Intel® IXP42X Product Line of
Network Processors and IXC1100
Control Plane Processor: Using

CompactFlash
Application Note

December 2004

Order Number: 302456-003

Intel® IXP42X Product Line of Network Processors and IXC1100 u
Control Plane Processor: Using CompactFlash In

Contents

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel's Web site at http://www.intel.com.

BunnyPeople, CablePort, Celeron, Chips, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, 1486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel
Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, ltanium, MCS, MMX, MMX logo, Optimizer logo,
OverDrive, Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your Command, RemoteExpress, SmartDie,
Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VTune, and Xircom are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2004

2 Application Note

http://www.intel.com
http://www.intel.com

intgl.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Contents
Contents
1.0 Ta 1 geo [0 ei i o] o DT PP PP T PP PTPPPPPIN 5
1.1 Related DOCUMENTALION ..o e e 5
1.2 =] (=TT o ORI 5
1.3 o1 (0] 1)V 1 0P PP PP PPN 6
2.0 HAIAWEAIE OVEIVIEWeviiiiiiieeeei ettt ettt e e e e e e e e sttt e e e e e e aeeesassansaatbe e eeeaeaaeeesesannnnnnens 6
2.1 THE PrOCESSON ...ttt ettt e e e e e e e e e et eaeeeeaaaeaas 6
2.2 EXPANSIioN BUS OVEIVIBWc.uuiiiiiiiiieiiiae ettt e e e e e et eeeeaaae s 7
2.2.1 Expansion Bus Interface Signals...........cccccoeiiiiiiiiiiiiiieiee s 8
2.3 Expansion Bus Control and Configuration Registersoccccvviiiiieeeeneeannnn. 8
2.4 COMPACIFIASH .. 8
2.4.1 Interface SigNalS.......cooii i 10
3.0 Hardware Interface CoNSIAEratioNS.........cooii ittt 11
3.1 True IDE Mode Hardware INterfacecuveeeeiiiiieiiiiiiiiiieeeee e 11
3.2 Memory Mode Hardware Interface..........cccceeeveeiiiiiiii e 13
3.3 I/O Mode Hardware INTErface ... 14
4.0 EXPansion BUS OPEratioN..........ccciviiiiiiiiieiiiiiiiisisie e e s e e e e e e e e e e e e e e e s e a e e e e aaaaaeeees 16
4.1 Expansion Bus Configurationceeeeeeoiiiieiiiiiiiieeeeee e s sssieneeeeeee e 16
4.2 Switching Data BUuS Widthoooiiiiiiicce e 18
4.3 Reading/Writing EXPansSion BUS.........cccuviiiiiiiiniiiiieieeee e e csesinnneeeeeae e e 19
5.0 CompactFlash OPEratioNS..........coiviiicuiiiiiiei e e e e e e e e e e e e e s s e e ereaaeeeeeeannns 20
5.1 Access to the CompactFlash Registers ... 20
5.2 Wait for CompactFlash To Get Readyocccviiiiiiiiiiiieiiiiiiieeee e 21
5.3 Switching Expansion Bus Data Widthcccccoiiiiiiiiii i 21
5.4 Little and Big Endian CONVEISIONccooiiiiiiiiiiiiiiiiiee e 22
55 Read frOmM @ SECLONceiiiiiiiiie e 22
5.6 WWIHEE 10 @ SECLON......eeeiiiiieiee ettt et e e e e e eeeaaaeeeas 23
5.7 Read the Identify INfOrmMation ... 23
6.0 FAT16 File System on the CF Cardoooiiiiiiiiiiieiiaee e 23
6.1 Master BOOt RECOIMcoooiiiiiiiiiiiie et 23
6.2 BIOS Parameter BIOCK ..o 25
6.3 (R0] B BT =3 (o] Y Mo Tox- | i o] o [25
6.4 FAT DiIreCtory SITUCIUIE.......ccei e e e e e e e e e e e e e e 25
6.5 List the ROOL DIFECIONYccie e e e e e e e 26
6.6 LiSt @ SUBAIrECIONYueiie i 26
6.7 Get ACCESS t0 File CONENT.......coiiiiiiiieee e 27
7.0 CompactFlash Linux* DeviCe DIVlccoiiiiiiiii i 27
7.1 REAA the DEVICE.....eeiiiieiiiiiiee et 28
7.2 WIILE the DEVICEeviiiii ittt ee e e 28
7.3 CONIOl the DEVICE........eveiiiiiiiiiie et 28
8.0 P Y o] o] Tr= 11T] 4 1N 2 o = PP PPRPTPPRR 28
9.0 Platform Used fOr TESHNG.......cccoiiiiiieeeecieis e s e e e e e e e e e eaaeaeenes 30

Application Note 3

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

®
Contents

10.0 DEemMO aNd ‘SCrEEN SNOLciiiiiiiiei it e e e ee e e e e e e e 30
10.1 CompactFlash Demo Screen Shot............uuiiiiiiiiiiiiii e, 31
A SOUICE COUB.... ittt et e e e e e oo e e et ab b bbb et e e e e e e e e e e e e aa s nn bbb be e e e e eeaaaeeeeseaaneeeaaaaaens 35
Al CompactFlashModuleSYMDBOIS.C....cevvieeeiiiicieeeeece e 36
A.2 COMPACLFIASNIDE.Cceviiieiie ettt e e e 41
A.3 ComMPACEFIASN.N ... ———— 53
A.4 ComPpPAaCtFIAShIDE.Ncoviiiie e 54
A5 foTo] 0] oo T =T o1 8 oG PSSR 56
A.6 ComMPACtFIASNFALLG.C ...cceeeeeee e e 56
A7 CompactFlashFatLlB.N.......cccooiiiiie e 75
A.8 (070] 4] 0= Tod 1 F=] VAN o o 1 oSS 75
A.9 MBKETIIE ... 86
Figures
1 Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor System BIOCK DIagramMcoiiiiiiiiiieiiiiiiee e siiiee ettt eee s snnbaeee e s 7
2 CF Storage Card BIOCK DIBQIaAIMcoiuiiiieiiiiiiee ettt et e et e e e e s nbaee e e e 9
3 CompactFlash — True IDE MOde INtEIACEccoiiiiiiiiiiiiiiiiee e 12
4 CompactFlash — Memory Mode INTEIfACEc.uueiiiiiiiiiie e 13
5 CompactFlash — I/O Mode INTEITACE..........ciiiiiiiiiiiie it 15
Tables
1 Expansion BUs INtErface SIGNalSueeeiiiiiiiiiiii et 8
2 EXpansion BUS REQIStEr OVEIVIEWuuuiiiiiiiiieiiaeae ettt e e e e ae e e s s e s ibbbeseeeeeaaaeeasaaaannnseeeeeees 8
3 Interface SigNal DESCIIPLION. i ittt e e e e e e e e e s e s sbbabeereeeeeaaanaanns 10
4 CEL1# and CE2# CONIOI LOGIC ..veeiiiiiiiaiiiiiiittie ettt bttt e e e e e e e et s e e e e e e aaaa e e e e e nnnnes 14
5 CE1# and CE2# CONLIOI LOGIC «.ccvieeeiiiiiiiitiiee ettt et e e e e e e et b e ae e e e e e e e e e e e e e aannnes 16
6 Timing and Control Registers for Chip Select 1ueeiiiiiiiiiiiii e 16
7 Timing and Control Registers for Chip Select 2ueeeiiiiiiiiii e 17
8 Bit Level Definition for the Timing and Control REQISTErSceiiiiiiiiiiiiiiiiieeeee e 17
9 True IDE MOE I/O DECOUING ...uteeeiiiiiiieeaiei ittt a e ettt e e e e e e e e e e s e e saanbbbbeeseeeaaaaaaaan 20
1O IMBR SITUCTUIE ...ttt s e e e e e e e e e e e e et e eeeeeeaeesas e be b b e e e e ean e ans 24
11 Partition Entry (Part Of MBR)cooiiiiiiiiiieiieei ettt e e e e e e eb e ea e 24

Revision History

Date Revision Description

Updated product branding. Change bars were retained from

November 2004 003 the previous release of this document (002).

Added Section 1.2 and Section 6.0, plus replaced Appendix A,

August 2004 002 “Source Code”.

June 2004 001 Initial release.

Application Note

In

1.0

1.1

1.2

1.3

Application Note

tel.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Introduction

Introduction

This application note describes the hardware interface to a CompactFlash (CF) card connected in
“True IDE’ mode to the Expansion Bus of Intel® IXP42X Product Line of Network Processors and
IXC1100 Control Plane Processor, and presents a Linux* device driver with basic functions to
access the CF card. The device driver initializes the Expansion Bus timing and control registers to
set up the interface that allows reading/writing the CF card. A simple Linux application program is
provided to view directories, change directories, and view files in a CF card that has a FAT16 file
system. This application note also briefly reviews the CF architecture, FAT16 file system,
Expansion Bus architecture, and the platform used to test the device driver.

The basic functions in the device driver are necessary to connect the CF card to system-level
software. The device driver can also be used to debug the platform, and although it is written for
Linux, the details can pertain to most operating systems.

The following sections cover: Expansion Bus and CF architecture, Expansion Bus initialization,
reading/writing the Expansion Bus, accessing the CF registers, reading/writing the sectors in the
CF card, FAT16 file system on CF card, device driver architecture, and functions in the application
code used to test the driver.

Related Documentation

Title Document Number
Intel® IXP42X Product Line of Network Processors and IXC1100 Control 252480
Plane Processor Developer’s Manual
Intel® IXP42X Product Line of Network Processors and IXC1100 Control
252479
Plane Processor Datasheet
Intel® IXP42X Product Line of Network Processors and IXC1100 Control 252702
Plane Processor Specification Update
Intel® IXP400 Software Programmer’s Guide 252539
CompactFlash Specification (www.compactflash.org)

References

1. “CF+ and CompactFlash Specification Revision 2.0”, CompactFlash Association, May 2003.

2. “Microsoft Extensible Firmware Initiative, FAT32 File System Specification, FAT: General
Overview of On-Disk Format”, Microsoft Corp., version 1.03, December 6, 2000.

3. “FAT16 Structure Information”, Jack Dobiash, June 17, 1999, http://home.teleport.com/

~brainy/fat16.htm.
Acronyms
ATA AT Attachment
CF CompactFlash
CFA CompactFlash Association

http://home.teleport.com/~brainy/fat16.htm
www.compactflash.org

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Hardware Overview

2.0

2.1

CFI
DMA
GPIO
IDE
FAT
LBA
LSP
MVL
PI1O
PHY
PLL
SoC
XCVR

CompactFlash Interface
Direct Memory Access
General-Purpose Input/Output
Integrated Device Electronics
File Allocation Table

Logical Block Addressing
Linux Support Package
MontaVista* Linux
Programmed Input/Output
Physical Layer Device

Phase Lock Loop
System-on-Chip

Transceiver

Hardware Overview

intel.

This section provides an overview of how to connect a CF card to the Intel® IXP42X Product Line

of Network Processors and 1XC1100 Control Plane Processor Expansion Bus.

The Processor

The Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor are
highly integrated System-on-a-Chip (SoC) designs that provide greater flexibility and reduce
system-development costs. These devices include features such as the UARTSs, watchdog timers
(WDT), general-purpose timers, three Network Processor Engines (NPEs) for two Ethernet and
one UTOPIA interface, PC133 SDRAM, GPIO, PCI 2.2, and Expansion Bus controllers that can be
interfaced and implemented in many applications such as embedded networking and
communications. Figure 1 illustrates an example of the system interfaces of the IXP42X product

line processors.

Application Note

In

Figure 1.

2.2

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Overview

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor System Block Diagram

JTAG
Header
b ¥
FLAsH | | o < DISLO]_,,
16 Mbyts -~ e
yte ~ CS_NO é 4 BA[1:0] >
< - 3 A[12:0] | SDRAM
. o w 3 7| 16Mx4x16
< D[15:0] > Z < RAS, CAS, WE, CS | 256 Mbyte
< < A23:0] U% g (Four Chips)
c tFlash &
ompactFlas P N |nte|(R) IXP42X 3
- - H
< cs N1zl | Product Line of
2) HSS
Network < > Iﬁtgrface
v Processors and Ports
Board
Contpraion IXC1100 Control | ore
P a Interface
«T> Plane Processor
-3333 MH.
% : : PLL osc ‘
a RS232B | g o *
— XCVR i
= 33.33 MH.
§ <> < - Clock Buffer
L A A
10/100 3 ¢ *
§ <> PHY - g 2 Ethernet PCl
24 o % Clocks Clock
L | g @
<+
usB < <
Connector | sz:pel;
Transparent PCI
Bridge
< cPCIBus >

Expansion Bus Overview

The Expansion Bus of the IXP42X product line processors supports a variety of types and speeds
of 1/0 accesses for devices such as flash, SRAM, CF, Intel and Motorola*—style microprocessor
interfaces, and the Texas Instruments* (T1) DSP standard Host-Port Interfaces (HPI). In most
cases, these devices are supported seamlessly, without any additional glue logic.

The Expansion Bus provides a 24-bit address bus and an 8- or 16-bit-wide data interface for each
of its eight independent chip-selects, and maps transfers between the internal bus and the external
devices. Multiplexed and non-multiplexed address/data buses are both supported. Devices with a
wider than 16-bit data bus interface are not supported; however, Tl DSPs with internal bus widths
of 32 bits can be integrated using the multiplexed HPI-16 interface. Please refer to the Intel®
IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor Developer’s
Manual for more details regarding the Expansion Bus Controller. The Expansion Bus interface
signals are described in Table 1.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Hardware Overview

2.2.1 Expansion Bus Interface Signals
Table 1. Expansion Bus Interface Signals
Name Type Description
EX_CLK | Input clock signal — Not used in this application note.
EX_ALE O Address-latch enable — Not used in this application note.
EX_ADDR[23:0] e Expgns[on Bus address lines. Only EX_ADDR[10:0] are used in this
application note.
EX_WR_N (0] Write strobe signal.
EX_RD_N O Read strobe signal.
. External chip selects for Expansion Bus. Only EX_CS1_N and
EX_CS_N[7:0] o EX_CS2_N are used in this application note.
EX_DATA[15:0] 110 Expansion Bus, bidirectional data.
Data ready/acknowledge from Expansion Bus devices — Not used in
EX_IOWAIT_N ! this application note.
EX_RDY[3:0] | Ready signals — Not used in this application note.
2.3 Expansion Bus Control and Configuration Registers

The Expansion Bus is controlled and configured by ten registers: eight timing and control registers,
and two configuration registers.

Table 2. Expansion Bus Register Overview
Address R/W Name Description

0xC4000000 R/W EXP_TIMING_CSO Timing and Control Register for Chip Select 0
0xC4000004 R/W EXP_TIMING_CS1 Timing and Control Register for Chip Select 1
0xC4000008 R/W EXP_TIMING_CS2 Timing and Control Register for Chip Select 2
0xC400000C R/W EXP_TIMING_CS3 Timing and Control Register for Chip Select 3
0xC4000010 R/W EXP_TIMING_CS4 Timing and Control Register for Chip Select 4
0xC4000014 R/W EXP_TIMING_CS5 Timing and Control Register for Chip Select 5
0xC4000018 R/W EXP_TIMING_CS6 Timing and Control Register for Chip Select 6
0xC400001C R/W EXP_TIMING_CS7 Timing and Control Register for Chip Select 7
0xC4000020 R/W EXP_CNFGO General Purpose Configuration Register 0
0xC4000024 R/W EXP_CNFG1 General Purpose Configuration Register 1
0xC4000028 - - Reserved

2.4 CompactFlash

CompactFlash (CF) is a standard specification maintained by the CompactFlash Association (CFA)
(www.compactflash.org). The CF Specification describes the connectivity and communications
with 1/0, storage modules, and compact memory devices. It is widely used in many applications
such as portable and desktop computers, digital cameras, handheld data collection scanners, PCS
phones, Pocket PCs, PDAs, handy terminals, personal communicators, audio recorders, MP3

8 Application Note

www.compactflash.org

intel.

Figure 2.

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Overview

players, monitoring devices, and set-top boxes. A block diagram of a CF storage card is shown in
Figure 2. The controller interfaces with a host system allowing data to transfer to and from the flash
memory module.

CF Storage Card Block Diagram

Data
In/Out
< —
Host 4 > Controller FLASH
Interface Module(s)
Control
-

The CF card is a small-form-factor, PCMCIA-compatible, storage and 1/O card based on the
PCMCIA PC Card ATA specification, and includes a True IDE mode, which is compatible with the
ATA/ATAPI-4 standard. CF cards function in three basic interface modes:

* True IDE Mode
* PC Card I/O Mode
¢ PC Card Memory Mode

The following generic descriptions of these modes should help designers choose one of them for
connection to the Expansion Bus of the IXP42X product line processors.

TRUE IDE - A CF storage card also runs in True IDE mode that is electrically compatible with an
IDE disk drive. A CF storage card is configured in True IDE mode only when the OE# pin (also
called ATA SEL#) is grounded by the host during the power-off to power-on cycle. In this mode,
the task file registers are also mapped into 1/O address space, and the control signals IORD# and
IOWRH# are used to access I/O locations.

PC Card 1/0O — The control signals IORD# and IOWR# are also used to access I/O locations in
the PC Card 1/0O mode, and the task file registers are mapped into 1/O address space.

PC Card Memory — The control signals OE# and WE# are also used to access memory locations,
and the task file registers are mapped into the memory space. In this mode, REG# pin is used
during Memory Cycles to distinguish between Common Memory and Register (Attribute) Memory
accesses. When REG# pin is High (H), it is used to denote a Common Memory access. When
REG# is Low (L), it is used to denote an Attribute Memory access.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control

Plane Processor: Using CompactFlash
Hardware Overview

INtal.

2.4.1 Interface Signals
Table 3 lists the CF interface signals. Note that the signals listed are for all three common modes of
the CF card: PC Card 1/O, True IDE and PC Card Memory. Some uncommon control signals,
which may not be used in some modes, are also listed.
Table 3. Interface Signal Description
Signal Name Type Description
RESET# | égtri%/;algct)lga_sr?%sa?d.CF- When the pin is high, this resets the
RESET | Active High — Reset CF
CSO0# (CE1) | Chip Select 0 (Card Select 0)
CS1# (CE2) | Chip Select 1 (Card Select 1)
A10-A0 | Address Bits [10:0]
D15-D0O I/0 Data Bits [15:0]
INTRQ O Interrupt Request to the Host
REG# | Register Select
OE#/ATA SEL# | Output Enable/IDE Mode Enable
CSEL# | Cable Select
IOWR# | 1/0 Write Strobe
IORD# | I/0 Read Strobe
VS1#, VS2# (@) Voltage Sense
WE# | Write Enable
INPACK# (@) Input. Acknowledge
I01S16#/I0CS16# o 16-Bit Transfer
PDIAG# 1/0 Pass Diagnostic
CD1#, CD2# O Card Detect
DASP# 110 Drive Active/Slave Present
Wait/IORDY O Wait/Ready
BVD1 1/0 Bus Voltage
BVD2 110 Bus Voltage
SPKR 110 Speaker
STSCHG# 1/0 Status Changed
RDY/BSY# O Ready/Busy
IREG# O Interrupt Request
WP (0] Write Protect
VCC 33V
Ground (GND) Ground
10 Application Note

3.1

Note:

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Interface Considerations

Hardware Interface Considerations

In every embedded application, implementations and requirements are different from one platform
to another. Choosing which mode of the CF card to interface to the Expansion Bus depends upon
product requirements. This section describes how to interface all three basic modes of the CF card
to the Expansion Bus, but note that only the True IDE mode is supported by the device driver
described in this application note.

CF cards supports both 3.3V and 5.0V operation and can interchange between 3.3V and 5.0V
systems. Compatible with CF card 3.3V signals, the Expansion Bus operates at 3.3V 1/O; therefore,
the interface between the two requires no voltage-shift-level conversion. However, when
interfacing a 5.0V CF card, voltage-shift-level converters are required. The Expansion Bus 1/0
buffers are designed to support up to eight loads, but the devices on the bus may not be able to
quickly drive the large load. To account for this, timing on the Expansion Bus may be adjusted
using the Expansion Bus timing and control registers for each control signal and chip select. If an
edge rises slowly due to low drive strength, the IXP42X product line processors should wait an
extra cycle before the value is read.

True IDE Mode Hardware Interface

This section describes the physical and logic interface of the CF card in True IDE mode to the
Expansion Bus. The device driver presented in this application note assumes the CF card is
connected in this mode. A CF card is configured in a True IDE mode of operation only when the
OE# (ATASEL#) input signal is grounded by the host during the power-up sequence. In this mode,
the CF card is accessible as if it were an IDE drive operating in PIO mode (hon-DMA), and neither
Memory nor Attribute registers are accessible. Figure 3 shows the interface of the Expansion Bus
to the CF card in True IDE mode. The details of this interface signals are covered in the following
paragraphs.

In True IDE mode, the CF card can simply be interfaced to the IXP42X product line processors
through the Expansion Bus.

The interface shown in Figure 3 does not support the IDE DMA mode. The Expansion Bus does
not have DMA capabilities.

The CF chip select CSO0# and CS1# are enabled by two chip select signals (EX_CS_N1 and
EX_CS_N2) from the Expansion Bus, and IORD# and IOWR# are controlled by EX_RD_N and
EX_WR_N from the Expansion Bus. To meet the timing required by the CF Specification, the chip
select is deasserted at least 20 ns after the IORD# or IOWR# is deasserted. Note that in True IDE
mode, the CF CS0# is used for the Task File registers, and the chip select CS1# is used for the
Device Control registers.

In True IDE mode, the CF 101S16# is asserted low when the CF card is expecting a 16-bit data
transfer. All Task File operations take place in byte mode using D7-DO0, while all data transfers are
using 16-bit word data. It is not necessary to control this signal; as shown in Figure 3, IOIS16# is
not used. The A2-A0 address lines are used to select one of eight registers in the Task File. The
usage of the required interface signals (in True IDE mode) are described and shown below.

Application Note 11

Plane Processor: Using CompactFlash In

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u tel
®

Hardware Interface Considerations

Figure 3.

12

CompactFlash — True IDE Mode Interface

True IDE Mode Interface CF Device

EX_DATA[15:0]
EX_ADDR[2:0]
EX_CS_N1
EX_CS_N2
EX_RD_N
EX_WR_N

A

D[15:0]
A[2:0]

cso#
csi#
IORD#

Expansion Bus Interface
yyvvyy

IOWR #

3.3V

WE#
REG#

e

wp —NC

INPACK [—NC

VS2# —NC

RESET_IN_N |- RESET#

VSi1# —NC

IREQ# |—NC

Intel(R) IXP42X System Reset WAIT# |—NC

Product Line of STSCHG# |—NC

Network SPKR# p—NC
Porcessors and

IXC1100 Control OE#. 101S16# [—NC

Plane Processor A[10:3] CD2# |—NC

CSEL# CD1# —NC

A2-A0 — The address lines from the CF card are directly connected to EX_ADDR[2:0] on the
Expansion Bus.

A10-A3 - The address lines from the CF card are not used and connected to Ground (GND).

D15-DO0 — The data lines from the CF card are directly connected EX_DATA[15:0] on the
Expansion Bus.

CSO0 - Chip Select 0 line from the CF card is connected EX_CS_N1 on the Expansion Bus.
CS1 - Chip Select 1 line from the CF card is connected EX_CS_N2 on the Expansion Bus.

IORD# - The 10 Read Strobe line from the CF card is connected to EX_RD_N on the
Expansion Bus.

IOWR# — The 10 Write Strobe line from the CF card is connected to EX_WR_N on the
Expansion Bus.

RESET# — The Reset line from the CF card is directly connected to the power-on reset
circuitry to reset the CF device every power-up sequence.

(ATASEL#) OE# — The Output Enable line from the CF card is connected to Ground. To
ensure the CF device operates in True IDE mode, this pin has to be grounded.

CSEL# — The Card Select line from the CF card is not used and connected to Ground.

REG# — The Register Select line from the CF card is not used in True IDE mode and
connected to Ground.

WEH# — The Write Enable line from the CF card is not used in True IDE mode and connected to
Ground.

Application Note

intel.

3.2

Figure 4.

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Interface Considerations

CSEL# - The Card Select line from the CF card is not used and connected to Ground. This signal is
used to select Master or Slave drive. In this hardware interface, CSEL# is connected to ground to
indicate there is only one drive — the master drive — can be connected.

As discussed, the interface between the CF card and the IXP42X product line processors through
the Expansion Bus in True IDE mode requires no external glue logic. Unused signals and control
signals are also shown and designated as “NC” (No Connection). Only power and ground signals
are not shown. The RESET# signal is required to directly connect to the power-on reset circuitry to
reset the CF device every power-up sequence.

Memory Mode Hardware Interface

This section covers the physical and logic interface of the CF cards in Memory mode to the
Expansion Bus. A CF card is configured in a Common Memory mode of operation only when the
OE# (ATASEL#) input signal is high during the power-up sequence.

According to the CF Specification, the interface of the CF card to the host and access in Memory
mode is similar to True IDE mode. The ATA registers are accessible through an external memory
address generated by the host. However, True IDE mode is a 16-bit scheme, and Memory mode
supports either 8- or 16-bit interface. True IDE mode and Memory mode use different Read/Write
control signals to transfer data. In Memory mode, the REG# signal is used during Memory Cycles
to distinguish between Common Memory and Register (Attribute) Memory accesses. When REG#
is High (H), it is used to denote a Common Memory access. When REG# is Low (L), it is used to
denote an Attribute Memory access. Common Memory mode is the default mode for the CF, and in
this mode, the control signals OE# and WE# are also used to access memory locations, and the
task file registers are mapped into direct addressing space. Figure 4 shows the main signal-to-signal
connections between the Expansion Bus.

CompactFlash — Memory Mode Interface

Memory Mode Interface CF Device
g EX_DATA[15:0] |-t | D[15:0]
g EX_ADDRJ10:0] = A[10:0]
é EX_CS_N1 | CE1#
i I—>CE2#
S EX_RD_N = OE#/ATA SEL#
8
L%L EX_WR_N | WE#
WP — NC
IORD# [— NC
GPIO9 | REG# IOWR# [— NC
INPACK — NC
VS2# — NC
RESET_IN_N |- | RESET#
VS1# |— NC
IREQ# |— NC
WAIT# |— NC
Intel(R) IXP42X Syst R t
Product Line of ystem Rese STSCHG# |— NC
Network SPKR# [— NC
Processors and l0Is16# |— NC
IXC1100 Control CD2# |— NC
Plane Processor J_— CSEL# cp1# | — ne

13

Plane Processor: Using CompactFlash

Intel® IXP42X Product Line of Network Processors and IXC1100 Control intel
®

Hardware Interface Considerations

Table 4.

3.3

14

As shown in Figure 4, the implementation requires no external glue logic for 16-bit interface. All
the required interface signals are as follows:

* A10-A0 - The address lines from the CF card are directly connected to EX_ADDR[10:0] on
the Expansion Bus.

¢ D15-DO0 - The data lines from the CF card are directly connected EX_DATA[15:0] on the
Expansion Bus.

* CE1#(CS0#) and CE2#(CS1#) — Both CE1# and CE2# lines from the CF card are connected
EX_CS_N1 on the Expansion Bus.

* |ORD# - The I/O Read Strobe line from the CF card is not used.
e |OWR# — The I/0 Write Strobe line from the CF card is not used.

* RESET# - The Reset line from the CF card is directly connected to the power-on reset
circuitry to reset the CF card at every power-up sequence.

* OE# - The Output Enable line from the CF card is connected EX_RD_N on the Expansion
Bus.

® CSEL# - The Card Select line from the CF card is not used and connected to Ground.

* REG# - The Register Select line from the CF card is connected to GPIO pin 9 of the IXP42X
product line processors.

* WE# — The Write Enable line from the CF card is connected to EX_RD_N on the Expansion
Bus.

The NC (No Connection) signals can be ignored in this application, and in this /0 mode, both the
10S16# and CSEL# signals are not used and left NC.

The hardware control of the bus width is selected through the control of the CE1# and CE2# pins
as summarized in Table 4.

CE1# and CE2# Control Logic

CEl# CE2# Access Mode
0 0 D0-D15
1 0 D8-D15
0 1 DO-D7
1 1 Standby

/O Mode Hardware Interface

The previous sections have discussed the interfaces and the required signals between the CF device
and the Expansion Bus in True IDE and Memory modes. This section presents the physical and
logic interface of the CF devices to the Expansion Bus in I/0 mode. In this mode, the control
signals IORD# and IOWR# are used to access 1/0O locations in the PC Card 1/0 mode, and the task
file registers are mapped into 1/0 address space. Note that in Memory mode, the CF card requires
the OE# (ATASEL#) and WE# signals to access attribute memory when the REG# signal is low
and access to common memory when the REG# signal is high. The OE# and WE# signals are
needed in I/0 mode to access to attribute memory, and the IORD# and IOWR# signals are used to
access to common memory. Since the Expansion Bus has only two control signals — EX_WR_N
and EX_RD_N — to implement and meet the logic interface and requirements between the CF
card and the Expansion Bus, a decoder is needed. This decoder demuxes the EX_WR_N and

Application Note

intel.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Hardware Interface Considerations

EX_RD_N signals to OE# and WE# or IORD# and IOWR#. As illustrated in Figure 5, GPIO pin

8 of the IXP42X product line processors controls the selections of the OE# and WE# or IORD#

and IOWR# signals. If GPIO pin 8 is high, the IORD# and IOWR# are selected, and the OE# and
WE# are selected when GPIO pin 8 is low.

As shown in Figure 5, the interface requires a 74HC139 Decoder or equivalent device. Unused
control and status signals in this mode as well as the other two modes are designated NC “No
Connection”. The power signals are not shown. The following are the descriptions of the signals

used for the interface:

Figure 5.

CompactFlash — I/0 Mode Interface

1/0 Mode Interface

CF Device

f
H

| EX_DATA[15:0]
{EX_ADDR[10:0]

m

EX_CS_N1

EX_WR_N
EX_RD_N

Expansion Bus Interface

GPIO8

Intel(R) IXP42X
Product Line of
Network
Processors and
IXC1100 Control
Plane Processor

GPIO9

RESET_IN_N

Yvvy

1 12
15 11

Yvy

2 4

Yvvy

14 5

3
13
74HC139

Yy

System Reset

]

D[15:0]
A[10:0]
CE1#
CE2#

OE#/ATA SEL#
IORD#

WE#

IOWR#

INPACK

VS2#

VS1#

REG# IREQ#
WAIT#

#
RESET STSCHG#

SPKR#

101S16#
CD2#
CD1#

CSEL#

—NC

—NC
l—nNC
—nNC
—nNcC
—nNC
—nNC
—nNC
l—NC
—nNc

Application Note

A10-A0 — The address lines from the CF card are directly connected to EX_ADDR[10:0] on
the Expansion Bus.

D15-D0 — The data lines from the CF card are directly connected EX_DATA[15:0] on the

Expansion Bus.
CE1#(CS0#) and CE2#(CS1#) — Both CE1# and CE2# lines from the CF card are connected

EX_CS_N1 on the Expansion Bus.
IORD# — The 10 Read Strobe line from the CF card is connected to Pin 11 of the 74HC139

decoder.

IOWR# — The 10 Write Strobe from line the CF is connected to Pin 5 of the 74HC139

decoder.

RESET# — The Reset line from the CF card is directly connected to the power on reset
circuitry in reset the CF card every power up sequence.

OE# — The Output Enable line from the CF card is connected to Pin 12 of the 74HC139

decoder.

15

Plane Processor: Using CompactFlash

Intel® IXP42X Product Line of Network Processors and IXC1100 Control intel
®

Expansion Bus Operation

Table 5.

4.0

4.1

Table 6.

® CSEL# — The Card Select line from the CF card is not used and connected to Ground.

* REG# - The Register Select line from the CF card is connected to GPIO pin 9 of the IXP42X
product line processors.

* \WE# — The Write Enable line from the CF card is connected to Pin 4 of the 74HC139 decoder.

Eight- or 16-bit mode access refers to whether the data lines DO-D15 are used to present one
complete word transfer. 8/16-bit access controlled by CE1# and CE2# of the CF card is shown in

Table 5.

CE1# and CE2# Control Logic

CE#1 CE2# Access Mode
0 0 D0-D15
1 0 D8-D15
0 1 DO-D7
1 1 Standby

Expansion Bus Operation

This section describes how to configure the CF and how to read/write from/to registers and sectors
in a CF card.

Expansion Bus Configuration

In this application note, the device driver assumes the CF card is connected in True IDE mode to
the Expansion Bus as shown in Figure 3 in Section 3.1.

In this application note it is assumed the CF chips selects are connected to Expansion Bus chip
select 1 and 2. The bit-level layout for these two particular registers are shown below. For current
information, please see the Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor Specification Update and Intel® IXP42X Product Line of Network
Processors and 1XC1100 Control Plane Processor Developer’s Manual):

Timing and Control Registers for Chip Select 1

Register Name:

EXP_TIMING_CS1

Hex Offset Address: 0XC4000004 Reset Hex Value: 0x00000000

Register Description: | Timing and Control Registers

Access: Read/Write

31|30(29|28|27 (26|25 22(21|20|19 1615|1413 10| 9 6|5[4(3|2[1]0
© |2

"0 |z |Z z

s w' w 2\, |T | |5 |F Y

<z T1 T2 T3 T4 T5 O & | CNFG[3:0] (Rsvd) | 1 x5 3 | w

a1 > F Elel2lz €z |E

o © > X =6 @
m

16

Application Note

intel.

Table 7.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Expansion Bus Operation

Timing and Control Registers for Chip Select 2

Register Name:

EXP_TIMING_CS2

Application Note

Hex Offset Address: 0XC4000008 Reset Hex Value: 0x00000000
Register Description: | Timing and Control Registers
Access: Read/Write.
31130|29|28|27|26|25 22|21120|19 1615|1413 10| 9 6(5(4|13|2|1]|0
© |1
I Fl1o0(z |z P4
gl W w 2 |c, |o L g & |1
g | T1 T2 T3 T4 T5 3 & | CNFG[3:.0] (Rsvd) s s [=1 3 | [w
6; hd > L A=) | X |~
a1E > = o€z |>
© > | |= |» o
m|T
17

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Expansion Bus Operation

Table 8. Bit Level Definition for the Timing and Control Registers
Bits Name Description
0 = Chip Select x disabled
31 CSx_EN .
1 = Chip Select x enabled
30 (Reserved)
. 00 = Generate normal address phase timing
29:28 T1 — Address timing
01 - 11 = Extend address phase by 1 - 3 clocks
27:26 T2 — Setup / Chip Select | 00 = Generate normal setup phase timing
' Timing 01 - 11 = Extend setup phase by 1 - 3 clocks
. 0000 = Generate normal strobe phase timing
25:22 T3 — Strobe Timing
0001-1111 = Extend strobe phase by 1 - 15 clocks
- 00 = Generate normal hold phase timing
21:20 T4 — Hold Timing
01 - 11 = Extend hold phase by 1 - 3 clocks
e 0000 = Generate normal recovery phase timing
19:16 T5 — Recovery Timing
0001-1111 = Extend recovery phase by 1 - 15 clocks
00 = Configures the Expansion Bus for Intel cycles.
01 = Configures the Expansion Bus for Motorola* cycles.
15:14 CYC_TYPE 10 = Configures the Expansion Bus for HPI cycles.
(HPI reserved for chip selects [7:4] only)
11 = Reserved
Device Configuration Size. Calculated using the formula:
SIZE OF ADDR SPACE = 2(9*CNFGE:0)
For Example:
0000 = Address space of 2° = 512 Bytes
13:10 CNFG[3:0]
1000 = Address space of 217 = 128 Kbytes
1111 = Address space of 224 = 16 Mbytes
9:7 (Reserved)
Byte read access to Half Word device
6 BYTE_RD16 0 = Byte access disabled.
1 = Byte access enabled.
HPI HRDY polarity (reserved for exp_cs_n[7:4] only)
5 HRDY_POL 0 = Polarity low true.
1 = Polarity high true.
0 = Separate address and data buses.
4 MUX_EN .
- 1 = Multiplexed address / data on data bus.
0 = AHB split transfers disabled.
3 SPLT_EN .
- 1 = AHB split transfers enabled.
2 (Reserved)
0 = Writes to CS region are disabled.
1 WR_EN . .
- 1 = Writes to CS region are enabled.
0 = Expansion Bus uses 16-bit-wide data bus.
0 BYTE_EN . .
1 = Expansion Bus uses only 8-bit data bus.
18 Application Note

In

4.2

tel.

Note:

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Expansion Bus Operation

These two timing and control registers, EXP_TIMING_CS1 and EXP_TIMING_CS2, are
configured as follows:

¢ Bit 31 will be set to ‘1’ to enable the Expansion Bus.

¢ Bits13to 10 are set to ‘0" because the CF control registers only occupy a very small amount of
memory space (512 bytes is ample)

¢ Bit 6 will be set to ‘1’ to allow byte read access in the bus.

¢ Bit 1 will be setto ‘1’ to allow write operation in the bus.

¢ Bit O will be setto ‘1’ or ‘0’, depending on 8-bit-wide or 16-bit-wide data bus is used.
¢ All other bits are set to 0

When the data register in the CF card is accessed, 16-bit-wide data bus will be used, while 8-bit-
wide data bus will be used for other register in the CF card. Refer to Section 5.3.

Configuration of these two registers is done in function CompactFlashExpBuslInit() in Appendix
A.2, on page 42. They are initialized with value OXbfff0043:

cs = (unsigned int *)IXP425 EXP_CS1;
*cs = Oxbfff0043;// 8-bit data bus as default

cs = (unsigned int *)I1XP425 EXP_CS2;
*cs = OxbffFf0043;// 8-bit data bus as default

where 1XP425 EXP_CS1 and 1XP425 EXP_CS2 are defined in ixp425.h.

Switching Data Bus Width

The CF card has both 8-bit and 16-bit registers, which are explained in Section 5.3. The data bus
width of the Expansion Bus must be switched to match the width of the CF register before the
device driver tries to access the register.

The Expansion Bus can be switched into 16-bit-wide data bus with the following instructions (as in
function setExpBusCS1Tol16BitDataBus() in Appendix A.2, on page 42):

cs = (unsigned int *)IXP425_EXP_CS1;
value = *cs;
*cs = value&(~1); // set bit 0 to O

Or switched into 8-bit-wide data bus with the following instructions (as in function
setExpBusCS1To8BitDataBus() in Appendix A.2, on page 42):

cs = (unsigned int *)IXP425_EXP_CS1;
value = *cs;
*cs = value|l; // set bit 0 to 1

Application Note 19

Plane Processor: Using CompactFlash In

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u tel
®

Expansion Bus Operation

4.3

20

Reading/Writing Expansion Bus

Reading/writing the Expansion Bus is done by first calling the ioremap() function defined in
#include <asm/io.h> to prompt the memory management to update its page attributes tables and
map the memory space for Chip Select 1 of the Expansion Bus to pointer ixp_exp_bus_cs1, and
memory space for Chip Select 2 to ixp_exp_bus_cs2, as is done in function
CompactFlashExpBuslnit() in Appendix A.2, on page 42:

ixp_exp_bus_csil=(unsigned

long)ioremap(1XP425_EXP_BUS_CS1 BASE_PHYS,512);

ixXp_exp_bus_cs2 = (unsigned

long)ioremap(1XP425 EXP_BUS CS2 BASE PHYS, 512);

where 1XP425_EXP_BUS_CS1_BASE_PHYS and 1XP425_ EXP_BUS_CS2_BASE_PHYS
are defined in ixp425.h.

Then a call to one of the following functions, defined in #include <asm/io.h>
__raw_writew(data,_ mem pci(addr))
__raw_writeb(data,__mem_pci(addr))

__raw_readw(__mem_pci (addr))
__raw_readb(__mem_pci (addr))

where addr=ixp_exp_bus_cs1+offset or ixp_exp_bus_cs2+offset, will read/write a word or a byte
from/to the Expansion Bus. The application note provides the following four functions in
Appendix A.2, on page 42 to perform these operations easily:

* CompactFlashExpBusWriteW()
¢ CompactFlashExpBusWriteB(),
¢ CompactFlashExpBusReadW(),
* CompactFlashExpBusReadB();

Application Note

intel.

5.0

Note:

5.1

Table 9.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

CompactFlash Operations

CompactFlash Operations

The functions described in this section are shown in Appendix A.2, on page 42,

“CompactFlashIDE.c”.

Access to the CompactFlash Registers

Control and access to the CF card in True IDE mode is done through a set of registers, the so-called

CF-ATA registers or ‘task file’:
True IDE Mode I/O Decoding

-Cs1 -CS0 A2 | Al A0 -IORD=0 -IOWR=0 Note
1 0 0 0 0 RD Data WR Data 8 or 16 bit
1 0 0 0 1 Error Register Features 8 bit
1 0 0 1 0 Sector Count Sector Count 8 bit
1 0 0 1 1 Sector No Sector No 8 bit
1 0 1 0 0 Cylinder Low Cylinder Low 8 bit
1 0 1 0 1 Cylinder High Cylinder High 8 bit
1 0 1 1 0 Select Card/Head Select Card/Head 8 bit
1 0 1 1 1 Status Command 8 bit
0 1 1 1 0 Alt Status Device Control 8 bit

These registers are addressed by three address lines and two chip select lines: A0, Al, A2, CSQ,

and CS1. To get access to these registers, a 8-bit value is used as offset. The two most significant
bits of the offsets are used to distinguish Chip Select 1 or 2, and the four least significant bits are

address offsets of the registers. Based on Table 9, these registers are hence denoted as follows:

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#define
#define

CF_DATA
CF_ERROR
CF_SECT_CNT
CF_SECT_NUM
CF CYL_L
CF_CYL_H
CF_DRV_HEAD
CF_STATUS

CF_FEATURES
CF_COMMAND

CF_ALTSTATUS
CF_DEV_CTR

0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27

0x21
0x27

0x16
0x16

These are used to read/write the CF registers, as in the following example for setting the CF card
into Logical Block Address (LBA) mode:

Application Note

21

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In o

CompactFlash Operations

5.2

5.3

22

WriteRegB(CF_DRV_HEAD, OxEQ);

where WriteRegB() is one of the following four functions in Appendix A.2, on page 42 that make
use of the functions at the end of Section 4.3:

WriteRegW()
WriteRegB()
ReadRegW()
ReadRegB()

Wait for CompactFlash To Get Ready

Before any command is issued to the CF card, the card needs to be checked for readiness. The
CF_STATUS register provides this status information. When the CF card is ready, the ready bit (bit
6 of the CF_STATUS register) must be 1, and the Busy bit (bit 7 of the CF_STATUS register) must
be zero.

The application note provides a function Waiting_ RDY_TO() in Appendix A.2, on page 42 calling
ReadRegB(CF_STATUS) to check if the CF card is ready.

Switching Expansion Bus Data Width

In True IDE mode all CF registers are 8 bits wide and reside on byte-aligned addresses except for
the CF_DATA register, which is 16 bits wide. The CF_DATA register is used by the host to read/
write the CF data buffer.

In order to read/write from the CF_DATA register, the Expansion Bus must be configured to
produce 16-bit-wide data access. In order to read/write the other CF internal register, the Expansion
Bus must be configured to produce 8-bit-wide data access. Hence, depending on which CF
registers are being accessed, it is necessary to switch the Expansion Bus data width.

Before the Expansion Bus data width is switched the code must ensure the last Expansion Bus
transaction has completed. This is done by reading a CF internal register then using the returned
value to force the host to stall until the data is returned.

The two functions in Appendix A.2, on page 42, setExpBusCS1To16BitDataBus()) and
setExpBusCS1To8BitDataBus(), are used to switch the Expansion Bus data width.

Application Note

In

5.4

5.5

tel.

Note:

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

CompactFlash Operations

Little and Big Endian Conversion

The data in the CF card is stored in little-endian format, while the host CPU is set into big-endian
mode. It is therefore required to convert the data by calling the following function when reading
from or writing to the CF card, as described in Section 5.5 and Section 5.6.

unsigned short byteSwap(unsigned short data)

{
unsigned short tmp;
tmp=(data<<8) | (data>>8);
return tmp;

¥

The byte order is maintained when reading from or writing to the CF card.

Read from a Sector

Once a read command is issued by the host, the CF card fills the internal data buffer inside the CF
with one sector worth of data. The host then repeatedly reads the CF_DATA register to retrieve that
sector worth of data from the CF internal data buffer.

When reading from CF, logical block addressing (LBA) is used. The next sequence of steps show
how this is set up.

¢ The LBA is written to the following registers:
— Sector number: CF_SECT_NUM=LBA7~0
— Cylinder Low: CF_CYL_L = LBA15-~8
— Cylinder High: CF_CYL_H = LBA23~16

— Head: CF_DRV_HEAD(LSB3~0) = LBA27~24
* The sector count register CF_SECT_CNT is loaded with a value to indicate how many sectors
to read.

* A read sectors command 0x20 is written to the command register CF_COMMAND to start the
reading process:

WriteRegB(CF_COMMAND, 0x20);

* The CF card will put a sector of data in the internal buffer, and then set the DRQ bit and clear
the BSY bit in the CF_STATUS register.

* The host then can read the data from the internal buffer by repeatedly reading the CF_DATA
register, as follows:

ReadRegW(CF_DATA)

This application note provides the function ReadSectorW()in Appendix A.2, on page 42 to
read a sector. This function also makes use of the operations described in Section 5.3 and Section
5.4.

Application Note 23

Plane Processor: Using CompactFlash In

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u tel
®

FAT16 File System on the CF Card

5.6

5.7

6.0

Note:

6.1

24

Write to a Sector

In write operation, the host (after issuing a write sector command to the CF card) repeatedly writes
to the CF_DATA register. Once the CF card’s internal buffer is filled, the buffer’s content is then
written to a sector.

Steps to write to a sector are similar to those in Section 5.5 except that (after setting up all the other
registers) a write sector command 0x30 is written to the CF_COMMAND register:

WriteRegB(CF_COMMAND, 0x30);

After this command is issued, the CF card will indicate it is ready by setting the DRQ bit and
clearing the BSY bit in the CF_STATUS register. The host then can repeatedly write data to the
internal buffer using:

WriteRegW(CF_DATA, val);

When finishing writing the data, the Expansion Bus is switched back to 8-bit width after issuing a
read instruction (ReadRegW(CF_STATUS)) to make sure the Expansion Bus write operation is
completed.

This application note provides function WriteSectorW()in Appendix A.2, on page 42 to write
to a sector.

Read the Identify Information

When a value OXEC is written to the CF_COMMAND register of the CF card:
WriteRegB(CF_COMMAND, OXEC);

the internal buffer of the CF card is filled with 512 bytes of information, including the signature of
the CF card, the default number of heads, cylinders, sectors per track, capability, as well as other
parameters. To show the identify information, this application note provides function
ReadldenfylnformationW() in Appendix A.2, on page 42.

FAT16 File System on the CF Card

The functions described in this section are shown in Section A.6, “CompactFlashFat16.c” on
page 64.

This section discusses the File Allocation Table (FAT) file system and how it is used on the CF
card. The demo code in this application note does not implement all the functions required to
support the file system. The code only provides the basic functions to process the information in
the CF card for the FAT16 file system, and to view directories, change directories, or view files in
the CF card.

Master Boot Record

Depending on how the CF card is formatted, the first sector in a CF card contains either a Master
Boot Record (MBR), or a BIOS Parameter Block (BPB). Before the CF card can be used, it must
be formatted. This application note does not provide information about formatting the CF card,

Application Note

intel.

Table 10.

Table 11.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

FAT16 File System on the CF Card

which can be done on a PC. The MBR contains code to boot the computer and partition tables
defining different sections of the drive. The MBR also provides information about where the BPB
is located. The BPB contains parameters for the FAT file system.

After the CF card is initialized, the first thing to do is to call function checkMBR() in the demo
code to check if an MBR exists in the CF Card. This function makes use of the fact that the first

sector can only be an MBR or a BPB, and if it is a BPB, the first byte can only be Oxeb or 0xe9
which are jump instructions.

If a MBR does not exist, the first sector must be the boot sector that contains the BPB. Hence in
this case the sector number for BPB is 0, BPB_LBA=0;

If a MBR exists, the 32-bit word starting at byte 0x1c6 in the first sector on the CF card is the
sector number for the BPB of the first partition, namely, BPB_LBA=*(0x1c6);

The byte in 0x1c2 indicates the FAT file system type. There are three file system types: FAT12,
FAT16, and FAT32. This application note only covers FAT16.

Table 10 and Table 11 show the MBR structure.

MBR Structure

Offset Description Size
000h Executable Code (Boots Computer) 446 Bytes
1BEh 1st Partition Entry (See Table 11) 16 Bytes
1CEh 2nd Partition Entry 16 Bytes
1DEh 3rd Partition Entry 16 Bytes
1EEh 4th Partition Entry 16 Bytes
1FEh Executable Marker (55h AAh) 2 Bytes

Partition Entry (Part of MBR)

Offset Description Size
00h Current State of Partition (OOh=Inactive, 80h=Active) 1 Byte
01lh Beginning of Partition - Head 1 Byte
02h Beginning of Partition - Cylinder/Sector (See Below) 1 Word
04h Type of Partition (See List Below) 1 Byte
05h End of Partition - Head 1 Byte
06h End of Partition - Cylinder/Sector 1 Word
08h ggg:(t))reirnotfhielg:;?trifi(?netween the MBR and the First 1 Double Word
0Ch Number of Sectors in the Partition 1 Double Word

Application Note 25

Plane Processor: Using CompactFlash In

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u tel
®

FAT16 File System on the CF Card

6.2

6.3

6.4

26

BIOS Parameter Block

The BPB is at the beginning of the boot sector (see reference for the detailed BPB structure). The
location of the boot sector is discussed in Section 6.1. The BPB contains parameters for the file
system. The function ProcessBPB() in the demo code uses the information in BPB to calculate
parameters, such as location of the root directory, etc.

Root Directory Location

After the parameters for the file system is obtained from the BPB, the first thing to do is to locate
the root directory. The root directory information is contained in a set of sectors, and each sector in
the set consists of 32-byte entries that employ the FAT directory structure as is described in Section
6.4. The total number of sectors in the set is RootDirSectors sectors, and the sector number of
the first sector in the set is (BPB_LBA+FirstRootDirSecNum).

The parameters RootDirSectors and FirstRootDirSecNum are calculated using the information
in the BPB as follows. The function GetBit(n) used in the following gets a 16-bit integer starting at
byte n from the beginning of the boot sector.

RootDirSectors=((BPB_RootEntCnt*32)+ (BPB_BytsPerSec-1))/BPB_BytsPerSec;

where

BPB_RootEntCnt=Get16Bits(17), is the count of 32-byte directory entries in the root directory,

BPB_BytsPerSec=Get16Bits(11), is the count of bytes per sector,

FirstRootDirSecNum= BPB_RsvdSecCnt + (BPB_NumFATs*FATSz)

where

BPB_RsvdSecCnt=Get16Bits(14), is the number of reserved sectors in the reserved region,
BPB_NumFATs=Get8Bits(16), is the count of the FAT data structures (which is always 2).

FATSz= BPB_FATSz16=Get16Bits(22), is the count of sectors occupied by one FAT.

FAT Directory Structure

A FAT directory entry is a 32-byte structure, which represents either a file or a subdirectory.

If the file name or the subdirectory name has only 11 characters (8 characters for name, and 3
characters for name extension), only one 32-byte structure is needed, and this is a short directory
entry.

If the file name or the subdirectory name has more than 11 characters, it needs multiple 32-byte
structures. This is a long directory entry.

If byte 0 of the 32-byte structure is 0, this directory entry is free and there are no more directory
entries after this one.

Application Note

6.5

6.6

tel.

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

FAT16 File System on the CF Card

If byte 11 of the structure is 0xOf, this entry is part of a directory entry with long name.
If byte 11 of the structure is 0x10, this entry is for a subdirectory.

For a short directory entry (entry with a short name), the first 8 bytes of the structure are for the file
or subdirectory name, and the following 3 bytes are for the file or subdirectory name extension. If
the name requires less than 11 bytes, it is padded with 0x020. Function getShortFileName() in the
demo code gets the short file name from the entry.

For a long directory entry (entry with a long name), the entry will start with a sequence of 32-byte
structures with byte 11 equal to 0x0f, and end with a short directory entry. Each character of the file
name will be represented by 2 bytes. Function getLongFileName() gets the long file name from the
entry.

Bytes 20, 21, 26 and 27 of the 32-byte structure in a short directory entry comprise the first cluster
number Dir_FstClus, which is used to determine either where the file content is located for a file
name entry, or where the subdirectory list is located for a subdirectory entry.

For a subdirectory, the first two entries are the dot entry and dot-dot entry. The dot entry is for the
current directory, and dot-dot entry is for the parent directory of the subdirectory. If the parent
directory is the root directory, Dir_FstClus will be 0 for the dot-dot entry.

List the Root Directory

In this application note demo code, the function changeToRootDirectory() is called to list the root
directory entries after checkMBR() and ProcessBPB() are called to process the MBR and BPB.

The set of sectors that contain the 32-byte FAT directory structure entries for the root directory is
specified in Section 6.3. Function changeToRootDirectory() reads each sector in the set, and calls
function listFileEntrylnOneSector() to list all the file or directory entries in each sector. As
described in Section 6.4, each sector is a sequence of 32-byte FAT directory structures.

List a Subdirectory

If a 32-byte FAT directory structure entry in the current directory is a subdirectory entry (namely,
byte 11 is 0x10), the subdirectory can be browsed by passing the first cluster number Dir_FstClus
(comprised of bytes 20, 21, 26 and 27 of the entry) to the function getClusFstSet() to get the first
sector in the cluster that contains the directory entries for this subdirectory. The number of sectors
in each cluster is BPB_SecPerClus, which is calculated in ProcessBPB(). After all the sectors in the
current cluster are listed, call getNextFATentry() to get the next cluster. This is continued until
isEndOfclusterChain() returns true.

The entries in each sector are listed by listFileEntrylnOneSector(). And the function
changeToDirectory() lists all the entries for a subdirectory entry.

As described in Section 6.4, the dot-dot entry in a subdirectory points to the parent directory. If
Dir_FstClus of the dot-dot entry is 0, the parent is the root directory, and hence needs to be
processed as discussed in Section 6.5. If Dir_FstClus is not 0, the Dir_FstClus in the dot-dot entry
is processed as a regular directory entry.

Application Note 27

Plane Processor: Using CompactFlash

Intel® IXP42X Product Line of Network Processors and IXC1100 Control intel
®

CompactFlash Linux* Device Driver

6.7

7.0

28

Note:

Get Access to File Content

If the current directory entry is a file entry, namely byte 11 of the structure is not 0x10, then bytes
28, 29, 30, 31 of the structure comprise the file size DIR_FileSize. The first sector in the cluster
that contains the file content can be obtained by passing the first cluster number Dir_FstClus
(comprised of bytes 20, 21, 26 and 27) to the function getClusFstSet(). The number of sectors in
each cluster is BPB_SecPerClus, which is calculated in ProcessBPB(). After the file content in all
the sectors in the current cluster is read, call getNextFATentry() to get the next cluster. This process
continues until all DIR_FileSize bytes are read. Function readFile() in this application note demo
code performs this function.

CompactFlash Linux* Device Driver

The functions described previously for the Expansion Bus configuration and reading/writing the
CF card are wrapped in a device driver, which is presented in this section. The CF device driver in
this application note is a character driver. It provides a set of file operations for applications to get
access to the CF card by going through the normal file system in Linux.

The functions described in this section are shown in Appendix A.1, on page 36,
“CompactFlashModuleSymbols.c”.

The following file operations are defined in this device driver:

struct file_operations
CompactFlashModuleOperations = {

NULL,

NULL, /* lIseek */

CompactFlashModule_read, /* read */
y CompactFlashModule_write, /* write
*

NULL, /* readdir
*/

NULL, /* poll */

CompactFlashModule_ioctl, /* 1octl
*/

NULL, /* mmap */

CompactFlashModule_open, /* open */

NULL, /* flush */

CompactFlashModule_close, /* release
*/

NULL, /* sync */

NULL, /* async */

NULL, /* lock */

NULL, /* ready */

NULL, /* written
*/

Application Note

7.1

7.2

7.3

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

CompactFlash Linux* Device Driver

NULL, /* sendPage
*/
NULL /*
get_umpatted_area */
};

The driver also uses the following two functions when the device driver is loaded or unloaded:
static int __init
CompactFlashModule_init_module(void);
static void __ init
CompactFlashModule_cleanup_module(void);

When the device driver is loaded into the system, CompactFlashModule_init_module() is called
and the device is registered with register_chrdev(). When it is unloaded, the driver is unregistered
with unregister_chrdev().

When applications open or close the device, the following functions are called, respectively:

int CompactFlashModule_open (struct inode *inNum,
struct file *fp)

int CompactFlashModule close(struct inode *inNum,
struct file *fp)

The main operations are in functions CompactFlashModule_read(), CompactFlashModule_write(),
and CompactFlashModule_ioctl(), which are described in the following sections.

Read the Device

The read function CompactFlashModule_read() in the driver reads a sector in the CF card by
calling ReadSectorW() (described in Section 5.5) and using function copy_to_user() to pass the
data to the application. The function copy_to_user() is required because applications cannot
directly get access to the memory areas managed by the kernel. This function can also read the
identify sector in the CF card.

Write the Device

The write function CompactFlashModule_write() in the driver writes a sector to the CF card by
calling WriteSectorW() (described in Section 5.6) and using function copy_from_user() to pass the
data from the application. The function copy_from_user() is required because applications cannot
directly get access to the memory areas managed by the kernel.

Control the Device

The control function CompactFlashModule_ioctl() is used by the applications to read/write the
registers in the CF card, check if the card is ready, display the timing and control registers in the
Expansion Bus, start initializing the Expansion Bus, and set a flag fi le-private_data used
by the device read/write functions. It also provide functions to view directories, change directories,
view files, find the MBR, and process the BPB.

Application Note 29

Plane Processor: Using CompactFlash In

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u tel
®

Application Code

8.0

Note:

30

Application Code

The functions described in this section are shown in Appendix A.8, on page 92,
“CompactFlashApp.c”.

This simple application code is used to test the driver. It starts with opening the device:
CFdriver = open(''/dev/CompactFlashModule',0_RDWR);

Then it calls the device driver’s control function:
rc = ioctl(CFdriver,CF_INIT_IDE, &passedArg);

to initialize the Expansion Bus, check if the CF card is ready, and read the identify information
from the CF card.

The application then calls testFileSystemMenu() to display the following menu and wait for user
input:

- IxCompactFlashCodelet File System Demo

Commands: cd/dir [/][.][..][dir name]; file or dir name; test!, exit!

The command “cd” is used to change the directory, and command “dir” lists the content of a
directory. If a file name is entered, the content of the file is displayed (each byte is displayed as a
character). Command “exit!” terminates the application.

If the command “test!” is entered, the application will switch to a test menu (TestMenu() is called)
so that the user can perform the following low-level testing on the CF card: checking if the CF is
ready, reading CF registers, writing to CF registers, showing Exp Bus Regs, reading the identify
sector, reading from one sector, writing to one sector, showing content in a sector, finding the
MBR, and processing the BPB.

Application Note

9.0

Intel® IXP42X Product Line of Network Processors and IXC1100

Control Plane Processor: Using CompactFlash
Platform Used for Testing

- IxCompactFlashCodelet Demo Menu

Read/Write to CF Registers:
1: check if the flash card is ready
: read all the CF registers
: read one CF register
: write to one CF register
: show Exp Bus Regs

a b~ WwN

View CF Identify Information:
6: read the identify sector

Read/Write to sectors:
7: read from one sector
8: write to one sector

Display data:
9: show one byte in a sector
10: show next 10 bytes
11: show one word in a sector
12: show next 10 words

Display MBR & BPB:
13: find MBR and BPB
14: Process BPB data

Display Other Information:

16: toggle gpio pin 6 on RF board
100: Exit

15: display a number to the LED on RF board

Platform Used for Testing

The platform used to test the demo code in this application note is the Avila* GW2342 single-
board computer made by Gateworks Corporation* (http://www.gateworks.com/avila_shc.htm).
This board supports the IXP42X product line processors at speeds up to 533 MHz. It provides a CF
socket attached to the Expansion Bus, as described in Section 3.1.

The board also supports up to four Type I11 Mini PCI slots, two 10/100 Base-TX Ethernet channels,
and two RS232 ports for management and debug. Additional features include up to 128 Mbytes
SDRAM, five bits digital 1/0, optional USB device port, real time clock, watchdog timer and a
voltage/temperature monitor. Program storage consists of up to 32 Mbytes of on-board flash
memory in addition to the CF socket. Software support includes Linux, VxWorks*, and Windows*

CE .NET operating systems.

Application Note

31

http://www.gateworks.com/avila_sbc.htm
http://www.gateworks.com/avila_sbc.htm

Plane Processor: Using CompactFlash

Intel® IXP42X Product Line of Network Processors and IXC1100 Control intel
®

Demo and ‘Screen Shot’

10.0

32

Note:

Note:

The Avila board is compatible with the 1XDP425 / IXCDP1100 platform; therefore, the Linux
Support Package (LSP) from MontaVista* Linux (MVL) 3.0 for the IXDP425 / IXCDP1100
platform is used for the board. No change is required to the software except when issuing the
command to execute the kernel (as shown in Section 10.0), the user must specify the board’s
memory amount (64 Mbytes).

This system is NOT suitable for HOT plugging. So even though the CF card is removable, the
system must be powered off before changing the CF card.

Demo and ‘Screen Shot’

Along with 1XP400 software v1.3, the demo code was compiled using MontaVista Linux 3.0 with
Red Hat* 7.3.

The code in the application note is not IXP400 software release-dependent. Only the build setup of
the IXP400 software release is used to build the device driver and the application.

Refer to the Intel® IXP400 Software Release 1.5 Software Release Notes for details about building
modules for the XP400 software release.

In the codelet subdirectory in 1XP400 software, create a subdirectory “cfEng” and put the files in
Appendix A, “Source Code” into this subdirectory with the following file structure:

ixp425_ xscale_sw

\-————- src
\-——— - codelets
\-————- cfEng
\-————- CompactFlash.h
ACEEEEE CompactFlashlIDE.c
\————— CompactFlashIDE.h
\-——— CompactFlashFatl6.c
ACEEEEE CompactFlashFatl6.h
\-————- CompactFlashModuleSymbols.c
\———— component.mk
\-————- cTApp
\—m CompactFlashApp.c
\-————- MakeFile

To include the CF driver into the building process, the Makefile in \ixp425_xscale_sw is modified
such that cfEng is added as follows:

Bl_ENDIAN_CODELETS_COMPONENTS := hssAcc ethAcc usb timers dspEng cfEng
The following command will build all the modules:
make modules

To build the CF test application, go to subdirectory “cfApp” and execute a “make” command.

Application Note

intel.

10.1

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Demo and ‘Screen Shot’

Refer to the user guide for the Avila GW2342 single-board computer for details about setting up
the board.

The kernel can be downloaded to the Avila single-board computer using the following command:
load -r -v -b 0x001600000 zImage

Due to the size of the SDRAM on the board (64 Mbytes), the kernel is executed with the following
command:

exec -c ""console=ttyS0,115200 root=/dev/nfs ip=bootp mem=64M@ 0x00000000"

The 1XP400 software library and the driver module for the CompactFlash are then loaded:
insmod ixp400_codelets_cfEng.o
mknod /dev/CompactFlashModule ¢ 253 0

The CF test application is then started:

./CompactFlashApp

CompactFlash Demo Screen Shot

The following is a ‘screen shot’ of the demo code:

CompactFlash_module :: tialize IDE ...
CompactFlash_module :: tialize ExpBus ...
CompactFlash_module :: Exp Bus csl =c5880000
CompactFlash_module :: Exp Bus cs2 =c5882000
CompactFlash_module :: CF is ready ...
CompactFlash_module :: show CF regs ...
CompactFlash_module :: CF_STATUS=50
CompactFlash_module :: CF_ALTSTATUS=50
CompactFlash_module :: CF_
CompactFlash_module :: CF_CYL_H=0
CompactFlash_module :: CF_CYL_L=0
CompactFlash_module :: CF_SECT_NUM=1
CompactFlash_module :: CF_SECT_CNT=1
CompactFlash_module :: CF_ERROR=1

CompactFlash_module :: read the identify block ...
CompactFlash_module :: CF signature =0X848a
CompactFlash_module : : Number ofCylinders =490 (Oxlea)
CompactFlash_module : : Number of Heads =8 (0x8)
CompactFlash_module : : Number ofSectorsper tarck=32 (0x20)
CompactFlash_module :: Number of sectors per card =125440

Application Note 33

Intel® IXP42X Product Line of Network Processors and IXC1100 Control

Plane Processor: Using CompactFlash
Demo and ‘Screen Shot’

(0Ox1ea00)
CompactFlash_module

CompactFlash_module ::

CompactFlash_module ::

processing MBR
CompactFlash_module

CompactFlash_module ::

CompactFlash_module
CompactFlash_module
CompactFlash_module
CompactFlash_module
CompactFlash_module

CompactFlash_module ::

CompactFlash_module
CompactFlash_module
CompactFlash_module
CompactFlash_module
CompactFlash_module
CompactFlash_module
CompactFlash_module

CompactFlash_module ::

CompactFlash_module
CompactFlash_module

CompactFlash_module
CompactFlash_module
CompactFlash_module

CompactFlash_module
06/29/2004 03:28:16
06/29/2004 03:28:24
05/04/2004 02:00:12
05/07/2004 02:44:14

06/30/2004 04:46:20 PM

efriewriewrwirwiuiw

0570472004 02:00:12 PM

34

In

tel.

:: Capabilities =0x200
LBA supported

checking if there is a master boot record

it isFAT16 (larger than 32MB)
BPB_LBA=32

:: processing BPB ...

2 - checking FAT type ...

:: CountofClusters=14834 . ..
:: RootDirSectors=32 ...

:: BPB_RsvdSecCnt=1 ...
BPB_RootEntCnt

> - BPB_BytsPerSec=512 ...

12 BPB_FATSz16=122 ...

:: BPB_FATSz32=-450297728 . ..
:: BPB_NumFATs=2 ...

:: BPB_TotSecl1l6=0 ...

- BPB_TotSec32=59616 ...

:: BPB_SecPerClus=4 ...
FATSz=122 ...

:: TotSec=59616 ...

it is FAT16

:: FirstDataSec=277 ...
2o FirstRootDirSecNum=24
> FATstart=33 ...

- List Root Directory

PM <DIR> DIR1
PM <DIR> DIR2
PM 3304 README. TXT
AM 13446132 QFJE.MP3

<DIR> New Folder

3304 Copy of readme . txt

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

Demo and ‘Screen Shot’

Commands: cd/dir [/]1[-1[--1[dir name]; file or dir name; test!,
exit!

dir

AAAAIIEITAAAAAA A A A AAAAAAA A A A AAAAAAARA A AAAAAAAARAAAXAAAAAA K
CompactFlash_module :: List Root Directory

06/29/2004 03:28:16 PM <DIR> DIR1
06/29/2004 03:28:24 PM <DIR> DIR2
05/04/2004 02:00:12 PM 3304 README.TXT
05/07/2004 02:44:14 AM 13446132 QFJE.MP3
06/30/2004 04:46:20 PM <DIR> New Folder

05/04/2004 02:00:12 PM 3304 Copy of readme.txt

Commands: cd/dir [/]1[-1[--1[dir name]; file or dir name; test!,
exit!

dir DIR1
B R o R e R R AR R R A R AR AR R AR R R AR R R E R R R AR AR R R R R AR R E R R R e o
06/29/2004 03:28:16 PM <DIR> DIR1

06/29/2004 03:28:16 PM <DIR> -
06/29/2004 03:28:16 PM <DIR> -

05/04/2004 02:00:12 PM 3304 Copy of readme.txt
05/04/2004 02:00:12 PM 3304 readme.txt
test!

AEAIEEAAAAAAAXAAAXAXAAAXAAAAAAXAAAAXAAAXAAAAAAAXAAAXAAAAAAAXAAAXK

Application Note

35

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Demo and ‘Screen Shot’

36

Read/Write to CF Registers:
1: check if the flash card is ready
2: read all the CF registers
3: read one CF register
4: write to one CF register
5: show Exp Bus Regs

View CF ldentify Information:
6: read the identify sector

Read/Write to sectors:
7: read from one sector
8: write to one sector

Display data:
9: show one byte iIn a sector
10: show next 10 bytes
11: show one word in a sector
12: show next 10 words

Display MBR & BPB:
13: find MBR and BPB

14: Process BPB data

100: Exit

Application Note

Control Plane Processor: Using CompactFlash

in Intel® IXP42X Product Line of Network Processors and IXC1100
® Source Code

| Appendix A Source Code

The source code shown in this appendix consists of the following files:
* CF device driver: CompactFlashModuleSymbols.c
¢ CF register and sector access: CompactFlashIDE.c
* Include file used by the device driver and the application: CompactFlash.h
* Include file used by the device driver: CompactFlashIDE.h
¢ FAT16 processing: CompactFlashFat16.C
¢ Include file used by the device driver: CompactFlashFat16.h
* Make file for the device driver: component.mk
¢ Application: CompactFlashApp.c
* Make file for the application: Makefile.mk

* @author Intel Corporation

* @date 5 May 2004
* @brief This file declares exported symbols for linux kernel module builds

* -- Intel Copyright Notice --

* @par

* Copyright 2004 Intel Corporation All Rights Reserved.

* @par

* The source code contained or described herein and all documents

* related to the source code ("Material") are owned by Intel Corporation

* or its suppliers or licensors. Title to the Material remains with

* Intel Corporation or its suppliers and licensors. The Material

* contains trade secrets and proprietary and confidential information of

* Intel or its suppliers and licensors. The Material is protected by

* worldwide copyright and trade secret laws and treaty provisions. Except for the
* licensing of the source code hereunder, no part of the Material may be used,
* copied, reproduced, modified, published, uploaded, posted, transmitted,

* distributed, or disclosed in any way without Intel's prior express written

* permission.

* @par

Application Note 35

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u

Plane Processor: Using CompactFlash

Source Code

Al

36

INtal.

* Except for the licensing of the source code as provided hereunder, no license under

* any patent, copyright, trade secret or other intellectual property right is granted

* to or conferred upon you by disclosure or delivery of the Materials, either

* expressly,

by implication,

estoppel or otherwise and any license under

* such intellectual property rights must be express and approved by Intel in writing.

* @par

* For further details,

* this software.
* -- End Intel Copyright Notice --
*/

please see the file README.TXT distributed with

CompactFlashModuleSymbols.c

#define EXPORT SYMTAB 1

/*

* Put the system defined include files required.

*/

#include
#include

#include

#include
#include
#include
#include
#include
#include
#include

#include

#include

#include

#include

#include

#include

#include

<stdio.h>
<taskLib.h>

<string.h>

<linux/config.h>
<linux/kernel.h>
<linux/module.h>
<linux/init.h>
<linux/sched.h>
<asm/uaccess.h>
<asm/arch/irgs.h>

<asm/io.h>

<linux/types.h>

<asm/hardware.h>

"IxAssert.h"

"ixp425.h"

"CompactFlash.h"

"CompactFlashIDE.h"

Application Note

#defin

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Source Code

e MSG(string, args..

#define MODULE_NAME "CompactFlashModule"

#defin

e MODULE_VERSION "0.0.3"

MODULE_DESCRIPTION ("CompactFlashModule for IXP425");

ssize_t CompactFlashModule read(struct file *, char *, size_t ,

ssize_t CompactFlashModule write(struct file *, const char *,

int CompactFlashModule open (struct inode *, struct file *);

int CompactFlashModule_close
int CompactFlashModule_ ioctl (struct inode *,struct file *,unsigned int,unsigned long) ;

int CompactFlashModule readdir (struct file *, void *,

(struct inode *, struct file *);

.) printk (KERN_DEBUG "CompactFlashModule:" string,

size_t,

£filldir t);

extern void checkMBR () ;
extern void ProcessBPB(void) ;
extern void listCurrentDirectory() ;
extern void changeToDir (char *str, unsigned long changeFlag) ;
extern void readFileByName (char *str);
extern void changeToUpperDir (unsigned long changeFlag) ;
extern void changeToRootDirectory (unsigned long changeFlag) ;
struct file operations CompactFlashModuleOperations = {
NULL,
NULL, /* lseek function ptr */

bi

CompactFlashModule_read,
CompactFlashModule write,
NULL,
NULL,
CompactFlashModule_ioctl,
NULL,
CompactFlashModule_open,
NULL,
CompactFlashModule_close,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

NULL

int CompactFlashChrDevVer=0;

Application Note

/* read function ptr */

/* write function ptr */

/* readdir function ptr */

/* poll function ptr */

/* ioctl function ptr */

/* mmap function ptr */

/* open function ptr */

/* flush function ptr */

/* release function ptr */

/* sync function ptr */

/* async function ptr */

/* lock function ptr */

/* readv function ptr */

/* writev function ptr */

/* sendPage function ptr */

/* get_umpatted_area */

loff_t *);

loff_t *);

##args)

37

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

static int _ init CompactFlashModule init module (void)
CompactFlashChrDevVer=register chrdev (253, "CompactFlashModule",

&CompactFlashModuleOperations) ;

printk ("CompactFlash_init_module :: "
"LOADED SUCCESSFULLY CompactFlash MODULE\n") ;

return IX_SUCCESS;

static void _ init CompactFlashModule_cleanup_module (void)

{
printk ("Value=%d\n",unregister chrdev (253, "CompactFlashModule")) ;

printk ("CompactFlash cleanup_module :: UNLOADED CompactFlash MODULE\n") ;

ssize_t CompactFlashModule write(struct file *fp,const char *buf,size_t num,loff_ t *off)

{

unsigned char x[512];
copy_from user (x, buf, 512);

switch((int) fp->private data)
{
case Byte_ Access:
WriteSectorB(x, (unsigned long) num) ;
break;
case Word_ Access:
WriteSectorW((unsigned short *)x, (unsigned long) num) ;
break;

}

return (num) ;

ssize_t CompactFlashModule_read(struct file *file, char *buffer, size t size, loff_t *ppos)

{
size_t length = 0;

unsigned char x[512];

//x = (unsigned char *) kmalloc(512,GFP_KERNEL) ;

38 Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

switch((int) file->private data)
{
case Byte_ Access:
ReadSectorB(x, (unsigned long) size);
break;
case Word_Access:
ReadSectorW((unsigned short *)x, (unsigned long) size);

break;

case Read Identify Sector:
ReadIdenfyInformationW ((unsigned short *)x);
ReadIdenfyInformation() ;
break;
}
if (copy_to_user (buffer, (char *)x, 512))

return -EFAULT;

return(512) ;
1
int CompactFlashModule_ioctl (struct inode *inode, struct file *file,

unsigned int functionId, unsigned long arg)

int CntcCd;

unsigned long x;

char str[100];

switch (functionId)

{

case IX_CF_CODELET_READ_REG:

x=*IXP425_ EXP_REG (* ((unsigned long *)arg)) ;
if (copy_to_user((char *)arg, (char *)&x, 4))
return -EFAULT;

break;
case IX_CF_CODELET_INIT IDE:

IDE Init(0);

break;

case Byte_ Access:
(int) file->private_data = Byte_Access;
break;

case Word_Access:

Application Note 39

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

(int) file->private_data = Word_Access;

break;

case Read_Identify Sector:
(int) file->private_data = Read Identify Sector;

break;

case Check_Card:
* (unsigned long *)arg=Check_ RDY () ;

break;

case Read_All_Regs:
ReadAllCF_regs () ;
break;
case Read_One_Reg:
ReadOneCF_reg (arg) ;
break;
case Write_One_Reg:
WriteOneCF reg((arg>>8)&0x0ff, arg&0xO0ff) ;

break;

case Show_Exp_ Regs:
x=*IXP425 EXP REG (* ((unsigned long *)arg)) ;
if (copy_to_user((char *)arg, (char *)&x, 4))
return -EFAULT;

break;

case FindMBRandBPB:
checkMBR () ;

break;

case ProcessBPBdata:
ProcessBPB() ;

break;

case ChangeToDir:
if (copy_from user(str, (char *)arg, 100))

return -EFAULT;
if ((str[0]==0) || ((str[0]l=='.")&&(str[1]==0)))

listCurrentDirectory() ;

else 1if((str[0]l=='/')&&(str[1]==0))

40

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

changeToRootDirectory (1) ;

else if((str[0]l=='.")&&(str[l]l=="'.")&&(str([2]==0)
changeToUpperDir (1) ;

else
changeToDir (str, 1);

break;

case ShowDir:
if (copy_from user (str, (char *)arg, 100))

return -EFAULT;

if ((str[01==0) || ((str[0]=='.")&&(str[1]==0)))
listCurrentDirectory () ;

else 1if((str[0]l=='/')&&(str[1]==0)
changeToRootDirectory (0) ;

else if((str[0]l=='.")&&(str[l]l=="'.")&&(str[2]==0)
changeToUpperDir (0) ;

else
changeToDir (str, 0);

break;

case ReadFile:
if (copy from user(str, (char *)arg, 100))
return -EFAULT;
readFileByName (str) ;

break;

default:
printf ("Invalid IOCTL is passed to driver %x \n", functionId);

break;
return IX SUCCESS;

int CompactFlashModule_open (struct inode *inNum, struct file *fp)

{

return IX_SUCCESS;

int CompactFlashModule_close (struct inode *inNum, struct file *fp)

{

Application Note 41

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

A.2

42

return IX SUCCESS;

module_ init (CompactFlashModule_ init module) ;

module_exit (CompactFlashModule_cleanup_module) ;

CompactFlashIDE.c

#include <stdio.h>

#include <string.h>
#include <linux/module.h>

#include <asm/uaccess.h>
#include <asm/arch/irgs.h>

#include <asm/io.h>

#include <linux/types.h>
#include <asm/hardware.h>
#include <linux/delay.h>

#include "ixp425.h"
#include "CompactFlash.h"
#include "CompactFlashIDE.h"

#include "CompactFlashFatlé6.h"

unsigned char Heads; // number of heads as read from CF
unsigned short SecTrack; // sectors petr track as read from CF

unsigned long LastSect=1000000;

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100

unsigned long ixp exp bus_csl,

Control Plane Processor: Using CompactFlash
Source Code

ixp_exp bus_cs2;

void CompactFlashExpBusInit (void)

{

unsigned int *cs;

unsigned int value;

printk ("CompactFlash module

cs = (unsigned int *)IXP425_

value = 0xbfff0043;// 8-bit
*cs = value;

ixp_exp_bus_csl = (unsigned

cs = (unsigned int *)IXP425_

value = 0xbfff0043;// 8-bit
*cs = value;

ixp_exp_bus_cs2 = (unsigned

printk ("CompactFlash module

printk ("CompactFlash module

n "initialize Exp Bus ... \n");

EXP_CS1;

data bus as default

long) ioremap (IXP425 EXP BUS CS1 BASE PHYS, 512);

EXP_CS2;

data bus as default

long) ioremap (IXP425 EXP BUS CS2 BASE PHYS, 512);

" "Exp Bus csl =%x\n", ixp exp bus csl);

" "Exp Bus cs2 =%x\n", ixp exp bus_cs2);

void setExpBusCS1ToléBitDataBus (void)

{

Application Note

unsigned int *cs;

unsigned int value;

cs = (unsigned int *)IXP425 EXP_CS1;

value = *cs;

*cs = value&(~1); // set bit 0 to 0

43

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

void setExpBusCS1To8BitDataBus (void)
{
unsigned int *cs;

unsigned int value;

cs = (unsigned int *)IXP425 EXP_CS1;
value = *cs;

*cs = value|l; // set bit 0 to 1

unsigned short byteSwap (unsigned short data)
{
//convert from little to big endian
unsigned short tmp;
tmp=(data<<8) | (data>>8) ;

return tmp;

void CompactFlashExpBusWriteW (unsigned long ixp_exp bus_cs, unsigned short reg,
unsigned short data)

{

__raw _writew(data, mem pci(ixp exp bus cs + reg));

void CompactFlashExpBusWriteB (unsigned long ixp exp bus cs, unsigned short reg,
unsigned short data)

{

__raw_writeb(data,_mem pci(ixp_exp bus cs + reg));

unsigned short CompactFlashExpBusReadW (unsigned long ixp exp bus_cs, unsigned
short reg)

44 Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

return (_ raw readw(_ mem pci(ixp_exp bus cs + reg)));

unsigned char CompactFlashExpBusReadB (unsigned long ixp exp_bus_cs, unsigned short
reg)

{

return (_ raw readb(_ mem pci(ixp exp bus cs + reg)));

void WriteRegW (unsigned short addr, unsigned short data)
{
if (addr&0x20)
CompactFlashExpBusWriteW (ixp exp bus csl, addr&0x0f, data);
else

CompactFlashExpBusWriteW (ixp exp bus cs2, addr&0x0f, data);

void WriteRegB (unsigned short addr, unsigned char data)
{
if (addr&0x20)
CompactFlashExpBusWriteB (ixp exp bus csl, addr&0x0f, data);
else

CompactFlashExpBusWriteB (ixp exp bus cs2, addr&0x0f, data);

unsigned short ReadRegW (unsigned short addr)
{
unsigned short wval;
if (addr&0x20)
val=CompactFlashExpBusReadW (ixp exp bus csl, addr&0x0f) ;
else
val=CompactFlashExpBusReadW (ixp exp bus cs2, addr&0x0f) ;

return (val) ;

Application Note 45

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

46

unsigned char ReadRegB (unsigned short addr)

{

unsigned char val;

if (addr&0x20)

val=CompactFlashExpBusReadB (ixp_exp bus_csl, addr&0x0f) ;
else
val=CompactFlashExpBusReadB (ixp_exp_ bus_cs2, addr&0x0f) ;
return (val) ;
}
// INT will be cleared
void Waiting RDY (void)
{
unsigned short Status, noReady;
noReady=1;
while (noReady)
{
Status=ReadRegB (CF_STATUS) ;
if ((Status & 0x40) && ((Status & 0x80) == 0)) noReady=0;

// ready bit must be 1 AND Busy bit must be Zero...

unsigned char Check_ RDY (void)
{
unsigned short Status, Ready;
Ready=0;
Status=ReadRegB (CF_STATUS) ;
if ((Status & 0x40) && ((Status & 0x80) == 0))

return Ready;

Ready=1;

INtal.

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

// wait for delay with time out
unsigned char Waiting RDY TO (void)

{

unsigned short Status, noReady;
unsigned short count=0;
noReady=1;

while (noReady)
{
udelay (500) ;
Status=ReadRegB (CF_STATUS) ;
if ((Status & 0x40) && ((Status & 0x80) == 0))
noReady=0;
else
count++;
if (count >= 50000)
{
if ((Status & 0x40) == 0)
return(2) ;
else if ((Status & 0x80))
return(1l) ;
else if (((Status & 0x80)) && ((Status & 0x40) == 0))
return(3) ;
}

// ready bit must be 1 AND Busy bit must be Zero...

return(0) ;

// INT will not be cleared

Application Note 47

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

void Waiting RDY Alt (void)
{
unsigned short Status, noReady;
noReady=1;
while (noReady)
{
Status=ReadRegB (CF_ALTSTATUS) ;

if ((Status & 0x40) && ((Status & 0x80) == 0)) noReady=0;

// identify drive
void ReadIdenfyInformation (void)
{
unsigned short DriveID[256];
unsigned char *ptr;

ptr=DrivelD;

WriteRegB (CF_DRV_HEAD, O0xA0);// identify drive

Waiting RDY() ;

WriteRegB (CF_DEV_CTR, 0x02); // disable Inten

Waiting RDY () ;
ReadIdenfyInformationW (DrivelID) ;

printk ("CompactFlash module :: " "CF signature =0X%x\n",
byteSwap (DriveID[0])) ;

o

printk ("CompactFlash module :: " "Number of Cylinders =%d (0x%x)\n",
byteSwap (DriveID[1]) ,byteSwap (DriveID[1])) ;

Heads=byteSwap (DriveID[3]) ;

printk ("CompactFlash module :: " "Number of Heads =%d (0x%x)\n",

48 Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
Source Code

byteSwap (DriveID[3]),byteSwap (DriveID[3])) ;

SecTrack=byteSwap (DriveID[6]) ;

printk ("CompactFlash module :: " "Number of Sectors per tarck =%d
(0x%x) \n", byteSwap (DriveID[6]),byteSwap (DriveID[6])) ;

printk ("CompactFlash module :: " "Number of sectors per card =%d
(0x%x)\n",
(byteSwap (DriveID[7])<<16) +byteSwap (DriveID[8]), (byteSwap (DriveID[7])<<16) +byteSwa
p(DriveID[8])) ;

printk ("CompactFlash module :: " "Capabilities =0x%x\n",
byteSwap (DriveID[49])) ;

if (! ((byteSwap (DriveID[49]) >> 8) & BIT(1)))

printk ("CompactFlash module :: " "LBA not supported\n") ;
else

printk ("CompactFlash module :: " "LBA supported\n") ;

void ReadAllCF regs ()

{

unsigned char tmp;
tmp=ReadRegB (CF_STATUS) ;

printk ("CompactFlash module :: " "CF_STATUS=%x\n", tmp);

tmp=ReadRegB (CF_ALTSTATUS) ;

printk ("CompactFlash module :: " "CF_ALTSTATUS=%x\n", tmp);

tmp=ReadRegB (CF_DRV_HEAD) ;

printk ("CompactFlash module :: " "CF_DRV_HEAD=%x\n", tmp);

tmp=ReadRegB (CF_CYL H) ;

printk ("CompactFlash module :: " "CF_CYL H=%x\n", tmp);

tmp=ReadRegB (CF_CYL L) ;

Application Note 49

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

printk ("CompactFlash module :: " "CF_CYL L=%x\n", tmp);

tmp=ReadRegB (CF_SECT_NUM) ;

printk ("CompactFlash module :: " "CF_SECT NUM=%x\n", tmp);

tmp=ReadRegB (CF_SECT_CNT) ;

printk ("CompactFlash module :: " "CF_SECT CNT=%x\n", tmp);

tmp=ReadRegB (CF_ERROR) ;

printk ("CompactFlash module :: " "CF_ERROR=%x\n\n", tmp);

void ReadOneCF_reg(unsigned char reg)

{

unsigned char tmp;

switch (reg)
{
case CF_STATUS:
tmp=ReadRegB (CF_STATUS) ;
printk ("CompactFlash module :: " "CF_STATUS=0x%x\n", tmp);

break;

case CF_ALTSTATUS:
tmp=ReadRegB (CF_ALTSTATUS) ;
printk ("CompactFlash module :: " "CF_ALTSTATUS=0x%x\n", tmp);

break;
case CF_DRV_HEAD:
tmp=ReadRegB (CF_DRV_HEAD) ;
printk ("CompactFlash module :: " "CF_DRV_HEAD=0x%x\n", tmp);

break;

case CF_CYL H:

50 Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
Source Code

tmp=ReadRegB (CF_CYL_H) ;
printk ("CompactFlash module :: " "CF_CYL H=0x%x\n", tmp);

break;

case CF_CYL L:
tmp=ReadRegB (CF_CYL_L) ;
printk ("CompactFlash module :: " "CF_CYL L=0x%x\n", tmp);

break;

case CF_SECT_NUM:
tmp=ReadRegB (CF_SECT NUM) ;
printk ("CompactFlash module :: " "CF_SECT NUM=0x%x\n", tmp);

break;

case CF_SECT_CNT:
tmp=ReadRegB (CF_SECT_ CNT) ;
printk ("CompactFlash module :: " "CF_SECT CNT=0x%x\n", tmp);

break;

case CF_ERROR:
tmp=ReadRegB (CF_ERROR) ;
printk ("CompactFlash module :: " "CF_ERROR=0x%x\n\n", tmp);

break;

}

void WriteOneCF reg(unsigned short reg, unsigned char data)

{

switch (reg)

{

case CF_COMMAND:
WriteRegB (CF_COMMAND, data) ;

break;

Application Note 51

Intel® IXP42X Product Line of Network Processors and IXC1100 Control

Plane Processor: Using CompactFlash

Source Code

52

case CF_DEV_CTR :
WriteRegB (CF_DEV_CTR , data);

break;

case CF_DRV_HEAD:
WriteRegB (CF_DRV_HEAD, data);

break;

case CF_CYL H:
WriteRegB (CF_CYL_H, data);

break;

case CF_CYL L:
WriteRegB (CF_CYL_ L, data);

break;

case CF_SECT NUM:
WriteRegB (CF_SECT NUM, data);

break;

case CF_SECT CNT:
WriteRegB (CF_SECT CNT, data);

break;

case CF_FEATURES:
WriteRegB (CF_FEATURES, data);

break;

}

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

void IDE_Init (unsigned char drive)

{

unsigned short tmp, x[1000];

printk ("CompactFlash module :: " "initialize IDE ... \n");

CompactFlashExpBusInit () ;

tmp=Waiting RDY TO() ;
if (!tmp)
printk ("CompactFlash module :: " "CF is ready ... \n");

else

{
tmp=ReadRegB (CF_STATUS) ;

printk ("CompactFlash module :: " "CF is not ready; CF_STATUS=%x\n",
tmp) ;

}

printk ("CompactFlash module :: " "show CF regs ... \n");

ReadAllCF regs () ;
ReadIdenfyInformation() ;

// set to LBA

WriteRegB (CF_DRV_HEAD, O0xEO);

FatleInit () ;

void ReadSectorW (unsigned short *buff, unsigned long LBALocation)

{

Application Note 53

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash

Source Code

54

unsigned short cnt, tmp, *ptr;

LastSect=LBALocation;

WriteRegB (CF_DRV_HEAD, ((LBALocation >> 24) & OxFF) | O0xEO);

// BitsForDH

WriteRegB (CF_CYL H, (LBALocation >> 16) & OxFF); // BitsForCF_CYL H

WriteRegB (CF_CYL L, (LBALocation >> 8) & OxFF); // BitsForCF _CYL L

WriteRegB (CF_SECT NUM, LBALocation & OxFF);// BitsForSect

WriteRegB (CF_SECT CNT, 1);

WriteRegB (CF_COMMAND, 0x20) ;

Waiting RDY Alt();

setExpBusCS1Tolé6BitDataBus () ;
ptr=buff;

for(cnt=0; cnt < 256; cnt++)
{

tmp=ReadRegW (CF_DATA) ;
*ptr++=byteSwap (tmp) ;

}

setExpBusCS1To8BitDataBus () ;

void ReadSectorB (unsigned char *buff,
{

unsigned short cnt;

unsigned char *ptr;

LastSect=LBALocation;

WriteRegB (CF_DRV_HEAD, ((LBALocation >> 24) & OxFF) | O0xEO);

// read sectors

unsigned long LBALocation)

// BitsForDH

WriteRegB (CF_CYL H, (LBALocation >> 16) & OxFF); // BitsForCF_CYL H

WriteRegB (CF_CYL L, (LBALocation >> 8) & OxFF); // BitsForCF _CYL L

WriteRegB (CF_SECT NUM, LBALocation & OxFF);// BitsForSect

WriteRegB (CF_SECT CNT, 1);

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

WriteRegB (CF_COMMAND, 0x20) ; // read sectors

Waiting RDY Alt();

WriteRegB (CF_FEATURES, 0x01); // enable 8 bit transfer

WriteRegB (CF_COMMAND, OxEF) ; // set features
Waiting RDY Alt();

ptr=buff;
for(cnt=0; cnt < 512; cnt++)

*ptr++=ReadRegB (CF_DATA) ;

WriteRegB (CF_FEATURES, 0x81); // disable 8bit transfer

WriteRegB (CF_COMMAND, OxEF) ; // set features

void ReadIdenfyInformationW (unsigned short *buff)

{

unsigned short cnt, tmp, *ptr;

printk ("CompactFlash module :: " "read the identify block ... \n");

WriteRegB (CF_COMMAND, OxEC) ; // identify drive
Waiting RDY Alt();

ptr=buff;
setExpBusCS1Tolé6BitDataBus () ;

for(cnt=0; cnt < 256; cnt++)

{
tmp=ReadRegW (CF_DATA) ;

*ptr++=byteSwap (tmp) ;

Application Note 55

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash

Source Code

56

ReadRegB (CF_STATUS) ;

setExpBusCS1To8BitDataBus () ;

void ReadIdenfyInformationB (unsigned char *buff)

{

unsigned short cnt;

unsigned char *ptr;

printk ("CompactFlash module

WriteRegB (CF_COMMAND, O0xEC);

Waiting RDY Alt();

WriteRegB (CF_FEATURES, 0x01);

WriteRegB (CF_COMMAND, OxEF) ;

Waiting RDY Alt();

ptr=buff;

for(cnt=0; cnt < 512; cnt++)

*ptr++=ReadRegB (CF_DATA) ;

WriteRegB (CF_FEATURES, 0x81);

WriteRegB (CF_COMMAND, OxEF) ;

" "read the identify block ... \n");

// identify drive

// enable 8 bit transfer

// set features

// disable 8bit transfer

// set features

void ReadSectorMod (unsigned char *buff, unsigned long LBALocation)

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

unsigned short cnt, *ptr;

LastSect=0;

WriteRegB (CF_DRV_HEAD, ((LBALocation >> 24) & OxFF) \ 0xAO0) ; // BitsForDH
WriteRegB(CF_CYL H, (LBALocation >> 16) & OxFF); // BitsForCF_CYL H
WriteRegB(CF_CYL L, (LBALocation >> 8) & OxFF); // BitsForCF_CYL L
WriteRegB (CF_SECT NUM, LBALocation & OxFF);// BitsForSect

WriteRegB (CF_SECT CNT, 1);

WriteRegB (CF_COMMAND, 0x20) ; // read sectors
Waiting RDY Alt();

setExpBusCS1Tolé6BitDataBus () ;
ptr=(unsigned short *)buff;
for(cnt=0; cnt < 256; cnt++)
*ptr++=ReadRegW (CF_DATA) ;

setExpBusCS1To8BitDataBus () ;

void Waiting DRQ Alt (void)
{
unsigned short Status, noReady;
noReady=1;
while (noReady)
{
Status=ReadRegB (CF_ALTSTATUS) ;

if ((Status & 0x08) && ((Status & 0x80)

0)) noReady=0;

void WriteSectorW(unsigned short *buff, unsigned long LBALocation)

Application Note 57

Intel® IXP42X Product Line of Network Processors and IXC1100 Control

Plane Processor: Using CompactFlash
Source Code

unsigned short cnt, *ptr, tmp;

LastSect=LBALocation;

printk ("CompactFlash module :: "

WriteRegB (CF_DRV_HEAD,

WriteRegB (CF_CYL_H,

WriteRegB (CF_CYL_L,

((LBALocation >> 24)
(LBALocation >> 16)

(LBALocation >> 8)

"writing to a sector

& OxFF) | OxEO);

WriteRegB (CF_SECT NUM, LBALocation & OxFF);// BitsForSect

WriteRegB (CF_SECT CNT, 1);

WriteRegB (CF_COMMAND, 0x30);

Waiting DRQ Alt () ;

setExpBusCS1Tolé6BitDataBus () ;
ptr=buff;
cnt++)

for (cnt=0;

{

tmp=byteSwap (*ptr++) ;

cnt < 256;

WriteRegW (CF_DATA, tmp) ;

}

ReadRegB (CF_STATUS) ;

setExpBusCS1To8BitDataBus () ;

Waiting RDY Alt();

printk ("CompactFlash module :: "

void WriteSectorB(unsigned char *buff,

{

58

// write sectors

\n") ;

// BitsForDH

& OxFF); // BitsForCF CYL H

& OxFF); // BitsForCF CYL L

"done with writing to a sector\n");

unsigned long LBALocation)

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Source Code

unsigned short cnt, *ptr;

LastSect=LBALocation;

printk ("CompactFlash module

WriteRegB (CF_DRV_HEAD,

WriteRegB (CF_CYL_H,

WriteRegB (CF_CYL_L,

((LBALocation >> 24)
(LBALocation >> 16)

(LBALocation >> 8)

\n") ;

"writing to a sector
& OxXFF) | OxEO0);
& OXFF); // BitsForCF_CYL_H

& OxFF); // BitsForCF CYL L

WriteRegB (CF_SECT_NUM, LBALocation & OxFF);// BitsForSect

WriteRegB (CF_SECT CNT, 1);

WriteRegB (CF_COMMAND, 0x30);

Waiting DRQ Alt();

setExpBusCS1Tolé6BitDataBus () ;

ptr=(unsigned short *)buff;
for(cnt=0; cnt < 256; cnt++)

WriteRegW (CF_DATA, *ptr++);

setExpBusCS1To8BitDataBus () ;
Waiting RDY Alt();

printk ("CompactFlash module

A.3 CompactFlash.h

#ifndef COMPACTFLASH H

#define COMPACTFLASH H

/* Ioctl values for Linux */

#define IX CF CODELET READ REG

Application Note

// write sectors

"done with writing to a sector\n");

800001

// BitsForDH

59

Intel® IXP42X Product Line of Network Processors and IXC1100 Control

Plane Processor: Using CompactFlash

Source Code

60

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

IX CF_CODELET INIT IDE

IX CF_CODELET TOGGLE GPIO

IX CF_CODELET DSIPLAY HEX

IXP425 EXP CSO OFFSET
IXP425 EXP CS1 OFFSET
IXP425 EXP CS2 OFFSET
IXP425 EXP CS3 OFFSET
IXP425 EXP CS4 OFFSET
IXP425 EXP CS5 OFFSET
IXP425 EXP CS6 OFFSET
IXP425 EXP CS7 OFFSET
IXP425 EXP CFGO OFFSET
IXP425 EXP CFGl OFFSET
IXP425 EXP CFG2 OFFSET

IXP425_ EXP_CFG3_OFFSET

Check_Card 1
Read_All_Regs 2
Read_One_Reg 3
Write One_Reg 4

Show_Exp Regs 5

Read_Identify Sector

Read_From One_Sector

Write To_One_Sector

Show_One_Byte 9
Show_Next_ 10 _Bytes 10
Show_One_Word 11

Show_Next_ 10 _Words 12

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1cC

0x20

0x24

0x28

0x2C

6

7

8

Application Note

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#endif

/* _ COMPACTFLASH H _ */

A4 CompactFlashIDE.h

#ifndef COMPACTFLASHIDE H

#define COMPACTFLASHIDE H

// _cs1
#define

#define

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100

FindMBRandBPB

ProcessBPBdata

DSIPLAY HEX

TOGGLE_GPIO

ChangeToDir

ShowDir

ReadFile

GoTestMenu

Byte Access

Word_Access

Exit_ Now

~CsS0 0 A2 Al A0

CF_DATA

CF_ERROR

13

14

15

16

18//
19//
20//

21//

51

52

100

// table 35 in CF Spe 2.0

cd dir name,

//go to test menu

Control Plane Processor: Using CompactFlash

Source Code

61

Intel® IXP42X Product Line of Network Processors and IXC1100 Control

Plane Processor: Using CompactFlash

Source Code

62

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

void CompactFlashExpBusInit (void) ;
void setExpBusCS1ToléBitDataBus (void) ;

void setExpBusCS1To8BitDataBus (void) ;

CF_SECT CNT
CF_SECT NUM
CF CYL L
CF_CYL H
CF_DRV_HEAD

CF_STATUS

CF_FEATURES

CF_COMMAND

CF_ALTSTATUS

CF_DEV_CTR

LED RF

0x22

0x23

0x24

0x25

0x26

0x27

0x21

0x27

0x1l6

0x16

0x10// LED in RF board

void CompactFlashExpBusWriteW (unsigned long ixp_exp bus_cs, unsigned short reg,

unsigned short data);

void CompactFlashExpBusWriteB (unsigned long ixp exp bus cs, unsigned short reg,

unsigned short data);

unsigned short CompactFlashExpBusReadW (unsigned long ixp exp bus_cs, unsigned
short reg) ;

unsigned char CompactFlashExpBusReadB (unsigned long ixp exp bus cs, unsigned short

reg) ;

void WriteRegW (unsigned short addr,
void WriteRegB (unsigned short addr,
unsigned

unsigned

unsigned

unsigned

short ReadRegW (unsigned short addr) ;

char ReadRegB (unsigned short addr) ;

short getLEW (unsigned char *addr) ;

char Check RDY (void) ;

unsigned short data);

unsigned char

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
Source Code

void Waiting RDY (void) ;
unsigned char Waiting RDY TO(void) ;
void Waiting RDY_ Alt (void) ;

void Waiting DRQ Alt (void) ;

void ReadAllCF_regs() ;
void ReadOneCF_reg(unsigned char reg) ;

void WriteOneCF reg(unsigned short addr, unsigned char data);

void ReadIdenfyInformation() ;
void ReadIdenfyInformationW(unsigned short *buff);

void ReadIdenfyInformationB (unsigned char *buff) ;
void IDE_Init (unsigned char drive);

void ReadSectorW (unsigned short *buff, unsigned long LBALocation) ;

void ReadSectorB(unsigned char *buff, unsigned long LBALocation) ;

void ReadSectorMod (unsigned char *buff, unsigned long LBALocation) ;
void WriteSectorW(unsigned short *buff, unsigned long LBALocation) ;

void WriteSectorB (unsigned char *buff, unsigned long LBALocation) ;

#endif

A5 component.mk

ifeq ($(IX_TARGET 0S),linux)
codelets cfEng OBJ := CompactFlashIDE.o \
CompactFlashFatl6.o \

CompactFlashModuleSymbols.o

codelets cfEng CFLAGS := -DOS_ EMBLINUX

else

Application Note 63

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

codelets cfEng OBJ := CompactFlashIDE.o \

CompactFlashFatl6.o \

CompactFlashModuleSymbols.o

codelets_cfEng CFLAGS := -DOS_VXWORK

endif

codelets_mabbDemo CFLAGS :

codelets cfEng test DEPS := ethAcc ethDB hssAcc npeDl npeMh gmgr osServices ossl

A.6 CompactFlashFatl6.c

#include

#include

#include

#include
#include

#include

#include
#include
#include

#include

#include

#include

#include

<stdio.h>

<string.h>

<linux/module.h>

<asm/uaccess.h>
<asm/arch/irgs.h>

<asm/io.h>

<linux/types.h>
<asm/hardware.h>
<linux/delay.h>

"ixp425.h"

"CompactFlash.h"

"CompactFlashIDE.h"

"CompactFlashFatl6.h"

extern unsigned char Heads; // number of heads as read

64

from CF

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

extern unsigned short SecTrack;

extern unsigned long LastSect;

#define _

#define _

unsigned

unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

Application Note

WORD

BYTE

long

char

short
short
short
long
char
char
short
short

short

long
long
long
long
long
long
long
long
long
long
long

long

BPB LBA;

Sector Buff[512];

BPB_RootEntCnt;
BPB_BytsPerSec;
BPB_FATSz16;
BPB_FATSz32;
BPB_NumFATSs;
BPB_SecPerClus;
BPB_RsvdSecCnt;
BPB_TotSecl6;

BPB_TotSec32;

RootDirSectors;
FATtype;

FATSz;

TotSec;

TotSec;

DataSec;
CountofClusters;
FirstDataSecNum;
FirstRootDirSecNum;
FirstRootDirClus;
FirstDataClus;

FATstart;

// sectors petr track as read from CF

Source Code

65

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u

Source Code

Plane Processor: Using CompactFlash In o

unsigned long currentDirfstclus;
char fileName[262];
unsigned short longNameFlag;
unsigned short Get8Bits (unsigned short address)
{

return (unsigned short) (Sector Buff [address]);
}
unsigned short GetléBits (unsigned short address)
{

return (unsigned short) ((Sector Buff [address +1]<<8) |
Sector Buff [address]);
}
unsigned long Get32Bits (unsigned short address)
{

return (unsigned long) ((Sector Buff [address +3]<<24) | (Sector Buff [address

66

+2]<<16) | (Sector Buff [address +1]<<8) | Sector Buff [address]);

}

void DisplayBufChar (int N)
{
int i;

for(i=0; i<N; i++)

printk ("™ " "gc",Get8Bits (1)) ;

//Extract Bios partition block info

void ProcessBPB (void)

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
Source Code

printk ("\nCompactFlash module :: " "processing BPB ... \n");

printk ("\nCompactFlash module :: " "checking FAT type ... \n");
BPB_RootEntCnt=Getl6Bits (17) ;

BPB_BytsPerSec=Getl6Bits (11) ;

BPB_FATSz16=Getl6Bits (22) ;

BPB_FATSz32=Get32Bits (36) ;

BPB_NumFATs=Get8Bits (16) ;

BPB_RsvdSecCnt=Getl6Bits (14) ;

BPB_TotSecl6=Getl1l6Bits (19);

BPB_TotSec32=Getl6Bits(32);

BPB_SecPerClus=Get8Bits (13) ;
RootDirSectors=((BPB_RootEntCnt*32)+ (BPB_BytsPerSec-1))/BPB_BytsPerSec;

if (BPB_FATSz16 !=0)
FATSz = BPB_FATSz16;
else

FATSz = BPB FATSz32;

if (BPB_TotSeclé !=0)
TotSec = BPB TotSecl6;
else

TotSec = BPB TotSec32;

DataSec =TotSec - (BPB_RsvdSecCnt + (BPB_NumFATs*FATSz) + RootDirSectors);

CountofClusters = DataSec / BPB_SecPerClus;

printk ("\nCompactFlash module :: " "CountofClusters=%d ... \n",
CountofClusters) ;

printk ("\nCompactFlash module :: " "RootDirSectors=%d ... \n",
RootDirSectors) ;

printk ("\nCompactFlash module :: " "BPB RsvdSecCnt=%d ... \n",

BPB_RsvdSecCnt) ;

Application Note 67

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

printk ("\nCompactFlash module :: " "BPB_RootEntCnt=%d ... \n",
BPB_RootEntCnt) ;

printk ("\nCompactFlash module :: " "BPB BytsPerSec=%d ... \n",
BPB_BytsPerSec) ;

printk ("\nCompactFlash module :: " "BPB_FATSz16=%d ... \n", BPB FATSz16);
printk ("\nCompactFlash module :: " "BPB_FATSz32=%d ... \n", BPB FATSz32);
printk ("\nCompactFlash module :: " "BPB_NumFATs=%d ... \n", BPB NumFATs) ;
printk ("\nCompactFlash module :: " "BPB TotSecl6=%d ... \n", BPB TotSeclé6) ;
printk ("\nCompactFlash module :: " "BPB TotSec32=%d ... \n", BPB TotSec32);
printk ("\nCompactFlash module :: " "BPB_SecPerClus=%d ... \n",

BPB_SecPerClus) ;

printk ("\nCompactFlash module :: " "FATSz=%d ... \n", FATSz);

printk ("\nCompactFlash module :: " "TotSec=%d ... \n", TotSec);

if (CountofClusters < 4085)

{

FATtype=12;

printk ("CompactFlash module :: " "it is FAT12\n");

}

else if (CountofClusters < 65525)

{

FATtype=16;
printk ("CompactFlash module :: " "it is FAT16\n");
}
else
{
FATtype=32;
printk ("CompactFlash module :: " "it is FAT32\n");

FirstDataSecNum = BPB_RsvdSecCnt + (BPB_NumFATs*FATSz) + RootDirSectors;
FirstRootDirSecNum= BPB RsvdSecCnt + (BPB_NumFATs*FATSz) ;

FATstart = BPB_LBA+BPB_RsvdSecCnt ;

68 Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100

In Control Plane Processor: Using CompactFlash
® Source Code
printk ("\nCompactFlash module :: " "FirstDataSec=%d ... \n",
FirstDataSecNum) ;
printk ("\nCompactFlash module :: " "FirstRootDirSecNum=%d ... \n",

FirstRootDirSecNum) ;

printk ("\nCompactFlash module :: " "FATstart=%d ... \n", FATstart);

if (FATtype==32)
{
FirstRootDirClus = Get32Bits (44) ;

FirstDataClus=FATstart + (BPB_NumFATs*FATSz) ;

}

unsigned long showFileAttr (unsigned long ent)

{

unsigned long tmp, dirFlag;

tmp=Getl16Bits (32*ent+24); /* date */

printk("" "%02d/%02d/%4d ", (tmp>>5) &0x0f, tmp&0x1f, ((tmp>>9)&0x7f)+1980) ;

tmp=Getl1l6Bits (32*ent+22); /* time */
if (((tmp>>11) &0x1£f) >12)

printk("" "%$02d:%02d:%02d PM", ((tmp>>11) &0x1f) -12, (tmp>>5) &0x3f,
(tmp&Ox1f) *2) ;

else

printk ("" "%$02d:%02d:%02d AM", (tmp>>11) &0x1f, (tmp>>5) &0x3f,
(tmp&0Ox1£f) *2) ;

dirFlag=isItDir (ent) ;
if (dirFlag)

{

printk ("™ " <DIR> ");// it is a directory

Application Note 69

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

else

tmp=Get32Bits (32*ent+28) ;

printk("" "%18d ", tmp) ; // file size

return dirFlag;

void strcpyW(char *dst, char *src)

{

short *dstPtr, *srcPtr;

int i;

dstPtr=(short *)dst;

srcPtr=(short *)src;

i=0;
while (srcPtr[i] I=0)
dstPtr[i]l=srcPtr[i++];

dstPtr[i]l=0;// the null

int strcmpW(char *dst, char *src)

short *dstPtr, *srcPtr;

int i, §;

dstPtr=(short *)dst;

srcPtr=(short *)src;
i=0;

j=0;

while (srcPtr[i] I=0)

70

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100

In Control Plane Processor: Using CompactFlash
® Source Code
{
if (dstPtr[i] !=srcPtr[i++])
{
j=1;
break;
1
1
return j;

void printfW(char *src)
{
short *srcPtr;

int 1i;

srcPtr=(short *)src;
i=0;
while (srcPtr[i] I=0)

{

printk("" "%c",src[2*i]);
printk("" "%c",src[2*i+1]);
i++;

void getLongFileName (unsigned long ent)

{
char tmp[262];
memcpy (tmp, Sector Buff+32*ent+1,10);
memcpy (tmp+10, Sector Buff+32*ent+14,12);

memcpy (tmp+22, Sector Buff+32*ent+28,4);

strcpyW (tmp+26, fileName) ;

Application Note 71

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

strcpyW (fileName, tmp) ;

void getShortFileName (unsigned long ent)

{

unsigned long tmp, i, j, dirFlag;

dirFlag=isItDir (ent) ;

for(i=0, j=0; i<11l; i++)
{
tmp=Get8Bits (32*ent+1) ;
if (tmp!=0x20)
fileName [j++]=tmp;
if ((1i==7) &&(dirFlag==0))
fileName [j++]="'.";
}

fileName [j]=0;

unsigned long getFileFstClus (unsigned long ent)

{

unsigned long tmp;
tmp=Getl6Bits (32*ent+20) ;
tmp= (tmp<<16) | (Get16Bits (32*ent+26)) ;

return tmp;

unsigned long getClusFstSet (unsigned long clus)

{

unsigned long tmp;

72

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

tmp=(clus-2) *BPB_SecPerClus + FirstDataSecNum;

return tmp;

unsigned long getNextFATentry (unsigned long clus)

{

unsigned long FAToffset, thisFATsecNum, thisFATentOffset, nextClus;

if (FATtype==16)
FAToffset= clus*2;
else if (FATtype==32)

FAToffset= clus*4;

thisFATsecNum=BPB_RsvdSecht+FAToffset/BPB_BytsPerSec;

thisFATentOffset=FAToffset%BPB_BytsPerSec;

ReadSectorW((unsigned short *)Sector Buff, BPB_LBA+thisFATsecNum) ;

if (FATtype==16)
nextClus=Getl1l6Bits (thisFATentOffset) ;
else if (FATtype==32)

nextClus=Get32Bits (thisFATentOffset) &Ox0f£f£fffff;

return nextClus;

}

unsigned long isEndOfclusterChain (unsigned long clus)

{

if (FATtype==16)

{
if (clus>=0x0£f£f£8)

return (1) ;

Application Note 73

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

else if (FATtype==32)

{

1f (clus>=0x0fff£f£f£fsg)

return (1) ;

}

return (0);

unsigned long getFileSize (unsigned long ent)

{

unsigned long tmp;
tmp=Get32Bits (32*ent+28) ;

return tmp;

unsigned long isItDir (unsigned long ent)

{

unsigned long dirFlag;
dirFlag=Get8Bits (32*ent+11) &0x10;

return dirFlag;

void readFile (unsigned long ent)

{

unsigned long fileSize, clus, firstSet, sec, bytCnt;
1f ((int)ent<0)

{

printk("" '"can not find the file\n");

return;

clus=getFileFstClus (ent) ;

74

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash

if (clus==0)

printk("" "the file is empty\n");

return;

fileSize=getFileSize (ent) ;
bytCnt=0;
do

{

firstSet=getClusFstSet (clus) ;

for (sec=0; sec<BPB_SecPerClus; sec++)

{

ReadSectorW((unsigned short *)Sector_ Buff, BPB_LBA+firstSet+sec);

bytCnt+=512;
if (bytCnt<=fileSize)
DisplayBufChar (512) ;

else

DisplayBufChar (512- (bytCnt-fileSize)) ;

if (bytCnt>=fileSize)
break;

}
if (bytCnt>=fileSize)

break;
clus=getNextFATentry (clus) ;

}while(!isEndOfclusterChain(clus));

void changeToDirectory (unsigned long ent,

{

unsigned long clus, firstSet, sec;

Application Note

unsigned long changeFlag)

Source Code

75

Intel® IXP42X Product Line of Network Processors and IXC1100 Control

Plane Processor: Using CompactFlash

Source Code

76

short *fileNamePtr;

fileNamePtr= (short *)fileName;
longNameFlag=0;

fileNamePtr[0]=0;

if((int) ent<0)

{

printf ("can not found the dir\n");

return;

clus=getFileFstClus (ent) ;
if (changeFlag)

currentDirfstclus=clus;

if (clus==0)

ChangeToRootDirectoryFAT16 (changeFlag) ;

return;

firstSet=getClusFstSet (clus) ;

for(sec=0; sec<BPB_SecPerClus; sec++)

{

INtal.

ReadSectorW((unsigned short *)Sector Buff, BPB_LBA+firstSet+sec);

listFileEntryInOneSector (fileNamePtr) ;

}

clus=getNextFATentry (clus) ;

}while(!isEndOfclusterChain(clus));

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

void listCurrentDirectory ()
unsigned long clus, firstSet, sec;

short *fileNamePtr;

fileNamePtr= (short *)fileName;
longNameFlag=0;

fileNamePtr[0]=0;

clus=currentDirfstclus;

if (clus==0)

{
// the parent is the root dir
ChangeToRootDirectoryFAT16 (0) ;

return;

do

firstSet=getClusFstSet (clus) ;

for (sec=0; sec<BPB_SecPerClus; sec++)

{
ReadSectorW((unsigned short *)Sector_ Buff, BPB_LBA+firstSet+sec);
listFileEntryInOneSector (fileNamePtr) ;

}

clus=getNextFATentry (clus) ;

}while(!isEndOfclusterChain(clus));

unsigned long searchFileEntry (short *fileNamePtr, unsigned long *index, unsigned
long fileIndex)

Application Note 77

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

unsigned long ent, tmp;
for (ent=0; ent<1l6; ent++)
{
tmp=Get8Bits (32*ent+0) ;
1f (tmp==0x00)
break; // no more entry
else if (tmp==0x05)
continue; // this entry is free for Japanese
else if (tmp==0xe5)
continue; // this entry is free
else
{
if ((Get8Bits (32*ent+11) &0x0f)==0x0f) // one entry in a long name set
{
if (((*index)+1) ==fileIndex)
{ longNameFlag=1;

getLongFileName (ent) ;

else

(*index) ++;
if ((*index)==fileIndex)
{
if (longNameFlag==1)
{
// this is a long name
showFileAttr (ent) ;
printfw(fileName) ;

printk(“ n "\Il") ;

else

78 Application Note

int searchFileEntryByName (short *fileNamePtr,

{

Application Note

}

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

// this is a short name
showFileAttr (ent) ;

getShortFileName (ent) ;

Source Code

printk("" "%s\n", fileName) ;

break;

return ent;

unsigned long ent, tmp, flag;

flag=0;

for(ent=0; ent<16; ent++)

{

tmp=Get8Bits (32*ent+0) ;
if (tmp==0x00)
break; // no more entry

else if (tmp==0x05)

char *str)

continue; // this entry is free for Japanese

else if (tmp==0xe5)
continue; // this entry is free
else

{

if ((Get8Bits (32*ent+11) &0x0f)==0x0f)

{

longNameFlag=1;

getLongFileName (ent) ;

// one entry in a long name set

79

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In
Source Code

else
if (longNameFlag==1)
// this is a long name

if (strcmpW (str, fileName)==0)

{
flag=1;
showFileAttr (ent) ;
printfw(fileName) ;
printk("" "\n");
break;

}

longNameFlag=0;

fileNamePtr[0]=0;
else

// this is a short name
getShortFileName (ent) ;
if (strcmp (str, fileName)==0)
{
flag=1;
showFileAttr (ent) ;
printk("" "%s\n", fileName) ;

break;

80 Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Source Code

if (flag==1)
return ent;
else

return (-1);

unsigned long getRootFileEntFAT16 (unsigned long fileIndex) // return the entry in
the directory

{

unsigned long sec, ent, index;

short *fileNamePtr;

printk ("\nCompactFlash module ::" "file information for fileIndex= %d\n",
fileIndex) ;
index=-1;

fileNamePtr= (short *)fileName;
longNameFlag=0;
fileNamePtr[0]=0;

for(sec=0; sec<RootDirSectors; sec++)

{

ReadSectorW((unsigned short *)Sector Buff, BPB LBA+FirstRootDirSecNum+sec) ;
ent=searchFileEntry (fileNamePtr, &index, fileIndex) ;
if (index==fileIndex)

break;

}

return (ent) ;

unsigned long getRootFileEntByFileNameFAT16 (char *str) // return the entry in the
directory

{

unsigned long sec, ent;

Application Note 81

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

short *fileNamePtr;

ent=-1;
fileNamePtr= (short *)fileName;
longNameFlag=0;
fileNamePtr[0]=0;
for (sec=0; sec<RootDirSectors; sec++)
{
ReadSectorW((unsigned short *)Sector Buff, BPB LBA+FirstRootDirSecNum+sec) ;
ent=searchFileEntryByName (fileNamePtr, str);
if ((int)ent>=0)
break;

}

return (ent) ;

unsigned long getFileEntFAT16 (unsigned long fileIndex)

{

unsigned long clus, firstSet, sec, ent, index;

short *fileNamePtr;

printk ("\nCompactFlash module :: " "file information for fileIndex= %d\n",
fileIndex) ;

index=-1;

ent=-1;
fileNamePtr= (short *)fileName;
longNameFlag=0;

fileNamePtr[0]=0;

clus=currentDirfstclus;

if (clus==0)

82 Application Note

do

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Source Code

ent=getRootFileEntFAT16 (fileIndex) ;

return (ent) ;

firstSet=getClusFstSet (clus) ;

for(sec=0;

{

sec<BPB_SecPerClus; sec++)

ReadSectorW((unsigned short *)Sector_ Buff, BPB_LBA+firstSet+sec);

ent=searchFileEntry (fileNamePtr, &index, fileIndex) ;

if (index==fileIndex)

break;

}

if (index==fileIndex)

break;

clus=getNextFATentry (clus) ;

}while(!isEndOfclusterChain(clus));

return (ent) ;

unsigned long getFileEntByFileNameFAT16 (char *str)

{

unsigned long clus, firstSet, sec, ent;

short *fileNamePtr;

ent=-1;

fileNamePtr= (short *)fileName;

longNameFlag=0;

Application Note

83

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In
Source Code

fileNamePtr[0]=0;

clus=currentDirfstclus;
if (clus==0)
{
ent=getRootFileEntByFileNameFAT16 (str) ;

return (ent) ;

firstSet=getClusFstSet (clus) ;

for(sec=0; sec<BPB_SecPerClus; sec++)

{
ReadSectorW((unsigned short *)Sector Buff, BPB_LBA+firstSet+sec);
ent=searchFileEntryByName (fileNamePtr, str);
if ((int)ent>=0)

break;

}
if ((int) ent>=0)

break;
clus=getNextFATentry (clus) ;

}while(!isEndOfclusterChain(clus));

return (ent) ;

void listFileEntryInOneSector (short *fileNamePtr)
{

unsigned long ent, tmp;

for (ent=0; ent<16; ent++)

84 Application Note

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Source Code

tmp=Get8Bits (32*ent+0) ;
if (tmp==0x00)
break; // no more entry
else if (tmp==0x05)
continue; // this entry is free for Japanese
else if (tmp==0xe5)
continue; // this entry is free
else

{
if ((Get8Bits(32*ent+11) &0x0f)==0x0f) // one entry in a long name set
{
longNameFlag=1;

getLongFileName (ent) ;

else

if (longNameFlag==1)

{
// this is a long name
showFileAttr (ent) ;
printfW(fileName) ;
printk("" "\n");
longNameFlag=0;

fileNamePtr[0]=0;

else

// this is a short name

showFileAttr (ent) ;

getShortFileName (ent) ;

printk("" "%s\n", fileName) ;
//printk ("" "sec=%d,ent=%d\n",sec,ent) ;

85

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

void ChangeToRootDirectoryFAT16 (unsigned long changeFlag)

{

unsigned long sec;

short *fileNamePtr;
printk ("\nCompactFlash module :: " "List Root Directory\n") ;

fileNamePtr= (short *)fileName;
longNameFlag=0;
fileNamePtr[0]=0;
for (sec=0; sec<RootDirSectors; sec++)
{
ReadSectorW ((unsigned short *)Sector Buff, BPB LBA+FirstRootDirSecNum+sec) ;

listFileEntryInOneSector (fileNamePtr) ;

if (changeFlag)

currentDirfstclus=0;

void changeToRootDirectory (unsigned long changeFlag)

{
if (FATtype==16)

ChangeToRootDirectoryFAT16 (changeFlag) ;

86 Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

unsigned long getRootFileEnt (unsigned long filelIndex)

{
if (FATtype==16)

return (getRootFileEntFAT16 (fileIndex)) ;

unsigned long getFileEnt (unsigned long fileIndex)

{
if (FATtype==16)

return (getFileEntFAT16 (filelIndex)) ;

unsigned long getFileEntByName (char *str)

{
if (FATtype==16)

return (getFileEntByFileNameFAT16 (str)) ;

void checkMBR()

{

unsigned long tmp;

Source Code

printk ("\nCompactFlash module :: " "checking if there is a master boot

record ... \n");

ReadSectorW((unsigned short *)Sector Buff, 0);
if (Get8Bits (0)==0xeb)

{

printf ("no MBR\n") ;

BPB_LBA=0;

}

else if (Get8Bits(0)==0xe9)

{

printf ("no MBR\n") ;

BPB_LBA=0;

Application Note

87

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

else

{

printf ("processing MBR\n") ;
tmp=Get8Bits (0x1lc2) ;

if (tmp==0x01)

FATtype=12;
printk ("CompactFlash module :: " "it is FAT12\n");
}
else if (tmp == 0x04)
{
FATtype=16;
printk ("CompactFlash module :: " "it is FAT16 (smaller than 32MB)\n");
}
else if ((tmp == 0x06) || (tmp == 0xOe))
{
FATtype=16;
printk ("CompactFlash module :: " "it is FAT16 (larger than 32MB)\n");
}
else if ((tmp == 0x0b) || (tmp == 0x0c))
{
FATtype=32;
printk ("CompactFlash module :: " "it is FAT32\n");

BPB_LBA=Get32Bits (0x1C6) ;

Waiting RDY() ;

ReadSectorW((unsigned short *)Sector Buff, BPB_LBA) ; // read bootsector of

first partition

}

printk ("CompactFlash module :: " "BPB_LBA=%d\n",BPB_LBA) ;

88

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Source Code

void entryInfo(unsigned long ent)
{
printk ("CompactFlash module :: " "Clus=%d\n",getFileFstClus (ent)) ;

printk ("CompactFlash module :: "
"SecNum=%d\n",getClusFstSet (getFileFstClus (ent))) ;

printk ("CompactFlash module :: " "FileSize=%d\n",getFileSize (ent)) ;

void FatléInit (void)

{

unsigned long ent, clus, set;

checkMBR () ;
ProcessBPB () ;// extract info from Bios Parameter Block

changeToRootDirectory (0) ;

// testing

getRootFileEnt (1) ;
getRootFileEnt (2) ;
getRootFileEnt (4) ;

getRootFileEnt (5) ;

ent=getRootFileEnt (2) ;
clus=getFileFstClus (ent) ;
set=getClusFstSet (clus) ;

printk ("CompactFlash module :: " "file ent=%d, 1st clus=%d, 1lst data
set=%d\n", ent,clus,set);

while (!isEndOfclusterChain(clus))
{
clus=getNextFATentry (clus) ;

printk ("CompactFlash module :: " "next clus=%d\n",clus) ;

}

ent=getRootFileEnt (0) ;

if (isItDir (ent))

Application Note 89

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

changeToDirectory (ent, 0) ;
else

readFile (ent) ;

listCurrentDirectory () ;
ent=getFileEnt (1) ;

if (isItDir (ent))
changeToDirectory (ent, 0) ;
else

readFile (ent) ;

void changeToUpperDir (unsigned long changeFlag)

{

unsigned long ent;

if (currentDirfstclus==0)
listCurrentDirectory () ;
else
{
listCurrentDirectory () ;
ent=getFileEnt (1) ;
if (isItDir (ent))

changeToDirectory (ent, changeFlag) ;

void changeToDir (char *str, unsigned long changeFlag)

{

unsigned long ent;

90

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Source Code

listCurrentDirectory() ;

ent=getFileEntByName (str) ;
if ((int)ent<0)
{
printf ("can not found the dir\n");

return;

if (isItDir (ent))

changeToDirectory (ent, changeFlag) ;

void readFileByName (char *str)

{

unsigned long ent;

ent=getFileEntByName (str) ;

if ((int)ent<0)

{
printf ("can not found the file\n");
return;

}

if (!isItDir(ent))

readFile (ent) ;

A.7 CompactFlashFat16.h

#ifndef COMPACTFLASHFAT16 H

#define COMPACTFlashFAT16 H

void strcpyW(char *dst, char *src);

void printfW(char *src);

Application Note

91

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

A.8

92

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

long
long
long
long
long
long

long

isItDir (unsigned long ent) ;

getFileEnt (unsigned long filelIndex) ;
getFileSize (unsigned long ent) ;
isEndOfclusterChain (unsigned long clus) ;
getNextFATentry (unsigned long clus) ;
getFileFstClus (unsigned long ent) ;

getClusFstSet (unsigned long clus);

void ListRootDirectory () ;

void listFileEntryInOneSector (short *fileNamePtr) ;

void ChangeToRootDirectoryFAT16 (unsigned long changeFlag) ;

#endif

CompactFlashApp.c

#include

#include
#include
#include
#include
#include
#include
#include

#include

#include

#include

#include

<pthread.h>

<string.h>

<unistd.h>

<sched.h>

<fcntl.h>

<errno.h>

<sys/uio.h>

<sys/sendfile.h>

<sys/stat.h>

<stdio.h>

"CompactFlash.h"

"CompactFlashIDE.h"

INtal.

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

#define IX CF CODELET_ STRLEN 50

void testDriver (void) ;
void TestMenu (void) ;
void TestFileSystemMenu (void) ;

int CompactFlashGetNum(char *str) ;

static int inMsgQue, CFdriver;

int main(void)

{

testDriver () ;

exit (0) ;

// little endian to big endian

unsigned short byteSwap (unsigned char *addr)

{
//convert from little to big endian
unsigned short tmp;
tmp=(addr [1] <<8) |addr[0] ;

return tmp;

void testDriver (void)

int rc;
int passedArg;

int CntCd;

Application Note 93

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

94

int

int i, N;

unsigned char data[512];

/* open the driver */

CFdriver = open("/dev/CompactFlashModule",O RDWR) ;

if (ICFdriver)

{

INtal.

printf ("Open failed. Ensure module CompactFlashModule is inserted "

"and /dev/CompactFlashModule exists\nIf necessary, create "

"with: mknod /dev/CompactFlashModule c 253 0\n");

exit (0) ;

// initialize IDE

rc = ioctl (CFdriver,IX CF_CODELET_INIT IDE, &passedArg) ;

if (rc != 0)

printf ("CompactFlash ioctl rc is failed to init IDE

exit (1) ;

//TestMenu () ;

TestFileSystemMenu () ;

CompactFlashGetNum(char *str)

int c¢;
int i = 0;

char input [IX CF CODELET STRLEN] ;

%d \n", rc);

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash

if (str && *str) printf("$s",

do

{

c = getc(stdin) ;

if (c == 0x08)
{
if (i) i--;
}
else
{
input [i++] = c;

/* exception if x entered,

} while(i<IX CF CODELET STRLEN && c!='\r' && c!='\n');

input [i] = '\0';

return atoi (input) ;

void TestMenu (void)

{

Application Note

int selectedItem=0;

int passedArg, val, i, rc;
int cureentIndex, lastIndex;
unsigned char datal[512];

unsigned short *wPtr;

wPtr=(unsigned short *)data;

do

str) ;

jump to main menu */

Source Code

95

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

/* print the test menu */

printf (Y R e e R \n"

printf ("\nRead/Write to CF Registers:\n");
printf ("$d: check if the flash card is ready\n", Check Card) ;
printf ("%d: read all the CF registers\n", Read All Regs) ;
printf ("%$d: read one CF register\n", Read One Reg) ;
printf ("%d: write to one CF register\n", Write One Reg) ;

printf ("%$d: show Exp Bus Regs\n", Show Exp Regs) ;

printf ("\nView CF Identify Information:\n");

printf ("%$d: read the identify sector\n", Read Identify Sector);

printf ("\nRead/Write to sectors:\n");
printf ("%$d: read from one sector\n", Read From One Sector) ;

printf ("%$d: write to one sector\n", Write To One Sector) ;

printf ("\nDisplay data:\n") ;
printf ("%$d: show one byte in a sector\n", Show One Byte);

printf ("%$d: show next 10 bytes\n", Show Next 10 Bytes) ;

printf ("%$d: show one word in a sector\n", Show One Word) ;

printf ("%$d: show next 10 words\n", Show Next 10 Words) ;
printf ("\nDisplay MBR & BPB:\n") ;
printf ("%d: find MBR and BPB\n", FindMBRandBPB) ;

printf ("%d: Process BPB data\n", ProcessBPBdata) ;

printf ("$d: Exit\n", Exit Now) ;

96 Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
Source Code

/* select a menu item */

selectedItem = CompactFlashGetNum (NULL) ;

printf("***\n\n") ;

switch(selectedItem)
{
case Check_Card:
ioctl (CFdriver, Check Card, &passedArg) ;
if (passedArg)
printf ("Flash ccard is ready\n");
else

printf ("Flash ccard is not ready\n");
break;

case Read All Regs:
printf ("\n") ;
rc = ioctl (CFdriver,Read_All Regs, passedArg) ;

break;

case Read One_Reg:
printf ("CF_ERROR $d\n", CF_ERROR) ;
printf ("CF_SECT CNT %d\n",CF_SECT_CNT) ;

printf ("CF_SECT NUM %d\n",CF_SECT NUM) ;

printf ("CF_CYL L %d\n",CF_CYL L);
printf ("CF_CYL H %d\n",CF_CYL H) ;

printf ("CF_DRV_HEAD %d\n",CF_DRV HEAD) ;
printf ("CF_STATUS %d\n", CF_STATUS) ;

printf ("CF_ALTSTATUS %d\n",CF_ALTSTATUS) ;
passedArg=CompactFlashGetNum("choose a reg to read: ");

rc = ioctl (CFdriver,Read_One_Reg, passedArg) ;

break;

Application Note 97

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u

Plane Processor: Using CompactFlash In
Source Code

98

case Write One_Reg:
printf ("CF_COMMAND $d\n", CF_COMMAND) ;
printf ("CF_DEV_CTR %d\n",CF_DEV_CTR) ;
printf ("CF_SECT CNT %d\n",CF_SECT CNT);
printf ("CF_SECT NUM %d\n",CF_SECT NUM) ;
printf ("CF_CYL L $d\n",CF_CYL_L);
printf ("CF_CYL H $d\n",CF_CYL_H) ;
printf ("CF_DRV_HEAD %d\n",CF _DRV_HEAD) ;

printf ("CF_FEATURES %d\n",CF_FEATURES) ;

passedArg=CompactFlashGetNum("choose a reg to write: ");
passedArg= (passedArg<<8) |CompactFlashGetNum("input a value: ");
rc = ioctl (CFdriver,Write One_ Reg, passedArg) ;

break;

case Read Identify Sector:
printf ("reading words from identify sector\n");

ioctl (CFdriver,Read Identify Sector, passedArg) ;

rc = read(CFdriver,data, passedArg);

if (rc == -1)

{
printf ("CompactFlash read failed .. %d \n", rc);
exit (1) ;

}

printf ("done with reading identify sector\n");
printf ("bytes:\n") ;

lastIndex=0;

for (i=0; 1i<10; i++)

printf ("data[%d] =0x%x (%d)\n",lastIndex+i, data[lastIndex+i],
data[lastIndex+i]) ;

lastIndex=lastIndex+10;

break;

Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor: Using CompactFlash
Source Code

case Read From One_Sector:
passedArg=CompactFlashGetNum("enter sector number to read: ");
printf ("reading words from flash\n");
ioctl (CFdriver,Word_ Access, passedArg) ;

rc = read(CFdriver,data, passedArg) ;

printf ("CompactFlash read failed .. %d \n", rc);
exit (1) ;

}

printf ("done with reading from flash\n") ;

printf ("bytes:\n") ;

lastIndex=0;

for (i=0; 1i<10; i++)

printf ("data[%$d] =0x%x (%d)\n",lastIndex+i, data[lastIndex+i],

data[lastIndex+i]) ;

1000) :

Application Note

lastIndex=1lastIndex+10;

break;

case Write To One Sector:

passedArg=CompactFlashGetNum("enter sector number to write (prefer
n

if (passedArg==0)
{

printf ("you are not allowed to write to master sector\n");

break;

printf("l: write one value to each byte in the sector\n");
printf("2: write 0, 1, 2,to the sector\n");

printf ("3: input values byte by byte for the sector\n");
rc=CompactFlashGetNum(" ") ;

switch(rc)

{

99

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

case 1:

val=CompactFlashGetNum("enter a byte to write to the whole sector:

for(i=0; i<512; i++)
datali]=val;
break;
case 2:
for(i=0; i<512; i++)
data[i]=1&0x0ff;
break;
case 3:
for(i=0; i<512; i++)
{
printf ("byte[%d]=\n",1i);
val=CompactFlashGetNum (" (555 to exit) ");
if (val==555)
break;
else
datali]=val;
}
break;
default:
break;
}
printf ("writing words to flash\n");
ioctl (CFdriver,Word Access, passedArg) ;

rc = write(CFdriver,data, passedArg) ;

if (rc == -1)

{
printf ("CompactFlash read failed .. %d \n", rc);
exit (1) ;

}
printf ("done with writing to the flash\n");

break;

100 Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
Source Code

case Show_One_ Byte:
cureentIndex=CompactFlashGetNum("byte index (0...511): ");
printf ("bytes:\n") ;

o

printf ("data[%$d] =0x%x (%d)\n",cureentIndex, data[cureentIndex],
data [cureentIndex]) ;

lastIndex=cureentIndex;
break;

case Show Next 10 Bytes:
printf ("bytes:\n") ;
for(i=0; 1<10; 1i++)

printf ("data[%$d]=0x%x (%d)\n",lastIndex+i, data[lastIndex+i],
data[lastIndex+i]) ;

lastIndex=1lastIndex+10;

break;

case Show_One_ Word:
cureentIndex=CompactFlashGetNum("word index (0...255): ");
printf ("words:\n") ;

printf ("data[%$d] =0x%x (%d)\n", cureentIndex,
byteSwap (data+cureentIndex*2), byteSwap (data+cureentIndex*2)) ;

lastIndex=cureentIndex;

break;

case Show Next 10 Words:
printf ("words:\n") ;
for (i=0; i<10; i++)

printf ("data[%d]=0x%x (%d)\n",lastIndex+i,
byteSwap (data+ (lastIndex+i) *2), byteSwap (data+ (lastIndex+i)*2));

lastIndex=1lastIndex+10;

break;

case Show_Exp Regs:
for (i=0; i<12; i++)

{

passedArg=IXP425 EXP_CSO0_OFFSET+i*4;

Application Note 101

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

printf ("reg offset: 0x%x: ", passedArg) ;

rc = ioctl (CFdriver, Show Exp Regs, &passedArg) ;

if (rec != 0)

{

printf ("CompactFlash ioctl Show Exp Regs is failed .. %d \n", rc);
exit (1) ;

}

printf ("reg value:=0x%x\n",passedArg) ;

break;

case FindMBRandBPB:

passedArg=0;

rc = ioctl (CFdriver, FindMBRandBPB, passedArg) ;

if (rc != 0)
{
printf ("CompactFlash ioctl FindMBRandBPB is failed .. %d \n", rc);
exit (1) ;
}
break;

case ProcessBPBdata:

passedArg=0;

rc = ioctl (CFdriver, ProcessBPBdata, passedArg) ;
if (rc != 0)
{
printf ("CompactFlash ioctl ProcessBPBdata is failed .. %d \n", rc);
exit (1) ;
}
break;

case Exit_ Now:selectedItem=-1;

break;

102 Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
Source Code

} while(selectedItem != -1);

void CompactFlashGetString(char *inputString)

{

c = getc(stdin) ;

if (¢ == 0x08)
{
if (i) i--;
1
else
{
inputString[i++] = c;

/* exception if x entered, jump to main menu */

} while(i<IX CF CODELET STRLEN && c!='\r' && c!='\n');

inputString[i] = '\0';

//printf ("inputString=%s\n", inputString) ;

Application Note 103

Intel® IXP42X Product Line of Network Processors and IXC1100 Control

Plane Processor: Using CompactFlash

Source Code

104

void trimSpace (char *inputString,

{

int

int i;

char *ptr;

ptr=inputString;

while (*ptr==' ') ptr++;
i=0;
while (*ptr!=0)
{
dst [i++] =*ptr++;

}

dst[i]1=0;

while ((dst[i-1]==' ') || (dst[i-1]=='\n") || (dst[i-1]=="\1"))

{

dst [i]1=0;

processCommand (char *inputString)

int selectedItem=0;
char *ptr=NULL;

int i;

trimSpace (inputString, inputString);

ptr=strstr (inputString, "cd") ;

if (ptr!=NULL)

{

char *dst)

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
® Source Code

selectedItem=ChangeToDir;
inputString[0]=0;

}

else if (ptr[2]==' ")

{
trimSpace (ptr+3, inputString) ;
selectedItem=ChangeToDir;

}

else

selectedItem=ReadFile;

//printf ("selectedItem=%d, inputString=%s\n",selectedItem, inputString) ;

return selectedItem;

ptr=strstr (inputString, "dir") ;
if (ptr!=NULL)

{

selectedItem=ShowDir;

inputString[0]=0;

}

else if (ptr[3]==' ')

{
trimSpace (ptr+4, inputString);
selectedItem=ShowDir;

}

else

selectedItem=ReadFile;

Application Note 105

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u
Plane Processor: Using CompactFlash In

Source Code

//printf ("selectedItem=%d, inputString=%s\n", selectedItem, inputString) ;

return selectedItem;

ptr=strstr (inputString, "test!");
if (ptr!=NULL)
{
selectedItem=GoTestMenu;
//printf ("selectedItem=%d, inputString=%s\n", selectedItem, inputString) ;

return selectedItem;

ptr=strstr (inputString, "exit!") ;
if (ptr!=NULL)
{
selectedItem=Exit_Now;
//printf ("selectedItem=%d, inputString=%s\n", selectedItem, inputString) ;

return selectedItem;

if (inputString[0] !=0)

selectedItem=ReadFile;

//printf ("selectedItem=%d, inputString=%s\n", selectedItem, inputString) ;

return selectedItem;

void TestFileSystemMenu (void)

{

unsigned char inputString[100];

unsigned long rc;

106 Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100

In Control Plane Processor: Using CompactFlash
® Source Code

int selectedItem=0;

do
{
/* print the test menu */
printf (Y R e \n"
"- IxCompactFlashCodelet File System Demo -\n"
M o o e e e 2 \nu) ;
printf ("\nCommands: cd/dir [/][.][..][dir name]; file or dir name;
test!, exit!\n");

/* get a command */
CompactFlashGetString (inputString) ;

selectedItem=processCommand (inputString) ;

DPTIREE (1Mo ok \n\n") ;

switch(selectedItem)

case ChangeToDir:

rc = ioctl (CFdriver, ChangeToDir, inputString) ;
if (rc != 0)

{

printf ("CompactFlash ioctl: ChangeToDir is failed .. %d \n", rc);

exit (1) ;

}
break;

case ShowDir:

Application Note 107

Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor: Using CompactFlash

Source Code

rc = ioctl (CFdriver,ShowDir, inputString);
if (rc != 0)

{

printf ("CompactFlash ioctl: ShowDir is failed ..

exit (1) ;

}

break;

case ReadFile:

rc = ioctl (CFdriver,ReadFile, inputString);

if (rc != 0)

printf ("CompactFlash ioctl: ReadFile is failed ..

exit (1) ;

}

break;

case GoTestMenu:
TestMenu () ;

break;

case Exit_Now:

selectedItem=-1;

break;

} while(selectedItem != -1);

A.9 Makefile

CC=/opt/hardhat/devkit/arm/xscale be/bin/xscale be-gcc

108

%d \n", rc);

%d \n", rc);

Application Note

u Intel® IXP42X Product Line of Network Processors and IXC1100
In Control Plane Processor: Using CompactFlash
Source Code

GPLUS= /opt/hardhat/devkit/arm/xscale_be/bin/xscale_be-g++
Override standard COPTS
CFLAGS+=-mbig-endian -msoft-float -DOS_USRLINUX \
-I$(IX XSCALE SW)/src/include \
-I../ -1./
TARGET=IxCPCodeletApp
LDFLAGS = -lpthread -1d1
O_OBJS=CompactFlashApp.o
BINS= CompactFlashApp

default: CompactFlashApp

CompactFlashApp: $(0_OBJS) $(02_OBJS)

$(CC) $(LDFLAGS) $” -o se
Override .c.o
CompactFlashApp.o:

$(CC) $(CFLAGS) -c CompactFlashApp.c
depend:

makedepend -I$(INC EXPORTPATH) -I$(INC LIBPATH) -IS$(INC_QCOMMON) *.c

clean:

rm -rf $(BINS) *.o

Application Note 109

Plane Processor: Using CompactFlash In

Intel® IXP42X Product Line of Network Processors and IXC1100 Control u tel
Source Code ©

110 Application Note

	Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor: Using CompactFlash
	Contents
	Figures
	Tables
	Revision History

	1.0 Introduction
	1.1 Related Documentation
	1.2 References
	1.3 Acronyms

	2.0 Hardware Overview
	2.1 The Processor
	2.2 Expansion Bus Overview
	2.2.1 Expansion Bus Interface Signals

	2.3 Expansion Bus Control and Configuration Registers
	2.4 CompactFlash
	2.4.1 Interface Signals

	3.0 Hardware Interface Considerations
	3.1 True IDE Mode Hardware Interface
	3.2 Memory Mode Hardware Interface
	3.3 I/O Mode Hardware Interface

	4.0 Expansion Bus Operation
	4.1 Expansion Bus Configuration
	4.2 Switching Data Bus Width
	4.3 Reading/Writing Expansion Bus

	5.0 CompactFlash Operations
	5.1 Access to the CompactFlash Registers
	5.2 Wait for CompactFlash To Get Ready
	5.3 Switching Expansion Bus Data Width
	5.4 Little and Big Endian Conversion
	5.5 Read from a Sector
	5.6 Write to a Sector
	5.7 Read the Identify Information

	6.0 FAT16 File System on the CF Card
	6.1 Master Boot Record
	6.2 BIOS Parameter Block
	6.3 Root Directory Location
	6.4 FAT Directory Structure
	6.5 List the Root Directory
	6.6 List a Subdirectory
	6.7 Get Access to File Content

	7.0 CompactFlash Linux* Device Driver
	7.1 Read the Device
	7.2 Write the Device
	7.3 Control the Device

	8.0 Application Code
	9.0 Platform Used for Testing
	10.0 Demo and ‘Screen Shot’
	10.1 CompactFlash Demo Screen Shot

	Appendix A Source Code
	A.1 CompactFlashModuleSymbols.c
	A.2 CompactFlashIDE.c
	A.3 CompactFlash.h
	A.4 CompactFlashIDE.h
	A.5 component.mk
	A.6 CompactFlashFat16.c
	A.7 CompactFlashFat16.h
	A.8 CompactFlashApp.c
	A.9 Makefile

