
Intel® IXP42X Product Line of
Network Processors and IXC1100
Control Plane Processor
Performance Tuning
Application Note

July 2004

Document Number: 253499-003

2 Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel Centrino logo,
Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, Sound Mark, The Computer Inside., The Journey
Inside, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2004

http://www.intel.com

Application Note 3

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Contents

Contents
1.0 Introduction..7

1.1 Purpose ..7
1.2 Scope..7
1.3 Related Documents ..8
1.4 Audience...9
1.5 Assumptions ...9
1.6 Acronyms..10
1.7 Conventions..12

2.0 Gathering Information and Requirements ..12
2.1 Defined Performance Requirement ..12
2.2 Gathered Customer Information ...13

3.0 General Optimization Approaches...15
3.1 Best Compiler for Application ...15
3.2 Compiler Optimizations...16
3.3 Performance Design ...17
3.4 Early Performance Measurement ...18
3.5 PMU Performance Measurement ...19
3.6 Data Cache...20
3.7 ICE Disabled...21

4.0 General Networking Performance..21
4.1 Bottleneck Hunting..21
4.2 Evaluating Traffic Generator/Protocols...22
4.3 Throughput-Limiting Packet Loss ...24
4.4 Packet Buffer Management Analysis..25
4.5 Polled Packet Processor...26
4.6 Fast Path ..27
4.7 Edge Packet Throttle ..27
4.8 Packet Buffer Headroom ..28
4.9 Detecting Resource Collisions..29

5.0 Intel XScale® Core and Device-Specific Tuning ...29
5.1 Devices’ Silicon Features ...29
5.2 Understanding the Devices...30
5.3 Branch Target Buffer ..31
5.4 Latest Intel® IXP400 Software Access Layer..31
5.5 Disabled Counters/Statistics...32
5.6 Disabled Parameter Checks ...33
5.7 Stall Instructions ...33
5.8 Profiling Tools ...35
5.9 Intel XScale® Core PLD Instruction ..35
5.10 Separate SDRAM Memory Banks ..36
5.11 Line-Allocation Policy..37
5.12 Cache Write Policy ...38
5.13 Write Coalescing...38

4 Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Contents

5.14 Faster Memory.. 39
5.15 Cache-Aligned Packet Buffers..39
5.16 On-Chip Memory ..40
5.17 Mini-DCache... 41
5.18 Optimized Libraries... 41
5.19 Aligned/Grouped Literal Pools ..42
5.20 Modulo/Divide Avoided... 43
5.21 Minimal Cache Flush/Invalidation ... 43
5.22 Endian Analysis .. 44
5.23 Queue Look-Ahead... 44
5.24 Queue Status-Check Removed .. 45

6.0 Code and Design Level ... 45
6.1 Reordered Struct ..45
6.2 Supersonic ISR... 46
6.3 Stall-Filling Code... 46
6.4 Assembly-Language-Critical Functions .. 47
6.5 Inline Functions... 47
6.6 Cache-Optimizing Loop .. 48
6.7 Minimizing Local Variables ... 48
6.8 Explicit Registers ..49
6.9 Removing Unnecessary Counters ..49
6.10 Duff’s Device... 50
6.11 Optimized Hardware Register Write ... 51
6.12 Avoiding the OS Packet-Buffer Pool... 52
6.13 C-Language Optimizations ... 52
6.14 Pre-Computed Data.. 53

7.0 VxWorks*-Specific Improvements ... 54
7.1 Aligned Mbufs and Clusters.. 54
7.2 Avoiding Separate Packet Buffer Pools.. 54
7.3 Avoiding System Packet-Buffer Pool .. 55
7.4 Avoiding Unnecessary Packet-Buffer Allocations... 55
7.5 Batch Packets Handler ...56
7.6 Avoiding Chaining... 56
7.7 Disabled Functionality...57
7.8 Platform NE*... 57

8.0 Development Strategies.. 58
8.1 Pair Team ... 58
8.2 Avoiding Premature Code Tuning... 58
8.3 Step-by-Step Records ..59
8.4 Quick- Run Traffic Test... 60
8.5 Nightly Traffic Test.. 60
8.6 Slam-Dunk Optimization ... 61

Application Note 5

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Contents

Figures
1 Throughput-Limiting Packet Loss ...24

Tables
1 Related Documentation ..8

Revision History

Date Revision Description

July 2004 003 Updated Intel® product branding.

August 2003 002 Document edited for public release.

July 2003 001 Initial release of this document

6 Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Contents

This page intentionally left blank.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Introduction

Application Note 7

1.0 Introduction

1.1 Purpose

This document summarizes a number of performance-enhancement techniques. Some of the
techniques are generally applicable and some are specific to networking applications, the Intel
XScale® Core, or the Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor.

The techniques suggested in this document are suggested solutions to the problems proposed and
are provided for informational purposes only. There can be no guarantee that these proposed
solutions will be applicable to your application or that they will resolve the problems in all
instances.

The performance tests and ratings mentioned in this document are measured using specific
computer systems and/or components and reflect the approximate performance of Intel products as
measured by those tests. Any difference in system hardware or software design or configuration
may affect actual performance. Buyers should consult other sources of information to evaluate the
performance of systems or components they are considering purchasing.

Most of these techniques fall into one of four categories:

• Determining the cause of a performance problem

• Identifying the solution for a problem

• Information, tasks and ways of organizing performance work

• Organizing information, tasks, and performance work

Intel has published a significant amount of information on performance optimization for the
processors based on the Intel XScale core. This information is available in many of the documents
listed in “Related Documents” on page 8. This document summarizes and collects in one location
some of the information in these different references.

For more information on performance tests and on the performance of Intel products, visit the Web
site http:\\www.intel.com or call (U.S.) 1-800-628-8686.

1.2 Scope

This document does not repeat in detail materials which you can obtain easily elsewhere. We
provide references to that information. We have tried to cover the big picture of optimization
techniques. As a result, the document contains suggestions ranging from the obvious and general
[see “Compiler Optimizations” on page 16] to the specific [see “Intel XScale® Core PLD
Instruction” on page 35].

http:\\www.intel.com

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Introduction

8 Application Note

1.3 Related Documents

Table 1. Related Documentation

Document Name Document Number

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Developer’s Manual 252480

Intel® IXP400 Software Programmer’s Guide 252539

Intel® XScale™ Microarchitecture Programmer’s Reference Manual 273436

Performance Profiling Techniques on Intel® XScale™ Microarchitecture
Processors Application Note 273661

Intel 80200 Processor based on Intel® XScale™ Microarchitecture, Developer’s
Manual 273411

Coding Tips for Developers Targeting I/O Processors Based on the Intel®
XScale™ Microarchitecture Application Note 273618

Intel® PXA250 and PXA210 Processors Optimization Guide

http://www.intel.com/desi
gn/pca/applicationsproce
ssors/manuals/27855201
.pdf

27387202

Red Hat* Intel® XScale™ implementations of libc see
http://www.redhat.com

ARM Architecture Reference Manual N/A

ARM Application Note 34, Writing Efficient C for ARM

http://www.arm.com/arm/
documentation?OpenDoc
ument

ARM DAI 0034A

The Art of Designing Embedded Systems, Jack Ganssle
ISBN

0-75-069869-1

C Programming FAQs
ISBN

0-20-184519-9

Code Complete: A Practical Handbook of Software Construction, Steve
McConnell

ISBN
1-55-615484-4

Design Patterns: Elements of Reusable Object-Oriented Software; Erich Gamma,
Richard Helm, Ralph Johnson, John Vlissides

ISBN
0-20-163361-2

Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns, Bruce Powel Douglass

ISBN
0-20-149837-5

Inner Loops: A Sourcebook for Fast 32-Bit Software Design, Rick Booth
ISBN

0-20-147960-5

The Timeless Way of Building, Christopher Alexander
ISBN

0-19-502402-8

Wikipedia definition of “optimization” http://www.wikipedia.org

Writing Efficient Programs (Prentice-Hall Software Series), Jon Louis Bentley
ISBN

0-13-970244-X

http://redhat.com
http://redhat.com
http://www.arm.com/arm/documentation?OpenDocument
http://www.wikipedia.org
http://www.intel.com/design/pca/applicationsprocessors/manuals/27855201.pdf

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Introduction

Application Note 9

1.4 Audience

Intel Software Engineers Intel software engineers can use this document to optimize existing or
new access layer software they are developing. They might also use
these tips to improve the performance of application or demonstration
software they are writing.

Intel Engineers Engineers can use this document as a checklist of questions to help
customers optimize their application software. In addition, they could
take this document and use it in an application note for publication to
customers.

Eco-System Partners The information in this document will be useful to eco-system partners
to help them optimize their applications and operating systems for the
IXP42X product line and IXC1100 control plane processors.

Customer Engineers The information in this document will be useful to customer engineers to
help them optimize their applications for the IXP42X product line and
IXC1100 control plane processors.

1.5 Assumptions

We assume the reader has some networking and software development experience.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Introduction

10 Application Note

1.6 Acronyms

AAL ATM Adaptation Layers

AES Advanced Encryption Standard

AHB Advanced High-Performance Bus

APB Advanced Peripheral Bus

API Application Programming Interface

AQM AHB Queue Manager

Assert The logically active value of a signal or bit.

ATM-TC Asynchronous Transmission Mode – Transmission Convergence

BTB Branch Target Buffer

Clean An operation that updates external memory with the contents of the
specified line in the data/mini-data cache if any of the dirty bits are set
and the line is valid. There are two dirty bits associated with each line in
the cache so only the portion that is dirty will get written back to external
memory.

After this operation, the line is still valid and both dirty bits are
deasserted.

CLZ Count Leading Zeros

Coalescing Bringing together a new store operation with an existing store operation
already resident in the write buffer. The new store is placed in the same
write buffer entry as an existing store when the address of the new store
falls in the four-word, aligned address of the existing entry. This
includes, in PCI terminology, write merging, write collapsing, and write
combining.

CRC Cyclical Redundancy Check

DUT Device Under Test

Deassert The logically inactive value of a signal or bit.

DMA Direct Memory Access

DSP Digital Signal Processor

E1 Euro 1 trunk line

FAQ Frequently Asked Questions

FCS Frame-Check Sequence

FIFO First In, First Out

Flush An operation that invalidates the location(s) in the cache by de-asserting
the valid bit. Individual entries (lines) may be flushed or the entire cache
may be flushed with one command. Once an entry is flushed in the cache
it can no longer be used by the program.

GCI General Circuit Interface

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Introduction

Application Note 11

GPIO General-purpose input/output

G.SHDSL ITU G series specification for Single-Pair HDSL

HDLC High-level Data Link Control

HDSL High-Bit-Rate Digital Subscriber Line

HDSL2 High-Bit-Rate Digital Subscriber Line, Version 2

HEC Head-Error Correction

HPI (Texas Instrument) Host Port Interfaces

HSS High-Speed Serial (port)

ICE In Circuit Emulator

IOM ISDN Orientated Modular

ISDN Integrated Services Digital Network

ISR Interrupt Service Routine

LFSR Linear Feedback Shift Register

LSb Least-Significant bit

LSB Least-Significant Byte

LUT Look-Up Table

MAC *** Multiply Accumulate

MDIO Management Data Input/Output

MIB Management Information Base

MII Media-Independent Interface

MMU Memory Management Unit

MSb Most-Significant bit

MSB Most-Significant Byte

MVIP Multi-Vendor Integration Protocol

NPE Network Processing Engine

NRZI Non-Return To Zero Inverted

PCI Peripheral Component Interconnect

PEC Programmable Event Counters

PLD Preload (instruction)

PLM Product Line Marketing

PMU Performance Monitoring Unit

PHY Physical Layer (Layer 1) Interface

Reserved A field that may be used by an implementation. Software should not
modify reserved fields or depend on any values in reserved fields.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Gathering Information and Requirements

12 Application Note

RMII Reduced Media Independent Interface

RTOS Real Time Operating System

RX Receive

SFD Start of Frame Delimiter

T1 Type 1 trunk line

TDM Time Division Multiplex

TLB Translation Look-Aside Buffer

TX Transmit

UART Universal Asynchronous Receiver-Transmitter

WAN Wide Area Network

1.7 Conventions

Each performance improvement suggestion is documented in the form of a pattern. (See Design
Patterns: Elements of Reusable Object-Oriented Software.) A pattern is “a Solution to a Problem in
a Context,” a literary mechanism to share experience and impart solutions to commonly occurring
problems. Each pattern has a number of elements:

• Name — Name by which we can reference this problem/solution pairing.

• Context — The circumstance in which we solve the problem that imposes constraints on the
solution.

• Problem — The specific problem that we need to solve.

• Solution — The proposed solution to the problem. Many problems may have more than one
solution and the “goodness” of a solution to a problem is affected by the context in which the
problem occurs. Each solution takes certain forces into account. It resolves some forces at the
expense of others. It may even ignore some forces.

• Forces — The often-contradictory considerations we must take into account when choosing a
solution to a problem.

2.0 Gathering Information and Requirements

2.1 Defined Performance Requirement

2.1.1 Context

You are a software developer starting a performance improvement task work on an application or
driver.

2.1.2 Problem

Performance improvement work can become a never-ending task. Without a goal, the activity can
drag on longer than productive or necessary.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Gathering Information and Requirements

Application Note 13

2.1.3 Solution

At an early stage of the project or customer engagement, define a relevant specific, realistic, and
measurable performance requirement.

Document that performance requirement as a specific detailed application and setup with a
numerical performance target.

• “Make it as fast as possible” is not a specific performance requirement.

• “The application must be capable of wire-speed routing of 64-byte packets” is not a realistic
performance requirement.

2.1.4 Forces

• A performance target can be hard to define.

• Waiting to have a goal may affect your product’s competitiveness.

• A performance target can be a moving target; competitors do not stand still. New competitors
come along all the time.

• Without a goal the performance improvement work can drag on longer than productive.

2.2 Gathered Customer Information

2.2.1 Context

You are a software, TME, customer, or eco-system engineer and a customer informs you of a
performance problem they have uncovered.

2.2.2 Problem

You need to gather some information to help you start diagnosing the problem or enlist the help of
others in solving the problem.

2.2.3 Solution

Gather or request the information from the customer that will help you to diagnose the performance
problem. This is the information you will need to apply the rest of the patterns in this document. It
provides you with a good checklist for an initial engagement with a customer who reports a
performance problem.

Here are the essential questions you should ask, at an early stage:

• What RTOS is the customer using, what version?

• What networking stack is the customer using, what version?

• What compiler is the customer using, what version?

• What optimization compiler flags is the customer using?

• What version of the Intel® IXP400 Software is the customer using?

• What other major software components is the customer using, drivers? What are their
versions?

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Gathering Information and Requirements

14 Application Note

• What benchmark or performance measurement is the customer making? What performance do
they expect or require?

• What is the test setup? Request a diagram.

• How much work have they done already to tune performance? Have they done any
performance tuning for the Intel XScale core or IXP42X product line and IXC1100 control
plane processors?

• What is a high-level description of the data path and software components involved.

• Are they using the data cache? Are they using it for packets?

• Have they read and tried the optimization suggestions in the IXP42X product line and
IXC1100 control plane processors’ documentation?

• Have they identified their current performance bottleneck (dependency stalls, computation,
and memory bandwidth)?

• Do they have any explicit delays on their data path code?

• How do they manage packet buffers? Do they pre-allocate buffers for the access layers? What
do they do when they are finished with a packet buffer?

Here are some other useful questions you may ask, or ask on a second pass:

• Have they done any measurements of the clock cycles used by the different software
components of their data path?

• Are they doing non-pre-fetch PCI reads in their data path?

• How does their main packet processing work? Is it polled or interrupt driven? Are there
context switches involved? If it is interrupt-driven, how many packets does each interrupt
handle?

• Have they used the PMU?

• Have they turned off access layer statistics/counters and parameter checks?

• Have they enabled the BTB?

• Do all packets go through the IP stack?

• Do they have an ICE connected when they run the performance test?

• Are they using separate memory banks for packets and code?

• If they are using caches are they using read or read-write line allocation? Have they tried the
other?

• If they are using caches, are they using write-through or write-back mode? Have they tried the
opposite of what they are using?

• Have they enabled write coalescing?

• Are they using the mini data cache?

• Have they done any instruction or function profiling?

• Have they used any explicit pre-load instructions?

• Have they identified the main source of data-dependency stalls?

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

General Optimization Approaches

Application Note 15

2.2.4 Forces

• You need enough information to help you start diagnosing the problem or enlist the help of
others in solving the problem.

• Asking too many questions can irritate a customer who may be under time pressure to get a
product into production.

3.0 General Optimization Approaches

You can apply some general approaches to improve the overall performance of your application or
selected parts of it.

3.1 Best Compiler for Application

3.1.1 Context

You are writing an application for a processor based on the Intel XScale core.

3.1.2 Problem

A number of compilers are available that have different levels of code generation for the Intel
XScale core and instruction set. You need to select the right one for your application and target
platform.

3.1.3 Solution

Experiment with different compilers and select the best performing compiler for your application
and environment.

Performance can vary between compilers. For example, when we ran the Dhrystone* MIPS
Benchmark on a 533-MHz Intel® IXP425 Network Processor, the following compilers had the
following relative performance, at the time of writing.

• Greenhills* v3.61 (Green Hills Software, Inc.*)

• ADS* v1.2 (ARM Ltd.*)

• Tornado* 2.2 Diab* (Wind River Systems*)

• Tornado 2.2 gcc

The Intel XScale core GNU-PRO compiler on http:\\developer.intel.com has been measured to be
approximately 10% better than the open source gcc compiler when measuring the Java*
CaffineMark* benchmark.

Intel is currently working to improve the GNU-PRO compiler to further optimize its code
generation for the Intel XScale core.

3.1.4 Forces

• Some compilers are more expensive than others.

http:\\developer.intel.com

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
General Optimization Approaches

16 Application Note

• Some compilers will not be able to generate code for some operating systems. For example,
the ADS compiler generates ELF binaries but Tornado 2.1.1 requires COFF binaries.

• A particular compiler may optimize a particular benchmark better than another compiler, but
that is no guarantee it will optimize your application better.

• You may need an open-source compiler.

3.2 Compiler Optimizations

3.2.1 Context

You are using a C-compiler and you have selected the compiler [see “Best Compiler for
Application” on page 15].

3.2.2 Problem

You have not enabled all of the compiler optimizations.

3.2.3 Solution

Your compiler will have a number of optimization switches. Using these switches may increase
global application performance for a small amount of effort. Read the documentation for your
compiler and understand these switches.

In general, the highest-level optimization switch is the -O switch. In gcc, it takes a numeric
parameter. Find out the maximum parameter for your compiler and use it. Typically, there are three
levels of compiler optimization, try the highest — this is -O3. If you have problems at the highest
level drop the level down one.

Moving from -O2 to -O3 made an improvement of approximately 15% in packet processing in
one application tested. In another application, -O3 was slower than -O2.

You can limit the use of compiler optimizations to individual C source files.

Introduce optimization flags, one by one, to discover the ones that give you benefit.

Other gcc optimization flags that may increase performance are:

• -funroll-loops

• -fomit-frame-pointer -mapcs

• -align-labels=32

3.2.4 Forces

• Optimizations increase generated code size.

• Some optimizations may not increase performance.

• There are a large number of switches and options for the compiler. The documentation is very
large.

• Optimized code is difficult to debug.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

General Optimization Approaches

Application Note 17

• Some optimizations may reveal compiler bugs (–fomit-frame-pointer –mapcs
reveals a post-increment bug in gcc 2.95.X for the Intel XScale core).

• Enabling optimization will change timings in your code. It may reveal latent undiscovered
problems.

3.3 Performance Design

3.3.1 Context

You are a software developer designing a system. You have a measurable performance requirement
[see “Defined Performance Requirement” on page 12].

3.3.2 Problem

The design of the system may not meet the performance requirement.

3.3.3 Solution

At design time, describe the main data path scenario. Walk through the data path in the design
workshop and document it in the high level design.

When you partition the system into components allocate a portion of the clock cycles to the data
path portion of each component. Have a target at design time for the clock cycle consumption of
the whole data path. Reference The Art of Designing Embedded Systems contains notations and
techniques for system design performance constraints.

During code-inspections, hold one code inspection that walks through the most critical data path.
Code inspections are usually component-based. This code inspection should be different and
follow the scenario of the data path.

In polled environments ensure that the CPU is shared appropriately.

It can also be useful to analyze the application’s required bus bandwidth at design time to decide if
the system will be CPU or memory bandwidth/latency limited.

Pay special attention to packet-buffer management, at design time. Are buffers being allocated on
the application data path? Where in the design are packet buffers replenished into the IXP400
software access layer?

3.3.4 Forces

• It can be difficult to anticipate some system bottlenecks at design time.

• The design of the system may make it impossible to meet the performance requirement. If you
find this out late in the project, it may be too difficult to do anything about it.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
General Optimization Approaches

18 Application Note

3.4 Early Performance Measurement

3.4.1 Context

You are a software engineer. You have a functioning system and you are in the integration phase of
development. Or you have a performance requirement [see “Defined Performance Requirement”
on page 12] that your system does not meet.

3.4.2 Problem

It is not clear where the processor cycles are being spent in the data path of your application.

3.4.3 Solution

Measure the performance of your system relative to the performance requirement [see “Defined
Performance Requirement” on page 12].

Measure the performance of the data path as soon as possible during the integration testing. Check
that the components of the data path have conformed to their cycle count budgets set during
high-level design [see “Performance Design” on page 17].

Trace through the whole data path scenario using a debugger to understand the data path.

Sprinkle clock-counting measurements at different points around the code of your application. Run
the system for a short period and work out the proportion of time spent in the different parts of your
data path. Do the cycle counts add up? Is there a missing block of time that you cannot account for?
Is the processor spending its clock cycles where you expected?

In one case, we found a particular application spent 60+% of its cycles managing packet buffers
with only 12% in the IXP400 software and 22% in a complex routing algorithm. This result
surprised us and focused our attention on the buffer management code, in which we then identified
an approximate 20% packet processing performance improvement.

You should scrutinize all use of task delays, and relative task priorities.

Confirm the performance limitation identified in “Performance Design” on page 17. SDRAM
Controller access figures and the IXP42X product line and IXC1100 control plane processors’
PMU can help you identify the north- and south-bus occupancy.

3.4.4 Forces

• Measuring clock cycle counts can change the behavior and performance of the system.

• The highest priority activity during integration test is the testing of functionality rather than
performance.

• Changes post-integration may change the performance characteristics of your application.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

General Optimization Approaches

Application Note 19

3.5 PMU Performance Measurement

3.5.1 Context

You have a functional system, based on the Intel XScale core, that does not meet its performance
requirements.

3.5.2 Problem

Some general processor related issues might be affecting the performance of your applications in a
number of software components.

3.5.3 Solution

Use the Intel XScale core’s PMU to identify some macro performance characteristics of your
whole application. Some of these performance characteristics include:

• Instruction cache efficiency

• Data cache efficiency

• Data/Bus Request Buffer Full

• Stall/Write-Back Statistics

• Instruction/Data TLB Efficiency

This kind of analysis may help you to identify a subtle bottleneck. (For more details on these
characteristics, see the Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor Developer’s Manual.)

For PMU sample code, see Performance Profiling Techniques on Intel® XScale™
Microarchitecture Processors Application Note. It is anticipated that a future release of the IXP400
software will provide a C-function API to simplify access to the PMU.

In most applications, this test will identify problems with data dependency stalls, but it is a good
idea to test all of the characteristics as soon as possible to discount some possible factors early. For
example, we have not seen instruction cache being an issue in any applications at the time of
writing.

At higher clock speeds (400 MHz and 533 MHz), you may find a significant number of “cycles lost
due to data-dependency stalls.” If you measure this number on a 533-MHz IXP425 network
processor and it is above 50%, this indicates an area for further investigation. Many of the later
sections of this document focus on strategies to reduce lost cycles waiting for data.

A word of warning, it can be dangerous to try to optimize these characteristics individually. In one
test case, an optimization improved packet processing performance, but made the “cycles lost due
to data-dependency stalls” measurement worse.

3.5.4 Forces

• High-level PMU measurements can be misleading.

• Optimizing PMU performance indicators may not optimize networking performance.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
General Optimization Approaches

20 Application Note

3.6 Data Cache

3.6.1 Context

You are using a processor based on the Intel XScale core. The Intel XScale core is running faster
than memory or peripherals.

3.6.2 Problem

The Intel XScale core is spending a significant amount of time stalled waiting on an external
device. This affects the performance of the core. You have identified this problem using
performance measurements [see “PMU Performance Measurement” on page 19] quantifying the
number of stall cycles. In some applications, we have observed a significant number of cycles are
lost to data-dependency stalls.

3.6.3 Solution

In general, the most efficient mechanism for accessing memory is to use the data cache. Core
accesses to cached memory do not need to use the Internal Bus, leaving it free for other devices. In
addition, accessing data in cache memory is faster than accessing it from the SDRAM.

The cache unit can make efficient use of the internal bus. The core fetches an entire cache line
(32 bytes), making use of multiple data phases. This reduces the percentage of overhead cycles
required for initiating and terminating bus cycles, when compared with issuing multiple bus cycles
to read the same 32 bytes of data without using the cache.

The cache has several features to allow the system designer flexibility in tailoring the system to
design needs. These features affect all applications to some degree; however the optimal settings
are application-dependent. It is critical to understand the effects of these features and how to
fine-tune them for the usage-model of a particular application. We cover a number of these cache
features in later sections.

In one application, which was not caching mbufs and packet data, developers enabled caching and
saw an approximate 25% improvement in packet-processing performance.

Tornado 2.1.1 netBufLib does not allocate mbufs and packet memory from cached memory. It is
expected that Wind River Systems will provide a patch for Tornado 2.2 to fix this issue for the
IXP42X product line and IXC1100 control plane processors.

In most of the applications we have seen, the instruction cache is very efficient. It is worth
spending time optimizing the use of the data cache.

3.6.4 Forces

• If you cache data-memory that the core shares with another device, the programmer needs to
manage cache flush/invalidation explicitly.

• If you use caching you need to ensure no two-packet buffers ever share the same cache line.
This can lead to bugs that are difficult to diagnose.

• If you use the cache heavily, its round-robin replacement algorithm may cause performance
sensitive data to be evicted by lower priority data.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

General Networking Performance

Application Note 21

3.7 ICE Disabled

3.7.1 Context

You are optimizing the performance of a network application. You are still using an ICE to
download code to your DUT.

3.7.2 Problem

The ICE can in some circumstances, affect the performance of your application and processor

3.7.3 Solution

Get to the point where you can boot and download code to the DUT standalone without support of
an ICE.

In one networking application, we observed an approximate 10% performance improvement when
we disconnected the ICE.

3.7.4 Forces

An ICE may be required early in a project.

4.0 General Networking Performance

The following patterns can be applied to networking performance in general. They are not typically
specific to the IXP42X product line and IXC1100 control plane processors.

4.1 Bottleneck Hunting

4.1.1 Context

You have a running functional system. You have a performance requirement [see “Defined
Performance Requirement” on page 12]. A customer is measuring performance that is less than
that requirement.

4.1.2 Problem

You may have a number of performance bottlenecks in the designed system but unless you identify
the current limiting factor, you may optimize the wrong thing. One component of the system may
be limiting the flow of network packets to the rest of the system.

4.1.3 Solution

Performance improvement really starts with bottleneck hunting. It is only when you find the
performance-limiting bottleneck, that you can then work on optimizations to remove the
bottleneck.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
General Networking Performance

22 Application Note

First look at the software components of the data path, these might include:

• Low-level device drivers specific to a piece of hardware. These device drivers may conform to
an OS-specific interface

• A network interface service mechanism running on the Intel XScale core. This may be a
number of ISRs or it may be a global polling loop

• Adaptor components or glue code that adapt the hardware-specific drivers or the underlying
IXP400 software APIs to an RTOS or network stack

• Encapsulation layers of the networking stack

• The switching/bridging/routing engine of the networking stack or the RTOS

• IXP400 software access APIs. These functions provide an abstraction of the underlying
firmware and silicon

• IXP42X product line and IXC1100 control plane processors’ NPE firmware

If some algorithm in a low-level device driver is limiting the flow of data into the system, you will
waste your time if you start tweaking compiler flags or optimize the routing algorithm.

It is best to look at the new or unique components to a particular system first. Typically these are
the low level device drivers or the adaptor components that are unique to this system. Other
projects may have already used the routing-algorithm, IXP400 software and NPE firmware.
Concentrate on the unique components first especially if these components are on the edge of the
system. In one wireless application we discovered the wireless device driver was a bottleneck that
limited the flow of data into the system.

Many components of a data path may have packet buffers. Packet counters inserted in the code
may help you identify queue overflows. Typically, the code that consumes the packet buffer is the
bottleneck.

This is typically an iterative cycle. When you fix the current bottleneck, you then need to loop back
and identify the next one.

4.1.4 Forces

• Most systems have multiple bottlenecks.

• Early bottleneck hunting — before you have a complete running system — increases the risk
of misidentified bottlenecks and wasted tuning effort.

4.2 Evaluating Traffic Generator/Protocols

4.2.1 Context

You are using a network-traffic generator and protocols to measure the performance of a system.

4.2.2 Problem

The performance test environment can limit the measured performance of your application.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

General Networking Performance

Application Note 23

4.2.3 Solution

Identifying the first bottleneck is a challenge. First, you need to eliminate your traffic generators
and protocols as bottlenecks, analyze the invariants.

Typical components in a complete test system might include:

• Traffic sources, sinks, and measurement equipment

• The device under test (DUT), part of which you are changing

• Physical connections and protocols between traffic sources and the DUT

There are a number of different types of traffic sources, sinks and measurement equipment. You
need to first make sure they are not the bottleneck in your system.

Equipment like Smartbits* and Adtech* testers are not typically bottlenecks.

However, if you are using a PC with FTP software to measure performance, this may be a
bottleneck. You need to test the PC and FTP software without the DUT to make sure your traffic
sources can reach the performance you require.

Running this test may also flush out bottlenecks in the physical media or protocols, you are using.

In addition you need to make sure the overhead inherent in the protocols you are using make the
performance you require feasible. For example:

• You cannot expect 100 Mbps over Ethernet with 64-byte packets, due to inter-frame gap and
frame preamble. You will get at most 76 Mbps.

• You cannot expect to get 8 Mbps over an ADSL link; you will get at most 5.5 Mbps.

• You cannot expect to get 100 Mbps on FTP running over Ethernet. You have IP protocol
overhead and TCP acknowledgements to take into account.

• You cannot expect 52 Mbps on 802.11a/g networks due to CTS/RTS overhead and protocol
overhead.

Environmental factors may also be causing the bottleneck. When testing a wireless application you
may have radio interference in the test environment. In this case, you may need a Faraday cage to
radio-isolate your test equipment and DUT from the environment. Antenna configuration is also
important. The antennas should not be too close (<1 meter). They should be standing up, not lying
down. You may also need to make sure the DUT has some shielding to protect it from antenna
interference.

The particular protocol or application could also be causing the bottleneck. For example, if the FTP
performance is much lower (by a factor of 2) than the large packet performance with a traffic
generator (Smartbits*), this may indicate a problem where the TCP acknowledgement packets are
getting dropped which turned out to be another buffer management issue [see “Packet Buffer
Management Analysis” on page 25].

FTP performance can also be significantly affected by the TCP window sizes on the FTP client and
server machines.

Check all connectors and cables. If you are confident you are making improvements but the
measurements are not giving the improvement you expect, try changing all the cables connecting
your DUT to the test equipment. As a last resort try a replacement DUT.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
General Networking Performance

24 Application Note

4.2.4 Forces

Test equipment typically outperforms the DUT.

4.3 Throughput-Limiting Packet Loss

4.3.1 Context

You are testing the performance of a functioning system using a throughput test. You might be
using the Spirent* SmartApplications* throughput test.

4.3.2 Problem

The throughput is much lower than you expect. Making code more efficient does not help increase
throughput.

4.3.3 Solution

Graph packet loss over a longer test period at a number of rates leading up to your current
throughput bottleneck.

When you draw this graph, you may — if your system has this problem — see a graph that looks
approximately like the one shown in Figure 1 on page 24.

If you see this kind of a graph, it could indicate that a small amount of packet loss is occurring well
before the system reaches its full processing capability. This small amount of packet loss will make
the throughput look worse than it actually is.

This can help you look in the right place for the source of the problem. Optimizing code may not
help; it may be an architectural problem.

Doing this test will help you identify the true cause of a throughput problem.

In one case where we applied this technique, we identified a cause of packet loss which when fixed
increased the throughput measured by SmartApplications by approximately 60%.

Figure 1. Throughput-Limiting Packet Loss

Packet
Loss

1000

100

10

Traffic Rate
B1940-01

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

General Networking Performance

Application Note 25

4.3.4 Forces

• Throughput tests are typically sensitive to small amounts of packet loss.

• The packet processing mechanism of some applications can cause some small amounts of
packet loss before the application reaches a throughput bottleneck.

4.4 Packet Buffer Management Analysis

4.4.1 Context

You are in the early stages of optimization of networking application. You have considered buffer
management during performance design.

4.4.2 Problem

It can be computationally expensive to use system packet buffer pools. For example, putting packet
buffers into the RTOS buffer library (i.e. netBufLib in VxWorks*) can incur interrupt locks. In
other cases, the IXP400 software may not be replenished with RX buffers quickly enough.

4.4.3 Solution

Analyze the application’s packet buffer management, especially on the performance critical data
path code of your application.

If possible you should try to pre-allocate buffers to the driver layer above the access layer API.
Storing the collection of these buffers in a stack rather than a linked list can minimize the number
of operations that can potentially go to external SDRAM.

Packet buffer management has been the root cause of a significant number of performance issues
we have analyzed to date.

The packet buffers you replenish to the access layer software are used by the NPEs to queue
received packets. If the access layer runs low on replenished buffers, packets will be dropped. If
your software does not handle Rx callbacks in a timely manner packets can also be dropped.

A delay in handling TxDone callbacks can also cause a bottleneck that can affect the receive path
as the access layer may reject newly submitted packets because its internal queues are full. This
means a number of buffers are unavailable for recycling to the packet Rx service.

In one particular application, when we analyzed buffer management, we identified improvements
that yielded an approximate 20% packet processing performance improvement.

4.4.4 Forces

Sometimes you do want to drop packets to handle overload scenarios without wasting CPU cycles.
For details, see “Edge Packet Throttle” on page 27.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
General Networking Performance

26 Application Note

4.5 Polled Packet Processor

4.5.1 Context

You are designing the fundamental mechanism that drives the servicing of network interfaces.

4.5.2 Problem

Some fundamental mechanisms can expose you to more overhead and wasted CPU cycles. These
wasted cycles can come from interrupt preamble/dispatch and context switches.

4.5.3 Solution

You can categorize most applications as interrupt or polling driven or a combination of both.

When traffic overloads a system, it will run optimally if it is running in a tight loop, polling
interfaces for which it knows there is traffic queued.

If the application driver is interrupt-based, you need to look to see how many packets you handle
per interrupt. To get better packet processing performance handle more packets per interrupt
(possibly using a polling approach in the interrupt handler).

Some systems put the packet on a queue from the interrupt handler and then do the packet
processing in another thread. In this kind of a system, you need to understand how many packets
the system handles per context switch. To improve performance increase the number of packets
handled per context switch.

Other systems may drive packet processing, triggered from a timer interrupt. In this case, you need
to make sure the timer frequency and number of packets handled per interrupt is not limiting the
networking performance of your system. In addition, this system is not optimally efficient when the
system is in overload.

Applying these techniques may increase the latency in handling some packets.

Systems based on Linux* are usually interrupt-based.

4.5.4 Forces

• Reducing wasted CPU cycles may complicate the overall architecture or design of an
application.

• Some IP stacks or operating systems can restrict the options in how you design these
fundamental mechanisms.

• You may need to throttle the amount of CPU given to packet processing to allow other
processing to happen even when the system is in overload.

• You want to minimize the latency in processing packets.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

General Networking Performance

Application Note 27

4.6 Fast Path

4.6.1 Context

You are writing the glue code above the IXP400 software access layer API to send packets in and
out of a network stack. You have found the network stack is using a significant proportion of the
CPU cycles [see “Early Performance Measurement” on page 18].

4.6.2 Problem

Third-party and operating-system stacks can take a long time to decide where to send a packet and
they may use a number of interrupt locks or context switches.

4.6.3 Solution

If possible, avoid sending all packets through the full stack. If the packet is destined for another
interface on the processor, you may be able to modify and transmit the packet without sending it to
the main data stack. You can translate the main packet flow into a simple pattern match (classifier)
and change (modifier) algorithm. In one application we observed an approximate 650%
performance gain using this technique. In this application, we had found the IP stack on a particular
RTOS was consuming 70+% of the CPU cycles.

There are two types of fast path, one that runs on the Intel XScale core and the other is offloaded to
the NPE engines.

Fast paths are usually application-specific and as such, customers and third-party partners are in the
ideal position to construct core processor fast-paths.

The IXP42X product line and IXC1100 control plane processors have an NPE accelerated fast-path
that can classify and modify packets from the UTOPIA interface directly to one of the Ethernet
ports. This facility is customizable and configurable with the IXP400 software access-layer API.
An NPE fast-path can give you an even bigger performance gain than a fast-path running on the
Intel XScale core. The current existing NPE fast-path is restricted to the above interfaces.

Some of the access components (such as Ethernet) only allow one piece of client code. This may
mean you have to add a layer of software on top of the access driver to support more than one
client.

4.6.4 Forces

• Many systems and stacks have a common driver model that has a different implementation for
each specific interface.

• Developing a new fast-path will take less effort on the Intel XScale core than on the NPE, but
it will not have the same performance.

4.7 Edge Packet Throttle

4.7.1 Context

The bottleneck of your system is now the IP forwarding or transport parts of the IP stack.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
General Networking Performance

28 Application Note

4.7.2 Problem

You may be wasting CPU cycles processing packets to later drop them when a queue later in the
data path fills.

4.7.3 Solution

When a system goes into overload, it is better to leave the frames back up in the RX queue and let
the edges of your system (NPE, PHY devices) throttle reception. You can avoid wasting core
cycles by checking a bottleneck indicator (i.e. queue full) early in the data path code.

On VxWorks, you can make netTask the highest priority task. This is one easy way to implement a
“self-throttling” system. Alternatively, you could make the buffer replenish code a low-priority
task which would ensure free buffers are only supplied when you have available CPU.

4.7.4 Forces

• Checking a bottleneck indicator may weaken the encapsulation of an internal detail of the IP
stack.

• Implementing an early check will waste some CPU cycles when the system is in overload.

4.8 Packet Buffer Headroom

4.8.1 Context

You are allocating packet buffers for a networking application.

4.8.2 Problem

After the packet is received, it is typically modified before being forwarded to another address.
Some packet modifications will add new data at the start or end of the existing packet. If you have
no room in your packet buffer, the stack may allocate a new packet buffer and chain the packet, or
it may copy the packet to larger storage. In either case valuable CPU cycles will be consumed.

4.8.3 Solution

All packet buffers allocated for network traffic should be 2048 bytes in size and should have store
the packet data initially at a 128-byte offset into the buffer. (In mbuf terminology, m_data is offset.)
This will allow the insertion of encapsulation or headers without chaining.

4.8.4 Forces

Allocating headroom will waste some memory.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Intel XScale® Core and Device-Specific Tuning

Application Note 29

4.9 Detecting Resource Collisions

4.9.1 Context

You make a change and performance drops unexpectedly.

4.9.2 Problem

A resource collision effect could be causing a pronounced performance bottleneck. Examples of
such effects we have previously encountered are:

• TX traffic is being generated from RX traffic, Ethernet is running in half-duplex mode. The
time it takes to generate the TX frame from an RX frame corresponds to the inter-frame gap.
When the TX frame is sent it collides with the next RX frame.

• The Ethernet interface is running full-duplex, but traffic is being generated in a loop and frame
transmission collides with times that the MAC is busy receiving frames.

4.9.3 Solution

These kinds of bottlenecks are difficult to find and can only be checked by looking at counters
drivers, IXP400 software and underlying PHY devices. Error counters on test equipment may also
help.

4.9.4 Forces

Counters may not be available or easily accessible.

5.0 Intel XScale® Core and Device-Specific Tuning

The following sections are specific to the Intel XScale core and the IXP42X product line and
IXC1100 control plane processors.

5.1 Devices’ Silicon Features

5.1.1 Context

You have identified the processing power of the Intel XScale core as the bottleneck in your
application.

5.1.2 Problem

You are using cycles on the Intel XScale core that could be offloaded by the NPEs.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Intel XScale® Core and Device-Specific Tuning

30 Application Note

5.1.3 Solution

Get to know the IXP42X product line and IXC1100 control plane processors and firmware feature
set. IXP42X product line and IXC1100 control plane processors have a number of processor
elements that can operate in parallel to the Intel XScale core. Three NPEs and a DSP coprocessor
can offload some processing from the Intel XScale core and may increase the performance of your
application. Some of these features include:

• NPE Ethernet learning/filtering

• NPE crypto algorithm offload

• NPE fast-path from AAL-5 to Ethernet

• DSP coprocessor MAC instructions

• DSP voice CODEC implementations

• NPE Software DMA

• NPE ATM packet SAR

• NPE HDLC processing

If you believe an application may require some features offloaded to the NPE identify this potential
feature request early in the development cycle.

For new applications that are bound to the Intel XScale core’s CPU, it may be feasible for Intel to
design new offload functionality into the NPE. This might include features such as IP checksum
and TTL update (estimated to improve routing performance by 4%), 802.11 frame conversion. This
kind of work needs some time to evaluate and implement.

5.1.4 Forces

• Integrating offloaded features may take some effort. Typically you need to replace or glue in
the offloaded feature to an existing code base or software stack.

• New NPE features can only be implemented by Intel or some eco-system partners.

5.2 Understanding the Devices

5.2.1 Context

You are starting to work with the IXP42X product line and IXC1100 control plane processors.

5.2.2 Problem

It is difficult to optimize an application for a processor you do not understand.

5.2.3 Solution

You must understand the powerful device you are using. Extensive documentation is available for
the IXP42X product line and IXC1100 control plane processors and software.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Intel XScale® Core and Device-Specific Tuning

Application Note 31

Read Intel® IXP425 Network Processor Based on Intel® XScale™ Microarchitecture, Technical
Specification, May 2002, ARM Architecture Reference Manual (2nd Edition), and Intel® IXP425
Network Processor Based on Intel® XScale™ Microarchitecture Developer's Manual.

5.2.4 Forces

The documentation is “extensive.” Concentrate initially on the introductory sections.

5.3 Branch Target Buffer

5.3.1 Context

You are developing software for a processor based on the Intel XScale core.

5.3.2 Problem

The Intel XScale core disables the BTB by default after reset and it is invalidated when software
invalidates the instruction cache.

5.3.3 Solution

The BTB needs to be explicitly enabled when the IXP42X product line and IXC1100 control plane
processors come out of reset.

The Intel XScale core uses dynamic branch prediction to reduce the penalties associated with
changing the flow of program execution. The Intel XScale core features a branch target buffer that
provides the instruction cache with the target address of branch type instructions.

Many implementations of board support packages for IXP42X product line and IXC1100 control
plane processors do not enable the BTB.

This change was tried in two applications and we observed a 4-5% performance improvement.

For more information on the BTB, see Intel® IXP425 Network Processor Based on Intel®
XScale™ Microarchitecture, Technical Specification, May 2002.

5.3.4 Forces

You do not have to manage the BTB explicitly by software but you do need to enable it during
initialization.

5.4 Latest Intel® IXP400 Software Access Layer

5.4.1 Context

You have a functional system that does not meet its performance requirements.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Intel XScale® Core and Device-Specific Tuning

32 Application Note

5.4.2 Problem

Your latest performance data points to the IXP400 software access layer as the performance
bottleneck.

5.4.3 Solution

Check to make sure you have the latest IXP400 software access layer release. Each IXP400
software release has a number of performance improvements. For example, a future release will
have a polling Ethernet access layer interface that consumes less than 500 clock cycles per packet
on a 533-MHz IXP425 network processor.

You can download the latest release from this Web site:
http://www.intel.com/design/network/products/npfamily/ixp425swr1.htm

5.4.4 Forces

Upgrading to the latest IXP400 software release can take some engineering and validation effort.

5.5 Disabled Counters/Statistics

5.5.1 Context

The IIXP400 software access layer is part of the data path. You have completed integration testing
of your application.

5.5.2 Problem

The IXP400 software access layer keeps a number of counters and statistics to facilitate integrating
and debugging of both the access layer and the system as a whole. These counters will usually
incur a read and write or increment in main (possibly cached) memory.

5.5.3 Solution

You can disable many of the internal IXP400 software counters and statistics by un-defining some
macros.

For Ethernet, turn off IX_ETH_ACC_DATA_PLANE_STATS_ON in
ethAcc/include/IxEthAccDataPlane_p.h.

For the QMGR, set IX_QMGR_STATS_UPDATE_ENABLED to zero in
qmgr/IxQMgrDefines_p.h.

Other components will have their own #defines to enable/disable statistics.

In one application, use of this pattern increased packet processing throughput by up to 3%.

Future releases will simplify the global disabling of counters and statistics in the access-layer
software.

http://www.intel.com/design/network/products/npfamily/ixp425swr1.htm

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Intel XScale® Core and Device-Specific Tuning

Application Note 33

5.5.4 Forces

Disabling counters and statistics will remove useful debugging information.

5.6 Disabled Parameter Checks

5.6.1 Context

The IXP400 software access layer is part of the data path. You have completed integration testing
of your application.

5.6.2 Problem

The access layer, by default, has code that checks parameters for legal values. This facilitates the
integration and debugging of both IXP400 software and the system as a whole. These checks will
usually check conditions that never occur once the system and customer code has been fully tested
and integrated.

5.6.3 Solution

You can disable many of these parameter checks by un-defining some macros.

For Ethernet data path, turn off IX_ETH_ACC_DATA_PLANE_FUNC_ARG_CHECKS in
ethAcc/include/IxEthAccDataPlane_p.h.

For the QMGR, set IX_QMGR_PARM_CHECKS_ENABLED to zero in qmgr/IxQMgrDefines_p.h.

Other components will have their own #defines to enable/disable parameter checking.

Application of this pattern increased packet processing throughput by ~1% in one application. This
pattern does not provide as much improvement because the parameters being checked are usually
in registers [see “Understanding the Devices” on page 30].

Future releases will simplify the global disabling of parameter checks in the access-layer software.

5.6.4 Forces

Removing these checks may obfuscate an issue making it harder to detect incorrect parameter
checks in customer code.

5.7 Stall Instructions

5.7.1 Context

You have run some tests using performance measurements [see “PMU Performance Measurement”
on page 19] that indicate a large number of Intel XScale core cycles are being lost due to data
dependency stalls.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Intel XScale® Core and Device-Specific Tuning

34 Application Note

5.7.2 Problem

You may find over 50% of the cycles are lost to stalls on a 533-MHz processor. You need to
identify the pieces of code that are causing these stalls.

5.7.3 Solution

One simple way to identify “hot instructions” is to use a program counter sampler. The sampler
would run at a regular interval and count the number of times each instruction is executed while
running the networking performance test.

If you run the test for a significant period of time you should see a large number of samples on the
instructions that stall most often.

The reference Performance Profiling Techniques on Intel® XScale™ Microarchitecture
Processors Application Note, Aug. 2002 contains significant PMU example code which includes a
PC sampler. It is anticipated that a future release of the IXP400 software will provide a C-function
API to simplify access to the PMU.

You can then use other patterns to reduce the impact of these stalls. See the following sections for
examples.

• “Intel XScale® Core PLD Instruction” on page 35

• “Stall-Filling Code” on page 46

• “Queue Look-Ahead” on page 44

5.7.4 Forces

Adding sampling code can affect the behavior of the system under test.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Intel XScale® Core and Device-Specific Tuning

Application Note 35

5.8 Profiling Tools

5.8.1 Context

You are at an early stage of performance improvement and have not identified a specific bottleneck
but you have proven the current bottleneck is the speed of execution of the code on the Intel XScale
core.

5.8.2 Problem

You have a working system that is not meeting a performance requirement. You suspect raw
algorithmic processing power is the current bottleneck; you need to identify the bottleneck code.

5.8.3 Solution

A number of profiling tools exist to help you identify code hotspots. Typically, they identify the
percent of time spent in each C-function in your code base.

• Rational Quantify* contains an excellent performance profiler (not to mention Purify*, the
memory corruption/leak checker). It is a useful tool for finding where application bottlenecks
are. The usage model is very similar to that used to gather code coverage: You instrument your
code and then execute that code on the board.

• Gprof is available for many Linux-based systems.

• Some ICEs have profiling tools (i.e., visionClick*).

5.8.4 Forces

• Profiling tools can affect the performance of the system.

• Some tools will not be available for your RTOS.

• Some profiling tools cost money.

• Each of these tools have a learning curve but could pay back the time and money investment.

5.9 Intel XScale® Core PLD Instruction

5.9.1 Context

You have identified a stall instruction [see “Stall Instructions” on page 33].

5.9.2 Problem

You want to reduce the time the processor spends stalled due to a data dependency.

5.9.3 Solution

The IXP425 network processor has a true prefetch load instruction (PLD). The purpose of this
instruction is to preload data into the data and mini-data caches. If the application is bounded by the
memory latency, prefetch can effectively hide the memory latency.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Intel XScale® Core and Device-Specific Tuning

36 Application Note

Data prefetching allows hiding of memory transfer latency while the processor continues to
execute instructions. The judicious use of the prefetch instruction can enormously improve
throughput performance of the IXP425 network processor.

Look at the line of C-code that generates the stall instruction [see “Stall Instructions” on page 33].
Insert an explicit assembly language PLD instruction some time before the stall instruction [see
Stall Instructions]. On a 533-MHz IXP425 network processor, you could issue the PLD 70 to 90
clock cycles before the stall.

Data prefetch can be applied not only to loops but also to any data references within a block of
code. Prefetch also applies to data writing when the memory type is enabled as write-allocate.

The IXP425 network processor prefetch load instruction is a true prefetch instruction because the
load destination is the data or mini-data cache and not a register. The prefetch load is a hint
instruction and does not guarantee that the data will be loaded.

Using pre-fetches requires careful experimentation. In some cases we did find performance
improvements and in others performance degraded.

Overuse of pre-fetches can use shared resources and degrade performance. This can happen if the
bus traffic requests exceed the system resource capacity, the processor stalls. The IXP425 network
processor data transfer resources are:

• Four fill buffers

• Four pending buffers

• Eight half-cache line write buffer

SDRAM resources are typically:

• Four memory banks

• One page buffer per bank referencing a 4-K address range

• Four transfer request buffers

Spread prefetch operations over calculations so as to allow bus traffic to free flow and to minimize
the number of necessary pre-fetches.

5.9.4 Forces

• Overuse of pre-fetches can use shared resources and degrade performance.

• The pre-fetch is an instruction specific to the Intel XScale core. To make the code portable the
instruction needs to be implemented by a #define.

5.10 Separate SDRAM Memory Banks

5.10.1 Context

You have completed a performance measurement [see “PMU Performance Measurement” on
page 19]. This data has identified a significant percentage of cycles have been lost due to data
dependency stalls.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Intel XScale® Core and Device-Specific Tuning

Application Note 37

5.10.2 Problem

SDRAMs are typically divided into four banks. Thrashing occurs when subsequent memory
accesses within the same memory bank access different pages. The memory page change adds
three to four bus-clock cycles to memory latency.

5.10.3 Solution

This type of thrashing can be resolved by placing the conflicting data structures into different
memory banks or by paralleling the data structures such that the data resides within the same
memory page. This can reduce the latency reading data from memory and reduce the extent of
many stalls.

Allocate packet buffers in their own bank. The SDRAM controller can keep a page partially open
in four different memory banks. You could also split packet buffers across two banks.

It is also important to ensure that instruction and data sections are in different memory banks, or
they will continually thrash the memory page selection.

In one networking application this technique increased packet processing performance by
approximately 10%. In another it had no effect.

5.11 Line-Allocation Policy

5.11.1 Context

You are using data cache for data or packet memory. The cache is enabled.

5.11.2 Problem

The cache line-allocation policy can affect the performance of your application.

5.11.3 Solution

The Intel XScale core makes a decision about placing new data into the cache based on the
“line-allocation policy.”

If the line-allocation policy is read-allocate, all load operations that miss the cache, request a
32-byte cache line from external memory and allocate it into either the data cache or mini-data
cache. Store operations that miss the cache will not cause a line to be allocated.

With a read/write-allocate policy, load or store operations that miss the cache will request a 32-byte
cache line from external memory if the cache is enabled.

Most of the regular data and the stack for your application should be allocated to a read-write
allocate region. Most applications will often write and read this data.

Write-only data (or data that is written and subsequently not used for a long time) should be placed
in a read allocate region. Under the read-allocate policy, if a cache write miss occurs a new cache
line will not be allocated, and hence will not evict critical data from the data cache.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Intel XScale® Core and Device-Specific Tuning

38 Application Note

In general we have found read-allocate to be the best performing policy for packet data. In one
application, we saw an improvement of approximately 10% when packet memory was set up
read-allocate.

5.11.4 Forces

The appropriate cache line-allocation policy can be application-dependent. It is worth
experimenting with both types of line-allocation policies.

5.12 Cache Write Policy

5.12.1 Context

You are using data cache for data or packet memory. The cache is enabled.

5.12.2 Problem

The cache write policy can affect the performance of your application.

5.12.3 Solution

Cached memory also has an associated write policy. A write-through policy instructs the data cache
to keep external memory coherent by performing stores to both external memory and the cache. A
write-back policy only updates external memory when a line in the cache is cleaned or needs to be
replaced with a new line.

Generally, write-back provides higher performance because it generates less data traffic to external
memory.

In a multiple-bus/master environment, it may be necessary to use a write-through policy or explicit
cache flushes, if data is shared across multiple masters.

5.12.4 Forces

The appropriate cache write policy can be application-dependent. It is worth experimenting with
both types of write policies.

5.13 Write Coalescing

5.13.1 Context

You are optimizing performance for a processor based on the Intel XScale core. A performance
critical part of the application does multiple writes to memory locations close together.

5.13.2 Problem

Multiple writes consume clock cycles.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Intel XScale® Core and Device-Specific Tuning

Application Note 39

5.13.3 Solution

Write coalescing allows you to bring together a new store operation with an existing store
operation already resident in the write buffer. The new store is placed in the same write buffer entry
as an existing store when the address of the new store falls in the four-word, aligned address of the
existing entry.

The K bit in the Auxiliary Control Register (CP15, register 1) is a global enable/disable for
allowing coalescing in the write buffer. When this bit disables coalescing, no coalescing will occur
regardless the value of the page attributes. If this bit enables coalescing, the page attributes X, C,
and B are examined to see if coalescing is enabled for each region of memory.

Write coalescing can only be used on memory that is free of side effects.

5.13.4 Forces

If coalescing is enabled in the write buffer, writes may occur out of program order to external
memory. You may need to perform explicit drain operations of the write buffer and fill buffer to
maintain consistency between the store requests and the fill buffer.

5.14 Faster Memory

5.14.1 Context

You are designing a board and have an option to use CAS 2 or 3 SDRAM.

5.14.2 Problem

Memory latency affects the performance of applications.

5.14.3 Solution

The IXP42X product line and IXC1100 control plane processors can work with memory with CAS
latency 2 or 3 memory. CAS 2 memory will provide better general performance by reducing the
latency in accessing SDRAM.

In one application, the overall packet processing improvement was estimated at approximately 8%,
when CAS 2 memory is used.

5.14.4 Forces

CAS-2 memory is generally more expensive and it may be difficult to source extended temperature
variants.

5.15 Cache-Aligned Packet Buffers

5.15.1 Context

Your application/driver caches packet buffers and buffer descriptors.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Intel XScale® Core and Device-Specific Tuning

40 Application Note

5.15.2 Problem

You need to use the cache as effectively as possible. On some systems, the descriptors may be
larger than a cache line.

5.15.3 Solution

Allocate IX_MBUFs, clBlks (BSD) and packet data on cache line boundaries. This will maximize
the use of cache when accessing these data structures.

Care must be taken to make sure the descriptors and packet storage for different packets do not
share the same cache line. If they do, and they are cacheable, this can be the cause of subtle
difficult-to-find bugs.

Using this pattern can also simplify the addition of an instruction [see “Intel XScale® Core PLD
Instruction” on page 35].

5.15.4 Forces

You may waste some memory if the size of these data structures in your operating system is not
divisible by the cache line size. Typically this memory wastage is worth the increase in
performance.

5.16 On-Chip Memory

5.16.1 Context

You have a piece of data that is frequently used by the code on your data path.

5.16.2 Problem

Accesses to this data are causing stalls because the cache is heavily used and the data is being
frequently evicted. Due to the Intel XScale core’s round-robin replacement cache policy, all cache
data that is not locked is eventually evicted.

5.16.3 Solution

You can lock tags associated with 32-byte lines in the data cache, thus creating the appearance of
data RAM. Any subsequent access to this line will always hit the cache unless it is invalidated.

There are two methods for locking tags into the data cache; the method of choice depends on the
application.

One method is used to lock data that resides in external memory into the data cache and the other
method is used to re-configure lines in the data cache as data RAM.

Locking data from external memory into the data cache is useful for lookup tables, constants, and
any other data that is frequently accessed. Re-configuring a portion of the data cache as data RAM
is useful when an application needs scratch memory (bigger than the register file can provide) for
frequently used variables. These variables may be strewn across memory, making it advantageous
for software to pack them into data RAM memory.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Intel XScale® Core and Device-Specific Tuning

Application Note 41

In order to reduce cache pollution between two processes and avoid frequent cache flushing during
context switch, the OS could potentially lock critical data sections in the cache.

You can also lock blocks of instructions into the instruction cache. However a case has not been
found yet where the instruction cache was being overloaded to this extent.

5.16.4 Forces

Locking data into the cache reduces the amount of cache available to the processor for general
processing.

5.17 Mini-DCache

5.17.1 Context

You are optimizing performance on a processor based on the Intel XScale core. The data cache is
being used heavily.

5.17.2 Problem

Frequently used data is being constantly evicted by temporarily cached memory such as packet
data.

5.17.3 Solution

Use the mini-dcache. It is a 2-K block of fast memory. You can use it to reduce the pressure on the
main dcache.

You can map the following kinds of data to mini-dcache:

• Put your stack into the mini-dcache. One application saw an approximate 10% performance
improvement using this technique. Another application saw no improvement.

• Put packet data into the mini-dcache. One application saw an approximately 5% performance
improvement using this technique.

• Use the mini-dcache for frequently used tables.

5.17.4 Forces

The mini-dcache may not be available in future iterations of the Intel XScale core.

5.18 Optimized Libraries

5.18.1 Context

You are optimizing an application for the Intel XScale core. Your data path uses some of the
standard C library functions (for example, memcpy, memcmp).

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Intel XScale® Core and Device-Specific Tuning

42 Application Note

5.18.2 Problem

Some compilers come with default C implementations of the standard C libraries. These may not
run optimally on the Intel XScale core.

5.18.3 Solution

Intel XScale core-optimized implementations of some of the standard C libraries are available both
from Intel and the Internet.

For example, Red Hat* has a number of libc functions, specific to the Intel XScale core, on their
Web site. [See Red Hat* Intel® XScale™ implementations of libc.] A memcpy optimized for the
little-endian PXA250 and PXA210 processors, based on the Intel XScale core, is detailed in the
appendix of the Intel® PXA250 and PXA210 Processors Optimization Guide, Oct. 2002.

An efficient memcpy is something that is processor-specific (sometimes even target-specific —
depending on factors such as memory widths), so it's most sensible for RTOS infrastructure to
supply a generic memcpy that's adequate and let the compiler/processor/target override it with its
own if necessary.

Another good example is a count-leading-zeros operation. The Intel XScale core has a CLZ
instruction but many systems implement it as a C-function.

On a related note, make sure you do not re-implement functions that are already available in the
standard C library. The reference Intel® IXP425 Network Processor Based on Intel® XScale™
Microarchitecture, Technical Specification, May 2002 shows the performance difference between a
C-implementation of memset and an one specific to the Intel XScale core, can be a factor of 30.

5.19 Aligned/Grouped Literal Pools

5.19.1 Context

You are using some literals or global variables on the data path.

5.19.2 Problem

Use of global variables and literals can be time consuming on the data path. These are usually
accesses to SDRAM and if cached will pull in a cache line and evict another.

5.19.3 Solution

The Intel XScale core does not have a single instruction that can move all literals (a constant or
address) to a register. Most compilers for the Intel XScale core load the literal from a memory
location that is initialized with the constant or address. These blocks of constants are referred to as
literal pools. These data blocks are located in the text or code address space so that they can be
loaded using PC-relative addressing.

References to the literal pool area load the data into the data cache instead of the instruction cache.
Therefore, the literal might be present in both the data and instruction caches, resulting in waste of
space.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Intel XScale® Core and Device-Specific Tuning

Application Note 43

For maximum efficiency, the compiler should align all literal pools on cache boundaries and size
each pool to a multiple of 32 bytes (the size of a cache line).

In addition, you could group highly used literal pool references into the same cache line. When one
of the literals has been loaded, the other seven are available immediately from the data cache.

Use of this technique increased packet processing of one application by less than 1%.

5.20 Modulo/Divide Avoided

5.20.1 Context

You are writing code for a processor based on the Intel XScale core.

5.20.2 Problem

The processor does not directly support modulo or divide instructions and will require a call to a
library support function.

5.20.3 Solution

You can translate some modulo or divide calculations into bit masks or shifts.

For example, modulo for dimensions that are a power of 2 can use a mask, e.g., instead of (var % 8)
use (var & 7). Likewise, some divisions by constants can be converted into shift and add
instructions.

Most compilers should be capable of generating this optimization but it may be worth examining
generated code for any modulo or divide on your data path.

5.20.4 Forces

Bit masks/shifts are less readable code than division or modulo.

5.21 Minimal Cache Flush/Invalidation

5.21.1 Context

You have enabled caching for packet data memory.

5.21.2 Problem

Cached data exchanged with an NPE interface must be flushed when written and invalidated when
read by the Intel XScale core.

5.21.3 Solution

Customer code must explicitly handle flush/invalidation of any of the packet memory they
read/modify.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Intel XScale® Core and Device-Specific Tuning

44 Application Note

When transmitting data you should only flush packet memory cache lines you have written. When
receiving data you should only invalidate the packet cache lines that you will read.

The IXP400 software handles the flush/invalidation of the IX_MBUF.

Flush/invalidate code needs to be carefully analyzed to ensure unnecessary flush/invalidates are
not being initiated.

5.22 Endian Analysis

5.22.1 Context

The IXP42X product line and IXC1100 control plane processors can run as a big- or little-endian
processor.

5.22.2 Problem

The performance of some applications can be affected by the processor’s endian mode.

5.22.3 Solution

Networking protocols typically require big-endian data format. If the main processing requirement
of your application involves reading or writing big-endian data it may be more efficient when
running the processor in big-endian mode.

PCI devices typically work in little-endian data format. If the main processing requirement of your
application involves interacting with PCI devices it may be more efficient when running the
processor in little-endian mode.

5.22.4 Forces

A little-endian implementation may not be available for all RTOS.

5.23 Queue Look-Ahead

5.23.1 Context

You are developing access layer software for the IXP42X product line and IXC1100 control plane
processors. You are reading and processing values from a hardware queue in a loop.

5.23.2 Problem

Reading a hardware queue will cause the processor to stall when you depend on the data read from
the queue. This stall is in the order of 40 clock cycles on a 533-MHz IXP425 network processor.

5.23.3 Solution

Read and process the queue values with a look-ahead loop. Try to launch the next queue read when
the previous value read from the queue is being processed.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Code and Design Level

Application Note 45

This will not help the first stall on the first queue value read but if there are a number of queue
values handled in a loop the subsequent values will not incur the same stall.

In one application this optimization increased packet processing throughput by approximately 3%.

5.24 Queue Status-Check Removed

5.24.1 Context

You are developing access layer software for the IXP42X product line and IXC1100 control plane
processors.

5.24.2 Problem

Using the hardware queue status information will cause the processor to stall.

5.24.3 Solution

Avoid using the hardware queue status information if possible. If a queue empties when you read it
you will read a value of 0. This means you do not need to read the queue status to detect underflow.
Likewise, you may be able to avoid reading queue status to detect overflow on queue writes. This
may, however, complicate your code.

Understand the underlying Qmgr functions you are using.

The removal of unnecessary queue status checks, in one application increased packet-processing
performance by approximately 10%.

6.0 Code and Design Level

This section covers some general code tuning guidelines that are applicable to most processors. In
many cases, these optimizations may decrease the readability, maintainability, or portability of
your code. Be sure you are optimizing code that needs optimization [see “Avoiding Premature
Code Tuning” on page 58].

6.1 Reordered Struct

6.1.1 Context

You have identified a bottleneck segment of code on your application data path. The code uses a
large struct.

6.1.2 Problem

The struct spans a number of cache lines.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Code and Design Level

46 Application Note

6.1.3 Solution

Reorder the fields in a struct to group the frequently accessed fields together. If all of the accessed
fields fit on a cache line, the first access will pull them all into cache, potentially avoiding
data-dependency stalls when accessing the other fields.

Organize all frequently written fields into the same half-cache-line.

6.1.4 Forces

Re-ordering structs may not be feasible if the struct is mapped to a packet or configuration
information stored in flash.

6.2 Supersonic ISR

6.2.1 Context

Your application uses multiple interrupt service routines to signal the availability of data on an
interface and trigger the processing of that data.

6.2.2 Problem

Interrupt service routines can interfere with other ISR and packet processing code.

6.2.3 Solution

Keep ISRs short. Design them to be re-entrant.

An ISR should just give a semaphore, set a flag or en-queue a packet. You should de-queue and
process the data outside the ISR. This obviates the need for interrupt locks around data in an ISR.

Interrupt locks in a frequent ISR can have hard-to-measure effects on the overall system.

See reference Doing Hard Time for more detailed interrupt design guidelines.

6.3 Stall-Filling Code

6.3.1 Context

You have identified a stall instruction [see “Stall Instructions” on page 33] and traced it back to the
line of C-code that stalls the processor.

6.3.2 Problem

The processor stalls due to a data dependency.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Code and Design Level

Application Note 47

6.3.3 Solution

Try to insert code from later in your algorithm between the request for the data (the code that
generates the load instruction) and the code that eventually uses the data (result of the load). If you
can perform some other code that is independent of the data that can cause the stall your
application can use the clock cycles that would otherwise be lost to a stall.

6.3.4 Forces

• Application of this pattern can sometimes make code less readable.

• Carefully comment the reason for moving the code to ensure other engineers do not undo this
kind of optimization.

• The compiler may undo some of the changes that you are trying to accomplish by moving C
code. Check the generated assembly.

6.4 Assembly-Language-Critical Functions

6.4.1 Context

You have identified a C function that consumes a significant portion of the data path.

6.4.2 Problem

The code generated for this function may not be optimal for your processor.

6.4.3 Solution

Re-implement the critical function directly in assembly language.

Use the best compiler for the application [see “Best Compiler for Application” on page 15] to
generate initial assembly code, then hand-optimize it.

6.4.4 Forces

• Modern compiler technology is beginning to out perform the ability of humans to optimize
assembly language for sophisticated processors.

• Assembly language is more difficult to read and maintain.

• Assembly language is more difficult to port to other processors.

6.5 Inline Functions

6.5.1 Context

You have identified a small C function that is called frequently on the data path.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Code and Design Level

48 Application Note

6.5.2 Problem

The overhead associated with the entry and exit to the function may become significant in a small
function, frequently called on the application data path.

6.5.3 Solution

Declare the function inline. This will mean the function will be inserted directly into the code of the
calling function.

6.5.4 Forces

• Inline functions can increase the code size of your application and add stress to the instruction
cache.

• Inline functions make debugging more difficult.

• A function call itself can limit the compiler’s ability to optimize register usage in the calling
function.

• A function call may cause a data dependency stall when a register waiting for an SDRAM
access is still in flight.

6.6 Cache-Optimizing Loop

6.6.1 Context

You have identified a critical loop that is a significant part of the data-path performance.

6.6.2 Problem

The structure of the loop or the data on which it operates, could be “trashing” the data cache.

6.6.3 Solution

You can consider a number of loop/data optimizations:

• Array merging – the loop uses two or more arrays, merge them into a single array of a struct

• Induction variable interchange

• Loop fusion

For more details, see the Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor Developer’s Manual.

6.7 Minimizing Local Variables

6.7.1 Context

You have identified a function that needs optimization. It contains a large number of local
variables.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Code and Design Level

Application Note 49

6.7.2 Problem

A large number of local variables will incur the overhead of storing them on the stack. The
compiler may incur the overhead of setting up and restoring the frame pointer.

6.7.3 Solution

Minimize the number of local variables. This may mean the compiler can store all the locals and
parameters in registers.

6.7.4 Forces

Removing local variables can decrease the readability of code or require extra calculations during
the execution of the function.

6.8 Explicit Registers

6.8.1 Context

You have identified a function that needs optimization. A local variable or a piece of data is
frequently used in the function.

6.8.2 Problem

Sometimes the compiler does not identify a register optimization.

6.8.3 Solution

It is worth trying explicit register hints to local variables that are frequently used in a function.

It may also be useful to copy a frequently used part of a packet that is used frequently in a data path
algorithm into a local variable declared register. An optimization of this kind made a performance
improvement of approximately 20% in one customer application.

6.8.4 Forces

The register keyword is only a hint to the compiler.

6.9 Removing Unnecessary Counters

6.9.1 Context

Your application code maintains counters for packets or memory on the data path. In some
networking applications, there are separate counters at every layer of the networking stack.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Code and Design Level

50 Application Note

6.9.2 Problem

Updating counters on the data path may cause accesses to SDRAM or add strain to the data cache.
A counter update is usually a read/increment/write operation and could incur a data dependency
stall.

6.9.3 Solution

Search for and remove all unnecessary counter and statistic updates on the critical data path code.

6.9.4 Forces

Counters can be useful when debugging or integrating an application.

6.10 Duff’s Device

6.10.1 Context

You are writing a possible odd number of bytes to another location in memory or a
memory-mapped output register.

6.10.2 Problem

In a loop with a small amount of processing, the loop boundary checks can take a significant
amount of the processing of the loop.

6.10.3 Solution

Duff’s device is a devious, unrolled, byte-copying loop. It is also a generic technique for unrolling
loops.

In a conventionally controlled loop with one statement in the loop body, two statements will be
executed per iteration. With a mod 8 Duff’s device, you get the equivalent of 9/8 (1.125) statements
per iteration, 44% fewer statements.

For more information, see question 20.35 in the C-FAQ at the following URL:
http://www.eskimo.com/~scs/C-faq/top.html

6.10.4 Forces

• The code is hard to understand; comment it well.

• Loops with a fixed number of iterations may be unrolled automatically by the compiler. This
compiler feature may require the use of a compiler switch.

http://www.eskimo.com/~scs/C-faq/top.html

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Code and Design Level

Application Note 51

6.11 Optimized Hardware Register Write

6.11.1 Context

The data path code does multiple writes to one or more hardware registers.

6.11.2 Problem

Read-operation-writes on hardware registers can cause the processor to stall.

6.11.3 Solution

Read-operation-write statements can be broken up to hide some of the latencies when dealing with
hardware registers. For example:

Would execute faster as:

One of the read dependency stalls is eliminated.

Secondly, search the data path code for multiple writes to the same hardware register. Combine all
the separate writes to a single write to the actual register. For example, some applications disable
hardware interrupts using multiple set/resets of bits in the interrupt enable register.

In one such application when we manually combined these write instructions we saw an
approximate 4% performance improvement.

*reg1ptr |= 0x0400;

*reg2ptr &= ~0x80;

reg1 = *reg1ptr

reg2 = *reg2ptr

reg1 |= 0x0400;

reg2 &= ~0x80;

*reg1ptr = reg1;

*reg2ptr = reg2;

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Code and Design Level

52 Application Note

6.12 Avoiding the OS Packet-Buffer Pool

6.12.1 Context

The application uses a system packet buffer pools.

6.12.2 Problem

Memory allocation or calls to packet buffer pool libraries may be slow. In some operating systems,
these functions lock interrupts and use local semaphores to protect simultaneous access to
shared-heaps.

6.12.3 Solution

Avoid allocating or interacting with the RTOS packet buffer pool on the data path. Pre-allocate
packet buffers outside the data path and store them in lightweight s/w pools/queues.

Stacks or arrays are typically faster than linked lists for packet buffer pool collections, as they
require less memory accesses to add and remove buffers.

6.12.4 Forces

OS packet-buffer pools implement buffer collections. Writing another light collection duplicates
functionality.

6.13 C-Language Optimizations

6.13.1 Context

You have identified a function or segment of code that is consuming a significant portion of the
Intel XScale core’s clock cycles on the data path. You may have identified this code using profiling
tools [see “Profiling Tools” on page 35] or a performance measurement [see “PMU Performance
Measurement” on page 19].

6.13.2 Problem

A function or segment of C-code needs optimization.

6.13.3 Solution

You can try a number of C-language level optimizations:

• Pass large function parameters by reference, never by value. They take time to copy and use
registers.

• Avoid array indexing. Use pointers.

• Minimize loops by collecting multiple operations into a single loop body. You may not want to
do this sometimes to preserve data cache.

• Avoid long if-then-else chains. Use a switch statement or a state machine.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Code and Design Level

Application Note 53

• Use int (natural word-size of the processor) to store flags rather than char or short.

• Avoid floating point calculations on the data path.

• Use decrementing loop variables e.g., “for (i=10; i--;) {do something}” or even better “do
{ something } while (i--)”. Look at the code generated by your compiler in this case. The Intel
XScale core’s processor has the ability to modify the processor condition codes (using adds
and subs rather than add and sub) saving a “cmp” instruction in loops.
For more details, see the Intel® IXP42X Product Line of Network Processors and IXC1100
Control Plane Processor Developer’s Manual.

• Adjust structure sizes to power of two

• Place the most frequently true statement first in if-else statements

• Place frequent case labels first

• Write small functions. The compiler likes to reuse registers as much as possible and cannot do
it in complex nested code.

For other similar tips, see chapter 29 in Code Complete.

6.13.4 Forces

• Good compilers will make a number of these optimizations.

• Avoid the trap of premature optimization [see “Avoiding Premature Code Tuning” on
page 58].

6.14 Pre-Computed Data

6.14.1 Context

You have identified a code bottleneck in a function using a performance measurement [see “PMU
Performance Measurement” on page 19] or profiling tools [see “Profiling Tools” on page 35].

6.14.2 Problem

A computation on the data path is taking significant time.

6.14.3 Solution

Do the computation at initialization time. Store the results for fast indexing by the data path.

A pre-computed array with two input variables in the range 0-255 and a word size result requires
only 64-K words storage.

6.14.4 Forces

Storage of the results of computation will use memory.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
VxWorks*-Specific Improvements

54 Application Note

7.0 VxWorks*-Specific Improvements

The following techniques are specific to VxWorks. Typically, these techniques can be applied in
the board-support package (BSP) — when configuring the cache attributes of the memory map —
or the END driver.

7.1 Aligned Mbufs and Clusters

7.1.1 Context

You are allocating VxWorks* Mbufs and clusters.

7.1.2 Problem

At time of writing VxWorks Mbufs are an inconvenient size, 36 bytes (32 bytes for the mbuf,
4 bytes for pool id). If you allocate them in the conventional manner you will get seven out of
every eight mbufs straddling cache lines. This will cause invalidates or flushes to operate on two
cache lines instead of one causing serious functional problems.

7.1.3 Solution

Use the Intel-supplied IxOsBuffMgt and IxOsBuffPoolMgt APIs to allocate mbufs for the IXP400
software. This API will allocate VxWorks* compatible, cache friendly mbufs at the cost of some
memory padding.

7.1.4 Forces

• The Intel-supplied APIs are different from the standard netBufLib. A small amount of effort
will be required to get familiar with them.

• They will cost some extra memory usage but typically you do not allocate more than
128 mbufs per receive interface.

7.2 Avoiding Separate Packet Buffer Pools

7.2.1 Context

You are using multiple packet buffer pools.

7.2.2 Problem

Multiple, separate packet buffer pools can add extra inefficiencies to the buffer management code.

7.2.3 Solution

Increase the size of the network data buffer stack instead of using multiple buffer pools.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

VxWorks*-Specific Improvements

Application Note 55

7.2.4 Forces

• You need to work to size the network data buffer stack to account for multiple sources using it.

• You no longer have a guaranteed source of packet buffers for a particular driver.

7.3 Avoiding System Packet-Buffer Pool

7.3.1 Context

You are using netBufLib on the data path.

7.3.2 Problem

You cannot avoid allocating packet buffers on the data path [see “Packet Buffer Management
Analysis” on page 25]. However, netBufLib is not efficient for some operations.

7.3.3 Solution

Write wrappers for netTupleGet and clChainFree. Call the wrappers from all END drivers (use the
Intel-supplied IxOsBuffPoolMgt). The free function should add the packet buffer to its own chain
free and only return to the system pool when the system pool is lower than a configured threshold
or the internal chain is full. The alloc function should allocate from the internal chain and call
netTupleGet (a very heavyweight function) only if the internal chain is empty. The alloc should
reset data pointers, lengths and fields.

This is a VxWorks*-specific pattern for the implementation of some of the general concepts in
Packet Buffer management Analysis.

7.3.4 Forces

This adds another library for application developers to learn.

7.4 Avoiding Unnecessary Packet-Buffer Allocations

7.4.1 Context

You have code that allocates a packet buffer then tries to replenish it to an IXP400 software API.

7.4.2 Problem

The algorithm relies on a failure from the IXP400 software API then frees the allocated packet
buffer.

7.4.3 Solution

Some of the IXP400 software’s APIs will help in this regard. The ATM API knows how many new
replenish buffers it can handle, but the Ethernet API will just provide a failure indication when it
can no longer take replenish buffers.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
VxWorks*-Specific Improvements

56 Application Note

Avoid unnecessary allocations. Rewrite the packet buffer management code to keep track of
outstanding buffers. Better still, pre-allocate them to a fixed size collection.

In one implementation of the VxWorks* Ethernet END driver it keeps calling netTupleGet until it
fails or the replenish call fails, in which case it has to free the packet buffer it allocated. This is
wasteful.

7.4.4 Forces

Some moderate complexity may be required to optimize replenishment of packet buffers for
particular interfaces.

7.5 Batch Packets Handler

7.5.1 Context

You have an application or drivers that use netJobAdd.

7.5.2 Problem

Submitting single packets to netJobAdd could cause a context switch per packet in polled mode. In
interrupt mode, there is a probability of a ring packet buffer overflow under high load.

7.5.3 Solution

Search for all usage of netJobAdd in your application and the networking stack software you are
using. Inspect the code to determine if it calls netJobAdd for every packet.

If it does change the code to de-queue a number of packets, chain them together and submit them
all. This kind of packet batching can also make better use of cache by ensuring the functions stay in
instruction cache.

7.6 Avoiding Chaining

7.6.1 Context

You are implementing an END driver.

7.6.2 Problem

END driver examples typically have a large number of checks for chained packet buffers. These
checks are on the data path and can incur a stall.

7.6.3 Solution

Allocate your packet buffers to avoid chaining [see “Packet Buffer Headroom” on page 28].
During integration enable code to detect chained buffers and generate a warning or increment a
statistic to assist in optimizations.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

VxWorks*-Specific Improvements

Application Note 57

When you are sure you have no chained packet buffers remove the END driver chaining check.

7.7 Disabled Functionality

7.7.1 Context

You are using VxWorks.

7.7.2 Problem

Some non-critical features use CPU cycles.

7.7.3 Solution

Disable non-critical features. For example, turn off netStatLib from config.h to increase IP stack
performance.

7.8 Platform NE*

Platform NE* is a complementary software package to the VxWorks* Developer Toolkit that
currently ships with the Intel® IXDP425 / IXCDP1100 Development Platform.

7.8.1 Context

You are using VxWorks.

7.8.2 Problem

A more efficient VxWorks-routing algorithm is now available.

7.8.3 Solution

Wind River* claims the Platform NE software improves the performance of the standard
VxWorks* IP-routing capability by 10%-15%.

From a technical point of view, WRS gave assurances that the software shipped as the PNE product
is 100% compatible with the IXDP425 / IXCDP1100 platform’s board-support package (BSP). The
software replaces or extends existing VxWorks* functionality at an application level.

This software adds extra networking functionality to the standard VxWorks* offering, including
IPSEC, SNMP, PPP and OSPF features.

For more information see the following Web page:
http://www.windriver.com/platforms/platformne/

http://www.windriver.com/platforms/platformne/

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Development Strategies

58 Application Note

8.0 Development Strategies

The following patterns propose organization and procedures for performance tuning work.

8.1 Pair Team

8.1.1 Context

You are starting to work on performance improvement.

8.1.2 Problem

Optimization work is difficult; a lone engineer can get lost and chase numerous red herrings.

8.1.3 Solution

Implement optimization work in teams of two people. Two heads are better than one for this kind
of work.

One of the pair could focus on strategic thinking while the other focuses on a tactical next-test
approach.

It is also good to have another engineer available who is already spun up on the context of the work
to provide consultation and act as a sounding board.

8.2 Avoiding Premature Code Tuning

8.2.1 Context

You are implementing a system and you are in the coding phase of the project. You do have a good
system-level understanding of the performance requirements and the allocation of performance
targets to different parts of the system because you have a performance design [see “Performance
Design” on page 17].

8.2.2 Problem

It is difficult to know how much time or effort to spend thinking about performance or efficiency
when initially writing the code.

8.2.3 Solution

“We should forget about small efficiencies, say about 97% of the time; premature optimization is
the root of all evil.” – Donald Knuth.

It is important to find the right balance between performance, functionality and maintainability.

Some studies have found 20% of the code consumes 80% of the execution time others have found
less than 4% of the code accounts for 50% of the time [see Code Complete].

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Development Strategies

Application Note 59

KISS — Keep it simple. Until you have measured and can prove a piece of code is a system-wide
bottleneck, do not optimize it. Simple design is easier to optimize.

If you are working on a component of a system, you should have a performance budget for your
part of the data path [see “Performance Design” on page 17].

In the unit test, you could have a performance test for your part of the data path. At integration
time, the team could perform a performance test for the complete assembled data path.

“The best is the enemy of the good. Working toward perfection may prevent completion. Complete
it first, then perfect it. The part that needs to be perfect is usually small.” — Steve McConnell.

For further information, see chapters 28 and 29 in Code Complete and question 20.13 in
comp.lang.c FAQ at the following URL:

http://www.eskimo.com/~scs/C-faq/top.html

8.2.4 Forces

• Efficient code is not necessarily “better” code. It may be difficult to understand.

• It is almost impossible to identify performance bottlenecks before you have a working system.

• If you spend too much time doing micro-optimization during initial coding, you might miss
important global optimizations.

• If you look at performance, too late in a project it can be too late to do anything about it.

8.3 Step-by-Step Records

8.3.1 Context

You are trying a number of optimizations to fix a particular bottleneck. The system has a number of
other bottlenecks.

8.3.2 Problem

Sometimes it is difficult when working at pace, to remember optimizations made even only a few
days earlier.

8.3.3 Solution

Take good notes of each experiment you have tried to identify bottlenecks and each optimization
you have tried to increase performance. These notes can be invaluable later. You may find you are
stuck at a performance level with an invisible bottleneck. Reviewing recent optimization notes in a
pair team [see “Pair Team” on page 58] may help you identify incorrect paths taken, or
diversionary assumptions.

When a performance improvement effort is complete, it can be very useful to have notes on the
optimization techniques that worked, to incorporate that learning into documents like this one to
help other engineers benefit from your experience.

http://www.eskimo.com/~scs/C-faq/top.html

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Development Strategies

60 Application Note

8.3.4 Forces

Making notes can sometimes break flow.

8.4 Quick- Run Traffic Test

8.4.1 Context

You are starting work to optimize the performance of your application. You are using a traffic test
that can take some time to give you a result.

8.4.2 Problem

You may need to run a number of tests to first measure the performance of your application and
analyze different parts of the data path. Over time, you will run a large number of iterations.

8.4.3 Solution

At an early stage, optimize the traffic test itself and the compile link cycle. If your traffic test takes
five minutes to run it may be worth your time to choose a simpler traffic test for initial optimizing
work and come back to the more extensive tests at the end of the optimization effort.

For example, the test you are trying to optimize may be a SmartApplications* throughput test or an
FTP over a long period. For initial testing, use Smart Windows* instead of SmartApplications to
measure a packet rate using the port counters. This will not consider packet loss but will be much
faster to run. Later when you are almost done with performance tuning you can return to the real
SmartApplications test.

8.5 Nightly Traffic Test

8.5.1 Context

You have reached your performance target. You are in the development phase of a project.
Developers are checking new code into a source code repository daily.

8.5.2 Problem

Someone may check in new code or a bug fix that affects performance and pulls performance back
below your requirement.

8.5.3 Solution

Set up an automated performance test to run nightly. This will flag an issue in new code soon after
the developer introduces the problem and will facilitate the identification and resolution of the
problem in a timely manner.

8.5.4 Forces

• This may require automation of test equipment which can be difficult to implement.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning

Development Strategies

Application Note 61

• This pattern will use a test bench, a DUT and performance measurement equipment.

8.6 Slam-Dunk Optimization

8.6.1 Context

You have made a number of improvements that have increased the efficiency of code running on
the Intel XScale core.

8.6.2 Problem

The latest optimizations have not increased performance. You have hit some unidentified
performance-limiting factor.

8.6.3 Solution

You may have improved performance to a point where environmental factors, protocols or test
equipment are now the bottleneck.

It is useful to have a code modification identified which you know should improve performance,
for example:

• An algorithm on the data path that can be removed temporarily (IP checksum)

• Increasing the Intel XScale core clock speed.

In one application, we implemented a number of optimizations that should have improved
performance but did not. We then removed the IP checksum calculation and performance still did
not increase. This pointed to a hidden limiting factor, an unknown bottleneck. When we followed
this line of investigation, we found a problem in the way we configured a physical layer device and
when we fixed this hidden limiting factor, we got an immediate performance improvement of
approximately 25%. We retraced our steps and reapplied the earlier changes to identify the
components of that performance improvement.

62 Application Note

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor Performance Tuning
Contents

This page intentionally left blank.

	Contents
	Figures
	1 Throughput-Limiting Packet Loss 24

	Tables
	1 Related Documentation 8

	Revision History

	1.0 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Related Documents
	1.4 Audience
	1.5 Assumptions
	1.6 Acronyms
	1.7 Conventions

	2.0 Gathering Information and Requirements
	2.1 Defined Performance Requirement
	2.2 Gathered Customer Information

	3.0 General Optimization Approaches
	3.1 Best Compiler for Application
	3.2 Compiler Optimizations
	3.3 Performance Design
	3.4 Early Performance Measurement
	3.5 PMU Performance Measurement
	3.6 Data Cache
	3.7 ICE Disabled

	4.0 General Networking Performance
	4.1 Bottleneck Hunting
	4.2 Evaluating Traffic Generator/Protocols
	4.3 Throughput-Limiting Packet Loss
	4.4 Packet Buffer Management Analysis
	4.5 Polled Packet Processor
	4.6 Fast Path
	4.7 Edge Packet Throttle
	4.8 Packet Buffer Headroom
	4.9 Detecting Resource Collisions

	5.0 Intel XScale® Core and Device-Specific Tuning
	5.1 Devices’ Silicon Features
	5.2 Understanding the Devices
	5.3 Branch Target Buffer
	5.4 Latest Intel® IXP400 Software Access Layer
	5.5 Disabled Counters/Statistics
	5.6 Disabled Parameter Checks
	5.7 Stall Instructions
	5.8 Profiling Tools
	5.9 Intel XScale® Core PLD Instruction
	5.10 Separate SDRAM Memory Banks
	5.11 Line-Allocation Policy
	5.12 Cache Write Policy
	5.13 Write Coalescing
	5.14 Faster Memory
	5.15 Cache-Aligned Packet Buffers
	5.16 On-Chip Memory
	5.17 Mini-DCache
	5.18 Optimized Libraries
	5.19 Aligned/Grouped Literal Pools
	5.20 Modulo/Divide Avoided
	5.21 Minimal Cache Flush/Invalidation
	5.22 Endian Analysis
	5.23 Queue Look-Ahead
	5.24 Queue Status-Check Removed

	6.0 Code and Design Level
	6.1 Reordered Struct
	6.2 Supersonic ISR
	6.3 Stall-Filling Code
	6.4 Assembly-Language-Critical Functions
	6.5 Inline Functions
	6.6 Cache-Optimizing Loop
	6.7 Minimizing Local Variables
	6.8 Explicit Registers
	6.9 Removing Unnecessary Counters
	6.10 Duff’s Device
	6.11 Optimized Hardware Register Write
	6.12 Avoiding the OS Packet-Buffer Pool
	6.13 C-Language Optimizations
	6.14 Pre-Computed Data

	7.0 VxWorks*-Specific Improvements
	7.1 Aligned Mbufs and Clusters
	7.2 Avoiding Separate Packet Buffer Pools
	7.3 Avoiding System Packet-Buffer Pool
	7.4 Avoiding Unnecessary Packet-Buffer Allocations
	7.5 Batch Packets Handler
	7.6 Avoiding Chaining
	7.7 Disabled Functionality
	7.8 Platform NE*

	8.0 Development Strategies
	8.1 Pair Team
	8.2 Avoiding Premature Code Tuning
	8.3 Step-by-Step Records
	8.4 Quick- Run Traffic Test
	8.5 Nightly Traffic Test
	8.6 Slam-Dunk Optimization

