The root directory information is contained in a set of sectors, and each sector in
the set consists of 32-byte entries that employ the FAT directory structure as is described in Section
6.4. The total number of sectors in the set is RootDirSectors sectors, and the sector number of
the first sector in the set is (BPB_LBA+FirstRootDirSecNum).

The parameters RootDirSectors and FirstRootDirSecNum are calculated using the information
in the BPB as follows. The function GetBit(n) used in the following gets a 16-bit integer starting at
byte n from the beginning of the boot sector.

RootDirSectors=((BPB_RootEntCnt*32)+ (BPB_BytsPerSec-1))/BPB_BytsPerSec;

where

BPB_RootEntCnt=Get16Bits(17), is the count of 32-byte directory entries in the root directory,

BPB_BytsPerSec=Get16Bits(11), is the count of bytes per sector,

FirstRootDirSecNum= BPB_RsvdSecCnt + (BPB_NumFATs*FATSz)

where

BPB_RsvdSecCnt=Get16Bits(14), is the number of reserved sectors in the reserved region,

BPB_NumFATs=Get8Bits(16), is the count of the FAT data structures (which is always 2).

FATSz= BPB_FATSz16=Get16Bits(22), is the count of sectors occupied by one FAT.

6.4 FAT Directory Structure

A FAT directory entry is a 32-byte structure, which represents either a file or a subdirectory.

If the file name or the subdirectory name has only 11 characters (8 characters for name, and 3
characters for name extension), only one 32-byte structure is needed, and this is a short directory
entry.

If the file name or the subdirectory name has more than 11 characters, it needs multiple 32-byte
structures. This is a long directory entry.

If byte 0 of the 32-byte structure is 0, this directory entry is free and there are no more directory
entries after this one.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

FAT16 File System on the CF Card

Application Note 27

If byte 11 of the structure is 0x0f, this entry is part of a directory entry with long name.

If byte 11 of the structure is 0x10, this entry is for a subdirectory.

For a short directory entry (entry with a short name), the first 8 bytes of the structure are for the file
or subdirectory name, and the following 3 bytes are for the file or subdirectory name extension. If
the name requires less than 11 bytes, it is padded with 0x020. Function getShortFileName() in the
demo code gets the short file name from the entry.

For a long directory entry (entry with a long name), the entry will start with a sequence of 32-byte
structures with byte 11 equal to 0x0f, and end with a short directory entry. Each character of the file
name will be represented by 2 bytes. Function getLongFileName() gets the long file name from the
entry.

Bytes 20, 21, 26 and 27 of the 32-byte structure in a short directory entry comprise the first cluster
number Dir_FstClus, which is used to determine either where the file content is located for a file
name entry, or where the subdirectory list is located for a subdirectory entry.

For a subdirectory, the first two entries are the dot entry and dot-dot entry. The dot entry is for the
current directory, and dot-dot entry is for the parent directory of the subdirectory. If the parent
directory is the root directory, Dir_FstClus will be 0 for the dot-dot entry.

6.5 List the Root Directory

In this application note demo code, the function changeToRootDirectory() is called to list the root
directory entries after checkMBR() and ProcessBPB() are called to process the MBR and BPB.

The set of sectors that contain the 32-byte FAT directory structure entries for the root directory is
specified in Section 6.3. Function changeToRootDirectory() reads each sector in the set, and calls
function listFileEntryInOneSector() to list all the file or directory entries in each sector. As
described in Section 6.4, each sector is a sequence of 32-byte FAT directory structures.

6.6 List a Subdirectory

If a 32-byte FAT directory structure entry in the current directory is a subdirectory entry (namely,
byte 11 is 0x10), the subdirectory can be browsed by passing the first cluster number Dir_FstClus
(comprised of bytes 20, 21, 26 and 27 of the entry) to the function getClusFstSet() to get the first
sector in the cluster that contains the directory entries for this subdirectory. The number of sectors
in each cluster is BPB_SecPerClus, which is calculated in ProcessBPB(). After all the sectors in the
current cluster are listed, call getNextFATentry() to get the next cluster. This is continued until
isEndOfclusterChain() returns true.

The entries in each sector are listed by listFileEntryInOneSector(). And the function
changeToDirectory() lists all the entries for a subdirectory entry.

As described in Section 6.4, the dot-dot entry in a subdirectory points to the parent directory. If
Dir_FstClus of the dot-dot entry is 0, the parent is the root directory, and hence needs to be
processed as discussed in Section 6.5. If Dir_FstClus is not 0, the Dir_FstClus in the dot-dot entry
is processed as a regular directory entry.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
CompactFlash Linux* Device Driver

28 Application Note

6.7 Get Access to File Content

If the current directory entry is a file entry, namely byte 11 of the structure is not 0x10, then bytes
28, 29, 30, 31 of the structure comprise the file size DIR_FileSize. The first sector in the cluster
that contains the file content can be obtained by passing the first cluster number Dir_FstClus
(comprised of bytes 20, 21, 26 and 27) to the function getClusFstSet(). The number of sectors in
each cluster is BPB_SecPerClus, which is calculated in ProcessBPB(). After the file content in all
the sectors in the current cluster is read, call getNextFATentry() to get the next cluster. This process
continues until all DIR_FileSize bytes are read. Function readFile() in this application note demo
code performs this function.

7.0 CompactFlash Linux* Device Driver

The functions described previously for the Expansion Bus configuration and reading/writing the
CF card are wrapped in a device driver, which is presented in this section. The CF device driver in
this application note is a character driver. It provides a set of file operations for applications to get
access to the CF card by going through the normal file system in Linux.

Note: The functions described in this section are shown in Appendix A.1, on page 36,
“CompactFlashModuleSymbols.c”.

The following file operations are defined in this device driver:
struct file_operations
CompactFlashModuleOperations = {

 NULL,

 NULL, /* lseek */

 CompactFlashModule_read, /* read */

 CompactFlashModule_write, /* write
*/

 NULL, /* readdir
*/

 NULL, /* poll */

 CompactFlashModule_ioctl, /* ioctl
*/

 NULL, /* mmap */

 CompactFlashModule_open, /* open */

 NULL, /* flush */

 CompactFlashModule_close, /* release
*/

 NULL, /* sync */

 NULL, /* async */

 NULL, /* lock */

 NULL, /* ready */

 NULL, /* written
*/

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

CompactFlash Linux* Device Driver

Application Note 29

 NULL, /* sendPage
*/

 NULL /*
get_umpatted_area */

 };

The driver also uses the following two functions when the device driver is loaded or unloaded:
static int __init

CompactFlashModule_init_module(void);

static void __init
CompactFlashModule_cleanup_module(void);

When the device driver is loaded into the system, CompactFlashModule_init_module() is called
and the device is registered with register_chrdev(). When it is unloaded, the driver is unregistered
with unregister_chrdev().

When applications open or close the device, the following functions are called, respectively:
int CompactFlashModule_open (struct inode *inNum,

struct file *fp)

int CompactFlashModule_close(struct inode *inNum,
struct file *fp)

The main operations are in functions CompactFlashModule_read(), CompactFlashModule_write(),
and CompactFlashModule_ioctl(), which are described in the following sections.

7.1 Read the Device

The read function CompactFlashModule_read() in the driver reads a sector in the CF card by
calling ReadSectorW() (described in Section 5.5) and using function copy_to_user() to pass the
data to the application. The function copy_to_user() is required because applications cannot
directly get access to the memory areas managed by the kernel. This function can also read the
identify sector in the CF card.

7.2 Write the Device

The write function CompactFlashModule_write() in the driver writes a sector to the CF card by
calling WriteSectorW() (described in Section 5.6) and using function copy_from_user() to pass the
data from the application. The function copy_from_user() is required because applications cannot
directly get access to the memory areas managed by the kernel.

7.3 Control the Device

The control function CompactFlashModule_ioctl() is used by the applications to read/write the
registers in the CF card, check if the card is ready, display the timing and control registers in the
Expansion Bus, start initializing the Expansion Bus, and set a flag file-private_data used
by the device read/write functions. It also provide functions to view directories, change directories,
view files, find the MBR, and process the BPB.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Application Code

30 Application Note

8.0 Application Code

Note: The functions described in this section are shown in Appendix A.8, on page 92,
“CompactFlashApp.c”.

This simple application code is used to test the driver. It starts with opening the device:
CFdriver = open("/dev/CompactFlashModule",O_RDWR);

Then it calls the device driver’s control function:
rc = ioctl(CFdriver,CF_INIT_IDE, &passedArg);

to initialize the Expansion Bus, check if the CF card is ready, and read the identify information
from the CF card.

The application then calls testFileSystemMenu() to display the following menu and wait for user
input:

The command “cd” is used to change the directory, and command “dir” lists the content of a
directory. If a file name is entered, the content of the file is displayed (each byte is displayed as a
character). Command “exit!” terminates the application.

If the command “test!” is entered, the application will switch to a test menu (TestMenu() is called)
so that the user can perform the following low-level testing on the CF card: checking if the CF is
ready, reading CF registers, writing to CF registers, showing Exp Bus Regs, reading the identify
sector, reading from one sector, writing to one sector, showing content in a sector, finding the
MBR, and processing the BPB.

- IxCompactFlashCodelet File System Demo -

Commands: cd/dir [/][.][..][dir name]; file or dir name; test!, exit!

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Platform Used for Testing

Application Note 31

9.0 Platform Used for Testing

The platform used to test the demo code in this application note is the Avila* GW2342 single-
board computer made by Gateworks Corporation* (http://www.gateworks.com/avila_sbc.htm).
This board supports the IXP42X product line processors at speeds up to 533 MHz. It provides a CF
socket attached to the Expansion Bus, as described in Section 3.1.

The board also supports up to four Type III Mini PCI slots, two 10/100 Base-TX Ethernet channels,
and two RS232 ports for management and debug. Additional features include up to 128 Mbytes
SDRAM, five bits digital I/O, optional USB device port, real time clock, watchdog timer and a
voltage/temperature monitor. Program storage consists of up to 32 Mbytes of on-board flash
memory in addition to the CF socket. Software support includes Linux, VxWorks*, and Windows*
CE .NET operating systems.

--
- IxCompactFlashCodelet Demo Menu -
--

Read/Write to CF Registers:
 1: check if the flash card is ready
 2: read all the CF registers
 3: read one CF register
 4: write to one CF register
 5: show Exp Bus Regs

View CF Identify Information:
 6: read the identify sector

Read/Write to sectors:
 7: read from one sector
 8: write to one sector

Display data:
 9: show one byte in a sector
 10: show next 10 bytes
 11: show one word in a sector
 12: show next 10 words

Display MBR & BPB:
 13: find MBR and BPB
 14: Process BPB data

Display Other Information:
 15: display a number to the LED on RF board
 16: toggle gpio pin 6 on RF board
100: Exit

http://www.gateworks.com/avila_sbc.htm
http://www.gateworks.com/avila_sbc.htm

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Demo and ‘Screen Shot’

32 Application Note

The Avila board is compatible with the IXDP425 / IXCDP1100 platform; therefore, the Linux
Support Package (LSP) from MontaVista* Linux (MVL) 3.0 for the IXDP425 / IXCDP1100
platform is used for the board. No change is required to the software except when issuing the
command to execute the kernel (as shown in Section 10.0), the user must specify the board’s
memory amount (64 Mbytes).

Note: This system is NOT suitable for HOT plugging. So even though the CF card is removable, the
system must be powered off before changing the CF card.

10.0 Demo and ‘Screen Shot’

Along with IXP400 software v1.3, the demo code was compiled using MontaVista Linux 3.0 with
Red Hat* 7.3.

Note: The code in the application note is not IXP400 software release-dependent. Only the build setup of
the IXP400 software release is used to build the device driver and the application.

Refer to the Intel® IXP400 Software Release 1.5 Software Release Notes for details about building
modules for the IXP400 software release.

In the codelet subdirectory in IXP400 software, create a subdirectory “cfEng” and put the files in
Appendix A, “Source Code” into this subdirectory with the following file structure:

ixp425_xscale_sw

\------src

\------codelets

\------cfEng

\------CompactFlash.h

\------CompactFlashIDE.c

\------CompactFlashIDE.h

\------CompactFlashFat16.c

\------CompactFlashFat16.h

\------CompactFlashModuleSymbols.c

\------component.mk

\------cfApp

\------CompactFlashApp.c

\------MakeFile

To include the CF driver into the building process, the Makefile in \ixp425_xscale_sw is modified
such that cfEng is added as follows:

BI_ENDIAN_CODELETS_COMPONENTS := hssAcc ethAcc usb timers dspEng cfEng

The following command will build all the modules:

make modules

To build the CF test application, go to subdirectory “cfApp” and execute a “make” command.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Demo and ‘Screen Shot’

Application Note 33

Refer to the user guide for the Avila GW2342 single-board computer for details about setting up
the board.

The kernel can be downloaded to the Avila single-board computer using the following command:
load -r -v -b 0x001600000 zImage

Due to the size of the SDRAM on the board (64 Mbytes), the kernel is executed with the following
command:

exec -c "console=ttyS0,115200 root=/dev/nfs ip=bootp mem=64M@0x00000000"

The IXP400 software library and the driver module for the CompactFlash are then loaded:
insmod ixp400_codelets_cfEng.o
mknod /dev/CompactFlashModule c 253 0

The CF test application is then started:

./CompactFlashApp

10.1 CompactFlash Demo Screen Shot

The following is a ‘screen shot’ of the demo code:

CompactFlash_module :: initialize IDE ...

CompactFlash_module :: initialize Exp Bus ...

CompactFlash_module :: Exp Bus cs1 =c5880000

CompactFlash_module :: Exp Bus cs2 =c5882000

CompactFlash_module :: CF is ready ...

CompactFlash_module :: show CF regs ...

CompactFlash_module :: CF_STATUS=50

CompactFlash_module :: CF_ALTSTATUS=50

CompactFlash_module :: CF_

CompactFlash_module :: CF_CYL_H=0

CompactFlash_module :: CF_CYL_L=0

CompactFlash_module :: CF_SECT_NUM=1

CompactFlash_module :: CF_SECT_CNT=1

CompactFlash_module :: CF_ERROR=1

CompactFlash_module :: read the identify block ...

CompactFlash_module :: CF signature =0X848a

CompactFlash_module :: Number of Cylinders =490 (0x1ea)

CompactFlash_module :: Number of Heads =8 (0x8)

CompactFlash_module :: Number of Sectors per tarck =32 (0x20)

CompactFlash_module :: Number of sectors per card =125440

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Demo and ‘Screen Shot’

34 Application Note

(0x1ea00)

CompactFlash_module :: Capabilities =0x200

CompactFlash_module :: LBA supported

CompactFlash_module :: checking if there is a master boot record
...

processing MBR

CompactFlash_module :: it is FAT16 (larger than 32MB)

CompactFlash_module :: BPB_LBA=32

CompactFlash_module :: processing BPB ...

CompactFlash_module :: checking FAT type ...

CompactFlash_module :: CountofClusters=14834 ...

CompactFlash_module :: RootDirSectors=32 ...

CompactFlash_module :: BPB_RsvdSecCnt=1 ...

CompactFlash_module :: BPB_RootEntCnt

CompactFlash_module :: BPB_BytsPerSec=512 ...

CompactFlash_module :: BPB_FATSz16=122 ...

CompactFlash_module :: BPB_FATSz32=-450297728 ...

CompactFlash_module :: BPB_NumFATs=2 ...

CompactFlash_module :: BPB_TotSec16=0 ...

CompactFlash_module :: BPB_TotSec32=59616 ...

CompactFlash_module :: BPB_SecPerClus=4 ...

CompactFlash_module :: FATSz=122 ...

CompactFlash_module :: TotSec=59616 ...

CompactFlash_module :: it is FAT16

CompactFlash_module :: FirstDataSec=277 ...

CompactFlash_module :: FirstRootDirSecNum=24

CompactFlash_module :: FATstart=33 ...

CompactFlash_module :: List Root Directory

06/29/2004 03:28:16 PM <DIR> DIR1

06/29/2004 03:28:24 PM <DIR> DIR2

05/04/2004 02:00:12 PM 3304 README.TXT

05/07/2004 02:44:14 AM 13446132 QFJE.MP3

06/30/2004 04:46:20 PM <DIR> New Folder
efriewriewrwirwiuiw

05/04/2004 02:00:12 PM 3304 Copy of readme.txt

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Demo and ‘Screen Shot’

Application Note 35

- IxCompactFlashCodelet File System Demo -

Commands: cd/dir [/][.][..][dir name]; file or dir name; test!,
exit!

dir

CompactFlash_module :: List Root Directory

06/29/2004 03:28:16 PM <DIR> DIR1

06/29/2004 03:28:24 PM <DIR> DIR2

05/04/2004 02:00:12 PM 3304 README.TXT

05/07/2004 02:44:14 AM 13446132 QFJE.MP3

06/30/2004 04:46:20 PM <DIR> New Folder

05/04/2004 02:00:12 PM 3304 Copy of readme.txt

- IxCompactFlashCodelet File System Demo -

Commands: cd/dir [/][.][..][dir name]; file or dir name; test!,
exit!

dir DIR1

06/29/2004 03:28:16 PM <DIR> DIR1

06/29/2004 03:28:16 PM <DIR> .

06/29/2004 03:28:16 PM <DIR> ..

05/04/2004 02:00:12 PM 3304 Copy of readme.txt

05/04/2004 02:00:12 PM 3304 readme.txt

test!

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Demo and ‘Screen Shot’

36 Application Note

--

- IxCompactFlashCodelet Demo Menu -

--

Read/Write to CF Registers:

 1: check if the flash card is ready

 2: read all the CF registers

 3: read one CF register

 4: write to one CF register

 5: show Exp Bus Regs

View CF Identify Information:

 6: read the identify sector

Read/Write to sectors:

 7: read from one sector

 8: write to one sector

Display data:

 9: show one byte in a sector

 10: show next 10 bytes

 11: show one word in a sector

 12: show next 10 words

Display MBR & BPB:

 13: find MBR and BPB

 14: Process BPB data

100: Exit

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 35

Appendix A Source Code

The source code shown in this appendix consists of the following files:

• CF device driver: CompactFlashModuleSymbols.c

• CF register and sector access: CompactFlashIDE.c

• Include file used by the device driver and the application: CompactFlash.h

• Include file used by the device driver: CompactFlashIDE.h

• FAT16 processing: CompactFlashFat16.C

• Include file used by the device driver: CompactFlashFat16.h

• Make file for the device driver: component.mk

• Application: CompactFlashApp.c

• Make file for the application: Makefile.mk

/**

*

* @author Intel Corporation

* @date 5 May 2004

*

* @brief This file declares exported symbols for linux kernel module builds

*

* -- Intel Copyright Notice --

*

*

* @par

* Copyright 2004 Intel Corporation All Rights Reserved.

*

* @par

* The source code contained or described herein and all documents

* related to the source code ("Material") are owned by Intel Corporation

* or its suppliers or licensors. Title to the Material remains with

* Intel Corporation or its suppliers and licensors. The Material

* contains trade secrets and proprietary and confidential information of

* Intel or its suppliers and licensors. The Material is protected by

* worldwide copyright and trade secret laws and treaty provisions. Except for the

* licensing of the source code hereunder, no part of the Material may be used,

* copied, reproduced, modified, published, uploaded, posted, transmitted,

* distributed, or disclosed in any way without Intel's prior express written

* permission.

*

* @par

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

36 Application Note

* Except for the licensing of the source code as provided hereunder, no license under

* any patent, copyright, trade secret or other intellectual property right is granted

* to or conferred upon you by disclosure or delivery of the Materials, either

* expressly, by implication, inducement, estoppel or otherwise and any license under

* such intellectual property rights must be express and approved by Intel in writing.

*

* @par

* For further details, please see the file README.TXT distributed with

* this software.

* -- End Intel Copyright Notice --

*/

A.1 CompactFlashModuleSymbols.c
#define EXPORT_SYMTAB 1

/*

* Put the system defined include files required.

*/

#include <stdio.h>

#include <taskLib.h>

#include <string.h>

#include <linux/config.h>

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/init.h>

#include <linux/sched.h>

#include <asm/uaccess.h>

#include <asm/arch/irqs.h>

#include <asm/io.h>

#include <linux/types.h>

#include <asm/hardware.h>

#include "IxAssert.h"

#include "ixp425.h"

#include "CompactFlash.h"

#include "CompactFlashIDE.h"

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 37

#define MSG(string, args...) printk(KERN_DEBUG "CompactFlashModule:" string, ##args)

#define MODULE_NAME "CompactFlashModule"

#define MODULE_VERSION "0.0.3"

MODULE_DESCRIPTION("CompactFlashModule for IXP425");

ssize_t CompactFlashModule_read(struct file *, char *, size_t , loff_t *);

ssize_t CompactFlashModule_write(struct file *, const char *, size_t, loff_t *);

int CompactFlashModule_open (struct inode *, struct file *);

int CompactFlashModule_close (struct inode *, struct file *);

int CompactFlashModule_ioctl(struct inode *,struct file *,unsigned int,unsigned long);

int CompactFlashModule_readdir(struct file *, void *, filldir_t);

extern void checkMBR();

extern void ProcessBPB(void);

extern void listCurrentDirectory();

extern void changeToDir(char *str, unsigned long changeFlag);

extern void readFileByName(char *str);

extern void changeToUpperDir(unsigned long changeFlag);

extern void changeToRootDirectory(unsigned long changeFlag);

struct file_operations CompactFlashModuleOperations = {

NULL,

NULL, /* lseek function ptr */

CompactFlashModule_read, /* read function ptr */

CompactFlashModule_write, /* write function ptr */

NULL, /* readdir function ptr */

NULL, /* poll function ptr */

CompactFlashModule_ioctl, /* ioctl function ptr */

NULL, /* mmap function ptr */

CompactFlashModule_open, /* open function ptr */

NULL, /* flush function ptr */

CompactFlashModule_close, /* release function ptr */

NULL, /* sync function ptr */

NULL, /* async function ptr */

NULL, /* lock function ptr */

NULL, /* readv function ptr */

NULL, /* writev function ptr */

NULL, /* sendPage function ptr */

NULL /* get_umpatted_area */

};

int CompactFlashChrDevVer=0;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

38 Application Note

static int __init CompactFlashModule_init_module(void)

{

CompactFlashChrDevVer=register_chrdev(253,"CompactFlashModule",

 &CompactFlashModuleOperations);

printk("CompactFlash_init_module :: "

"LOADED SUCCESSFULLY CompactFlash MODULE\n");

return IX_SUCCESS;

}

static void __init CompactFlashModule_cleanup_module(void)

{

 printk("Value=%d\n",unregister_chrdev(253, "CompactFlashModule"));

 printk("CompactFlash_cleanup_module :: UNLOADED CompactFlash MODULE\n");

}

ssize_t CompactFlashModule_write(struct file *fp,const char *buf,size_t num,loff_t *off)

{

 unsigned char x[512];

copy_from_user(x, buf, 512);

switch((int)fp->private_data)

{

case Byte_Access:

WriteSectorB(x, (unsigned long) num);

break;

case Word_Access:

WriteSectorW((unsigned short *)x, (unsigned long) num);

break;

}

 return(num);

}

ssize_t CompactFlashModule_read(struct file *file, char *buffer, size_t size, loff_t *ppos)

{

 size_t length = 0;

 unsigned char x[512];

 //x = (unsigned char *) kmalloc(512,GFP_KERNEL);

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 39

switch((int)file->private_data)

{

case Byte_Access:

ReadSectorB(x, (unsigned long) size);

break;

case Word_Access:

ReadSectorW((unsigned short *)x, (unsigned long) size);

break;

case Read_Identify_Sector:

ReadIdenfyInformationW((unsigned short *)x);

ReadIdenfyInformation();

break;

}

 if(copy_to_user(buffer, (char *)x, 512))

return -EFAULT;

 return(512);

}

int CompactFlashModule_ioctl(struct inode *inode, struct file *file,

 unsigned int functionId, unsigned long arg)

{

int CntCd;

unsigned long x;

char str[100];

switch(functionId)

{

case IX_CF_CODELET_READ_REG:

x=*IXP425_EXP_REG(*((unsigned long *)arg));

if(copy_to_user((char *)arg, (char *)&x, 4))

return -EFAULT;

break;

case IX_CF_CODELET_INIT_IDE:

IDE_Init(0);

break;

 case Byte_Access:

(int)file->private_data = Byte_Access;

break;

 case Word_Access:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

40 Application Note

(int)file->private_data = Word_Access;

break;

 case Read_Identify_Sector:

(int)file->private_data = Read_Identify_Sector;

break;

 case Check_Card:

*(unsigned long *)arg=Check_RDY();

break;

 case Read_All_Regs:

ReadAllCF_regs();

break;

 case Read_One_Reg:

ReadOneCF_reg(arg);

break;

 case Write_One_Reg:

WriteOneCF_reg((arg>>8)&0x0ff, arg&0x0ff);

break;

 case Show_Exp_Regs:

x=*IXP425_EXP_REG(*((unsigned long *)arg));

 if(copy_to_user((char *)arg, (char *)&x, 4))

return -EFAULT;

break;

 case FindMBRandBPB:

checkMBR();

break;

 case ProcessBPBdata:

ProcessBPB();

break;

 case ChangeToDir:

 if(copy_from_user(str, (char *)arg, 100))

return -EFAULT;

if((str[0]==0) || ((str[0]=='.')&&(str[1]==0)))

listCurrentDirectory();

else if((str[0]=='/')&&(str[1]==0))

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 41

changeToRootDirectory(1);

else if((str[0]=='.')&&(str[1]=='.')&&(str[2]==0))

changeToUpperDir(1);

else

changeToDir(str, 1);

break;

 case ShowDir:

 if(copy_from_user(str, (char *)arg, 100))

return -EFAULT;

if((str[0]==0) || ((str[0]=='.')&&(str[1]==0)))

listCurrentDirectory();

else if((str[0]=='/')&&(str[1]==0))

changeToRootDirectory(0);

else if((str[0]=='.')&&(str[1]=='.')&&(str[2]==0))

changeToUpperDir(0);

else

changeToDir(str, 0);

break;

 case ReadFile:

 if(copy_from_user(str, (char *)arg, 100))

return -EFAULT;

readFileByName(str);

break;

 default:

printf("Invalid IOCTL is passed to driver %x \n", functionId);

break;

}

 return IX_SUCCESS;

}

int CompactFlashModule_open (struct inode *inNum, struct file *fp)

{

return IX_SUCCESS;

}

int CompactFlashModule_close (struct inode *inNum, struct file *fp)

{

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

42 Application Note

return IX_SUCCESS;

}

module_init(CompactFlashModule_init_module);

module_exit(CompactFlashModule_cleanup_module);

A.2 CompactFlashIDE.c

#include <stdio.h>

#include <string.h>

#include <linux/module.h>

#include <asm/uaccess.h>

#include <asm/arch/irqs.h>

#include <asm/io.h>

#include <linux/types.h>

#include <asm/hardware.h>

#include <linux/delay.h>

#include "ixp425.h"

#include "CompactFlash.h"

#include "CompactFlashIDE.h"

#include "CompactFlashFat16.h"

unsigned char Heads; // number of heads as read from CF

unsigned short SecTrack; // sectors petr track as read from CF

unsigned long LastSect=1000000;

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 43

unsigned long ixp_exp_bus_cs1, ixp_exp_bus_cs2;

void CompactFlashExpBusInit(void)

{

unsigned int *cs;

unsigned int value;

printk("CompactFlash_module :: " "initialize Exp Bus ... \n");

cs = (unsigned int *)IXP425_EXP_CS1;

value = 0xbfff0043;// 8-bit data bus as default

*cs = value;

ixp_exp_bus_cs1 = (unsigned long)ioremap(IXP425_EXP_BUS_CS1_BASE_PHYS, 512);

cs = (unsigned int *)IXP425_EXP_CS2;

value = 0xbfff0043;// 8-bit data bus as default

*cs = value;

ixp_exp_bus_cs2 = (unsigned long)ioremap(IXP425_EXP_BUS_CS2_BASE_PHYS, 512);

 printk("CompactFlash_module :: " "Exp Bus cs1 =%x\n", ixp_exp_bus_cs1);

 printk("CompactFlash_module :: " "Exp Bus cs2 =%x\n", ixp_exp_bus_cs2);

}

void setExpBusCS1To16BitDataBus(void)

{

unsigned int *cs;

unsigned int value;

cs = (unsigned int *)IXP425_EXP_CS1;

value = *cs;

*cs = value&(~1); // set bit 0 to 0

}

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

44 Application Note

void setExpBusCS1To8BitDataBus(void)

{

unsigned int *cs;

unsigned int value;

cs = (unsigned int *)IXP425_EXP_CS1;

value = *cs;

*cs = value|1; // set bit 0 to 1

}

unsigned short byteSwap(unsigned short data)

{

//convert from little to big endian

unsigned short tmp;

tmp=(data<<8)|(data>>8);

return tmp;

}

void CompactFlashExpBusWriteW(unsigned long ixp_exp_bus_cs, unsigned short reg,
unsigned short data)

{

__raw_writew(data,__mem_pci(ixp_exp_bus_cs + reg));

}

void CompactFlashExpBusWriteB(unsigned long ixp_exp_bus_cs, unsigned short reg,
unsigned short data)

{

__raw_writeb(data,__mem_pci(ixp_exp_bus_cs + reg));

}

unsigned short CompactFlashExpBusReadW(unsigned long ixp_exp_bus_cs, unsigned
short reg)

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 45

{

return (__raw_readw(__mem_pci(ixp_exp_bus_cs + reg)));

}

unsigned char CompactFlashExpBusReadB(unsigned long ixp_exp_bus_cs, unsigned short
reg)

{

return (__raw_readb(__mem_pci(ixp_exp_bus_cs + reg)));

}

void WriteRegW(unsigned short addr, unsigned short data)

{

if (addr&0x20)

CompactFlashExpBusWriteW(ixp_exp_bus_cs1, addr&0x0f, data);

else

CompactFlashExpBusWriteW(ixp_exp_bus_cs2, addr&0x0f, data);

}

void WriteRegB(unsigned short addr, unsigned char data)

{

if (addr&0x20)

CompactFlashExpBusWriteB(ixp_exp_bus_cs1, addr&0x0f, data);

else

CompactFlashExpBusWriteB(ixp_exp_bus_cs2, addr&0x0f, data);

}

unsigned short ReadRegW(unsigned short addr)

{

unsigned short val;

if (addr&0x20)

val=CompactFlashExpBusReadW(ixp_exp_bus_cs1, addr&0x0f);

else

val=CompactFlashExpBusReadW(ixp_exp_bus_cs2, addr&0x0f);

return (val);

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

46 Application Note

}

unsigned char ReadRegB(unsigned short addr)

{

unsigned char val;

if (addr&0x20)

val=CompactFlashExpBusReadB(ixp_exp_bus_cs1, addr&0x0f);

else

val=CompactFlashExpBusReadB(ixp_exp_bus_cs2, addr&0x0f);

return (val);

}

// INT will be cleared

void Waiting_RDY(void)

{

unsigned short Status, noReady;

noReady=1;

while(noReady)

{

Status=ReadRegB(CF_STATUS);

if((Status & 0x40) && ((Status & 0x80) == 0)) noReady=0;

// ready bit must be 1 AND Busy bit must be Zero...

}

}

unsigned char Check_RDY(void)

{

unsigned short Status, Ready;

Ready=0;

Status=ReadRegB(CF_STATUS);

if((Status & 0x40) && ((Status & 0x80) == 0)) Ready=1;

return Ready;

}

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 47

// wait for delay with time out

unsigned char Waiting_RDY_TO(void)

{

unsigned short Status, noReady;

unsigned short count=0;

noReady=1;

while(noReady)

{

udelay(500);

Status=ReadRegB(CF_STATUS);

if((Status & 0x40) && ((Status & 0x80) == 0))

noReady=0;

else

count++;

if(count >= 50000)

{

if((Status & 0x40) == 0)

return(2);

else if((Status & 0x80))

return(1);

else if(((Status & 0x80)) && ((Status & 0x40) == 0))

return(3);

}

// ready bit must be 1 AND Busy bit must be Zero...

}

return(0);

}

// INT will not be cleared

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

48 Application Note

void Waiting_RDY_Alt(void)

{

unsigned short Status, noReady;

noReady=1;

while(noReady)

{

Status=ReadRegB(CF_ALTSTATUS);

if((Status & 0x40) && ((Status & 0x80) == 0)) noReady=0;

}

}

// identify drive

void ReadIdenfyInformation(void)

{

unsigned short DriveID[256];

unsigned char *ptr;

ptr=DriveID;

WriteRegB(CF_DRV_HEAD, 0xA0);// identify drive

Waiting_RDY();

WriteRegB(CF_DEV_CTR, 0x02); // disable Inten

Waiting_RDY();

ReadIdenfyInformationW(DriveID);

printk("CompactFlash_module :: " "CF signature =0X%x\n",
byteSwap(DriveID[0]));

printk("CompactFlash_module :: " "Number of Cylinders =%d (0x%x)\n",
byteSwap(DriveID[1]),byteSwap(DriveID[1]));

Heads=byteSwap(DriveID[3]);

printk("CompactFlash_module :: " "Number of Heads =%d (0x%x)\n",

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 49

byteSwap(DriveID[3]),byteSwap(DriveID[3]));

SecTrack=byteSwap(DriveID[6]);

printk("CompactFlash_module :: " "Number of Sectors per tarck =%d
(0x%x)\n", byteSwap(DriveID[6]),byteSwap(DriveID[6]));

printk("CompactFlash_module :: " "Number of sectors per card =%d
(0x%x)\n",
(byteSwap(DriveID[7])<<16)+byteSwap(DriveID[8]),(byteSwap(DriveID[7])<<16)+byteSwa
p(DriveID[8]));

printk("CompactFlash_module :: " "Capabilities =0x%x\n",
byteSwap(DriveID[49]));

if(!((byteSwap(DriveID[49]) >> 8) & BIT(1)))

printk("CompactFlash_module :: " "LBA not supported\n");

else

printk("CompactFlash_module :: " "LBA supported\n");

}

void ReadAllCF_regs()

{

unsigned char tmp;

tmp=ReadRegB(CF_STATUS);

printk("CompactFlash_module :: " "CF_STATUS=%x\n", tmp);

tmp=ReadRegB(CF_ALTSTATUS);

printk("CompactFlash_module :: " "CF_ALTSTATUS=%x\n", tmp);

tmp=ReadRegB(CF_DRV_HEAD);

printk("CompactFlash_module :: " "CF_DRV_HEAD=%x\n", tmp);

tmp=ReadRegB(CF_CYL_H);

printk("CompactFlash_module :: " "CF_CYL_H=%x\n", tmp);

tmp=ReadRegB(CF_CYL_L);

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

50 Application Note

printk("CompactFlash_module :: " "CF_CYL_L=%x\n", tmp);

tmp=ReadRegB(CF_SECT_NUM);

printk("CompactFlash_module :: " "CF_SECT_NUM=%x\n", tmp);

tmp=ReadRegB(CF_SECT_CNT);

printk("CompactFlash_module :: " "CF_SECT_CNT=%x\n", tmp);

tmp=ReadRegB(CF_ERROR);

printk("CompactFlash_module :: " "CF_ERROR=%x\n\n", tmp);

}

void ReadOneCF_reg(unsigned char reg)

{

unsigned char tmp;

switch(reg)

{

case CF_STATUS:

tmp=ReadRegB(CF_STATUS);

printk("CompactFlash_module :: " "CF_STATUS=0x%x\n", tmp);

break;

case CF_ALTSTATUS:

tmp=ReadRegB(CF_ALTSTATUS);

printk("CompactFlash_module :: " "CF_ALTSTATUS=0x%x\n", tmp);

break;

case CF_DRV_HEAD:

tmp=ReadRegB(CF_DRV_HEAD);

printk("CompactFlash_module :: " "CF_DRV_HEAD=0x%x\n", tmp);

break;

case CF_CYL_H:

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 51

tmp=ReadRegB(CF_CYL_H);

printk("CompactFlash_module :: " "CF_CYL_H=0x%x\n", tmp);

break;

case CF_CYL_L:

tmp=ReadRegB(CF_CYL_L);

printk("CompactFlash_module :: " "CF_CYL_L=0x%x\n", tmp);

break;

case CF_SECT_NUM:

tmp=ReadRegB(CF_SECT_NUM);

printk("CompactFlash_module :: " "CF_SECT_NUM=0x%x\n", tmp);

break;

case CF_SECT_CNT:

tmp=ReadRegB(CF_SECT_CNT);

printk("CompactFlash_module :: " "CF_SECT_CNT=0x%x\n", tmp);

break;

case CF_ERROR:

tmp=ReadRegB(CF_ERROR);

printk("CompactFlash_module :: " "CF_ERROR=0x%x\n\n", tmp);

break;

}

}

void WriteOneCF_reg(unsigned short reg, unsigned char data)

{

switch(reg)

{

case CF_COMMAND:

WriteRegB(CF_COMMAND, data);

break;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

52 Application Note

case CF_DEV_CTR :

WriteRegB(CF_DEV_CTR , data);

break;

case CF_DRV_HEAD:

WriteRegB(CF_DRV_HEAD, data);

break;

case CF_CYL_H:

WriteRegB(CF_CYL_H, data);

break;

case CF_CYL_L:

WriteRegB(CF_CYL_L, data);

break;

case CF_SECT_NUM:

WriteRegB(CF_SECT_NUM, data);

break;

case CF_SECT_CNT:

WriteRegB(CF_SECT_CNT, data);

break;

case CF_FEATURES:

WriteRegB(CF_FEATURES, data);

break;

}

}

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 53

void IDE_Init(unsigned char drive)

{

unsigned short tmp, x[1000];

printk("CompactFlash_module :: " "initialize IDE ... \n");

CompactFlashExpBusInit();

tmp=Waiting_RDY_TO();

if(!tmp)

printk("CompactFlash_module :: " "CF is ready ... \n");

else

{

tmp=ReadRegB(CF_STATUS);

printk("CompactFlash_module :: " "CF is not ready; CF_STATUS=%x\n",
tmp);

}

printk("CompactFlash_module :: " "show CF regs ... \n");

ReadAllCF_regs();

ReadIdenfyInformation();

// set to LBA

WriteRegB(CF_DRV_HEAD, 0xE0);

Fat16Init();

}

void ReadSectorW(unsigned short *buff, unsigned long LBALocation)

{

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

54 Application Note

unsigned short cnt, tmp, *ptr;

LastSect=LBALocation;

WriteRegB(CF_DRV_HEAD, ((LBALocation >> 24) & 0xFF) | 0xE0); // BitsForDH

WriteRegB(CF_CYL_H, (LBALocation >> 16) & 0xFF); // BitsForCF_CYL_H

WriteRegB(CF_CYL_L, (LBALocation >> 8) & 0xFF); // BitsForCF_CYL_L

WriteRegB(CF_SECT_NUM, LBALocation & 0xFF);// BitsForSect

WriteRegB(CF_SECT_CNT, 1);

WriteRegB(CF_COMMAND, 0x20); // read sectors

Waiting_RDY_Alt();

setExpBusCS1To16BitDataBus();

ptr=buff;

for(cnt=0; cnt < 256; cnt++)

{

tmp=ReadRegW(CF_DATA);

*ptr++=byteSwap(tmp);

}

setExpBusCS1To8BitDataBus();

}

void ReadSectorB(unsigned char *buff, unsigned long LBALocation)

{

unsigned short cnt;

unsigned char *ptr;

LastSect=LBALocation;

WriteRegB(CF_DRV_HEAD, ((LBALocation >> 24) & 0xFF) | 0xE0); // BitsForDH

WriteRegB(CF_CYL_H, (LBALocation >> 16) & 0xFF); // BitsForCF_CYL_H

WriteRegB(CF_CYL_L, (LBALocation >> 8) & 0xFF); // BitsForCF_CYL_L

WriteRegB(CF_SECT_NUM, LBALocation & 0xFF);// BitsForSect

WriteRegB(CF_SECT_CNT, 1);

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 55

WriteRegB(CF_COMMAND, 0x20); // read sectors

Waiting_RDY_Alt();

WriteRegB(CF_FEATURES, 0x01); // enable 8 bit transfer

WriteRegB(CF_COMMAND, 0xEF); // set features

Waiting_RDY_Alt();

ptr=buff;

for(cnt=0; cnt < 512; cnt++)

*ptr++=ReadRegB(CF_DATA);

WriteRegB(CF_FEATURES, 0x81); // disable 8bit transfer

WriteRegB(CF_COMMAND, 0xEF); // set features

}

void ReadIdenfyInformationW(unsigned short *buff)

{

unsigned short cnt, tmp, *ptr;

printk("CompactFlash_module :: " "read the identify block ... \n");

WriteRegB(CF_COMMAND, 0xEC); // identify drive

Waiting_RDY_Alt();

ptr=buff;

setExpBusCS1To16BitDataBus();

for(cnt=0; cnt < 256; cnt++)

{

tmp=ReadRegW(CF_DATA);

*ptr++=byteSwap(tmp);

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

56 Application Note

}

ReadRegB(CF_STATUS);

setExpBusCS1To8BitDataBus();

}

void ReadIdenfyInformationB(unsigned char *buff)

{

unsigned short cnt;

unsigned char *ptr;

printk("CompactFlash_module :: " "read the identify block ... \n");

WriteRegB(CF_COMMAND, 0xEC); // identify drive

Waiting_RDY_Alt();

WriteRegB(CF_FEATURES, 0x01); // enable 8 bit transfer

WriteRegB(CF_COMMAND, 0xEF); // set features

Waiting_RDY_Alt();

ptr=buff;

for(cnt=0; cnt < 512; cnt++)

*ptr++=ReadRegB(CF_DATA);

WriteRegB(CF_FEATURES, 0x81); // disable 8bit transfer

WriteRegB(CF_COMMAND, 0xEF); // set features

}

void ReadSectorMod(unsigned char *buff, unsigned long LBALocation)

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 57

{

unsigned short cnt, *ptr;

LastSect=0;

WriteRegB(CF_DRV_HEAD, ((LBALocation >> 24) & 0xFF) | 0xA0); // BitsForDH

WriteRegB(CF_CYL_H, (LBALocation >> 16) & 0xFF); // BitsForCF_CYL_H

WriteRegB(CF_CYL_L, (LBALocation >> 8) & 0xFF); // BitsForCF_CYL_L

WriteRegB(CF_SECT_NUM, LBALocation & 0xFF);// BitsForSect

WriteRegB(CF_SECT_CNT, 1);

WriteRegB(CF_COMMAND, 0x20); // read sectors

Waiting_RDY_Alt();

setExpBusCS1To16BitDataBus();

ptr=(unsigned short *)buff;

for(cnt=0; cnt < 256; cnt++)

*ptr++=ReadRegW(CF_DATA);

setExpBusCS1To8BitDataBus();

}

void Waiting_DRQ_Alt(void)

{

unsigned short Status, noReady;

noReady=1;

while(noReady)

{

Status=ReadRegB(CF_ALTSTATUS);

if((Status & 0x08) && ((Status & 0x80) == 0)) noReady=0;

}

}

void WriteSectorW(unsigned short *buff, unsigned long LBALocation)

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

58 Application Note

{

unsigned short cnt, *ptr, tmp;

LastSect=LBALocation;

printk("CompactFlash_module :: " "writing to a sector ... \n");

WriteRegB(CF_DRV_HEAD, ((LBALocation >> 24) & 0xFF) | 0xE0); // BitsForDH

WriteRegB(CF_CYL_H, (LBALocation >> 16) & 0xFF); // BitsForCF_CYL_H

WriteRegB(CF_CYL_L, (LBALocation >> 8) & 0xFF); // BitsForCF_CYL_L

WriteRegB(CF_SECT_NUM, LBALocation & 0xFF);// BitsForSect

WriteRegB(CF_SECT_CNT, 1);

WriteRegB(CF_COMMAND, 0x30); // write sectors

Waiting_DRQ_Alt();

setExpBusCS1To16BitDataBus();

ptr=buff;

for(cnt=0; cnt < 256; cnt++)

{

tmp=byteSwap(*ptr++);

WriteRegW(CF_DATA, tmp);

}

ReadRegB(CF_STATUS);

setExpBusCS1To8BitDataBus();

Waiting_RDY_Alt();

printk("CompactFlash_module :: " "done with writing to a sector\n");

}

void WriteSectorB(unsigned char *buff, unsigned long LBALocation)

{

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 59

unsigned short cnt, *ptr;

LastSect=LBALocation;

printk("CompactFlash_module :: " "writing to a sector ... \n");

WriteRegB(CF_DRV_HEAD, ((LBALocation >> 24) & 0xFF) | 0xE0); // BitsForDH

WriteRegB(CF_CYL_H, (LBALocation >> 16) & 0xFF); // BitsForCF_CYL_H

WriteRegB(CF_CYL_L, (LBALocation >> 8) & 0xFF); // BitsForCF_CYL_L

WriteRegB(CF_SECT_NUM, LBALocation & 0xFF);// BitsForSect

WriteRegB(CF_SECT_CNT, 1);

WriteRegB(CF_COMMAND, 0x30); // write sectors

Waiting_DRQ_Alt();

setExpBusCS1To16BitDataBus();

ptr=(unsigned short *)buff;

for(cnt=0; cnt < 256; cnt++)

WriteRegW(CF_DATA, *ptr++);

setExpBusCS1To8BitDataBus();

Waiting_RDY_Alt();

printk("CompactFlash_module :: " "done with writing to a sector\n");

}

A.3 CompactFlash.h
#ifndef __COMPACTFLASH_H__

#define __COMPACTFLASH_H__

/* Ioctl values for Linux */

#define IX_CF_CODELET_READ_REG 800001

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

60 Application Note

#define IX_CF_CODELET_INIT_IDE 800002

#define IX_CF_CODELET_TOGGLE_GPIO 800003

#define IX_CF_CODELET_DSIPLAY_HEX 800004

#define IXP425_EXP_CS0_OFFSET 0x00

#define IXP425_EXP_CS1_OFFSET 0x04

#define IXP425_EXP_CS2_OFFSET 0x08

#define IXP425_EXP_CS3_OFFSET 0x0C

#define IXP425_EXP_CS4_OFFSET 0x10

#define IXP425_EXP_CS5_OFFSET 0x14

#define IXP425_EXP_CS6_OFFSET 0x18

#define IXP425_EXP_CS7_OFFSET 0x1C

#define IXP425_EXP_CFG0_OFFSET 0x20

#define IXP425_EXP_CFG1_OFFSET 0x24

#define IXP425_EXP_CFG2_OFFSET 0x28

#define IXP425_EXP_CFG3_OFFSET 0x2C

#define Check_Card 1

#define Read_All_Regs 2

#define Read_One_Reg 3

#define Write_One_Reg 4

#define Show_Exp_Regs 5

#define Read_Identify_Sector 6

#define Read_From_One_Sector 7

#define Write_To_One_Sector 8

#define Show_One_Byte 9

#define Show_Next_10_Bytes 10

#define Show_One_Word 11

#define Show_Next_10_Words 12

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 61

#define FindMBRandBPB 13

#define ProcessBPBdata 14

#define DSIPLAY_HEX 15

#define TOGGLE_GPIO 16

#define ChangeToDir 18// cd dir_name, cd /, cd ., cd ..

#define ShowDir 19// dir

#define ReadFile 20// file name

#define GoTestMenu 21// test //go to test menu

#define Byte_Access 51

#define Word_Access 52

#define Exit_Now 100

#endif

/* __COMPACTFLASH_H__ */

A.4 CompactFlashIDE.h
#ifndef __COMPACTFLASHIDE_H

#define __COMPACTFLASHIDE_H

// _CS1 _CS0 0 A2 A1 A0 // table 35 in CF Spe 2.0

#define CF_DATA 0x20

#define CF_ERROR 0x21

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

62 Application Note

#define CF_SECT_CNT 0x22

#define CF_SECT_NUM 0x23

#define CF_CYL_L 0x24

#define CF_CYL_H 0x25

#define CF_DRV_HEAD 0x26

#define CF_STATUS 0x27

#define CF_FEATURES 0x21

#define CF_COMMAND 0x27

#define CF_ALTSTATUS 0x16

#define CF_DEV_CTR 0x16

#define LED_RF 0x10// LED in RF board

void CompactFlashExpBusInit(void);

void setExpBusCS1To16BitDataBus(void);

void setExpBusCS1To8BitDataBus(void);

void CompactFlashExpBusWriteW(unsigned long ixp_exp_bus_cs, unsigned short reg,
unsigned short data);

void CompactFlashExpBusWriteB(unsigned long ixp_exp_bus_cs, unsigned short reg,
unsigned short data);

unsigned short CompactFlashExpBusReadW(unsigned long ixp_exp_bus_cs, unsigned
short reg);

unsigned char CompactFlashExpBusReadB(unsigned long ixp_exp_bus_cs, unsigned short
reg);

void WriteRegW(unsigned short addr, unsigned short data);

void WriteRegB(unsigned short addr, unsigned char data);

unsigned short ReadRegW(unsigned short addr);

unsigned char ReadRegB(unsigned short addr);

unsigned short getLEW(unsigned char *addr);

unsigned char Check_RDY(void);

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 63

void Waiting_RDY(void);

unsigned char Waiting_RDY_TO(void);

void Waiting_RDY_Alt(void);

void Waiting_DRQ_Alt(void);

void ReadAllCF_regs();

void ReadOneCF_reg(unsigned char reg);

void WriteOneCF_reg(unsigned short addr, unsigned char data);

void ReadIdenfyInformation();

void ReadIdenfyInformationW(unsigned short *buff);

void ReadIdenfyInformationB(unsigned char *buff);

void IDE_Init(unsigned char drive);

void ReadSectorW(unsigned short *buff, unsigned long LBALocation);

void ReadSectorB(unsigned char *buff, unsigned long LBALocation);

void ReadSectorMod(unsigned char *buff, unsigned long LBALocation);

void WriteSectorW(unsigned short *buff, unsigned long LBALocation);

void WriteSectorB(unsigned char *buff, unsigned long LBALocation);

#endif

A.5 component.mk
ifeq ($(IX_TARGET_OS),linux)

codelets_cfEng_OBJ := CompactFlashIDE.o \

CompactFlashFat16.o \

CompactFlashModuleSymbols.o

codelets_cfEng_CFLAGS := -DOS_EMBLINUX

else

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

64 Application Note

codelets_cfEng_OBJ := CompactFlashIDE.o \

CompactFlashFat16.o \

CompactFlashModuleSymbols.o

codelets_cfEng_CFLAGS := -DOS_VXWORK

endif

codelets_mabbDemo_CFLAGS :=

codelets_cfEng_test_DEPS := ethAcc ethDB hssAcc npeDl npeMh qmgr osServices ossl

A.6 CompactFlashFat16.c
#include <stdio.h>

#include <string.h>

#include <linux/module.h>

#include <asm/uaccess.h>

#include <asm/arch/irqs.h>

#include <asm/io.h>

#include <linux/types.h>

#include <asm/hardware.h>

#include <linux/delay.h>

#include "ixp425.h"

#include "CompactFlash.h"

#include "CompactFlashIDE.h"

#include "CompactFlashFat16.h"

extern unsigned char Heads; // number of heads as read from CF

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 65

extern unsigned short SecTrack; // sectors petr track as read from CF

extern unsigned long LastSect;

#define _WORD 2

#define _BYTE 1

/*----------------------------------*/

unsigned long BPB_LBA;

unsigned char Sector_Buff[512];

unsigned short BPB_RootEntCnt;

unsigned short BPB_BytsPerSec;

unsigned short BPB_FATSz16;

unsigned long BPB_FATSz32;

unsigned char BPB_NumFATs;

unsigned char BPB_SecPerClus;

unsigned short BPB_RsvdSecCnt;

unsigned short BPB_TotSec16;

unsigned short BPB_TotSec32;

unsigned long RootDirSectors;

unsigned long FATtype;

unsigned long FATSz;

unsigned long TotSec;

unsigned long TotSec;

unsigned long DataSec;

unsigned long CountofClusters;

unsigned long FirstDataSecNum;

unsigned long FirstRootDirSecNum;

unsigned long FirstRootDirClus;

unsigned long FirstDataClus;

unsigned long FATstart;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

66 Application Note

unsigned long currentDirfstclus;

char fileName[262];

unsigned short longNameFlag;

unsigned short Get8Bits(unsigned short address)

{

return(unsigned short) (Sector_Buff[address]);

}

unsigned short Get16Bits(unsigned short address)

{

return(unsigned short) ((Sector_Buff[address +1]<<8) |
Sector_Buff[address]);

}

unsigned long Get32Bits(unsigned short address)

{

return(unsigned long) ((Sector_Buff[address +3]<<24)|(Sector_Buff[address
+2]<<16)|(Sector_Buff[address +1]<<8) | Sector_Buff[address]);

}

void DisplayBufChar(int N)

{

int i;

for(i=0; i<N; i++)

{

printk(" " "%c",Get8Bits(i));

}

}

//Extract Bios partition block info

void ProcessBPB(void)

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 67

{

printk("\nCompactFlash_module :: " "processing BPB ... \n");

printk("\nCompactFlash_module :: " "checking FAT type ... \n");

BPB_RootEntCnt=Get16Bits(17);

BPB_BytsPerSec=Get16Bits(11);

BPB_FATSz16=Get16Bits(22);

BPB_FATSz32=Get32Bits(36);

BPB_NumFATs=Get8Bits(16);

BPB_RsvdSecCnt=Get16Bits(14);

BPB_TotSec16=Get16Bits(19);

BPB_TotSec32=Get16Bits(32);

BPB_SecPerClus=Get8Bits(13);

RootDirSectors=((BPB_RootEntCnt*32)+ (BPB_BytsPerSec-1))/BPB_BytsPerSec;

if(BPB_FATSz16 !=0)

FATSz = BPB_FATSz16;

else

FATSz = BPB_FATSz32;

if(BPB_TotSec16 !=0)

TotSec = BPB_TotSec16;

else

TotSec = BPB_TotSec32;

DataSec =TotSec - (BPB_RsvdSecCnt + (BPB_NumFATs*FATSz) + RootDirSectors);

CountofClusters = DataSec / BPB_SecPerClus;

printk("\nCompactFlash_module :: " "CountofClusters=%d ... \n",
CountofClusters);

printk("\nCompactFlash_module :: " "RootDirSectors=%d ... \n",
RootDirSectors);

printk("\nCompactFlash_module :: " "BPB_RsvdSecCnt=%d ... \n",
BPB_RsvdSecCnt);

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

68 Application Note

printk("\nCompactFlash_module :: " "BPB_RootEntCnt=%d ... \n",
BPB_RootEntCnt);

printk("\nCompactFlash_module :: " "BPB_BytsPerSec=%d ... \n",
BPB_BytsPerSec);

printk("\nCompactFlash_module :: " "BPB_FATSz16=%d ... \n", BPB_FATSz16);

printk("\nCompactFlash_module :: " "BPB_FATSz32=%d ... \n", BPB_FATSz32);

printk("\nCompactFlash_module :: " "BPB_NumFATs=%d ... \n", BPB_NumFATs);

printk("\nCompactFlash_module :: " "BPB_TotSec16=%d ... \n", BPB_TotSec16);

printk("\nCompactFlash_module :: " "BPB_TotSec32=%d ... \n", BPB_TotSec32);

printk("\nCompactFlash_module :: " "BPB_SecPerClus=%d ... \n",
BPB_SecPerClus);

printk("\nCompactFlash_module :: " "FATSz=%d ... \n", FATSz);

printk("\nCompactFlash_module :: " "TotSec=%d ... \n", TotSec);

if(CountofClusters < 4085)

{

FATtype=12;

printk("CompactFlash_module :: " "it is FAT12\n");

}

else if(CountofClusters < 65525)

{

FATtype=16;

printk("CompactFlash_module :: " "it is FAT16\n");

}

else

{

FATtype=32;

printk("CompactFlash_module :: " "it is FAT32\n");

}

FirstDataSecNum = BPB_RsvdSecCnt + (BPB_NumFATs*FATSz) + RootDirSectors;

FirstRootDirSecNum= BPB_RsvdSecCnt + (BPB_NumFATs*FATSz);

FATstart = BPB_LBA+BPB_RsvdSecCnt ;

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 69

printk("\nCompactFlash_module :: " "FirstDataSec=%d ... \n",
FirstDataSecNum);

printk("\nCompactFlash_module :: " "FirstRootDirSecNum=%d ... \n",
FirstRootDirSecNum);

printk("\nCompactFlash_module :: " "FATstart=%d ... \n", FATstart);

if(FATtype==32)

{

FirstRootDirClus = Get32Bits(44);

 FirstDataClus=FATstart +(BPB_NumFATs*FATSz);

}

}

unsigned long showFileAttr(unsigned long ent)

{

unsigned long tmp, dirFlag;

tmp=Get16Bits(32*ent+24); /* date */

printk("" "%02d/%02d/%4d ",(tmp>>5)&0x0f,tmp&0x1f, ((tmp>>9)&0x7f)+1980);

tmp=Get16Bits(32*ent+22); /* time */

if(((tmp>>11)&0x1f)>12)

printk("" "%02d:%02d:%02d PM",((tmp>>11)&0x1f)-12,(tmp>>5)&0x3f,
(tmp&0x1f)*2);

else

printk("" "%02d:%02d:%02d AM",(tmp>>11)&0x1f,(tmp>>5)&0x3f,
(tmp&0x1f)*2);

dirFlag=isItDir(ent);

if(dirFlag)

{

printk("" " <DIR> ");// it is a directory

}

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

70 Application Note

else

{

tmp=Get32Bits(32*ent+28);

printk("" "%18d ",tmp); // file size

}

return dirFlag;

}

void strcpyW(char *dst, char *src)

{

short *dstPtr, *srcPtr;

int i;

dstPtr=(short *)dst;

srcPtr=(short *)src;

i=0;

while(srcPtr[i]!=0)

dstPtr[i]=srcPtr[i++];

dstPtr[i]=0;// the null

}

int strcmpW(char *dst, char *src)

{

short *dstPtr, *srcPtr;

int i, j;

dstPtr=(short *)dst;

srcPtr=(short *)src;

i=0;

j=0;

while(srcPtr[i]!=0)

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 71

{

if(dstPtr[i]!=srcPtr[i++])

{

j=1;

break;

}

}

return j;

}

void printfW(char *src)

{

short *srcPtr;

int i;

srcPtr=(short *)src;

i=0;

while(srcPtr[i]!=0)

{

printk("" "%c",src[2*i]);

printk("" "%c",src[2*i+1]);

i++;

}

}

void getLongFileName(unsigned long ent)

{

char tmp[262];

memcpy(tmp, Sector_Buff+32*ent+1,10);

memcpy(tmp+10, Sector_Buff+32*ent+14,12);

memcpy(tmp+22, Sector_Buff+32*ent+28,4);

strcpyW(tmp+26, fileName);

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

72 Application Note

strcpyW(fileName, tmp);

}

void getShortFileName(unsigned long ent)

{

unsigned long tmp, i, j, dirFlag;

dirFlag=isItDir(ent);

for(i=0, j=0; i<11; i++)

{

tmp=Get8Bits(32*ent+i);

if(tmp!=0x20)

fileName[j++]=tmp;

if((i==7)&&(dirFlag==0))

fileName[j++]='.';

}

fileName[j]=0;

}

unsigned long getFileFstClus(unsigned long ent)

{

unsigned long tmp;

tmp=Get16Bits(32*ent+20);

tmp=(tmp<<16)|(Get16Bits(32*ent+26));

return tmp;

}

unsigned long getClusFstSet(unsigned long clus)

{

unsigned long tmp;

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 73

tmp=(clus-2)*BPB_SecPerClus + FirstDataSecNum;

return tmp;

}

unsigned long getNextFATentry(unsigned long clus)

{

unsigned long FAToffset, thisFATsecNum, thisFATentOffset, nextClus;

if(FATtype==16)

FAToffset= clus*2;

else if (FATtype==32)

FAToffset= clus*4;

thisFATsecNum=BPB_RsvdSecCnt+FAToffset/BPB_BytsPerSec;

thisFATentOffset=FAToffset%BPB_BytsPerSec;

ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA+thisFATsecNum);

if(FATtype==16)

nextClus=Get16Bits(thisFATentOffset);

else if (FATtype==32)

nextClus=Get32Bits(thisFATentOffset)&0x0fffffff;

return nextClus;

}

unsigned long isEndOfclusterChain(unsigned long clus)

{

if(FATtype==16)

{

if(clus>=0x0fff8)

return (1);

}

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

74 Application Note

else if (FATtype==32)

{

if(clus>=0x0ffffff8)

return (1);

}

return (0);

}

unsigned long getFileSize(unsigned long ent)

{

unsigned long tmp;

tmp=Get32Bits(32*ent+28);

return tmp;

}

unsigned long isItDir(unsigned long ent)

{

unsigned long dirFlag;

dirFlag=Get8Bits(32*ent+11)&0x10;

return dirFlag;

}

void readFile(unsigned long ent)

{

unsigned long fileSize, clus, firstSet, sec, bytCnt;

if((int)ent<0)

{

printk("" "can not find the file\n");

return;

}

clus=getFileFstClus(ent);

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 75

if(clus==0)

{

printk("" "the file is empty\n");

return;

}

fileSize=getFileSize(ent);

bytCnt=0;

do

{

firstSet=getClusFstSet(clus);

for(sec=0; sec<BPB_SecPerClus; sec++)

{

ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA+firstSet+sec);

bytCnt+=512;

if(bytCnt<=fileSize)

DisplayBufChar(512);

else

DisplayBufChar(512-(bytCnt-fileSize));

if(bytCnt>=fileSize)

break;

}

if(bytCnt>=fileSize)

break;

clus=getNextFATentry(clus);

}while(!isEndOfclusterChain(clus));

}

void changeToDirectory(unsigned long ent, unsigned long changeFlag)

{

unsigned long clus, firstSet, sec;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

76 Application Note

short *fileNamePtr;

fileNamePtr=(short *)fileName;

longNameFlag=0;

fileNamePtr[0]=0;

if((int) ent<0)

{

printf("can not found the dir\n");

return;

}

clus=getFileFstClus(ent);

if(changeFlag)

currentDirfstclus=clus;

if(clus==0)

{

ChangeToRootDirectoryFAT16(changeFlag);

return;

}

do

{

firstSet=getClusFstSet(clus);

for(sec=0; sec<BPB_SecPerClus; sec++)

{

ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA+firstSet+sec);

listFileEntryInOneSector(fileNamePtr);

}

clus=getNextFATentry(clus);

}while(!isEndOfclusterChain(clus));

}

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 77

void listCurrentDirectory()

{

unsigned long clus, firstSet, sec;

short *fileNamePtr;

fileNamePtr=(short *)fileName;

longNameFlag=0;

fileNamePtr[0]=0;

clus=currentDirfstclus;

if(clus==0)

{

// the parent is the root dir

ChangeToRootDirectoryFAT16(0);

return;

}

do

{

firstSet=getClusFstSet(clus);

for(sec=0; sec<BPB_SecPerClus; sec++)

{

ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA+firstSet+sec);

listFileEntryInOneSector(fileNamePtr);

}

clus=getNextFATentry(clus);

}while(!isEndOfclusterChain(clus));

}

unsigned long searchFileEntry(short *fileNamePtr, unsigned long *index, unsigned
long fileIndex)

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

78 Application Note

{

unsigned long ent, tmp;

for(ent=0; ent<16; ent++)

{

tmp=Get8Bits(32*ent+0);

if(tmp==0x00)

break; // no more entry

else if(tmp==0x05)

continue; // this entry is free for Japanese

else if(tmp==0xe5)

continue; // this entry is free

else

{

if((Get8Bits(32*ent+11)&0x0f)==0x0f) // one entry in a long name set

{

if(((*index)+1)==fileIndex)

{ longNameFlag=1;

getLongFileName(ent);

}

}

else

{

(*index)++;

if((*index)==fileIndex)

{

 if (longNameFlag==1)

{

// this is a long name

showFileAttr(ent);

printfW(fileName);

printk("" "\n");

}

else

{

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 79

// this is a short name

showFileAttr(ent);

getShortFileName(ent);

printk("" "%s\n", fileName);

}

break;

}

}

}

}

return ent;

}

int searchFileEntryByName(short *fileNamePtr, char *str)

{

unsigned long ent, tmp, flag;

flag=0;

for(ent=0; ent<16; ent++)

{

tmp=Get8Bits(32*ent+0);

if(tmp==0x00)

break; // no more entry

else if(tmp==0x05)

continue; // this entry is free for Japanese

else if(tmp==0xe5)

continue; // this entry is free

else

{

if((Get8Bits(32*ent+11)&0x0f)==0x0f) // one entry in a long name set

{

longNameFlag=1;

getLongFileName(ent);

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

80 Application Note

}

else

{

 if (longNameFlag==1)

{

// this is a long name

if(strcmpW(str, fileName)==0)

{

flag=1;

showFileAttr(ent);

printfW(fileName);

printk("" "\n");

break;

}

longNameFlag=0;

fileNamePtr[0]=0;

}

else

{

// this is a short name

getShortFileName(ent);

if(strcmp(str, fileName)==0)

{

flag=1;

showFileAttr(ent);

printk("" "%s\n", fileName);

break;

}

}

}

}

}

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 81

if(flag==1)

return ent;

else

return (-1);

}

unsigned long getRootFileEntFAT16(unsigned long fileIndex) // return the entry in
the directory

{

unsigned long sec, ent, index;

short *fileNamePtr;

printk("\nCompactFlash_module ::" "file information for fileIndex= %d\n",
fileIndex);

index=-1;

fileNamePtr=(short *)fileName;

longNameFlag=0;

fileNamePtr[0]=0;

for(sec=0; sec<RootDirSectors; sec++)

{

ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA+FirstRootDirSecNum+sec);

ent=searchFileEntry(fileNamePtr, &index, fileIndex);

if(index==fileIndex)

break;

}

return (ent);

}

unsigned long getRootFileEntByFileNameFAT16(char *str) // return the entry in the
directory

{

unsigned long sec, ent;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

82 Application Note

short *fileNamePtr;

ent=-1;

fileNamePtr=(short *)fileName;

longNameFlag=0;

fileNamePtr[0]=0;

for(sec=0; sec<RootDirSectors; sec++)

{

ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA+FirstRootDirSecNum+sec);

ent=searchFileEntryByName(fileNamePtr, str);

if((int)ent>=0)

break;

}

return (ent);

}

unsigned long getFileEntFAT16(unsigned long fileIndex)

{

unsigned long clus, firstSet, sec, ent, index;

short *fileNamePtr;

printk("\nCompactFlash_module :: " "file information for fileIndex= %d\n",
fileIndex);

index=-1;

ent=-1;

fileNamePtr=(short *)fileName;

longNameFlag=0;

fileNamePtr[0]=0;

 clus=currentDirfstclus;

if(clus==0)

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 83

{

ent=getRootFileEntFAT16(fileIndex);

return (ent);

}

do

{

firstSet=getClusFstSet(clus);

for(sec=0; sec<BPB_SecPerClus; sec++)

{

ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA+firstSet+sec);

ent=searchFileEntry(fileNamePtr, &index, fileIndex);

if(index==fileIndex)

break;

}

if(index==fileIndex)

break;

clus=getNextFATentry(clus);

}while(!isEndOfclusterChain(clus));

return (ent);

}

unsigned long getFileEntByFileNameFAT16(char *str)

{

unsigned long clus, firstSet, sec, ent;

short *fileNamePtr;

ent=-1;

fileNamePtr=(short *)fileName;

longNameFlag=0;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

84 Application Note

fileNamePtr[0]=0;

clus=currentDirfstclus;

if(clus==0)

{

ent=getRootFileEntByFileNameFAT16(str);

return (ent);

}

do

{

firstSet=getClusFstSet(clus);

for(sec=0; sec<BPB_SecPerClus; sec++)

{

ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA+firstSet+sec);

ent=searchFileEntryByName(fileNamePtr, str);

if((int)ent>=0)

break;

}

if((int) ent>=0)

break;

clus=getNextFATentry(clus);

}while(!isEndOfclusterChain(clus));

return (ent);

}

void listFileEntryInOneSector(short *fileNamePtr)

{

unsigned long ent, tmp;

for(ent=0; ent<16; ent++)

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 85

{

tmp=Get8Bits(32*ent+0);

if(tmp==0x00)

break; // no more entry

else if(tmp==0x05)

continue; // this entry is free for Japanese

else if(tmp==0xe5)

continue; // this entry is free

else

{

if((Get8Bits(32*ent+11)&0x0f)==0x0f) // one entry in a long name set

{

longNameFlag=1;

getLongFileName(ent);

}

else

{

if (longNameFlag==1)

{

// this is a long name

showFileAttr(ent);

printfW(fileName);

printk("" "\n");

longNameFlag=0;

fileNamePtr[0]=0;

}

else

{

// this is a short name

showFileAttr(ent);

getShortFileName(ent);

printk("" "%s\n", fileName);

//printk("" "sec=%d,ent=%d\n",sec,ent);

}

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

86 Application Note

}

}

}

}

void ChangeToRootDirectoryFAT16(unsigned long changeFlag)

{

unsigned long sec;

short *fileNamePtr;

printk("\nCompactFlash_module :: " "List Root Directory\n");

fileNamePtr=(short *)fileName;

longNameFlag=0;

fileNamePtr[0]=0;

for(sec=0; sec<RootDirSectors; sec++)

{

ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA+FirstRootDirSecNum+sec);

listFileEntryInOneSector(fileNamePtr);

}

if(changeFlag)

currentDirfstclus=0;

}

void changeToRootDirectory(unsigned long changeFlag)

{

if(FATtype==16)

ChangeToRootDirectoryFAT16(changeFlag);

}

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 87

unsigned long getRootFileEnt(unsigned long fileIndex)

{

if(FATtype==16)

return (getRootFileEntFAT16(fileIndex));

}

unsigned long getFileEnt(unsigned long fileIndex)

{

if(FATtype==16)

return (getFileEntFAT16(fileIndex));

}

unsigned long getFileEntByName(char *str)

{

if(FATtype==16)

return (getFileEntByFileNameFAT16(str));

}

void checkMBR()

{

unsigned long tmp;

printk("\nCompactFlash_module :: " "checking if there is a master boot
record ... \n");

ReadSectorW((unsigned short *)Sector_Buff, 0);

if(Get8Bits(0)==0xeb)

{

printf("no MBR\n");

BPB_LBA=0;

}

else if(Get8Bits(0)==0xe9)

{

printf("no MBR\n");

BPB_LBA=0;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

88 Application Note

}

else

{

printf("processing MBR\n");

tmp=Get8Bits(0x1c2);

if(tmp==0x01)

{

FATtype=12;

printk("CompactFlash_module :: " "it is FAT12\n");

}

else if(tmp == 0x04)

{

FATtype=16;

printk("CompactFlash_module :: " "it is FAT16 (smaller than 32MB)\n");

}

else if((tmp == 0x06) || (tmp == 0x0e))

{

FATtype=16;

printk("CompactFlash_module :: " "it is FAT16 (larger than 32MB)\n");

}

else if((tmp == 0x0b) || (tmp == 0x0c))

{

FATtype=32;

 printk("CompactFlash_module :: " "it is FAT32\n");

 }

BPB_LBA=Get32Bits(0x1C6);

Waiting_RDY();

 ReadSectorW((unsigned short *)Sector_Buff, BPB_LBA); // read bootsector of
first partition

 }

 printk("CompactFlash_module :: " "BPB_LBA=%d\n",BPB_LBA);

}

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 89

void entryInfo(unsigned long ent)

{

 printk("CompactFlash_module :: " "Clus=%d\n",getFileFstClus(ent));

 printk("CompactFlash_module :: "
"SecNum=%d\n",getClusFstSet(getFileFstClus(ent)));

 printk("CompactFlash_module :: " "FileSize=%d\n",getFileSize(ent));

}

void Fat16Init(void)

{

 unsigned long ent, clus, set;

 checkMBR();

 ProcessBPB();// extract info from Bios Parameter Block

 changeToRootDirectory(0);

 // testing

 getRootFileEnt(1);

 getRootFileEnt(2);

 getRootFileEnt(4);

 getRootFileEnt(5);

 ent=getRootFileEnt(2);

 clus=getFileFstClus(ent);

 set=getClusFstSet(clus);

 printk("CompactFlash_module :: " "file ent=%d, 1st clus=%d, 1st data
set=%d\n", ent,clus,set);

 while(!isEndOfclusterChain(clus))

 {

clus=getNextFATentry(clus);

 printk("CompactFlash_module :: " "next clus=%d\n",clus);

 }

 ent=getRootFileEnt(0);

 if(isItDir(ent))

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

90 Application Note

changeToDirectory(ent,0);

 else

readFile(ent);

 listCurrentDirectory();

 ent=getFileEnt(1);

 if(isItDir(ent))

changeToDirectory(ent,0);

 else

readFile(ent);

}

void changeToUpperDir(unsigned long changeFlag)

{

unsigned long ent;

if(currentDirfstclus==0)

 listCurrentDirectory();

else

{

 listCurrentDirectory();

 ent=getFileEnt(1);

 if(isItDir(ent))

changeToDirectory(ent, changeFlag);

}

}

void changeToDir(char *str, unsigned long changeFlag)

{

unsigned long ent;

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 91

 listCurrentDirectory();

ent=getFileEntByName(str);

if((int)ent<0)

{

printf("can not found the dir\n");

return;

}

 if(isItDir(ent))

changeToDirectory(ent, changeFlag);

}

void readFileByName(char *str)

{

unsigned long ent;

ent=getFileEntByName(str);

if((int)ent<0)

{

printf("can not found the file\n");

return;

}

 if(!isItDir(ent))

readFile(ent);

}

A.7 CompactFlashFat16.h
#ifndef __COMPACTFLASHFAT16_H

#define __COMPACTFlashFAT16_H

void strcpyW(char *dst, char *src);

void printfW(char *src);

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

92 Application Note

unsigned long isItDir(unsigned long ent);

unsigned long getFileEnt(unsigned long fileIndex);

unsigned long getFileSize(unsigned long ent);

unsigned long isEndOfclusterChain(unsigned long clus);

unsigned long getNextFATentry(unsigned long clus);

unsigned long getFileFstClus(unsigned long ent);

unsigned long getClusFstSet(unsigned long clus);

void ListRootDirectory();

void listFileEntryInOneSector(short *fileNamePtr);

void ChangeToRootDirectoryFAT16(unsigned long changeFlag);

#endif

A.8 CompactFlashApp.c

#include <pthread.h>

#include <string.h>

#include <unistd.h>

#include <sched.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/uio.h>

#include <sys/sendfile.h>

#include <sys/stat.h>

#include <stdio.h>

#include "CompactFlash.h"

#include "CompactFlashIDE.h"

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 93

#define IX_CF_CODELET_STRLEN 50

void testDriver(void);

void TestMenu(void);

void TestFileSystemMenu(void);

int CompactFlashGetNum(char *str);

static int inMsgQue, CFdriver;

int main(void)

{

 testDriver();

 exit(0);

}

// little endian to big endian

unsigned short byteSwap(unsigned char *addr)

{

//convert from little to big endian

unsigned short tmp;

tmp=(addr[1]<<8)|addr[0];

return tmp;

}

void testDriver(void)

{

 int rc;

 int passedArg;

 int CntCd;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

94 Application Note

 int i, N;

 unsigned char data[512];

 /* open the driver */

 CFdriver = open("/dev/CompactFlashModule",O_RDWR);

 if(!CFdriver)

 {

 printf("Open failed. Ensure module CompactFlashModule is inserted "

 "and /dev/CompactFlashModule exists\nIf necessary, create "

 "with: mknod /dev/CompactFlashModule c 253 0\n");

 exit(0);

 }

// initialize IDE

rc = ioctl(CFdriver,IX_CF_CODELET_INIT_IDE, &passedArg);

 if (rc != 0)

 {

 printf("CompactFlash ioctl rc is failed to init IDE .. %d \n", rc);

 exit(1);

 }

//TestMenu();

TestFileSystemMenu();

}

int CompactFlashGetNum(char *str)

{

int c;

int i = 0;

char input[IX_CF_CODELET_STRLEN];

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 95

if(str && *str) printf("%s", str);

do

{

c = getc(stdin);

if (c == 0x08)

{

if(i) i--;

}

else

{

input[i++] = c;

}

/* exception if x entered, jump to main menu */

} while(i<IX_CF_CODELET_STRLEN && c!='\r' && c!='\n');

input[i] = '\0';

return atoi(input);

}

void TestMenu(void)

{

int selectedItem=0;

int passedArg, val, i, rc;

int cureentIndex, lastIndex;

unsigned char data[512];

unsigned short *wPtr;

wPtr=(unsigned short *)data;

do

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

96 Application Note

{

/* print the test menu */

printf("\n--\n"

"- IxCompactFlashCodelet Demo Menu -\n"

"--\n");

printf("\nRead/Write to CF Registers:\n");

printf("%d: check if the flash card is ready\n", Check_Card);

printf("%d: read all the CF registers\n", Read_All_Regs);

printf("%d: read one CF register\n", Read_One_Reg);

printf("%d: write to one CF register\n", Write_One_Reg);

printf("%d: show Exp Bus Regs\n", Show_Exp_Regs);

printf("\nView CF Identify Information:\n");

printf("%d: read the identify sector\n", Read_Identify_Sector);

printf("\nRead/Write to sectors:\n");

printf("%d: read from one sector\n", Read_From_One_Sector);

printf("%d: write to one sector\n", Write_To_One_Sector);

printf("\nDisplay data:\n");

printf("%d: show one byte in a sector\n", Show_One_Byte);

printf("%d: show next 10 bytes\n", Show_Next_10_Bytes);

printf("%d: show one word in a sector\n", Show_One_Word);

printf("%d: show next 10 words\n", Show_Next_10_Words);

printf("\nDisplay MBR & BPB:\n");

printf("%d: find MBR and BPB\n", FindMBRandBPB);

printf("%d: Process BPB data\n", ProcessBPBdata);

printf("%d: Exit\n", Exit_Now);

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 97

/* select a menu item */

selectedItem = CompactFlashGetNum(NULL);

printf("***\n\n");

switch(selectedItem)

{

case Check_Card:

 ioctl(CFdriver,Check_Card, &passedArg);

if(passedArg)

printf("Flash ccard is ready\n");

else

printf("Flash ccard is not ready\n");

break;

case Read_All_Regs:

printf("\n");

 rc = ioctl(CFdriver,Read_All_Regs, passedArg);

break;

case Read_One_Reg:

printf("CF_ERROR %d\n",CF_ERROR);

printf("CF_SECT_CNT %d\n",CF_SECT_CNT);

printf("CF_SECT_NUM %d\n",CF_SECT_NUM);

printf("CF_CYL_L %d\n",CF_CYL_L);

printf("CF_CYL_H %d\n",CF_CYL_H);

printf("CF_DRV_HEAD %d\n",CF_DRV_HEAD);

printf("CF_STATUS %d\n",CF_STATUS);

printf("CF_ALTSTATUS %d\n",CF_ALTSTATUS);

passedArg=CompactFlashGetNum("choose a reg to read: ");

rc = ioctl(CFdriver,Read_One_Reg, passedArg);

break;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

98 Application Note

case Write_One_Reg:

printf("CF_COMMAND %d\n",CF_COMMAND);

printf("CF_DEV_CTR %d\n",CF_DEV_CTR);

printf("CF_SECT_CNT %d\n",CF_SECT_CNT);

printf("CF_SECT_NUM %d\n",CF_SECT_NUM);

printf("CF_CYL_L %d\n",CF_CYL_L);

printf("CF_CYL_H %d\n",CF_CYL_H);

printf("CF_DRV_HEAD %d\n",CF_DRV_HEAD);

printf("CF_FEATURES %d\n",CF_FEATURES);

passedArg=CompactFlashGetNum("choose a reg to write: ");

passedArg=(passedArg<<8)|CompactFlashGetNum("input a value: ");

rc = ioctl(CFdriver,Write_One_Reg, passedArg);

break;

case Read_Identify_Sector:

 printf("reading words from identify sector\n");

ioctl(CFdriver,Read_Identify_Sector, passedArg);

 rc = read(CFdriver,data, passedArg);

 if (rc == -1)

 {

 printf("CompactFlash read failed .. %d \n", rc);

 exit(1);

 }

 printf("done with reading identify sector\n");

 printf("bytes:\n");

lastIndex=0;

for(i=0; i<10; i++)

printf("data[%d]=0x%x (%d)\n",lastIndex+i, data[lastIndex+i],
data[lastIndex+i]);

lastIndex=lastIndex+10;

break;

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 99

case Read_From_One_Sector:

passedArg=CompactFlashGetNum("enter sector number to read: ");

 printf("reading words from flash\n");

ioctl(CFdriver,Word_Access, passedArg);

 rc = read(CFdriver,data, passedArg);

 if (rc == -1)

 {

 printf("CompactFlash read failed .. %d \n", rc);

 exit(1);

 }

 printf("done with reading from flash\n");

 printf("bytes:\n");

lastIndex=0;

for(i=0; i<10; i++)

printf("data[%d]=0x%x (%d)\n",lastIndex+i, data[lastIndex+i],
data[lastIndex+i]);

lastIndex=lastIndex+10;

break;

case Write_To_One_Sector:

passedArg=CompactFlashGetNum("enter sector number to write (prefer
1000): ");

if(passedArg==0)

{

printf("you are not allowed to write to master sector\n");

break;

}

printf("1: write one value to each byte in the sector\n");

printf("2: write 0, 1, 2,to the sector\n");

printf("3: input values byte by byte for the sector\n");

rc=CompactFlashGetNum(" ");

switch(rc)

{

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

100 Application Note

case 1:

val=CompactFlashGetNum("enter a byte to write to the whole sector:
");

for(i=0; i<512; i++)

data[i]=val;

break;

case 2:

for(i=0; i<512; i++)

data[i]=i&0x0ff;

break;

case 3:

for(i=0; i<512; i++)

{

printf("byte[%d]=\n",i);

val=CompactFlashGetNum(" (555 to exit) ");

if(val==555)

break;

else

data[i]=val;

}

break;

default:

break;

}

 printf("writing words to flash\n");

ioctl(CFdriver,Word_Access, passedArg);

 rc = write(CFdriver,data, passedArg);

 if (rc == -1)

 {

 printf("CompactFlash read failed .. %d \n", rc);

 exit(1);

 }

 printf("done with writing to the flash\n");

break;

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 101

case Show_One_Byte:

cureentIndex=CompactFlashGetNum("byte index (0...511): ");

 printf("bytes:\n");

printf("data[%d]=0x%x (%d)\n",cureentIndex, data[cureentIndex],
data[cureentIndex]);

lastIndex=cureentIndex;

break;

case Show_Next_10_Bytes:

 printf("bytes:\n");

for(i=0; i<10; i++)

printf("data[%d]=0x%x (%d)\n",lastIndex+i, data[lastIndex+i],
data[lastIndex+i]);

lastIndex=lastIndex+10;

break;

case Show_One_Word:

cureentIndex=CompactFlashGetNum("word index (0...255): ");

 printf("words:\n");

printf("data[%d]=0x%x (%d)\n",cureentIndex,
byteSwap(data+cureentIndex*2), byteSwap(data+cureentIndex*2));

lastIndex=cureentIndex;

break;

case Show_Next_10_Words:

 printf("words:\n");

for(i=0; i<10; i++)

printf("data[%d]=0x%x (%d)\n",lastIndex+i,
byteSwap(data+(lastIndex+i)*2), byteSwap(data+(lastIndex+i)*2));

lastIndex=lastIndex+10;

break;

case Show_Exp_Regs:

 for (i=0; i<12; i++)

 {

 passedArg=IXP425_EXP_CS0_OFFSET+i*4;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

102 Application Note

 printf("reg offset: 0x%x: ",passedArg);

 rc = ioctl(CFdriver,Show_Exp_Regs, &passedArg);

 if (rc != 0)

 {

 printf("CompactFlash ioctl Show_Exp_Regs is failed .. %d \n", rc);

 exit(1);

 }

 printf("reg value:=0x%x\n",passedArg);

 }

break;

case FindMBRandBPB:

passedArg=0;

 rc = ioctl(CFdriver,FindMBRandBPB, passedArg);

 if (rc != 0)

 {

 printf("CompactFlash ioctl FindMBRandBPB is failed .. %d \n", rc);

 exit(1);

 }

break;

case ProcessBPBdata:

passedArg=0;

 rc = ioctl(CFdriver,ProcessBPBdata, passedArg);

 if (rc != 0)

 {

 printf("CompactFlash ioctl ProcessBPBdata is failed .. %d \n", rc);

 exit(1);

 }

break;

case Exit_Now:selectedItem=-1;

break;

}

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 103

 } while(selectedItem != -1);

}

void CompactFlashGetString(char *inputString)

{

int c;

int i = 0;

do

{

c = getc(stdin);

if (c == 0x08)

{

if(i) i--;

}

else

{

inputString[i++] = c;

}

/* exception if x entered, jump to main menu */

} while(i<IX_CF_CODELET_STRLEN && c!='\r' && c!='\n');

inputString[i] = '\0';

//printf("inputString=%s\n",inputString);

}

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

104 Application Note

void trimSpace(char *inputString, char *dst)

{

int i;

char *ptr;

ptr=inputString;

while(*ptr==' ') ptr++;

i=0;

while (*ptr!=0)

{

dst[i++]=*ptr++;

}

dst[i]=0;

while((dst[i-1]==' ')||(dst[i-1]=='\n')||(dst[i-1]=='\r'))

{

i--;

dst[i]=0;

}

}

int processCommand(char *inputString)

{

int selectedItem=0;

char *ptr=NULL;

int i;

trimSpace(inputString, inputString);

ptr=strstr(inputString,"cd");

if(ptr!=NULL)

{

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 105

if(ptr[2]==0)

{

selectedItem=ChangeToDir;

inputString[0]=0;

}

else if(ptr[2]==' ')

{

trimSpace(ptr+3, inputString);

selectedItem=ChangeToDir;

}

else

selectedItem=ReadFile;

//printf("selectedItem=%d, inputString=%s\n",selectedItem,inputString);

return selectedItem;

}

ptr=strstr(inputString,"dir");

if(ptr!=NULL)

{

if(ptr[3]==0)

{

selectedItem=ShowDir;

inputString[0]=0;

}

else if(ptr[3]==' ')

{

trimSpace(ptr+4, inputString);

selectedItem=ShowDir;

}

else

selectedItem=ReadFile;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

106 Application Note

//printf("selectedItem=%d, inputString=%s\n",selectedItem,inputString);

return selectedItem;

}

ptr=strstr(inputString,"test!");

if(ptr!=NULL)

{

selectedItem=GoTestMenu;

//printf("selectedItem=%d, inputString=%s\n",selectedItem,inputString);

return selectedItem;

}

ptr=strstr(inputString,"exit!");

if(ptr!=NULL)

{

selectedItem=Exit_Now;

//printf("selectedItem=%d, inputString=%s\n",selectedItem,inputString);

return selectedItem;

}

if(inputString[0]!=0)

selectedItem=ReadFile;

//printf("selectedItem=%d, inputString=%s\n",selectedItem,inputString);

return selectedItem;

}

void TestFileSystemMenu(void)

{

unsigned char inputString[100];

unsigned long rc;

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 107

int selectedItem=0;

do

{

/* print the test menu */

printf("\n---\n"

"- IxCompactFlashCodelet File System Demo -\n"

"---\n");

printf("\nCommands: cd/dir [/][.][..][dir name]; file or dir name;
test!, exit!\n");

/* get a command */

CompactFlashGetString(inputString);

selectedItem=processCommand(inputString);

printf("***\n\n");

switch(selectedItem)

{

case ChangeToDir:

 rc = ioctl(CFdriver,ChangeToDir, inputString);

 if (rc != 0)

 {

 printf("CompactFlash ioctl: ChangeToDir is failed .. %d \n", rc);

 exit(1);

 }

break;

case ShowDir:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

108 Application Note

 rc = ioctl(CFdriver,ShowDir, inputString);

 if (rc != 0)

 {

 printf("CompactFlash ioctl: ShowDir is failed .. %d \n", rc);

 exit(1);

 }

break;

case ReadFile:

 rc = ioctl(CFdriver,ReadFile, inputString);

 if (rc != 0)

 {

 printf("CompactFlash ioctl: ReadFile is failed .. %d \n", rc);

 exit(1);

 }

break;

case GoTestMenu:

TestMenu();

break;

case Exit_Now:

selectedItem=-1;

break;

}

 } while(selectedItem != -1);

}

A.9 Makefile
CC=/opt/hardhat/devkit/arm/xscale_be/bin/xscale_be-gcc

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Source Code

Application Note 109

GPLUS= /opt/hardhat/devkit/arm/xscale_be/bin/xscale_be-g++

Override standard COPTS

CFLAGS+=-mbig-endian -msoft-float -DOS_USRLINUX \

-I$(IX_XSCALE_SW)/src/include \

-I../ -I./

TARGET=IxCPCodeletApp

LDFLAGS = -lpthread -ldl

O_OBJS=CompactFlashApp.o

BINS= CompactFlashApp

default: CompactFlashApp

CompactFlashApp: $(O_OBJS) $(O2_OBJS)

$(CC) $(LDFLAGS) $^ -o $@

Override .c.o

CompactFlashApp.o:

$(CC) $(CFLAGS) -c CompactFlashApp.c

depend:

makedepend -I$(INC_EXPORTPATH) -I$(INC_LIBPATH) -I$(INC_QCOMMON) *.c

clean:

rm -rf $(BINS) *.o

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash
Source Code

110 Application Note

	Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor: Using CompactFlash
	Contents
	Figures
	Tables
	Revision History

	1.0 Introduction
	1.1 Related Documentation
	1.2 References
	1.3 Acronyms

	2.0 Hardware Overview
	2.1 The Processor
	2.2 Expansion Bus Overview
	2.2.1 Expansion Bus Interface Signals

	2.3 Expansion Bus Control and Configuration Registers
	2.4 CompactFlash
	2.4.1 Interface Signals

	3.0 Hardware Interface Considerations
	3.1 True IDE Mode Hardware Interface
	3.2 Memory Mode Hardware Interface
	3.3 I/O Mode Hardware Interface

	4.0 Expansion Bus Operation
	4.1 Expansion Bus Configuration
	4.2 Switching Data Bus Width
	4.3 Reading/Writing Expansion Bus

	5.0 CompactFlash Operations
	5.1 Access to the CompactFlash Registers
	5.2 Wait for CompactFlash To Get Ready
	5.3 Switching Expansion Bus Data Width
	5.4 Little and Big Endian Conversion
	5.5 Read from a Sector
	5.6 Write to a Sector
	5.7 Read the Identify Information

	6.0 FAT16 File System on the CF Card
	6.1 Master Boot Record
	6.2 BIOS Parameter Block
	6.3 Root Directory Location
	6.4 FAT Directory Structure
	6.5 List the Root Directory
	6.6 List a Subdirectory
	6.7 Get Access to File Content

	7.0 CompactFlash Linux* Device Driver
	7.1 Read the Device
	7.2 Write the Device
	7.3 Control the Device

	8.0 Application Code
	9.0 Platform Used for Testing
	10.0 Demo and ‘Screen Shot’
	10.1 CompactFlash Demo Screen Shot

	Appendix A Source Code
	A.1 CompactFlashModuleSymbols.c
	A.2 CompactFlashIDE.c
	A.3 CompactFlash.h
	A.4 CompactFlashIDE.h
	A.5 component.mk
	A.6 CompactFlashFat16.c
	A.7 CompactFlashFat16.h
	A.8 CompactFlashApp.c
	A.9 Makefile

