
Intel® IXP400 Software: Intel
XScale® Microarchitecture
Multiply Accumulate Instructions
— FIR / IIR Filters and FFT
Examples
Application Note

October 2004

Document Number: 302142-001

2 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

This Application Note as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms
of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed
as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel Centrino logo,
Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, Sound Mark, The Computer Inside., The Journey
Inside, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2004, Intel Corporation

http://www.intel.com
http://www.intel.com

Application Note 3

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Contents

Revision History

Date Revision Description

October 2004 001 Initial release.

4 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Contents

Contents
1.0 Introduction.. 7

1.1 FIR Filter ... 7
1.2 IIR Filter .. 7
1.3 Fast Fourier Transform... 7
1.4 Related Documents .. 8
1.5 Acronyms.. 8

2.0 Intel XScale® Microarchitecture and Multiply
Accumulate DSP Instructions Description ... 8
2.1 DSP – MAC Instructions Overview ... 8
2.2 DSP Coprocessor 0 (CP0).. 9

2.2.1 Multiply With Internal Accumulate Format ... 9
2.2.2 Internal Accumulator Access Format... 12

3.0 FIR Filter Example... 14
3.1 Filter Description... 14
3.2 Testing Function – testFIR() ... 15

3.2.1 FIR Testing Results ... 15
3.2.2 FIR ARM* ASM Code Using DSP Coprocessor .. 16
3.2.3 FIR ARM*ASM Code Without DSP Coprocessor .. 16
3.2.4 FIR Straight C Code Without DSP Coprocessor ... 16
3.2.5 FIR Initialization ... 17

4.0 IIR Filter Example .. 17
4.1 IIR Filter Description ... 17
4.2 Testing Function TESTIIR() .. 17

4.2.1 IIR Testing Results .. 17
4.2.2 IIR – ARM* ASM Code Using DSP Coprocessor... 19
4.2.3 IIR – ARM ASM Code without DSP Coprocessor.. 19
4.2.4 IIR – Straight C Code Without DSP Coprocessor.. 19

5.0 FFT Example ... 20
5.1 FFT Description – Split-Radix FFT

Implementation on Intel® IXP425 Network Processor .. 20
5.1.1 FFT Formula Details .. 20

5.2 Implementation ... 21
5.2.1 FFT Results ... 21

6.0 Source Code Examples... 24
6.1 FIR Filter ... 24
6.2 IIR Filter Source Code .. 37
6.3 FFT Source Code Example .. 59

Figures
1 Sine Waveform ... 22
2 FFT of the Sine Wave... 22

Application Note 5

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Contents

3 FIR Filter Coded in C Language...24
4 FIR Filter Example — Optimized Using MAC Instructions..31
5 IIR Filter Example, C Code...37
6 IIR Filter Example, Assembly Code ..47
7 FFT Example, C Code..59
8 FFT Example, Assembly Code ...78

Tables
1 Multiply with Internal Accumulate Format ...9
2 MIA{<cond>} acc0, Rm, Rs ..10
3 MIAPH{<cond>} acc0, Rm, Rs ...11
4 MIAxy{<cond>} acc0, Rm, Rs...12
5 Internal Accumulator Access Format..13
6 MRA{<cond>} RdLo, RdHi, acc0 ..14

6 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

This page is intentionally left blank.

Application Note 7

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Introduction

1.0 Introduction

This application note provides source code examples of several typical algorithm functions used
for signal processing, including a Finite Impulse Response (FIR) filter, an Infinite Impulse
Response (IIR) Filter, and a Fast Fourier Transform (FFT). The FIR and IIR Filter examples show
the performance advantages of using the Multiply Accumulate (MAC) instructions shown in the
optimized examples of each filter. The FFT example illustrates an optimized assembly language
example, but the MAC instructions of the Intel XScale® Core do not help the FFT algorithm to
execute any faster due to the particular nature of how the Fast Fourier function operates internally.
With study, a programmer can understand how these signal-processing algorithms can be
implemented for high performance. A brief description of each function follows.

1.1 FIR Filter

A FIR filter can be described as a discrete linear time-invariant system with output based upon the
weighted summation of a finite number of past inputs. FIR filters do not use feedback, so for a FIR
filter with N coefficients, the output always becomes zero after putting in N samples of an impulse
response.

This document first presents an example FIR filter written in Assembly Language. Then an
optimized FIR filter is presented, also coded in Assembly Language, but employing Intel XScale
core instruction set digital signal processing (DSP) opcodes for much higher efficiency — 16x
improvement in data throughput over C Language, and 1.5x improvement over standard ARM*
Assembly Language. The optimized example also includes a baseline version of the filter in C
Language.

1.2 IIR Filter

The impulse response of the IIR Filter is ‘infinite’ because there is feedback in the filter; if you put
in an impulse (a single ‘1’ sample followed by many ‘0’ samples), theoretically an infinite number
of non-zero values will be output.

As with the FIR example, this document presents an example IIR filter written in Assembly
Language. Then an optimized IIR filter is presented, also coded in Assembly Language, but
employing Intel XScale core instruction set digital signal processing (DSP) opcodes for much
higher efficiency — with improvements in data throughput over C Language, and over standard
ARM* Assembly Language. The optimized example also includes a baseline version of the IIR
filter in C Language.

1.3 Fast Fourier Transform

In this report, a optimized Split-Radix Fast Fourier Transform (FFT) algorithm is implemented and
described.

Following the format used to describe the FIR and IIR filter examples, the FFT section shows an
example FFT function written in Assembly Language. This particular example is the
highest-performance version in the set of FFT examples. The next example of a coded FFT filter is
presented, also in Assembly Language, but employing Intel XScale core instruction set digital

8 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Intel XScale® Microarchitecture and Multiply Accumulate DSP

signal processing (DSP) opcodes. As it turns out, for the FFT algorithm, the MAC instructions do
not increase performance, for reasons described in the details of the FFT section. The optimized
example also includes a baseline version of the filter in C Language.

1.4 Related Documents

1.5 Acronyms

2.0 Intel XScale® Microarchitecture and Multiply
Accumulate DSP Instructions Description

The Intel XScale® Microarchitecture features a special set of instructions that enable a software
programmer to implement signal-processing algorithms that deliver high efficiency and
performance. Many types of functions, such as digital filters, use a sum-of-products computation
whose internal algorithm requirements are efficiently handled by the Intel XScale core MAC
instruction set of the Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor. The FIR and IIR filter examples, in particular, use these instruction enhancements
to good advantage in their respective highest-performance versions of sample code.

2.1 DSP – MAC Instructions Overview

Sixteen-bit integers, the data type normally associated with audio signal processing, are used by the
Multiply Accumulate instructions. The following sections show the Intel XScale core MAC
instructions available to the programmer.

Document Document
Number

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Programmer’s Guide 252725_v2_4.pdf

Intel® IXP400 Digital Signal Processing (DSP) Software: Voice Over Internet Protocol
Application Note 300320

Acronym Description

ANSI American National Standards Institute

ARM* ARM* Ltd. [company]

ASM Assembly [Language]

FIR Finite Impulse Response

DSP Digital Signal Processing

MAC Multiply Accumulate Instruction

Application Note 9

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Intel XScale® Microarchitecture and Multiply Accumulate DSP

2.2 DSP Coprocessor 0 (CP0)

The Intel XScale core adds a DSP coprocessor to the architecture for the purpose of increasing the
performance and the precision of audio processing algorithms. This coprocessor contains a 40-bit
accumulator and eight new instructions.

The 40-bit accumulator is referenced by several new instructions that were added to the
architecture; MIA, MIAPH and MIAxy are multiply/accumulate instructions that reference the
40-bit accumulator instead of a register specified accumulator. MAR and MRA provide the ability
to read and write the 40-bit accumulator.

Access to CP0 is always allowed in all processor modes when bit 0 of the Coprocessor Access
Register is set. Any access to CP0 when this bit is clear will cause an undefined exception. Note
that only privileged software can set this bit in the Coprocessor Access Register located in CP15.

The 40-bit accumulator will need to be saved on a context switch if multiple processes are using it.

Two new instruction formats were added for coprocessor 0: Multiply with Internal Accumulate
Format and Internal Accumulate Access Format. The formats and instructions are described next.

2.2.1 Multiply With Internal Accumulate Format

A new multiply format has been created to define operations on 40-bit accumulators. Table 1
shows the layout of the new format. The op code for this format lies within the coprocessor register
transfer instruction type. These instructions have their own syntax.

Two new fields were created for this format, acc and opcode_3. The acc field specifies one of eight
internal accumulators to operate on and opcode_3 defines the operation for this format. The Intel
XScale core defines a single 40-bit accumulator referred to as acc0; future implementations may
define multiple internal accumulators. The Intel XScale core uses opcode_3 to define six
instructions, MIA, MIAPH, MIABB, MIABT, MIATB and MIATT.

Table 1. Multiply with Internal Accumulate Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 opcode_3 Rs 0 0 0 0 acc 1 Rm

Bits Description Notes

31:28 cond - ARM condition codes -

19:16 opcode_3 - specifies the type of multiply with
internal accumulate

Intel XScale core defines the following:
0b0000 = MIA
0b1000 = MIAPH
0b1100 = MIABB
0b1101 = MIABT
0b1110 = MIATB
0b1111 = MIATT
The effect of all other encodings are
unpredictable.

15:12 Rs - Multiplier

7:5 acc - select 1 of 8 accumulators
Intel XScale core only implements acc0;
access to any other acc has unpredictable
effect.

3:0 Rm - Multiplicand -

10 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Intel XScale® Microarchitecture and Multiply Accumulate DSP

The MIA instruction operates similarly to MLA except that the 40-bit accumulator is used. MIA
multiplies the signed value in register Rs (multiplier) by the signed value in register Rm
(multiplicand) and then adds the result to the 40-bit accumulator (acc0).

MIA does not support unsigned multiplication; all values in Rs and Rm will be interpreted as
signed data values. MIA is useful for operating on signed 16-bit data that was loaded into a general
purpose register by LDRSH.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

Table 2. MIA{<cond>} acc0, Rm, Rs
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 0 0 0 0 Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

acc0 = (Rm[31:0] * Rs[31:0])[39:0] + acc0[39:0]

Exceptions:none

Qualifiers Condition Code

No condition code flags are updated

Notes: Early termination is supported. Instruction timings can be found

Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on Intel XScale core.

Application Note 11

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Intel XScale® Microarchitecture and Multiply Accumulate DSP

The MIAPH instruction performs two16-bit signed multiplies on packed half word data and
accumulates these to a single 40-bit accumulator. The first signed multiplication is performed on
the lower 16 bits of the value in register Rs with the lower 16 bits of the value in register Rm.

The second signed multiplication is performed on the upper 16 bits of the value in register Rs with
the upper 16 bits of the value in register Rm. Both signed 32-bit products are sign extended and
then added to the value in the 40-bit accumulator (acc0).

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

Table 3. MIAPH{<cond>} acc0, Rm, Rs
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 1 0 0 0 Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

acc0 = sign_extend(Rm[31:16] * Rs[31:16]) +

sign_extend(Rm[15:0] * Rs[15:0]) +

acc0[39:0]

Exceptions:none

Qualifiers Condition Code

S bit is always cleared; no condition code flags are updated

Notes: Instruction timings can be found
Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on Intel XScale core

12 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Intel XScale® Microarchitecture and Multiply Accumulate DSP

The MIAxy instruction performs one16-bit signed multiply and accumulates these to a single
40-bit accumulator. x refers to either the upper half or lower half of register Rm (multiplicand) and
y refers to the upper or lower half of Rs (multiplier). A value of 0x1 will select bits [31:16] of the
register which is specified in the mnemonic as T (for top). A value of 0x0 will select bits [15:0] of
the register which is specified in the mnemonic as B (for bottom).

MIAxy does not support unsigned multiplication; all values in Rs and Rm will be interpreted as
signed data values.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

2.2.2 Internal Accumulator Access Format

The Intel XScale core defines a new instruction format for accessing internal accumulators in CP0.
Table 5, “Internal Accumulator Access Format” on page 13 shows that the op code falls into the
coprocessor register transfer space.

The RdHi and RdLo fields allow up to 64 bits of data transfer between ARM registers and an
internal accumulator. The acc field specifies 1 of 8 internal accumulators to transfer data to/from.
The Intel XScale core implements a single 40-bit accumulator referred to as acc0; future
implementations can specify multiple internal accumulators of varying sizes, up to 64 bits.

Access to the internal accumulator is allowed in all processor modes (user and privileged) as long
bit 0 of the Coprocessor Access Register is set.

Table 4. MIAxy{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 0 0 0 1 0 1 1 x y Rs 0 0 0 0 0 0 0 1 Rm

Operation: if ConditionPassed(<cond>) then

if (bit[17] == 0)

<operand1> = Rm[15:0]

else

<operand1> = Rm[31:16]

if (bit[16] == 0)

<operand2> = Rs[15:0]

else

<operand2> = Rs[31:16]

acc0[39:0] = sign_extend(<operand1> * <operand2>) + acc0[39:0]

Exceptions:none

Qualifiers Condition Code

S bit is always cleared; no condition code flags are updated

Notes: Instruction timings can be found
Specifying R15 for register Rs or Rm has unpredictable results.

acc0 is defined to be 0b000 on Intel XScale core.

Application Note 13

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Intel XScale® Microarchitecture and Multiply Accumulate DSP

The Intel® IXP42X product line implements two instructions MAR and MRA that move two
ARM registers to acc0 and move acc0 to two ARM registers, respectively.

Note: MAR has the same encoding as MCRR (to coprocessor 0) and MRA has the same encoding as
MRRC (to coprocessor 0). These instructions move 64-bits of data to/from ARM registers from/to
coprocessor registers. MCRR and MRRC are defined in ARM’s DSP instruction set.

Disassemblers not aware of MAR and MRA will produce the following syntax:

MCRR{<cond>} p0, 0x0, RdLo, RdHi, c0

The MAR instruction moves the value in register RdLo to bits[31:0] of the 40-bit accumulator
(acc0) and moves bits[7:0] of the value in register RdHi into bits[39:32] of acc0.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

This instruction executes in any processor mode.

Table 5. Internal Accumulator Access Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 L RdHi RdLo 0 0 0 0 0 0 0 0 0 acc

Bits Description Notes

31:28 cond - ARM condition codes -

20
L - move to/from internal accumulator
0= move to internal accumulator (MAR)
1= move from internal accumulator (MRA)

-

19:16 RdHi - specifies the high order eight (39:32)
bits of the internal accumulator.

On a read of the acc, this 8-bit high order field
will be sign extended.
On a write to the acc, the lower 8 bits of this
register will be written to acc[39:32]

15:12 RdLo - specifies the low order 32 bits of the
internal accumulator -

7:4 Should be zero

3 Should be zero -

2:0 acc - specifies 1 of 8 internal accumulators Intel XScale core only implements acc0;
access to any other acc is unpredictable

14 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
FIR Filter Example

The MRA instruction moves the 40-bit accumulator value (acc0) into two registers. Bits[31:0] of
the value in acc0 are moved into the register RdLo. Bits[39:32] of the value in acc0 are sign
extended to 32 bits and moved into the register RdHi.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

This instruction executes in any processor mode.

3.0 FIR Filter Example

The main body of the FIR filter source code example is coded in high-level C Language.
Programming signal processing algorithms in C Language is not efficient; therefore, this
implementation is the lowest-performance version in the example. This FIR exercise employs three
variations of the filter function code produced for comparison: ARM* / Intel XScale core
Assembly Language implementation, ARM* / Intel XScale core Assembly Language using the
DSP Extension MAC instructions implementation, and a regular ANSI C language
implementation.

3.1 Filter Description

The source code for the filter shown in this example is a general-purpose FIR filter, and the chosen
filter coefficients illustrated in this example is a square-root-raised cosine function. This is a
commonly used matched filter in communication systems, offering the best signal-to-noise ratio
for processing. The table of coefficients that comprise the primary characteristics of the FIR filter
example could be changed for other types of filters. For example, by changing the coefficients
table, a programmer could turn this filter into a low-pass filter, high-pass filter, or a band-pass filter.

Table 6. MRA{<cond>} RdLo, RdHi, acc0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 0 0 1 0 1 RdHi RdLo 0 0 0 0 0 0 0 0 0 0 0 0

Operation: if ConditionPassed(<cond>) then
RdHi[31:0] = sign_extend(acc0[39:32])
RdLo[31:0] = acc0[31:0]

Exceptions:none

Qualifiers Condition Code
No condition code flags are updated

Notes: Instruction timings can be found in
Specifying the same register for RdHi and RdLo has unpredictable
results.

Specifying R15 as either RdHi or RdLo has unpredictable results.

Application Note 15

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

FIR Filter Example

3.2 Testing Function – testFIR()

The testing function testFIR() calls function profile() to run each filter implementation 100 times to
measure performance. The performance data is gathered and printed during the running of each
routine, and this can then be used for comparing each implementation of the FIR filter.

testFIR() also calls testSequentialBlockProcessing(), which shows how each filter function can be
called to process input data sequentially block by block.

The data output of each filter is also compared to make sure the results match.

3.2.1 FIR Testing Results

Each of the versions of the FIR filter shown in this example will display performance data (output
results are shown in the following examples). This test was run using a 533-MHz Intel® IXP425
Network Processor.

3.2.1.1 FIR ASM Code Using DSP Coprocessor

total cycles = 2289074

filter order = 63

number of Run = 100

number of output per Run = 128

average cycle per tap = 2.838633

3.2.1.2 FIR ASM Code Without DSP Coprocessor

total cycles = 3603796

filter order = 63

number of Run = 100

number of output per Run = 128

average cycle per tap = 4.468993

3.2.1.3 FIR C Code

total cycles = 36442336

filter order = 63

number of Run = 100

number of output per Run = 128

average cycle per tap = 45.191389

16 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
FIR Filter Example

3.2.2 FIR ARM* ASM Code Using DSP Coprocessor

The function prototype for this version of the FIR filter is called real_FIR_asm, and is coded in
ARM Assembly Language. This version uses the DSP coprocessor to execute multiply accumulate
instructions in the function. Thanks to the efficiency of the DSP instructions, and the pipelined
architecture of the MAC instruction execution unit in the Intel XScale core, this version of the filter
will deliver the highest performance of the three examples, and is approximately 16x faster than the
C Language version filter. Further, this version is 1.5x faster than the ARM ASM version that does
not use the DSP coprocessor instructions.
int real_FIR_asm(short *x,short *h,short *y,short L,short M,short
N)

For efficiency, this function processes eight filter coefficients in each pass of the inner loop. If the
original filter length M is not divisible by 8, zeros must be added to pad the end of the filter
coefficients. The new filter length L is divisible by 8. It is possible to modify the code so that fewer
coefficients are processed in the inner loop and hence fewer zeros are needed to pad the end.

The function calculates two filter outputs in each pass of the outer loop. Because of the requirement
of address alignment for 32-bit data access, the original filter coefficients are rearranged. The new
filter coefficients h has two L components. The first L components are used to calculate the
even-number indexed filter outputs, while the second L components are used to calculate the
odd-number indexed filter outputs. For the first L components of h, the algorithm starts with the M
original filter coefficients, followed by L-M zeros. For the second L components of h, it starts with
one 0, then M original filter coefficients, followed by L-M-1 zeros. Note that there is one sample
time offset between the first L components and the second L components in h.

Rearranging and padding zeros to the original filter coefficients are done in the initialization
function InitiFIR() in Section 3.2.5.

3.2.3 FIR ARM*ASM Code Without DSP Coprocessor

The function prototype for this version of the FIR filter is called Fir_noCopro, is coded in ARM
Assembly Language, and does not use the DSP coprocessor. This version of the filter will be the
second highest performer — approximately 10x faster than the C Language version filter.

int Fir_noCopro(short *x, short *h, short *y, short L, short N);

This function processes two filter coefficients in each pass of the inner loop. A zero is needed to
pad in the end of the filter coefficients if the filter length L is an odd number. This is done in the
initialization function InitiFIR() in Section 3.2.5.

3.2.4 FIR Straight C Code Without DSP Coprocessor

The function prototype for this version of the FIR filter is called real_FIR, is coded in generic
ANSI C Language, and does not use the DSP coprocessor. This version of the filter is (by far) the
lowest performer — many magnitudes slower than the optimized versions.

real_FIR(x, RaisedCos,FIR_output3, FIR_length, N)

This is mainly used to verify the numerical result of the assembly code implementations.

Application Note 17

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

IIR Filter Example

3.2.5 FIR Initialization

This function allocates memory for the filter state and filter input. It also rearranges the filter
coefficients for the assembly function real_FIR_asm()using the DSP coprocessor instructions
as explained in Section 3.2.2.

void InitiFIR(short *coef, short M, short N, short **h, short **s, short **x, short *L);

The complete source code for the FIR filter implementations described above is provided in
Figure 3 and Figure 4. The C Language mainline for the testFIR() routine that calls each of the FIR
filter examples, plus related routines and the C Language-version of the FIR filter, is in the first
section shown in Figure 3. The Assembly Language-version implementations of the filter function
follow in Figure 4.

4.0 IIR Filter Example

The main body of the IIR filter source code example is coded in high-level C Language. This
implementation is the lowest-performance version in the examples. This IIR exercise again
employs three variations of the filter function code produced for comparison: ARM* / Intel XScale
core Assembly Language implementation, ARM* / Intel XScale core Assembly Language using
the DSP Extension MAC instructions implementation, and a regular ANSI C Language
implementation.

4.1 IIR Filter Description

The source code for the filter shown in this example is a general-purpose Infinite Impulse
Response filter, the IIR filter uses feedback in calculation. and the chosen filter coefficients
illustrated in this example is similar to the FIR example, but in this instance is a square-root-raised
cosine function with a beta of 0.15.

4.2 Testing Function TESTIIR()

The testing function testIIR() calls function profile() to run each filter implementation 100 times to
measure performance. The performance data is gathered and printed during the running of each
routine, and this can then be used for comparing each implementation of the FIR filter.

testFIR() also calls testSequentialBlockProcessing(), which shows how each filter function can be
called to process input data sequentially block by block. The data output of each filter is also
compared to make sure the results match.

4.2.1 IIR Testing Results

Each of the versions of the IIR filter shown in this example will display performance data (output
results are shown in the following examples). This test was run using a 533-MHz Intel® IXP425
Network Processor.

18 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
IIR Filter Example

4.2.1.1 IIR – ASM Code Using DSP Instructions, M & N Must be
Divisible by 4

Function: IIR_asm_DSP4

total cycles =1275698

number Of Run =100

number Of output per Run =100

order M =16

order N =16

average cycle per tap (totalCycles/(M+N)) =3.986556

4.2.1.2 IIR – ASM Code Using DSP Instructions, M & N Must be Even
Numbers

Function: IIR_asm_DSP

total cycles =1528704

number Of Run =100

number Of output per Run =100

order M =16

order N =16

average cycle per tap (totalCycles/(M+N)) =4.777200

4.2.1.3 IIR – ASM Code not Using DSP Instructions

Function: IIR_asm (does not use DSP instructions)

total cycles =1749210

number Of Run =100

number Of output per Run =100

order M =16

order N =16

average cycle per tap (totalCycles/(M+N)) =5.466281

4.2.1.4 IIR – Straight C Code, not Using DSP Coprocessor

Function: IIR_C (C implementation)

Application Note 19

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

IIR Filter Example

total cycles =16622907

number Of Run =100

number Of output per Run =100

order M =16

order N =16

average cycle per tap (totalCycles/(M+N)) =51.946584

4.2.2 IIR – ARM* ASM Code Using DSP Coprocessor

The function prototype for this version of the IIR filter is called IIR_asm_DSP, and is coded in
ARM Assembly Language. This version uses the DSP coprocessor to execute multiply accumulate
instructions in the function. This version of the filter will deliver the highest performance of the
four examples, and is approximately 13x faster than the C Language version filter.

Void IIR_arm_DSP4(short *x,short *h,short *y,short L,short M,short N)

IIR_asm_DSP4 use four coefficients in each pass of the inner loop, while IIR_asm_DSP uses only
one coefficient in each pass of the inner loop. As a result, the IIR_asm_DSP function has more
overhead. That is why IIR_asm_DSP4 is more efficient. IIR_asm_DSP4 is useful for instances
where M and N are divisible by 4. Note that if N or M are not even or not divisible by 4, 0
coefficients can always be padded, to make N and M become even or divisible by 4.

4.2.3 IIR – ARM ASM Code without DSP Coprocessor

The function prototype for this version of the IIR filter is called IIR_asm, and is coded in ARM
Assembly Language.

void IIR_asm(short *a, short *b, short *w, short *x, short *y, int
N, int M, int L);

4.2.4 IIR – Straight C Code Without DSP Coprocessor

The function prototype for this version of the IIR filter is called IIR_C and is written in generic C
Language. The MAC / DSP Instructions are not used in the formula.

void IIR_C(short *a, short *b, short *w, short *x, short *y, int
N, int M, int L)

Input parameters:

x: input
w: state
y: output
M: order of b
N: order of a
L: input block length

20 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
FFT Example

The complete source code for the IIR filter implementations described above is provided in
Chapter 6.0 in Figure 3. and Figure 4. The C Language mainline for the testIIR() routine that calls
each of the IIR filter examples, plus related routines and the C Language-version of the IIR filter, is
in the first section shown in Figure 3. The Assembly Language-version implementations of the
filter function follow in Figure 4.

5.0 FFT Example

The main body of the FFT source code example is coded in high-level C Language, this
implementation is, like the FIR and IIR filter examples presented before this section, the
lowest-performance version of all the FFT examples.

5.1 FFT Description – Split-Radix FFT
Implementation on Intel® IXP425 Network Processor

The IXP425 network processor has sufficient performance to perform computation intensive DSP
functions, such as FFT, FIR filters, IIR filters, etc. This example presents an FFT implementation
on the IXP425 network processor, which can be used in signal detection and estimation applications.

5.1.1 FFT Formula Details

The discrete Fourier transform (DFT) X[k] of a complex sequence x[n] of length N is calculated by:

X[k] = Σ n=0
N-1 x[n]*exp(-j2πnk/N) for k=0, 1,2 0.N-1

A direct calculation of N complex values of X[k] will require 4N2 multiplications and 4N(N-1)
additions given the trigonometric function values. For example, if N=128, 65536 multiplications
and 65024 additions are required.

In this report, a Split-Radix FFT algorithm is implemented. This algorithm splits the input
sequence x[n] into two subsequences: an even-indexed sequence, and an odd-indexed sequence;
then apply radix-2 FFT on the N/2 point even-indexed subsequence sequence, and apply radix-4
FFT on the N/2 point odd-indexed subsequence. This iteration is repeated until finally 2 point FFTs
are applied at the final stage.

The fundamental operation of the algorithm is described in the following L-shaped butterfly:

Application Note 21

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

FFT Example

5.2 Implementation

In this report, the implementation consists of:

• C code floating-point direct implementation of the DFT: DFT_FloatingPoint_N()

• C code fixed-point direct implementation of the DFT: DFT_FixedPoint_N()

• C code fixed-point implementation of Split-radix FFT: Split_Radix_FFT_C()

• Assembly code fixed-point implementation of Split-radix FFT using Intel XScale core regular
assembly instructions: Split_Radix_FFT_asm()

• Assembly code fixed-point implementation of Split-radix FFT using DSP coprocessor:
Split_Radix_FFT_asm_DSP()

The L-shaped butterfly is implemented in:

• Split_Radix_ButterFly_optimized()

• Split_Radix_ButterFly_asm()

• Split_Radix_ButterFly_asm_DSP()

Note that these modules call themselves in the end, iterating through all the stages with different
order until 2- or 4-point DFT are performed.

This code applies to complex data with ANY length equal to power of 2.

5.2.1 FFT Results

A sine wave with frequency 343.75 Hz sampled at 8 KHz is used to test the code. The waveform
used as input data for processing is shown in Figure 1. Its FFT is shown in Figure 2. Their values
are in 16-bit fixed-point format.

-j

j

-1

-1

exp(-jπn/N)

exp(-jπ3n/N)

X[2k]

X[4k+1]

X[4k+3]

22 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
FFT Example

The assembly code Split_Radix_FFT_asm() is about 6.5 times faster than the C code
implementation Split_Radix_FFT_C(). For a 128 point FFT, for example, it takes about 138
cycles to calculate one point output, thus this example is quite efficient.

The C code floating-point and fixed-point implementation DFT_FloatingPoint_N() and
DFT_FixedPoint_N() were used to check if the numerical result is correct. Results of the
assembly code match exactly with the result of the C fixed-point code, but has very tiny numerical
error compared with the floating-point implementation due to precision in fixed point calculation.

Figure 1. Sine Waveform

Figure 2. FFT of the Sine Wave

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

1 12 23 34 45 56 67 78 89 100 111 122

Series1

0

2000

4000

6000

8000

10000

12000

1 14 27 40 53 66 79 92 105 118

Series1343.75Hz

Application Note 23

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

FFT Example

The module Split_Radix_FFT_asm_DSP() using Intel XScale core DSP coprocessor
instructions is slightly slower then the module cSplit_Radix_FFT_asm() using the regular
Intel XScale core instructions. It turns out that the ARM / DSP coprocessor instructions are not that
useful for FFT because extra cycles are needed to set up the DSP coprocessor for use by the
function algorithm.

The following table provide some results for N=128 and N=256. To obtain an average
cycle-per-point time, each module is run 100 times.

Split_Radix
_FFT_C()

Split_Radix_FF
T_asm()

Split_Radix_
FFT_asm_DSP
()

N=128 Points

total cycles 11506273 1767859 1847674
Average
cycle per
point

898.927578 138.113984 144.349531

N=256 Points

total cycles 26439362 3972541 4174744
Average
cycle per
point

1032.78757 155.177383 163.075938

24 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

6.0 Source Code Examples

6.1 FIR Filter

Figure 3. FIR Filter Coded in C Language (Sheet 1 of 7)

/**
*
* @author Intel Corporation
* @date 17 June 2004
*
*
*
*
* Copyright 2004 Intel Corporation All Rights Reserved.
*
*
* The source code contained or described herein and all documents
* related to the source code ("Material") are owned by Intel Corporation
* or its suppliers or licensors. Title to the Material remains with
* Intel Corporation or its suppliers and licensors. The Material
* contains trade secrets and proprietary and confidential information of
* Intel or its suppliers and licensors. The Material is protected by
* worldwide copyright and trade secret laws and treaty provisions. Except for
* the licensing of the source code hereunder, no part of the Material may be
* used,copied, reproduced, modified, published, uploaded, posted,
* transmitted, distributed, or disclosed in any way without Intel's prior
* express written permission.
*
*
* Except for the licensing of the source code as provided hereunder, no license
* under any patent, copyright, trade secret or other intellectual property
* right is granted to or conferred upon you by disclosure or delivery of the
* Materials, either expressly, by implication, inducement, estoppel or
* otherwise and any license under such intellectual property rights must be
* express and approved by Intel in writing.
*
*
* For further details, please see the file README.TXT distributed with
* this software.
* -- End Intel Copyright Notice --
*/

#include "vxWorks.h"
#include "intLib.h"
#include "errnoLib.h"
#include "errno.h"
#include "stdio.h"
#include "memLib.h"
#include "stdlib.h"

void real_FIR(short *x, short *h, short *y, short L, short N);
extern int real_FIR_asm(short *x, short *h, short *y, short L, short M, short
N);
extern int Fir_noCopro(short *x, short *h, short *y, short L, short N);

Application Note 25

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

void InitiFIR(short *coef, short M, short N, short **h, short **s, short **x,
short *L);

void profile();
void checkDifference(short *y1, short *y2, int N);

extern int writePerfrmCtrl(int x);
extern int readCycleCounter();
long startClock, stopClock;

/* Square root raised cosin function with Beta=0.15 */
short RaisedCos[63]={
 -99, -17, 91, 84, -37, -113, -31, 112,
 111, -70, -206, -68, 235, 313, -36, -479,
 -426, 234, 829, 535, -578, -1344, -633, 1190,
 2191, 709, -2453, -4055, -758, 7325, 15982,
 19704,
 15982, 7325, -758, -4055, -2453, 709, 2191,
 1190, -633, -1344, -578, 535, 829, 234, -426,
 -479, -36, 313, 235, -68, -206, -70, 111,
 112, -31, -113, -37, 84, 91, -17, -99};

void InitiFIR(short *coef,short M, short N, short **h,
short **s, short **x, short *L)
{

/** Create new filter coefficients suitable for the assembly code
coef: the original filter coefficients
M: the original filter length, it can be any value
N: max block length for the filter input
h: the new filter coefficients
s: array for the filter state and the filter input
L: new filter length, divisible by 8, 0 are appended to *coef

h={0, time reverse of *coef, 0,0,0....
 time reverse of *coef, 0, 0,0,0...}

K=L is divisible by 8 because real_FIR_asm() calculates 8 taps per pass,
size of h is 2L because odd-index and even-index output will be calculated
per pass

**/

int i, K;

K=M+1; /* to add a 0 to coef for 32 bit data access allignment*/
K=((K+7)>>3)<<3; /* because 8 tap will be calculated when using DSP co-
processor subroutine */

/* printf("K=%d \n”, K); */

/* allocate space for the new filter */
/* h has the structure:
{coef[M-1...0], 0, 0,0, first K elements
 0, coef[M-1...0], 0,0} second K elements */

Figure 3. FIR Filter Coded in C Language (Sheet 2 of 7)

26 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

*h=(short *) malloc(2*K*sizeof(short));

for (i=0; i<M; i++)
{

(*h)[i]=coef[M-1-i];
(*h)[K+1+i]=coef[M-1-i];

}
(*h)[M]=0;
(*h)[K]=0;

/* pad more 0 to the end */
for(i=M+1; i<K; i++)
{
 (*h)[i]=0;
 (*h)[K+i]=0;
}

/* allocate space for the filter state and the filter input */

(*s)=(short *) malloc((K+N)*sizeof(short));
*x=(*s)+M-1; /* the filter input follows the filter state */

/* initialize the initial state */
for(i=0; i<M-1; i++)
(*s)[i]=0;
*L=K;

}

void testSequentialBlockProcessing()
{

/* N: filter will accept block of maximium N samples each time sequen-
tially */
short *h, *s, *xx, L;
int i;
short N, FIR_output1[128], FIR_output2[128], FIR_output3[128],
FIR_output4[128];
short filterLength;
filterLength=63;
N=128;

/* initialization */

InitiFIR(RaisedCos, filterLength, N, &h, &s, &xx, &L);
printf("L=%d \n”, L);

for(i=0; i<N; i++)
xx[i]=0;

/* to check result */
for(i=0; i<filterLength-1; i++) /* initialize the state */

s[i]=0;

for(i=0; i<63; i++)
xx[i]=RaisedCos[i];

Figure 3. FIR Filter Coded in C Language (Sheet 3 of 7)

Application Note 27

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

real_FIR_asm(s, h,FIR_output1, L, filterLength, N);
/* call as a single block */
/* sequential block processing */

/* test real_FIR_asm() */
/* first input block */
for(i=0; i<filterLength-1; i++) /* initialize the state */

s[i]=0;

for(i=0; i<63; i++)
xx[i]=RaisedCos[i];

real_FIR_asm(s, h,FIR_output2, L, filterLength, 64);

/* second input block */
for(i=0; i<63; i++)

xx[i]=0;

real_FIR_asm(s, h,FIR_output2+64, L, filterLength,64);

/* test real_FIR() */
/* first input block */
for(i=0; i<filterLength-1; i++) /* initialize the state */

s[i]=0;
for(i=0; i<63; i++)

xx[i]=RaisedCos[i];

real_FIR(s, h,FIR_output3, filterLength, 64);

/* second input block */
for(i=0; i<63; i++)

xx[i]=0;
real_FIR(s, h,FIR_output3+64, filterLength, 64);

/* test Fir_noCopro() */

/* first input block */
for(i=0; i<filterLength-1; i++) /* initialize the state */

s[i]=0;
for(i=0; i<63; i++)

xx[i]=RaisedCos[i];
Fir_noCopro(s, h,FIR_output4, filterLength, 64);

/* second input block */
for(i=0; i<63; i++)
xx[i]=0;
Fir_noCopro(s, h,FIR_output4+64, filterLength, 64);

printf("check test SequentialBlockProcessing error\n");

checkDifference(FIR_output1, FIR_output2, N);
checkDifference(FIR_output1, FIR_output3, N);
checkDifference(FIR_output1, FIR_output4, N);

}

Figure 3. FIR Filter Coded in C Language (Sheet 4 of 7)

28 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

void profile()
{

int i,j, numberOfRun;
short FIR_length,N, x[192], FIR_output1[128], FIR_output2[128],
FIR_output3[128];

short *h, *s, *xx, L;
FIR_length=63;
N=128;
numberOfRun=100;

for(i=0; i<64; i++)
{

x[i]=0;
x[i+64]=0;
x[i+128]=0;

}

for(i=0; i<64; i++)
x[i+64]=RaisedCos[i];

/* initialization */
InitiFIR(RaisedCos, FIR_length, N, &h, &s, &xx, &L);

writePerfrmCtrl(0x07); /* start all the counters*/

printf("ASM code using DSP-coprocessor \n");

startClock=readCycleCounter();
for(j=0;j<numberOfRun; j++) /* run 100 times for measurement*/
real_FIR_asm(x, h,FIR_output1, L, FIR_length, N);
stopClock=readCycleCounter();

printf("total cycles =%d \n”, stopClock-startClock);
printf("filter order =%d \n”, FIR_length);

printf("number Of Run =%d \n”, numberOfRun);
printf("number Of output per Run =%d \n”, \n”, N);
printf("average cycle per tap =%f \n”, \n”, (stopClock-start-
Clock)*1.0/numberOfRun/N/FIR_length);

printf("ASM code without DSP coprocessor \n");
startClock=readCycleCounter();
for(j=0;j<numberOfRun; j++) /* run 100 times for measurement*/
Fir_noCopro(x, h,FIR_output2, FIR_length, N);
stopClock=readCycleCounter();

printf("total cycles =%d \n”, stopClock-startClock);
printf("filter order =%d \n”, FIR_length);

printf("number Of Run =%d \n”, numberOfRun);
printf("number Of output per Run =%d \n”, \n”, N);
printf("average cycle per tap =%f \n”, \n”, (stopClock-start-
Clock)*1.0/numberOfRun/N/FIR_length);

printf("C code \n");

Figure 3. FIR Filter Coded in C Language (Sheet 5 of 7)

Application Note 29

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

startClock=readCycleCounter();
for(j=0;j<numberOfRun; j++) /* run 100 times for measurement*/
real_FIR(x, h,FIR_output3, FIR_length, N);
stopClock=readCycleCounter();

printf("total cycles =%d \n”, stopClock-startClock);
printf("filter order =%d \n”, FIR_length);

printf("number Of Run =%d \n”, numberOfRun);
printf("number Of output per Run =%d \n”, \n”, N);
printf("average cycle per tap =%f \n”, \n”, (stopClock-start-
Clock)*1.0/numberOfRun/N/FIR_length);

for(i=0; i<N; i++)
{

printf("FIR_output1[%d]=0x%x,FIR_output2[%d]=0x%x,,FIR_output3[%d]=0x%x
\n”,i,FIR_output1[i],i,FIR_output2[i],i,FIR_output3[i]);

}

printf("check one block call error.... \n”;

checkDifference(FIR_output1, FIR_output3, N);
checkDifference(FIR_output2, FIR_output3, N);

}

void testFIR()
{

 profile();
 testSequentialBlockProcessing();

}

void checkDifference(short *y1, short *y2, int N)
{

int i, j;
for(j=0, i=0; i<N; i++)
{

/* printf("y1[%d]=0x%x,y2[%d]=0x%x \n”, i,y1[i],i,y2[i]); */

if(y1[i]!=y2[i])
{

printf("!!!y1[%d]=0x%x,y2[%d]=0x%x \n”, i,y1[i],i,y2[i]);

j++;
}

}

if(j==0)
 printf(" no error \n");

}

Figure 3. FIR Filter Coded in C Language (Sheet 6 of 7)

30 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

void checkDifference(short *y1, short *y2, int N)
{

int i, j;
for(j=0, i=0; i<N; i++)
{

/* printf("y1[%d]=0x%x,y2[%d]=0x%x \n”, i,y1[i],i,y2[i]); */

if(y1[i]!=y2[i])
{

printf("!!!y1[%d]=0x%x,y2[%d]=0x%x \n”, i,y1[i],i,y2[i]);

j++;
}

}

if(j==0)
 printf(" no error \n");

}

void real_FIR(short *x, short *h, short *y, short L, short N)
{

int i, j, z;

for (j=0; j<N; j++)
{

for (z=0,i=0; i<L; i++)
 z+=x[i+j]*h[i];

z=z>>15;
 if (z > 32767) z = 32767;
else if (z < -32768) z = -32768;

*y++=(short)z;
}

/* update state */

for (j=0; j<L-1; j++)
{

x[j]=x[N+j];
}

}

Figure 3. FIR Filter Coded in C Language (Sheet 7 of 7)

Application Note 31

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 1 of 6)

@@/**
@@* @author Intel Corporation
@@* @date 17 June 2004
@@*
@@* -- Intel Copyright Notice --
@@*
@@* Copyright 2004 Intel Corporation All Rights Reserved.
@@*
@@* The source code contained or described herein and all documents
@@* related to the source code ("Material") are owned by Intel
@@* Corporation or its suppliers or licensors. Title to the Material
@@* remains with Intel Corporation or its suppliers and licensors.
@@* The Material contains trade secrets and proprietary and confidential
@@* information of Intel or its suppliers and licensors. The Material
@@* is protected by worldwide copyright and trade secret laws and treaty
@@* provisions. Except for the licensing of the source code hereunder,
@@* no part of the Material may be used, copied, reproduced, modified,
@@* published, uploaded, posted, transmitted, distributed, or disclosed
@@* in any way without Intel's prior express written permission.
@@*
@@* Except for the licensing of the source code as provided hereunder,
@@* no license under any patent, copyright, trade secret or other
@@* intellectual property right is granted to or conferred upon you by
@@* disclosure or delivery of the Materials, either expressly, by
@@* implication, inducement, estoppel or otherwise and any license under
@@* such intellectual property rights must be express and approved by
@@* Intel in writing.
@@*
@@* For further details, please see the file README.TXT distributed with
@@* this software.
@@* -- End Intel Copyright Notice -- @@*/

#include <arch/arm/arm.h>

@ real_FIR(short *x, short *h, short *y, short L,, short M, short N)

@@@
@@ function parameter:
@@
@@ r0 = x: input pointer
@@ r1 = h: filter coef
@@ r2 = y: Output pointer
@@ r3 = L: filter length
@@ [sp,#40] = M:original filter length
@@ [sp,#44] = N:length of output to calculate
@@
@@ for j=0...N-1
@@ y[j]=sum of {x[i+j]*h[i]} for i=0...L-1
@@ and 0x8000<= y[j] <= 0x7fff
@@
@@ h has the structure: {h[0...L-2],0, 0, h[0....L-2]}
@@ it is assumed that L is divisible by 8
@@@

32 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

.global _real_FIR_asm

.global real_FIR_asm__FPsN20sss

.global _Fir_noCopro
.global Fir_noCopro__FPsN20ss

.balign 4

_real_FIR_asm:
real_FIR_asm__FPsN20sss:
 stmdb sp!,{r4-r12,lr}

 ldr r12, L$SAT0x7fff @ r12=0x7fff, used for satuation

 mov r9, r0 @ x
 mov r10, r1 @ h
 mov r11, r3 @ L

 ldr r4, [sp,#44] @ N
 movs r4, r4, lsr #1 @ N/2
 beq checkNagain

loop1:
 mov r0, r9 @x
 mov r1, r10 @h
 mov r3, r11 @L

 @first output
 sub r5, r5, r5
 mar acc0, r5, r5 @ acc0=0
loop0:
 ldr r5, [r0], #4
 ldr r6, [r1], #4

ldr r7, [r0], #4
 ldr r8, [r1], #4

 miaph acc0, r6, r5
 miaph acc0, r8, r7

 ldr r5, [r0], #4
 ldr r6, [r1], #4

 ldr r7, [r0], #4
 ldr r8, [r1], #4
 subs r3,r3, #8 @ 8 taps per loop
 miaph acc0, r6, r5
 miaph acc0, r8, r7

 bne loop0

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 2 of 6)

Application Note 33

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

@satuation
 cmp r6, r12 @ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12 @ compare with 0x8000
 movlt r6, r12
 strh r6, [r2],#+2 @ save the output

 @second output
 mov r0, r9@ x
 mov r3, r11@ L
 sub r5, r5, r5
 mar acc0, r5, r5

loop00:
 ldr r5, [r0], #4
 ldr r6, [r1], #4
 miaph acc0, r6, r5

 ldr r7, [r0], #4
 ldr r8, [r1], #4
 miaph acc0, r8, r7

 ldr r5, [r0], #4
 ldr r6, [r1], #4
 miaph acc0, r6, r5

 ldr r7, [r0], #4
 ldr r8, [r1], #4
 miaph acc0, r8, r7

 subs r3,r3, #8
 bne loop00

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15

@satuation
 cmp r6, r12 @compare with 0x8000
 movlt r6, r12
 mvn r12, r12
 cmp r6, r12 @compare with 0x7fff
 movgt r6, r12

 strh r6, [r2],#+2 @ save the output

 add r9, r9, #4 @ point to the next input
 subs r4,r4, #1
 bne loop1

 @ check if N is an odd number

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 3 of 6)

34 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

checkNagain:
 ldr r4, [sp,#44] @ N
 ands r4, r4, #1 @ is N odd ?
 beq doneNow

 mov r0, r9 @x
 mov r1, r10 @h
 mov r3, r11 @L

 @first output
 sub r5, r5, r5
 mar acc0, r5, r5 @ acc0=0

loop000:
 ldr r5, [r0], #4
 ldr r6, [r1], #4
 miaph acc0, r6, r5

 ldr r7, [r0], #4
 ldr r8, [r1], #4
 miaph acc0, r8, r7

 ldr r5, [r0], #4
 ldr r6, [r1], #4
 miaph acc0, r6, r5

 ldr r7, [r0], #4
 ldr r8, [r1], #4
 miaph acc0, r8, r7

 subs r3,r3, #8 @ 8 taps per loop
 bne loop000

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

 @satuation
 cmp r6, r12 @compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12 @compare with 0x8000
 movlt r6, r12

strh r6, [r2],#+2 @ save the output
 add r9, r9, #2 @ point to the next input

doneNow:
 ldr r4, [sp,#44] @ N
 ldr r11, [sp,#40] @ M
 sub r2, r9, r4, asl #1 @ r9=r9-2N, point to the begining of x
 sub r11,r11, #1 @ copy L-1 samples

loop80:
 ldrsh r10, [r9], #+2 @ load it
 strh r10, [r2], #+2 @ save it
 subs r11, r11, #1
 bne loop80

ldmia sp!,{r4-r12,pc} @ return

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 4 of 6)

Application Note 35

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

@@
@@ r0 = x: input pointer
@@ r1 = h: filter coef
@@ r2 = y: Output pointer
@@ r3 = L: filter length
@@ [sp,#40] = N:length of output to calculate
@@
@@ if L is an odd number, h[L] has to be a 0
@@

.align 4

_Fir_noCopro:
Fir_noCopro__FPsN20ss:
 stmdb sp!,{r4-r12,lr} @ push registers

 ldr r4,[sp,#40] @ r4=N
 stmdb sp!,{r3-r4} @ save L, N
 and r5, r3, #1 @ make L even
 add r3, r3, r5

10: @ Outer loop
 mov r5, #0 @ r5
 mov r6, #0 @ r6

 mov r7, r0 @ r7 = x
 mov r8, r1 @ r9 = h
 mov r9, r3 @ r8 = L

20: @ inner loop.
 ldrsh r10, [r7], #+2 @
 ldrsh r11, [r8], #+2 @
 ldrsh r12, [r7], #+2 @
 ldrsh r14, [r8], #+2 @
 subs r9, r9, #2 @
 smlabb r5, r10, r11, r5 @
 smlabb r6, r12, r14, r6 @

bne 20b
add r6, r6, r5 @ add them

 ldr r12, L$SAT0x7fff
@ r12=0x7fff, used for satuation

 mov r6, r6, asr #15 @ move the value to lower 16-bit
 cmp r6, r12 @ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12 @ compare with 0x8000
 movlt r6, r12

 subs r4, r4, #1

 strh r6, [r2], #+2 @ store the result
 add r0, r0, #2 @ advance the input pointer
 bne 10b

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 5 of 6)

36 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

updateState:
 ldmia sp!,{r3-r4} @ L, N
 sub r2, r0, r4, asl #1 @ r2=r0-2N, point to the begining of x
 sub r3,r3, #1@ copy L-1 samples

loop81:
 ldrsh r10, [r0], #+2 @ load it
 strh r10, [r2], #+2 @ save it
 subs r3, r3, #1
 bne loop81

 ldmia sp!,{r4-r12,pc} @ return

.align 4
L$SAT0x7fff: .long 0x07fff

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 6 of 6)

Application Note 37

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

6.2 IIR Filter Source Code

Figure 5. IIR Filter Example, C Code (Sheet 1 of 10)

@@/**
@@* @author Intel Corporation
@@* @date 17 June 2004
@@*
@@* -- Intel Copyright Notice --
@@*
@@* Copyright 2004 Intel Corporation All Rights Reserved.
@@*
@@* The source code contained or described herein and all documents
@@* related to the source code ("Material") are owned by Intel
@@* Corporation or its suppliers or licensors. Title to the Material
@@* remains with Intel Corporation or its suppliers and licensors.
@@* The Material contains trade secrets and proprietary and confidential
@@* information of Intel or its suppliers and licensors. The Material
@@* is protected by worldwide copyright and trade secret laws and treaty
@@* provisions. Except for the licensing of the source code hereunder,
@@* no part of the Material may be used, copied, reproduced, modified,
@@* published, uploaded, posted, transmitted, distributed, or disclosed
@@* in any way without Intel's prior express written permission.
@@*
@@* Except for the licensing of the source code as provided hereunder,
@@* no license under any patent, copyright, trade secret or other
@@* intellectual property right is granted to or conferred upon you by
@@* disclosure or delivery of the Materials, either expressly, by
@@* implication, inducement, estoppel or otherwise and any license under
@@* such intellectual property rights must be express and approved by
@@* Intel in writing.
@@*
@@* For further details, please see the file README.TXT distributed with
@@* this software.
@@* -- End Intel Copyright Notice -- @@*/

#include "vxWorks.h"
#include "intLib.h"
#include "errnoLib.h"
#include "errno.h"
#include "stdio.h"
#include "math.h"
#include "memLib.h"
#include "stdlib.h"

extern int writePerfrmCtrl(int x);
extern int readCycleCounter();
long startClock, stopClock;
int numberOfRun=100;
int getNum(char *str);
void checkDifference(short *wR, short *vR, int N, bool flag);
void real_FIR(short *x, short *h, short *y, short L, short N);

38 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

void checkSectionB();
void checkSectionA();
void Profile();

void InitiIIR(short *A, short *B, short M, short N, short L, short **a, short
**b, short **w);

void IIR_C(short *a, short *b, short *w, short *x, short *y, int N, int M,
int L);
extern int IIR_asm(short *a, short *b, short *w, short *x, short *y, int N,
int M, int L);
extern int IIR_asm_DSP(short *a, short *b, short *w, short *x, short *y, int
N, int M, int L);
extern int IIR_asm_DSP4(short *a, short *b, short *w, short *x, short *y, int
N, int M, int L);

/* Square root raised cosin function with Beta=0.15 */
short RaisedCos[64]={
 -99, -17, 91, 84, -37, -113, -31, 112,
 111, -70, -206, -68, 235, 313, -36, -479,
 -426, 234, 829, 535, -578, -1344, -633, 1190,
 2191, 709, -2453, -4055, -758, 7325, 15982,
 19704,
 15982, 7325, -758, -4055, -2453, 709, 2191,
 1190, -633, -1344, -578, 535, 829, 234, -426,
 -479, -36, 313, 235, -68, -206, -70, 111,
 112, -31, -113, -37, 84, 91, -17, -99,0};

void testIIR()
{

printf("check setion A...\n”);
checkSectionA();

printf("check setion B...\n”);
checkSectionB();

Profile();
}

void Profile()
{

short *a, *b, *w, *A, *B;
short *x, *y, M, N, L;
short *w1, *y1, *w2, *y2, *w3, *y3;
int i, j;
float d=0.5;

numberOfRun=100;

N=16;
M=16;
L=100;

Figure 5. IIR Filter Example, C Code (Sheet 2 of 10)

Application Note 39

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

A=(short *) malloc(N*sizeof(short));
B=(short *) malloc(M*sizeof(short));

x=(short *) malloc(L*sizeof(short));
y=(short *) malloc(L*sizeof(short));

w1=(short *) malloc((M+L)*sizeof(short));
y1=(short *) malloc(L*sizeof(short));

w2=(short *) malloc((M+L)*sizeof(short));
y2=(short *) malloc(L*sizeof(short));

w3=(short *) malloc((M+L)*sizeof(short));
y3=(short *) malloc(L*sizeof(short));

for(i=0; i<M; i++)
{

w1[i]=0;
w2[i]=0;
w3[i]=0;

}

/* coefficients do not matter for profiling */
for(i=0; i<N; i++)

A[i]=i;

for(i=0; i<M; i++)
B[i]=i;

/* input */
for(i=0; i<L; i++)/* input has only one pulse */
x[i]=0;
x[0]=32767;/* just to get impusle response */

InitiIIR(A, B, M, N, L, &a, &b, &w);
/* profile */

writePerfrmCtrl(0x07); /* start all the counters*/

printf("IIR_asm_DSP \n”);

startClock=readCycleCounter();
for(j=0;j<numberOfRun; j++) /* run 100 times for measurement*/

 IIR_asm_DSP(a, b, w, x, y, N, M,L);
stopClock=readCycleCounter();

printf("total cycles =%d \n",stopClock-startClock);
printf("number Of Run =%d \n”, numberOfRun);

printf("number Of output per Run =%d \n”, L);
printf("order M =%d \n”, M);
printf("order N =%d \n”, N);
printf("average cycle per tap (totalCycles/(M+N)) =%f \n, \n",(stop-
Clock-startClock)*1.0/numberOfRun/L/(M+N));

Figure 5. IIR Filter Example, C Code (Sheet 3 of 10)

40 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

printf("IIR_asm_DSP4 \n”);

startClock=readCycleCounter();
for(j=0;j<numberOfRun; j++) /* run 100 times for measurement*/
 IIR_asm_DSP4(a, b, w3, x, y3, N, M,L);

stopClock=readCycleCounter();

printf("total cycles =%d \n",stopClock-startClock);

printf("number Of Run =%d \n”, numberOfRun);
printf("number Of output per Run =%d \n”, L);
printf("order M =%d \n”, M);
printf("order N =%d \n”, N);
printf("average cycle per tap (totalCycles/(M+N)) =%f \n, \n",(stop-
Clock-startClock)*1.0/numberOfRun/L/(M+N));

printf("IIR_asm \n”);

startClock=readCycleCounter();
for(j=0;j<numberOfRun; j++) /* run 100 times for measurement*/
IIR_asm(a, b, w1, x, y1, N, M,L);
stopClock=readCycleCounter();

printf("total cycles =%d \n",stopClock-startClock);
printf("number Of Run =%d \n”, numberOfRun);

printf("number Of output per Run =%d \n”, L);
printf("order M =%d \n”, M);
printf("order N =%d \n”, N);
printf("average cycle per tap (totalCycles/(M+N)) =%f \n, \n",(stop-
Clock-startClock)*1.0/numberOfRun/L/(M+N));

printf("IIR_C \n”);

startClock=readCycleCounter();
for(j=0;j<numberOfRun; j++) /* run 100 times for measurement*/
IIR_C(a, b, w2, x, y2, N, M,L);
stopClock=readCycleCounter();

printf("total cycles =%d \n",stopClock-startClock);

printf("number Of Run =%d \n”, numberOfRun);

printf("number Of output per Run =%d \n”, L);
printf("order M =%d \n”, M);
printf("order N =%d \n”, N);
printf("average cycle per tap (totalCycles/(M+N)) =%f \n, \n",(stop-
Clock-startClock)*1.0/numberOfRun/L/(M+N));

checkDifference(y,y2,L, true);
checkDifference(y,y3,L, false);
checkDifference(y1,y2,L, false);
checkDifference(w,w2,M-1,false);
checkDifference(w1,w2,M-1,false);

}

Figure 5. IIR Filter Example, C Code (Sheet 4 of 10)

Application Note 41

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

void checkSectionA()
{

/* a smooth filter
y[n]=d*x[n]+(1-d)*y[n-1], d<1
impulse response h[n]=d(1-d)^n
*/
short *a, *b, *w, *A, *B;
short *x, *y, M, N, L;
short *w1, *y1, *y2;
int i, j;
float d=0.5;

numberOfRun=100;
N=2;
M=2;
L=9;

A=(short *) malloc(N*sizeof(short));
B=(short *) malloc(M*sizeof(short));

x=(short *) malloc(L*sizeof(short));
y=(short *) malloc(L*sizeof(short));

w1=(short *) malloc((M+L)*sizeof(short));
y1=(short *) malloc(L*sizeof(short));

y2=(short *) malloc(L*sizeof(short));

A[0]=0;
A[1]=(short) (-(1-d)*32767);
B[0]=(short) (d*32767);
B[1]=0;

for(i=0; i<L; i++)/* input has only one pulse */
x[i]=0;

x[0]=32767;/* just to get impulse response */

InitiIIR(A, B, M, N, L, &a, &b, &w);
IIR_asm_DSP(a, b, w, x, y, N, M,L);

for(i=0; i<M; i++) w1[i]=0;

IIR_C(a, b, w1, x, y1, N, M,L);

/* theoretical result */
for(i=0; i<L; i++)

y2[i]=(short)(d*pow(1-d,i)*32767);

checkDifference(y,y2,L,true);
checkDifference(y,y1,L,false);
checkDifference(w,w1,M-1,false);

}

Figure 5. IIR Filter Example, C Code (Sheet 5 of 10)

42 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

void checkSectionB()
{

short *a, *b, *w, *A, *B;
short *x, *y, M, N, L;
short *x1, *y1;
short *w2, *y2;
int i, j;

numberOfRun=100;

N=64;
M=64;
L=127;

A=(short *) malloc(N*sizeof(short));
B=(short *) malloc(M*sizeof(short));

x=(short *) malloc(L*sizeof(short));
y=(short *) malloc(L*sizeof(short));

w2=(short *) malloc((L+M)*sizeof(short));
y2=(short *) malloc(L*sizeof(short));

/* check section B */
for(i=0; i<N; i++)
A[i]=0;/* turn off section A */

/* input */
for(i=0; i<L; i++)

x[i]=0;

for(i=0; i<M; i++)
x[i]=RaisedCos[i];

InitiIIR(A, RaisedCos, M, N, L, &a, &b, &w);
IIR_asm_DSP(a, b, w, x, y, N, M,L);

for(i=0; i<M; i++) w2[i]=0;
IIR_C(a, b, w2, x, y2, N, M,L);

/* compare Section B with FIR filter */

x1=(short *) malloc((L+M)*sizeof(short));
y1=(short *) malloc(L*sizeof(short));

for(i=0; i<M+L; i++)
x1[i]=0;

for(i=0; i<M; i++)
x1[M-2+i]=RaisedCos[i];

real_FIR(x1, RaisedCos, y1, M, L);

checkDifference(y,y1,L,false);
checkDifference(y,y2,L,false);
checkDifference(w,w2,N-1,false);

}

Figure 5. IIR Filter Example, C Code (Sheet 6 of 10)

Application Note 43

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

void checkDifference(short *wR, short *vR, int N, bool flag)
{

int n, tmp, maxError, indMaxError;
printf(" checking the difference...

for(indMaxError=0, maxError=0, n=0; n<N; n++)
{

tmp=abs(wR[n]-vR[n]);

if(maxError<tmp)
{

maxError=tmp;
indMaxError=n;

}
 if(flag==true)

 printf("wR[%d]=%d,vR[%d]=%d
}

if(maxError==0)
printf(" no difference

else
printf(" max difference maxError=%d, indMaxError=%d

}

int getNum(char *str)
{

int c;
 int i = 0;
 char input[100];

 if(str && *str) printf("%s", str);
 do
 {
 c = getc(stdin);

 if (c == 0x08)
 {
 if(i) i--;
 }
 else
 {
 input[i++] = c;
 }
 } while(i<100 && c!='

input[i] = '\0';

return atoi(input);
}

Figure 5. IIR Filter Example, C Code (Sheet 7 of 10)

44 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

void InitiIIR(short *A, short *B, short M, short N, short L, short **a, short
**b, short **w)

{
/* require M and N be even number!

A,B: original filter coef H[z]=B[z]/A[z]
M: order of B
N: order of A, N>=M
L: max block input length
a: new coef
b: new coef
w: filter state

*/

/* short *b; b[0, ... M-2 . M-1]
 ={B[M-1], ... B[1], B[0] }

 short *a; a[0, N-2, . N-1]
 ={-A[N-1],.. -A[1]. 0]}
*/

int i, j;
short *q;

*a=(short *) malloc(2*N*sizeof(short));
*b=(short *) malloc((2*M+2)*sizeof(short));
*w=(short *) malloc((N+L)*sizeof(short));

for(i=0; i<N-1; i++)
(*a)[i]=-A[N-1-i];

(*a)[N-1]=0;

q=(*a)+N;
q[0]=0;

for(i=0; i<N-1; i++)
q[1+i]=(*a)[i];

for(i=0; i<M; i++)
(*b)[i]=B[M-1-i];

q=(*b)+M;
q[0]=0;

for(i=0; i<M; i++)
q[1+i]=(*b)[i];

q[M+1]=0;

for(i=0; i<N; i++)
(*w)[i]=0;

}

Figure 5. IIR Filter Example, C Code (Sheet 8 of 10)

Application Note 45

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

void IIR_C(short *a, short *b, short *w, short *x, short *y, int N, int M,
int L)
{

/* x: input
 w: state
 y: output
 M: order of b
 N: order of a
 L: input block length
*/

/* H(z)= {B[0]+B[1]*z[-1]+...+B[M-1]*z[-(M-1)]} /
{1+A[1]*z[-1]+...+A[N-1]*z[-(N-1)]} */

/* short *b; b[0, ... M-2 . M-1]
 ={B[M-1], ... B[1], B[0] }
 short *a; a[0, N-2, . N-1]
 ={-A[N-1],.. -A[1]. 0]} */

int i, j, v;

for(j=0; j<L; j++)
{

 for(v=0, i=0; i<N-1; i++)
 v+=w[i+j]*a[i];

 v=v>>15;
v+=x[j];

if (v > 32767) v = 32767;

else if (v < -32768) v = -32768;

w[N-1+j]=v;

 for(v=0, i=0; i<M; i++)
 v+=w[N-M+i+j]*b[i];

 v=v>>15;

 if (v > 32767) v = 32767;
else if (v < -32768) v = -32768;

*y++=(short)v;
}

/* update state */

for (j=0; j<N-1; j++)
{

w[j]=w[L+j];
}

}

Figure 5. IIR Filter Example, C Code (Sheet 9 of 10)

46 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

void real_FIR(short *x, short *h, short *y, short L, short N)
{

int i, j, z;

for (j=0; j<N; j++)
{

for (z=0,i=0; i<L; i++)
 z+=x[i+j]*h[i];

/* printf("z[%d]=0x%x

 z=z>>15;
 if (z > 32767) z = 32767;

else if (z < -32768) z = -32768;
*y++=(short)z;

}

/* update state */

for (j=0; j<L-1; j++)
{

x[j]=x[N+j];
}

}

Figure 5. IIR Filter Example, C Code (Sheet 10 of 10)

Application Note 47

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

Figure 6. IIR Filter Example, Assembly Code (Sheet 1 of 12)

@@/**
@@* @author Intel Corporation
@@* @date 17 June 2004
@@*
@@* -- Intel Copyright Notice --
@@*
@@* Copyright 2004 Intel Corporation All Rights Reserved.
@@*
@@* The source code contained or described herein and all documents
@@* related to the source code ("Material") are owned by Intel
@@* Corporation or its suppliers or licensors. Title to the Material
@@* remains with Intel Corporation or its suppliers and licensors.
@@* The Material contains trade secrets and proprietary and confidential
@@* information of Intel or its suppliers and licensors. The Material
@@* is protected by worldwide copyright and trade secret laws and treaty
@@* provisions. Except for the licensing of the source code hereunder,
@@* no part of the Material may be used, copied, reproduced, modified,
@@* published, uploaded, posted, transmitted, distributed, or disclosed
@@* in any way without Intel's prior express written permission.
@@*
@@* Except for the licensing of the source code as provided hereunder,
@@* no license under any patent, copyright, trade secret or other
@@* intellectual property right is granted to or conferred upon you by
@@* disclosure or delivery of the Materials, either expressly, by
@@* implication, inducement, estoppel or otherwise and any license under
@@* such intellectual property rights must be express and approved by
@@* Intel in writing.
@@*
@@* For further details, please see the file README.TXT distributed with
@@* this software.
@@* -- End Intel Copyright Notice -- @@
@@***/

@ 2 point, 4 point, and fisrt pass in the second loop are treated specially
@ becuase no multiplication required

#include <arch/arm/arm.h>

@ extern void IIR_asm(short *a, short *b, short *w, short *x, short *y, int
N, int M, int L);

@@@
@@ IIR filter H(z)=B(z)/A(z)
@@ function parameter:
@@
@@ r0 = a: coefficient pointer
@@ r1 = b: coefficient pointer
@@ r2 = w: state pointer
@@ r3 = x: input pointer
@@ [sp,#40] = y:output pointer
@@ [sp,#44] = Norder of a
@@ [sp,#48] = Morder of b
@@ [sp,#52] = Linput length
@@
@@@

48 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

.global IIR_ASM

.global _IIR_ASM

.global IIR_asm__FPsN40iii

.global IIR_ASM_DSP

.global _IIR_ASM_DSP

.global IIR_asm_DSP__FPsN40iii

.global IIR_ASM_DSP4
.global _IIR_ASM_DSP4
.global IIR_asm_DSP4__FPsN40iii

.balign 4

IIR_ASM_DSP:
_IIR_ASM_DSP:
IIR_asm_DSP__FPsN40iii:

 stmdb sp!,{r4-r12,lr}

 ldr r12, L$SAT0x7fff@ r12=0x7fff, used for satuation

 ldr r4, [sp,#40] @ r4 =y

 ldrh r5, [sp,#54] @ r5 = L
 strh r5, [sp,#52] @ save L to higher 16 bits
 movs r5, r5, lsr #1 @ L/2
 strh r5, [sp,#52]
 beq checkNagain

loop0:
 @ ---- first sample -----
 @ A section

 mov r7, r0 @ r7 =a
 mov r9, r2 @ r9 =w
 ldr r8, [sp,#44] @ r8 =N

 sub r5, r5, r5
 mar acc0, r5, r5@ acc0=0
loop1: @ inner loop.

ldr r10, [r7], #+4
ldr r11, [r9], #+4
subs 8, r8, #2
miaph acc0, r11, r10
bne loop1

 ldrsh r10, [r3], #+2 @ x[j]

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

 add r6, r6, r10 @ add x[j]

Figure 6. IIR Filter Example, Assembly Code (Sheet 2 of 12)

Application Note 49

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

@satuation
 cmp r6, r12 @ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12 @ compare with 0x8000
 movlt r6, r12

 strh r6, [r9,#-2] @ save state

 @ B section
 @ r9 pointed to w[N]
 mov r7, r1 @ r7 =b
 ldr r8, [sp,#48] @ r8 =M
 sub r5, r5, r5
 mar acc0, r5, r5 @ acc0=0
 sub r9, r9, r8, lsl #1 @ w[N-M]

loop2: @ inner loop.
ldr r10, [r7], #+4
ldr r11, [r9], #+4
subs r8, r8, #2
miaph acc0, r11, r10
bne loop2

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

 @satuation
 cmp r6, r12 @compare with 0x8000

 movlt r6, r12
mvn r12, r12
 cmp r6, r12 @compare with 0x7fff
 movgt r6, r12

 strh r6, [r4], #+2 @ store the result

 @ ---- second sample -----
 @ A section

 ldr r8, [sp,#44] @ r8 =N
 mov r7, r0 @ r7 =a
 mov r9, r2 @ r9 =w
 add r7, r7, r8, lsl #1 @ point to one sample offset a coefficients

 sub r5, r5, r5
 mar acc0, r5, r5@ acc0=0

loop3: @ inner loop.
ldr r10, [r7], #+4
ldr r11, [r9], #+4
subs r8, r8, #2
miaph acc0, r11, r10

bne loop3

Figure 6. IIR Filter Example, Assembly Code (Sheet 3 of 12)

50 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

ldrsh r10, [r3], #+2 @ x[j]

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

 add r6, r6, r10 @ add x[j]

 @satuation
 cmp r6, r12 @ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12 @ compare with 0x8000
 movlt r6, r12
 strh r6, [r9] @ save state

 @ B section
 @ r9 pointed to w[N]

 mov r7, r1 @ r7 =b
 ldr r8, [sp,#48] @ r8 =M
 sub r5, r5, r5
 mar acc0, r5, r5 @ acc0=0
 sub r9, r9, r8, lsl #1 @ w[N-M]
 add r7, r7, r8, lsl #1 @ point to one sample offset a coefficients

loop4: @ inner loop.
ldr r10, [r7], #+4
ldr r11, [r9], #+4
subs r8, r8, #2
miaph acc0, r11, r10
bne loop4

 @ one more for the offset
ldr r10, [r7], #+4
ldr r11, [r9], #+4
miaph acc0, r11, r10

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

 @satuation
 cmp r6, r12 @compare with 0x8000
 movlt r6, r12
 mvn r12, r12
 cmp r6, r12 @compare with 0x7fff
 movgt r6, r12

 strh r6, [r4], #+2 @ store the result

 ldrsh r8, [sp,#52] @ r8 =L
 subs r8, r8, #1
 strh r8, [sp,#52] @ r8 =L
 add r2, r2, #4 @ advance the state pointer
 bne loop0

Figure 6. IIR Filter Example, Assembly Code (Sheet 4 of 12)

Application Note 51

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

checkNagain: @ one output only

 ldrh r8, [sp,#54] @ L
 ands r8, r8, #1@ is L odd ?
 beq updateState

 @ ---- first sample -----
 @ A section

 mov r7, r0 @ r7 =a
 mov r9, r2 @ r9 =w
 ldr r8, [sp,#44] @ r8 =N

 sub r5, r5, r5
 mar acc0, r5, r5@ acc0=0

loop51: @ inner loop.
ldr r10, [r7], #+4
ldr r11, [r9], #+4
subs r8, r8, #2
miaph acc0, r11, r10
bne loop51

 ldrsh r10, [r3], #+2 @ x[j]

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

 add r6, r6, r10 @ add x[j]

 @satuation
 cmp r6, r12 @ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12 @ compare with 0x8000
 movlt r6, r12
 strh r6, [r9,#-2] @ save state

 @ B section
 @ r9 pointed to w[N]

 mov r7, r1 @ r7 =b
 ldr r8, [sp,#48] @ r8 =M
 sub r5, r5, r5
 mar acc0, r5, r5 @ acc0=0
 sub r9, r9, r8, lsl #1 @ w[N-M]

loop52: @ inner loop.
ldr r10, [r7], #+4
ldr r11, [r9], #+4
subs r8, r8, #2
miaph acc0, r11, r10
bne loop52

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

Figure 6. IIR Filter Example, Assembly Code (Sheet 5 of 12)

52 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

 @satuation
 cmp r6, r12 @compare with 0x8000
 movlt r6, r12
 mvn r12, r12
 cmp r6, r12 @compare with 0x7fff
 movgt r6, r12

strh r6, [r4], #+2 @ store the result

 add r2, r2, #2 @ advance the state pointer

updateState:
 ldrh r5, [sp,#54] @ r5 = L
 sub r9, r2, r5, asl #1 @ r2=r0-2L, point to the begining of x
 ldr r8, [sp,#44] @ r8 =N
 sub r8, r8, #1@ copy N-1 samples
loop5:
 ldrsh r10, [r2], #+2 @ load it
 strh r10, [r9], #+2 @ save it
 subs r8, r8, #1
 bne loop5

doneNow:

 ldmia sp!,{r4-r12,pc} @ return

.balign 4

IIR_ASM:
_IIR_ASM:
IIR_asm__FPsN40iii:

 stmdb sp!,{r4-r12,lr}

 ldr r4, [sp,#40] @ r4 =y
 ldr r5, [sp,#52] @ r5 = L
 orr r5, r5, r5, lsl #16 @ save L to higher 16 bits
str r5, [sp,#52]
loop10:
 @ A section
 mov r7, r0 @ r7 =a
 mov r9, r2 @ r9 =w
 ldr r8, [sp,#44] @ r8 =N
 mov r5, #0 @ r5 =0
 mov r6, #0 @ r6 =0

loop11: @ inner loop.
ldrsh r10, [r7], #+2
ldrsh r11, [r9], #+2
ldrsh r12, [r7], #+2
ldrsh r14, [r9], #+2
subs r8, r8, #2
smlabb r5, r10, r11, r5
smlabb r6, r12, r14, r6

bne loop1

Figure 6. IIR Filter Example, Assembly Code (Sheet 6 of 12)

Application Note 53

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

 add r6, r6, r5 @ add them
 ldrsh r5, [r3], #+2 @ x[j]

 ldr r12, L$SAT0x7fff @ r12=0x7fff, used for satuation
 mov r6, r6, asr #15 @ move the value to lower 16-bit

 add r6, r6, r5 @ add x[j]

 cmp r6, r12@ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12@ compare with 0x8000
 movlt r6, r12

 strh r6, [r9,#-2]@ save state

 @ B section
 @ r9 pointed to w[N]

 mov r7, r1 @ r7 =b
 ldr r8, [sp,#48] @ r8 =M
 mov r5, #0 @ r5 =0
 mov r6, #0 @ r6 =0
 sub r9, r9, r8, lsl #1 @ w[N-M]

loop12: @ inner loop.
ldrsh r10, [r7], #+2
ldrsh r11, [r9], #+2
ldrsh r12, [r7], #+2
ldrsh r14, [r9], #+2
subs r8, r8, #2
smlabb r5, r10, r11, r5
smlabb r6, r12, r14, r6
bne loop12

 add r6, r6, r5 @ add them

 ldr r12, L$SAT0x7fff@ r12=0x7fff, used for satuation
 mov r6, r6, asr #15 @ move the value to lower 16-bit

 cmp r6, r12@ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12@ compare with 0x8000
 movlt r6, r12

 ldrsh r8, [sp,#52] @ r8 =L
 strh r6, [r4], #+2 @ store the result

 subs r8, r8, #1
 strh r8, [sp,#52] @ r8 =L

add r2, r2, #2 @ advance the state pointer

 bne loop10

Figure 6. IIR Filter Example, Assembly Code (Sheet 7 of 12)

54 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

updateState1:

 ldrh r5, [sp,#54] @ r5 = L
 sub r9, r2, r5, asl #1 @ r2=r0-2L, point to the begining of x
 ldr r8, [sp,#44] @ r8 =N
 sub r8, r8, #1 @ copy N-1 samples
loop13:
 ldrsh r10, [r2], #+2 @ load it
 strh r10, [r9], #+2 @ save it
 subs r8, r8, #1
 bne loop13

doneNow1:

 ldmia sp!,{r4-r12,pc} @ return

.balign 4

IIR_ASM_DSP4:
_IIR_ASM_DSP4:
IIR_asm_DSP4__FPsN40iii:

 stmdb sp!,{r4-r12,lr}

 ldr r12, L$SAT0x7fff@ r12=0x7fff, used for satuation

 ldr r4, [sp,#40] @ r4 =y

 ldrh r5, [sp,#54] @ r5 = L
 strh r5, [sp,#52]@ save L to higher 16 bits
 movs r5, r5, lsr #1@ L/2
 strh r5, [sp,#52]
 beq checkNagain4

loop40:
 @ ---- first sample -----
 @ A section
 mov r7, r0 @ r7 =a
 mov r9, r2 @ r9 =w
 ldr r8, [sp,#44] @ r8 =N

 sub r5, r5, r5
 mar acc0, r5, r5@ acc0=0
loop41: @ inner loop.

ldr r10, [r7], #+4
ldr r11, [r9], #+4
ldr r5, [r7], #+4
ldr r6, [r9], #+4
subs r8, r8, #4
miaph acc0, r11, r10
miaph acc0, r5, r6

bne loop41

Figure 6. IIR Filter Example, Assembly Code (Sheet 8 of 12)

Application Note 55

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

ldrsh r10, [r3], #+2 @ x[j]

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

 add r6, r6, r10 @ add x[j]

 @satuation
 cmp r6, r12 @ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12 @ compare with 0x8000
 movlt r6, r12

 strh r6, [r9,#-2] @ save state

 @ B section
 @ r9 pointed to w[N]
 mov r7, r1 @ r7 =b
 ldr r8, [sp,#48] @ r8 =M
 sub r5, r5, r5
 mar acc0, r5, r5 @ acc0=0
 sub r9, r9, r8, lsl #1 @ w[N-M]

loop42: @ inner loop.
ldr r10, [r7], #+4
ldr r11, [r9], #+4
ldr r5, [r7], #+4
ldr r6, [r9], #+4
subs r8, r8, #4
miaph acc0, r11, r10
miaph acc0, r5, r6
bne loop42

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17

 orr r6, r6, r5, lsr #15 @ acc0>>15

 @satuation
 cmp r6, r12 @compare with 0x8000
 movlt r6, r12
 mvn r12, r12
 cmp r6, r12 @compare with 0x7fff
 movgt r6, r12
 strh r6, [r4], #+2 @ store the result

 @ ---- second sample -----
 @ A section

 ldr r8, [sp,#44] @ r8 =N
 mov r7, r0 @ r7 =a
 mov r9, r2 @ r9 =w
 add r7, r7, r8, lsl #1 @ point to one sample offset a coefficients

 sub r5, r5, r5

 mar acc0, r5, r5 @ acc0=0

Figure 6. IIR Filter Example, Assembly Code (Sheet 9 of 12)

56 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

loop43: @ inner loop.
ldr r10, [r7], #+4
ldr r11, [r9], #+4
ldr r5, [r7], #+4
ldr r6, [r9], #+4
subs r8, r8, #4
miaph acc0, r11, r10
miaph acc0, r5, r6
bne loop43

 ldrsh r10, [r3], #+2 @ x[j]

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17

 orr r6, r6, r5, lsr #15 @ acc0>>15
add r6, r6, r10 @ add x[j]

 @satuation
 cmp r6, r12 @ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12 @ compare with 0x8000
 movlt r6, r12

 strh r6, [r9] @ save state

 @ B section
 @ r9 pointed to w[N]

 mov r7, r1 @ r7 =b
 ldr r8, [sp,#48] @ r8 =M
 sub r5, r5, r5
 mar acc0, r5, r5 @ acc0=0
 sub r9, r9, r8, lsl #1 @ w[N-M]
 add r7, r7, r8, lsl #1 @ point to one sample offset a coefficients

loop44: @ inner loop.
ldr r10, [r7], #+4
ldr r11, [r9], #+4
ldr r5, [r7], #+4
ldr r6, [r9], #+4
subs r8, r8, #4
miaph acc0, r11, r10
miaph acc0, r5, r6
bne loop44

@ one more for the offset

ldr r10, [r7], #+4
ldr r11, [r9], #+4
miaph acc0, r11, r10

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

Figure 6. IIR Filter Example, Assembly Code (Sheet 10 of 12)

Application Note 57

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

@satuation
 cmp r6, r12 @compare with 0x8000
 movlt r6, r12
 mvn r12, r12
 cmp r6, r12 @compare with 0x7fff
 movgt r6, r12

 strh r6, [r4], #+2 @ store the result

 ldrsh r8, [sp,#52] @ r8 =L
 subs r8, r8, #1
 strh r8, [sp,#52] @ r8 =L
 add r2, r2, #4 @ advance the state pointer
 bne loop40

checkNagain4: @ one output only

 ldrh r8, [sp,#54] @ L
 ands r8, r8, #1 @ is L odd ?
 beq updateState4

 @ ---- first sample -----
 @ A section

 mov r7, r0 @ r7 =a
 mov r9, r2 @ r9 =w
 ldr r8, [sp,#44] @ r8 =N

 sub r5, r5, r5
 mar acc0, r5, r5@ acc0=0
loop451: @ inner loop.

ldr r10, [r7], #+4
ldr r11, [r9], #+4
ldr r5, [r7], #+4
ldr r6, [r9], #+4
subs r8, r8, #4
miaph acc0, r11, r10
miaph acc0, r5, r6
bne loop451

 ldrsh r10, [r3], #+2 @ x[j]

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

 add r6, r6, r10 @ add x[j]

 @satuation

 cmp r6, r12 @ compare with 0x7fff
 movgt r6, r12
 mvn r12, r12
 cmp r6, r12 @ compare with 0x8000
 movlt r6, r12

strh r6, [r9,#-2] @ save state

Figure 6. IIR Filter Example, Assembly Code (Sheet 11 of 12)

58 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

 @ B section
 @ r9 pointed to w[N]

 mov r7, r1 @ r7 =b
 ldr r8, [sp,#48] @ r8 =M
 sub r5, r5, r5
 mar acc0, r5, r5 @ acc0=0
 sub r9, r9, r8, lsl #1 @ w[N-M]

loop452: @ inner loop.
ldr r10, [r7], #+4
ldr r11, [r9], #+4
ldr r5, [r7], #+4
ldr r6, [r9], #+4
subs r8, r8, #4
miaph acc0, r11, r10
miaph acc0, r5, r6
bne loop452

 mra r5, r6, acc0 @ acc0=[r6 r5]
 mov r6, r6, asl #17
 orr r6, r6, r5, lsr #15 @ acc0>>15

 @satuation

 cmp r6, r12 @compare with 0x8000
 movlt r6, r12
 mvn r12, r12
 cmp r6, r12 @compare with 0x7fff
 movgt r6, r12

 strh r6, [r4], #+2 @ store the result

 add r2, r2, #2 @ advance the state pointer
updateState4:
 ldrh r5, [sp,#54] @ r5 = L
 sub r9, r2, r5, asl #1 @ r2=r0-2L, point to the begining of x
 ldr r8, [sp,#44] @ r8 =N
 sub r8, r8, #1 @ copy N-1 samples
loop45:
 ldrsh r10, [r2], #+2 @ load it
 strh r10, [r9], #+2 @ save it
 subs r8, r8, #1
 bne loop45

doneNow4:
 ldmia sp!,{r4-r12,pc} @ return

.align 4
L$SAT0x7fff: .long 0x07fff

Figure 6. IIR Filter Example, Assembly Code (Sheet 12 of 12)

Application Note 59

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

6.3 FFT Source Code Example

Figure 7. FFT Example, C Code (Sheet 1 of 20)

/**
*
* @author Intel Corporation
* @date 17 June 2004
*
*
* -- Intel Copyright Notice --
*
*
* Copyright 2004 Intel Corporation All Rights Reserved.
*
* The source code contained or described herein and all documents
* related to the source code ("Material") are owned by Intel Corporation
* or its suppliers or licensors. Title to the Material remains with
* Intel Corporation or its suppliers and licensors. The Material
* contains trade secrets and proprietary and confidential information of
* Intel or its suppliers and licensors. The Material is protected by
* worldwide copyright and trade secret laws and treaty provisions. Except
* for the licensing of the source code hereunder, no part of the Material may
* be used, copied, reproduced, modified, published, uploaded, posted,
* transmitted, distributed, or disclosed in any way without Intel's prior
* express written permission.
*
* Except for the licensing of the source code as provided hereunder, no
* license under any patent, copyright, trade secret or other intellectual
* property right is granted to or conferred upon you by disclosure or
* delivery of the Materials, either expressly, by implication, inducement,
* estoppel or otherwise and any license under such intellectual property
* rights must be express and approved by Intel in writing.
*
* For further details, please see the file README.TXT distributed with
* this software.
* -- End Intel Copyright Notice --

*/

#include "vxWorks.h"
#include "intLib.h"
#include "errnoLib.h"
#include "errno.h"
#include "stdio.h"
#include "math.h"
#include "memLib.h"
#include "stdlib.h"

60 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

extern int writePerfrmCtrl(int x);
extern int readCycleCounter();
long startClock, stopClock;
int numberOfRun=2;

void Profile_Split_Radix_FFT_C(short *xR, short *xI, int N);
void Profile_Split_Radix_FFT_asm(short *xR, short *xI, int N);
void Profile_Split_Radix_FFT_asm_DSP(short *xR, short *xI, int N);

/* All FFT and DFT outputs are scaled down by N */

int bitReverse(int b, int B);
void checkDifference(short *wR, short *wI, short *vR, short *vI, int N);

void DFT_FloatingPoint_N(short *xR, short *xI, float *yR, float *yI, int N);
void DFT_FixedPoint_N(short *xR, short *xI, short *yR, short *yI, int N);
void Split_Radix_FFT_C(short *xR, short *xI, int N);
void Split_Radix_ButterFly_Optimized(short *xR, short *xI, int M, int q);
void Split_Radix_ButterFly(short *xR, short *xI, int M, int q);
void Split_Radix_ButterFly_with_rouding(short *xR, short *xI, int M, int q);
void Split_Radix_FFT_asm(short *xR, short *xI, int N);
void Split_Radix_FFT_asm_DSP(short *xR, short *xI, int N);

extern void Split_Radix_FFT_ASM(short *xR, short *xI,short *cosRsinI, int N,
short *bitRevTable, int H);
extern void Split_Radix_FFT_ASM_DSP(short *xR, short *xI,short *cosRsinI, int
N, short *bitRevTable, int H);

float pi;
short *cosR, *sinI;

void DFT_FloatingPoint_N(short *xR, short *xI, float *yR, float *yI, int N)
{

/* the outputs are scaled down by N */
int k, n;

for (k=0; k<N; k++)
{

for(yR[k]=0, yI[k]=0, n=0; n<N; n++)
{

yR[k]+=xR[n]*cos(2*pi*k*n/N) + xI[n]*sin(2*pi*k*n/N);
yI[k]+=xI[n]*cos(2*pi*k*n/N) - xR[n]*sin(2*pi*k*n/N);

}
yR[k]=yR[k]/N;
yI[k]=yI[k]/N;

}
}

void DFT_FixedPoint_N(short *xR, short *xI, short *yR, short *yI, int N)
{ /* the result is divided by N */

int k, n, B;
long long tmpR, tmpI;
cosR=(short *) malloc(N*sizeof(short));
sinI=(short *) malloc(N*sizeof(short));

Figure 7. FFT Example, C Code (Sheet 2 of 20)

Application Note 61

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

B=(int)(log10(N)/log10(2));

/* printf("B=%d \n”,B); */

for(n=0; n<N; n++)
{

cosR[n]=(short) (cos(2*pi*n/N)*32767);
sinI[n]=(short) (sin(2*pi*n/N)*32767);

}

for (k=0; k<N; k++)
{

for(tmpR=0,tmpI=0, n=0; n<N; n++)
{

tmpR+=xR[n]*((long)cosR[k*n%N]) + xI[n]*((long)sinI[k*n%N]);
tmpI+=xI[n]*((long)cosR[k*n%N]) - xR[n]*((long)sinI[k*n%N]);

}

yR[k]=(short) (tmpR>>(B+15));
yI[k]=(short) (tmpI>>(B+15)); /* 15 bit for fixed scaling */

}
}

int bitReverse(int b, int B)
{

int i, tmp;

for (tmp=0, i=0; i<B; i++)
{

tmp=tmp<<1;
tmp|=(b&1);
b=b>>1;

}
return tmp;

}

void Split_Radix_FFT_asm(short *xR, short *xI, int N)
{

int n, B, h, H;
short *bitRevTable, tmp, *ptr;
int *cosSinTable; /* cosSinTable[0]={bit31~16...bit15~0}= { sinI[n],
cosR[n] }
/* cosSinTable[1]={bit31~16...bit15~0}= { cosR[n], -sinI[n]}......*/

B=(int)(log10(N)/log10(2));

/* create the cos& sin table */
cosSinTable=(int *) malloc(4*N*sizeof(short));
ptr=(short *)cosSinTable;
for(n=0; n<N; n++)
{

/* swap for big endian */
ptr[4*n+1]=(short) (cos(2*pi*n/N)*32767);
ptr[4*n+0]=(short) (sin(2*pi*n/N)*32767);

Figure 7. FFT Example, C Code (Sheet 3 of 20)

62 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

ptr[4*n+3]=-ptr[4*n+0];
ptr[4*n+2]=ptr[4*n+1];

/*
printf("cosSinTable[%d]=%x \n”, 2*n, cosSinTable[2*n]);
printf("cosSinTable[%d]=%x \n”, 2*n+1, cosSinTable[2*n+1]);
printf(" cosR=%x, -sinI=%x, sinI=%x, cos=%x \n”,
ptr[4*n+2],ptr[4*n+3],ptr[4*n+0],ptr[4*n+1]);
*/

}

/* create bit reverse table */

bitRevTable=(short *) malloc(N*sizeof(short));

for(h=0, H=0, n=0; n<N; n++)
{

 tmp=bitReverse(n,B);
 if(n<tmp)
 {

bitRevTable[h]=2*n; /* 2 for word addressing */
bitRevTable[h+1]=2*tmp;
h+=2;
H+=1;

}

}
 printf("bitRevTable size H=%d \n”,H);

/* code above this line in this function should be put into a initializa-
tion section */

/* FFT */
Split_Radix_FFT_ASM(xR, xI, (short *)cosSinTable, N, bitRevTable,H);

}

void Split_Radix_FFT_asm_DSP(short *xR, short *xI, int N)
{

int n, B, h, H;
short *bitRevTable, tmp, *ptr;
int *cosSinTable; /* cosSinTable[0]={bit31~16...bit15~0}= { sinI[n],
cosR[n] } /* cosSinTable[1]={bit31~16...bit15~0}= { cosR[n], -si-
nI[n]}......*/

B=(int)(log10(N)/log10(2));

/* create the cos& sin table */
cosSinTable=(int *) malloc(4*N*sizeof(short));
ptr=(short *)cosSinTable;

Figure 7. FFT Example, C Code (Sheet 4 of 20)

Application Note 63

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

for(n=0; n<N; n++)
{

/* swap for big endian */

ptr[4*n+1]=(short) (cos(2*pi*n/N)*32767);
ptr[4*n+0]=(short) (sin(2*pi*n/N)*32767);
ptr[4*n+3]=-ptr[4*n+0];
ptr[4*n+2]=ptr[4*n+1];

/*
printf("cosSinTable[%d]=%x \n”, 2*n, cosSinTable[2*n]);
printf("cosSinTable[%d]=%x \n”, 2*n+1, cosSinTable[2*n+1]);
printf(" cosR=%x, -sinI=%x, sinI=%x, cos=%x \n”,
ptr[4*n+2],ptr[4*n+3],ptr[4*n+0],ptr[4*n+1]);
*/

}

/* create bit reverse table */

bitRevTable=(short *) malloc(N*sizeof(short));
for(h=0, H=0, n=0; n<N; n++)
{

tmp=bitReverse(n,B);

if(n<tmp)
{

bitRevTable[h]=2*n; /* 2 for word addressing */
bitRevTable[h+1]=2*tmp;
h+=2;
H+=1;

}

}
printf("bitRevTable size H=%d \n”, H);

/* code above this line in this function should be put into a ini-
tialization section */

/* FFT */

Split_Radix_FFT_ASM_DSP(xR, xI, (short *)cosSinTable, N, bi-
tRevTable,H);

}

Figure 7. FFT Example, C Code (Sheet 5 of 20)

64 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

void Split_Radix_FFT_C(short *xR, short *xI, int N)
{

int n, B, h, H;
short *bitRevTable, tmp;

B=(int)(log10(N)/log10(2));

/* create the cos& sin table */

cosR=(short *) malloc(N*sizeof(short));
sinI=(short *) malloc(N*sizeof(short));

for(n=0; n<N; n++)
{

cosR[n]=(short) (cos(2*pi*n/N)*32767);
sinI[n]=(short) (sin(2*pi*n/N)*32767);

}

/* create bit reverse table */
bitRevTable=(short *) malloc(N*sizeof(short));
for(h=0, H=0, n=0; n<N; n++)
{

 tmp=bitReverse(n,B);

 if(n<tmp)
 {

bitRevTable[h]=n;
bitRevTable[h+1]=tmp;
h+=2;
H+=1;

 }
 }

/* FFT */

/* Split_Radix_ButterFly(xR, xI, N, 1); */

Split_Radix_ButterFly_Optimized(xR, xI, N, 1);
/* Split_Radix_ButterFly_with_rouding(xR, xI, N, 1); */

/* reorder the output, optimized way */
for(n=0; n<H; n++)
{

tmp=xR[bitRevTable[2*n]];
xR[bitRevTable[2*n]]=xR[bitRevTable[2*n+1]];
xR[bitRevTable[2*n+1]]=tmp;

tmp=xI[bitRevTable[2*n]];
xI[bitRevTable[2*n]]=xI[bitRevTable[2*n+1]];
xI[bitRevTable[2*n+1]]=tmp;

}

}

Figure 7. FFT Example, C Code (Sheet 6 of 20)

Application Note 65

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

void Split_Radix_ButterFly_Optimized(short *xR, short *xI, int M, int q)
{

/* the result is divided by N */
/* q=N/M */

int tmpR, tmpI, tmpRR, tmpII;
short n, L, N;

if(M==4)
{

L=M>>1;
for(n=0; n<L; n++)
{

tmpR=((int)xR[n])+xR[n+L];
tmpI=((int)xI[n])+xI[n+L];

tmpRR=((int)xR[n])-xR[n+L];
tmpII=((int)xI[n])-xI[n+L];

xR[n]=(short) (tmpR>>1);
xI[n]=(short) (tmpI>>1);
xR[n+L]=(short) (tmpRR>>1);
xI[n+L]=(short) (tmpII>>1);

}

tmpR=((int)xR[2]+xI[3])>>1;
tmpI=((int)xI[2]-xR[3])>>1;

tmpRR=((int)xR[2]-xI[3])>>1;
tmpII=((int)xI[2]+xR[3])>>1;

xR[2]=(short)tmpR;
xI[2]=(short)tmpI;

xR[3]=(short)tmpRR;
xI[3]=(short)tmpII;

/* top 2 points */

tmpR=((int)xR[0])+ xR[1];
tmpI=((int)xI[0])+ xI[1];

tmpRR=((int)xR[0])- xR[1];
tmpII=((int)xI[0])- xI[1];

xR[0]=(short) (tmpR>>1);
xI[0]=(short) (tmpI>>1);
xR[1]=(short) (tmpRR>>1);
xI[1]=(short) (tmpII>>1);

}

else if(M==2)
{

tmpR=((int)xR[0])+ xR[1];
tmpI=((int)xI[0])+ xI[1];

Figure 7. FFT Example, C Code (Sheet 7 of 20)

66 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

xR[0]=(short) (tmpR>>1);
xI[0]=(short) (tmpI>>1);
xR[1]=(short) (tmpRR>>1);
xI[1]=(short) (tmpII>>1);

}

else
{

L=M>>1;

for(n=0; n<L; n++)
{

tmpR=((int)xR[n])+xR[n+L];
tmpI=((int)xI[n])+xI[n+L];

tmpRR=((int)xR[n])-xR[n+L];
tmpII=((int)xI[n])-xI[n+L];

xR[n]=(short) (tmpR>>1);
xI[n]=(short) (tmpI>>1);
xR[n+L]=(short) (tmpRR>>1);
xI[n+L]=(short) (tmpII>>1);

}

N=M*q;
M=M>>1;
L=L>>1;

n=0; /* is treated especially */
tmpR=((int)xR[n+M]+xI[n+M+L])>>1;
tmpI=((int)xI[n+M]-xR[n+M+L])>>1;

tmpRR=((int)xR[n+M]-xI[n+M+L])>>1;
tmpII=((int)xI[n+M]+xR[n+M+L])>>1;

xR[n+M]=(short) tmpR;
xI[n+M]=(short) tmpI;

xR[n+M+L]=(short) tmpRR;
xI[n+M+L]=(short) tmpII;

for(n=1; n<L; n++)
{

tmpR=((int)xR[n+M]+xI[n+M+L])>>1;
tmpI=((int)xI[n+M]-xR[n+M+L])>>1;
tmpRR=((int)xR[n+M]-xI[n+M+L])>>1;
tmpII=((int)xI[n+M]+xR[n+M+L])>>1;

xR[n+M]=(short) ((tmpR*cosR[(n*q)%N]+tmpI*si-
nI[(n*q)%N])>>15);

xI[n+M]=(short) ((tmpI*cosR[(n*q)%N]-tmpR*si-
nI[(n*q)%N])>>15);

Figure 7. FFT Example, C Code (Sheet 8 of 20)

Application Note 67

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

xR[n+M+L]=(short) ((tmpRR*cosR[(3*n*q)%N]+tmpII*si-
nI[(3*n*q)%N])>>15);

xI[n+M+L]=(short) ((tmpII*cosR[(3*n*q)%N]-tmpRR*si-
nI[(3*n*q)%N])>>15);

}

q=q*2;
Split_Radix_ButterFly_Optimized(xR, xI, M, q);
Split_Radix_ButterFly_Optimized(xR+M, xI+M, L, q*2);
Split_Radix_ButterFly_Optimized(xR+M+L, xI+M+L, L, q*2);

}
}

void Split_Radix_ButterFly_with_rouding(short *xR, short *xI, int M, int q)
{

/* the result is divided by N */
/* more accurate because we are using rounding */

/* q=N/M */
int tmpR, tmpI, tmpRR, tmpII;
short n, L, N;

if(M==1)
return;

else if(M==2)
{

tmpR=((int)xR[0])+ xR[1];
tmpI=((int)xI[0])+ xI[1];

tmpRR=((int)xR[0])- xR[1];
tmpII=((int)xI[0])- xI[1];

xR[0]=(short) (tmpR>>1);
xI[0]=(short) (tmpI>>1);
xR[1]=(short) (tmpRR>>1);
xI[1]=(short) (tmpII>>1);

}

else
{

L=M>>1;

for(n=0; n<L; n++)
{

tmpR=((int)xR[n])+xR[n+L];
tmpI=((int)xI[n])+xI[n+L];

tmpRR=((int)xR[n])-xR[n+L];
tmpII=((int)xI[n])-xI[n+L];

Figure 7. FFT Example, C Code (Sheet 9 of 20)

68 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

xR[n]=(short) (tmpR>>1);
xI[n]=(short) (tmpI>>1);
xR[n+L]=(short) (tmpRR>>1);
xI[n+L]=(short) (tmpII>>1);

}

N=M*q;
M=M>>1;
L=L>>1;

for(n=0; n<L; n++)
{

tmpR=((int)xR[n+M]+xI[n+M+L])>>1;
tmpI=((int)xI[n+M]-xR[n+M+L])>>1;

tmpRR=((int)xR[n+M]-xI[n+M+L])>>1;
tmpII=((int)xI[n+M]+xR[n+M+L])>>1;

xR[n+M]=(short) (((tmpR*cosR[(n*q)%N]+tmpI*si-
nI[(n*q)%N])>>14)+1)>>1;

xI[n+M]=(short) (((tmpI*cosR[(n*q)%N]-tmpR*si-
nI[(n*q)%N])>>14)+1)>>1;

xR[n+M+L]=(short) (((tmpRR*cosR[(3*n*q)%N]+tmpII*si-
nI[(3*n*q)%N])>>14)+1)>>1;

xI[n+M+L]=(short) (((tmpII*cosR[(3*n*q)%N]-tmpRR*si-
nI[(3*n*q)%N])>>14)+1)>>1;

}

q=q*2;
Split_Radix_ButterFly_with_rouding(xR, xI, M, q);
Split_Radix_ButterFly_with_rouding(xR+M, xI+M, L, q*2);
Split_Radix_ButterFly_with_rouding(xR+M+L, xI+M+L, L, q*2);

)
)

void Split_Radix_ButterFly(short *xR, short *xI, int M, int q)
{

/* the result is divided by N */

/* q=N/M */

int tmpR, tmpI, tmpRR, tmpII;
short n, L, N;

if(M==1)
return;

Figure 7. FFT Example, C Code (Sheet 10 of 20)

Application Note 69

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

else if(M==2)
{

tmpR=((int)xR[0])+ xR[1];
tmpI=((int)xI[0])+ xI[1];
tmpRR=((int)xR[0])- xR[1];
tmpII=((int)xI[0])- xI[1];

xR[0]=(short) (tmpR>>1);
xI[0]=(short) (tmpI>>1);
xR[1]=(short) (tmpRR>>1);
xI[1]=(short) (tmpII>>1);

}

else
{

L=M>>1;
for(n=0; n<L; n++)
{

tmpR=((int)xR[n])+xR[n+L];
tmpI=((int)xI[n])+xI[n+L];
tmpRR=((int)xR[n])-xR[n+L];
tmpII=((int)xI[n])-xI[n+L];

xR[n]=(short) (tmpR>>1);
xI[n]=(short) (tmpI>>1);
xR[n+L]=(short) (tmpRR>>1);
xI[n+L]=(short) (tmpII>>1);

}

N=M*q;
M=M>>1;
L=L>>1;
for(n=0; n<L; n++)
{

tmpR=((int)xR[n+M]+xI[n+M+L])>>1;
tmpI=((int)xI[n+M]-xR[n+M+L])>>1;
tmpRR=((int)xR[n+M]-xI[n+M+L])>>1;
tmpII=((int)xI[n+M]+xR[n+M+L])>>1;

xR[n+M]=(short) ((tmpR*cosR[(n*q)%N]+tmpI*si-
nI[(n*q)%N])>>15);

xI[n+M]=(short) ((tmpI*cosR[(n*q)%N]-tmpR*si-
nI[(n*q)%N])>>15);

xR[n+M+L]=(short) ((tmpRR*cosR[(3*n*q)%N]+tmpII*si-
nI[(3*n*q)%N])>>15);

xI[n+M+L]=(short) ((tmpII*cosR[(3*n*q)%N]-tmpRR*si-
nI[(3*n*q)%N])>>15);

}
q=q*2;
Split_Radix_ButterFly(xR, xI, M, q);
Split_Radix_ButterFly(xR+M, xI+M, L, q*2);
Split_Radix_ButterFly(xR+M+L, xI+M+L, L, q*2);

}
)

Figure 7. FFT Example, C Code (Sheet 11 of 20)

70 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

int getNum(char *str)
{
 int c;
 int i = 0;
 char input[100];

 if(str && *str) printf("%s", str);
 do
 {
 c = getc(stdin);

 if (c == 0x08)
 {
 if(i) i--;
 }
 else
 {
 input[i++] = c;
 }

 } while(i<100 && c!='
input[i] = '\0';

 return atoi(input);
}

void testFFT()
{

short *xR, *xI;
short *yR, *yI;
short *uR, *uI;
short *vR, *vI;
short *wR, *wI;
short *pR, *pI;
short *qR, *qI;

float *zR, *zI, *A;

int k,n,i, N;
float f0, fs;

N=128;
f0=343.75; /* 625=8000/128*10, 343.75=8000/128*5.5 */
fs=8000;

N=getNum("Number of Point=");

numberOfRun=getNum("Number of run to profile=");

printf("%d-point FFT \n”,N);

Figure 7. FFT Example, C Code (Sheet 12 of 20)

Application Note 71

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

xR=(short *) malloc(N*sizeof(short));
yR=(short *) malloc(N*sizeof(short));
uR=(short *) malloc(N*sizeof(short));
vR=(short *) malloc(N*sizeof(short));
wR=(short *) malloc(N*sizeof(short));
pR=(short *) malloc(N*sizeof(short));
qR=(short *) malloc(N*sizeof(short));

xI=(short *) malloc(N*sizeof(short));
yI=(short *) malloc(N*sizeof(short));
uI=(short *) malloc(N*sizeof(short));
vI=(short *) malloc(N*sizeof(short));
wI=(short *) malloc(N*sizeof(short));
pI=(short *) malloc(N*sizeof(short));
qI=(short *) malloc(N*sizeof(short));

zR=(float *) malloc(N*sizeof(float));
zI=(float *) malloc(N*sizeof(float));
 A=(float *) malloc(N*sizeof(float));

pi=asin(1)*2;
printf("pi=%f \n", pi);

printf("a %f Hz real sin waveform sampled at %fkHz, scaled for 16-bit
fixed point \n", f0, fs);

for(n=0; n<N; n++)
{

xR[n]=(short) (cos(2*pi*f0*n/fs)*32767);
xI[n]=0;

}

#if 1
printf("input samples \n”);

for(n=0; n<N; n++)
/* printf("xR[%d]=%d \n”,n,xR[n]); */

printf("%d \n", xR[n]);

#endif

DFT_FloatingPoint_N(xR, xI, zR, zI, N);

#if 0
printf("floating point DFT output \n”);

for(n=0; n<N; n++)
printf("zR[%d]=%f, zI[%d]=%f \n", n, zR[n], n, zI[n]);

#endif

Figure 7. FFT Example, C Code (Sheet 13 of 20)

72 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

printf("floating point DFT output amplitude \n”);

for(n=0; n<N; n++)
{

A[n]=sqrt(zR[n]*zR[n]+zI[n]*zI[n]);
/* printf("Amplitude[%d]=%f \n”, n, A[n]); */

/* printf("%f \n”, A[n]); */
}

printf("floating point DFT output converted into 16 bit fixed-point \n”);

for(n=0; n<N; n++)
{

uR[n]=(short) (zR[n]);
uI[n]=(short) (zI[n]);
 /* printf("uR[%d]=%d, uI[%d]=%d \n”, n, uR[n], n, uI[n]); */

}

printf("C fixed-point DFT \n”);

DFT_FixedPoint_N(xR, xI, vR, vI, N);

printf("C fixed-point FFT \n”);

for(n=0; n<N; n++)
{

wR[n]=xR[n];
wI[n]=xI[n];

}

Split_Radix_FFT_C(wR, wI, N);

printf("asm fixed-point FFT \n”);

for(n=0; n<N; n++)
{

pR[n]=xR[n];
pI[n]=xI[n];

}
 Split_Radix_FFT_asm(pR, pI, N);

printf("asm+DSP-copro fixed-point FFT \n”);

for(n=0; n<N; n++)
{

qR[n]=xR[n];
qI[n]=xI[n];

}

Split_Radix_FFT_asm_DSP(qR, qI, N);

printf("fixed point DFT output \n”);

Figure 7. FFT Example, C Code (Sheet 14 of 20)

Application Note 73

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

for(n=0; n<N; n++)
{
 printf("floating point DFT: zR[%d]=%f, zI[%d]=%f \n”, n, zR[n],
n, zI[n]);

 printf("rounding floating point DFT: uR[%d]=%d, uI[%d]=%d \n”,
n, uR[n], n, uI[n]);

 printf("fixed point DFT: vR[%d]=%d, vI[%d]=%d \n”,
n, vR[n], n, vI[n]);

 printf("C fixed point FFT: wR[%d]=%d, wI[%d]=%d \n”, n, wR[n],
n, wI[n]);

 printf("ASM fixed point FFT: pR[%d]=%d, pI[%d]=%d \n \n”, n,
pR[n], n, pI[n]);

 printf("ASM+DSP-copro fixed point FFT: qR[%d]=%d, qI[%d]=%d \n \n”, n,
qR[n], n, qI[n]);

}

printf("difference between ASM and ASM+DSP_Copro Split_Radix_FFT \n”);
checkDifference(qR,qI,pR,pI,N);
printf("difference between C and ASM for Split_Radix_FFT \n”);
checkDifference(wR,wI,pR,pI,N);
printf("difference between C fixed DFT and ASM Split_Radix_FFT \n”);
checkDifference(vR,vI,pR,pI,N);
printf("difference between Rounding floating point DFT and ASM
Split_Radix_FFT \n”);

checkDifference(uR,uI,pR,pI,N);
printf(" \n \n @@@@@@@@FFT profiling.....@@@@@@@@@ \n”);

printf("C fixed-point FFT \n”);

for(n=0; n<N; n++)
{

wR[n]=xR[n];
wI[n]=xI[n];

}
Profile_Split_Radix_FFT_C(wR, wI, N);
printf("asm fixed-point FFT \n”);

for(n=0; n<N; n++)
{

pR[n]=xR[n];
pI[n]=xI[n];

}
Profile_Split_Radix_FFT_asm(pR, pI, N);
printf("asm_DSP-copro fixed-point FFT \n”);
for(n=0; n<N; n++)
{

pR[n]=xR[n];
pI[n]=xI[n];

}
 Profile_Split_Radix_FFT_asm_DSP(pR, pI, N);

)

Figure 7. FFT Example, C Code (Sheet 15 of 20)

74 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

void checkDifference(short *wR, short *wI, short *vR, short *vI, int N)
{

int n, tmp, maxError, indMaxError;

printf(" checking the difference... \n”);

for(indMaxError=0, maxError=0, n=0; n<N; n++)
{

tmp=abs(wR[n]-vR[n]);
if(maxError<tmp)
{

maxError=tmp;
indMaxError=n;

}

tmp=abs(wI[n]-vI[n]);
if(maxError<tmp)
{

maxError=tmp;
indMaxError=n;

}
}

printf(" max difference maxError=%d, indMaxError=%d \n”,
maxError, indMaxError);

}

void bitReverseOnArry(short *xR, short *xI, int N)
{

int n, B;
short *bitRevTable, tmp;
B=(int)(log10(N)/log10(2));

/* create bit reverse table */
bitRevTable=(short *) malloc(N*sizeof(short));

for(n=0; n<N; n++)
{

bitRevTable[n]=bitReverse(n,B);
}

/* reorder the output, simple way */

for(n=0; n<N; n++)
{

if (n>bitRevTable[n])
continue;
tmp=xR[n];
xR[n]=xR[bitRevTable[n]];
xR[bitRevTable[n]]=tmp;

tmp=xI[n];
xI[n]=xI[bitRevTable[n]];
xI[bitRevTable[n]]=tmp;

}
}

Figure 7. FFT Example, C Code (Sheet 16 of 20)

Application Note 75

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

void Profile_Split_Radix_FFT_asm(short *xR, short *xI, int N)
{

int n, B, h, H;
short *bitRevTable, tmp, *ptr;
int *cosSinTable; /* cosSinTable[0]={bit31~16...bit15~0}= { sinI[n],
cosR[n]} /* cosSinTable[1]={bit31~16...bit15~0}= { cosR[n], -si-
nI[n]}......*/

B=(int)(log10(N)/log10(2));

/* create the cos& sin table */
cosSinTable=(int *) malloc(4*N*sizeof(short));
ptr=(short *)cosSinTable;
for(n=0; n<N; n++)
{

/* swap for big endian */
ptr[4*n+1]=(short) (cos(2*pi*n/N)*32767);
 ptr[4*n+0]=(short) (sin(2*pi*n/N)*32767);
ptr[4*n+3]=-ptr[4*n+0];
ptr[4*n+2]=ptr[4*n+1];

/* printf("cosSinTable[%d]=%x \n”, 2*n, cosSinTable[2*n]);
printf("cosSinTable[%d]=%x \n”, 2*n+1, cosSinTable[2*n+1]);
printf("cosR=%x,-sinI=%x,sinI=%x,cos=%x\n”,
ptr[4*n+2],ptr[4*n+3],ptr[4*n+0],ptr[4*n+1]);
*/

}
/* create bit reverse table */
bitRevTable=(short *) malloc(N*sizeof(short));
for(h=0, H=0, n=0; n<N; n++)
{

 tmp=bitReverse(n,B);
 if(n<tmp)
 {

bitRevTable[h]=2*n; /* 2 for word addressing */
bitRevTable[h+1]=2*tmp;
h+=2;
H+=1;

}
}
printf("bitRevTable size H=%d \n”, H);
/* the following is to profile the code, should be removed */
writePerfrmCtrl(0x07); /* start all the counters*/
startClock=readCycleCounter();

for(n=0;n<numberOfRun; n++) /* run 10 times for measurement*/
{/* FFT */

Split_Radix_FFT_ASM(xR, xI, (short *)cosSinTable, N, bi-
tRevTable,H);

}
stopClock=readCycleCounter();
printf("%d point FFT using Split_Radix_FFT_ASM \n”,N);
printf("total cycles =%d \n”, stopClock-startClock);
printf("number of Run =%d \n”, numberOfRun);
printf("average cycle per point =%f \n\n”,
(stopClock-startClock)*1.0/numberOfRun/N);

}

Figure 7. FFT Example, C Code (Sheet 17 of 20)

76 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

void Profile_Split_Radix_FFT_asm_DSP(short *xR, short *xI, int N)
{

int n, B, h, H;
short *bitRevTable, tmp, *ptr;
int *cosSinTable; /* cosSinTable[0]={bit31~16...bit15~0}= { sinI[n],
cosR[n] }/* cosSinTable[1]={bit31~16...bit15~0}= { cosR[n], -si-
nI[n]}......*/

B=(int)(log10(N)/log10(2));
/* create the cos& sin table */
cosSinTable=(int *) malloc(4*N*sizeof(short));
ptr=(short *)cosSinTable;

for(n=0; n<N; n++)
{

/* swap for big endian */
ptr[4*n+1]=(short) (cos(2*pi*n/N)*32767);
 ptr[4*n+0]=(short) (sin(2*pi*n/N)*32767);
ptr[4*n+3]=-ptr[4*n+0];
ptr[4*n+2]=ptr[4*n+1];

/* printf("cosSinTable[%d]=%x \n”, 2*n, cosSinTable[2*n]);
printf("cosSinTable[%d]=%x \n”, 2*n+1, cosSinTable[2*n+1]);
printf("cosR=%x,-sinI=%x,sinI=%x,cos=%x\n”,
ptr[4*n+2],ptr[4*n+3],ptr[4*n+0],ptr[4*n+1]);
*/

}

/* create bit reverse table */
bitRevTable=(short *) malloc(N*sizeof(short));
for(h=0, H=0, n=0; n<N; n++)
{

 tmp=bitReverse(n,B);
 if(n<tmp)
 {

bitRevTable[h]=2*n; /* 2 for word addressing */
bitRevTable[h+1]=2*tmp;
h+=2;
H+=1;

}
}
printf("bitRevTable size H=%d
/* the following is to profile the code, should be removed */
writePerfrmCtrl(0x07); /* start all the counters*/
startClock=readCycleCounter();
for(n=0;n<numberOfRun; n++) /* run 10 times for measurement*/
{/* FFT */

Split_Radix_FFT_ASM_DSP(xR, xI, (short *)cosSinTable, N, bi-
tRevTable,H);

}

stopClock=readCycleCounter();

Figure 7. FFT Example, C Code (Sheet 18 of 20)

Application Note 77

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

printf("%d point FFT using Split_Radix_FFT_ASM \n”, N);
printf("total cycles =%d \n”, stopClock-startClock);
printf("number of Run =%d \n”, numberOfRun);
printf("average cycle per point =%f \n \n”, stopClock-start-
Clock)*1.0/numberOfRun/N);

}

void Profile_Split_Radix_FFT_C(short *xR, short *xI, int N)
{

int m, n, B, h, H;
short *bitRevTable, tmp;
B=(int)(log10(N)/log10(2));

/* create the cos& sin table */

cosR=(short *) malloc(N*sizeof(short));
sinI=(short *) malloc(N*sizeof(short));

for(n=0; n<N; n++)
{

cosR[n]=(short) (cos(2*pi*n/N)*32767);
sinI[n]=(short) (sin(2*pi*n/N)*32767);

}
/* create bit reverse table */

bitRevTable=(short *) malloc(N*sizeof(short));
for(h=0, H=0, n=0; n<N; n++)
{

 tmp=bitReverse(n,B);
 if(n<tmp)
 {

bitRevTable[h]=n;
bitRevTable[h+1]=tmp;
h+=2;
H+=1;

}
}
/* the following is to profile the code, should be removed */

writePerfrmCtrl(0x07); /* start all the counters*/
startClock=readCycleCounter();
for(m=0;m<numberOfRun; m++) /* run 10 times for measurement*/
{

/* FFT */
Split_Radix_ButterFly_Optimized(xR, xI, N, 1);
/* reorder the output, optimized way */
for(n=0; n<H; n++)
{

tmp=xR[bitRevTable[2*n]];
xR[bitRevTable[2*n]]=xR[bitRevTable[2*n+1]];
xR[bitRevTable[2*n+1]]=tmp;
tmp=xI[bitRevTable[2*n]];
xI[bitRevTable[2*n]]=xI[bitRevTable[2*n+1]];
xI[bitRevTable[2*n+1]]=tmp;

}
}

Figure 7. FFT Example, C Code (Sheet 19 of 20)

78 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

stopClock=readCycleCounter();
printf("%d point FFT using Split_Radix_FFT_C \n”, N);
printf("total cycles =%d \n”, stopClock-startClock);
printf("number of Run =%d \n”, numberOfRun);
printf("average cycle per point =%f \n \n”, stopClock-start-
Clock)*1.0/numberOfRun/N);

}

Figure 8. FFT Example, Assembly Code (Sheet 1 of 11)

@@/**
@@*
@@* @author Intel Corporation
@@* @date 17 June 2004
@@*
@@*
@@* -- Intel Copyright Notice --
@@*
@@*
@@*
@@*
@@* Copyright 2004 Intel Corporation All Rights Reserved.
@@*
@@*
@@* The source code contained or described herein and all documents
@@* related to the source code ("Material") are owned by Intel
@@* Corporation or its suppliers or licensors. Title to the Material
@@* remains with Intel Corporation or its suppliers and licensors.
@@* The Material contains trade secrets and proprietary and confidential
@@* information of Intel or its suppliers and licensors. The Material
@@* is protected by worldwide copyright and trade secret laws and treaty
@@* provisions. Except for the licensing of the source code hereunder,
@@* no part of the Material may be used, copied, reproduced, modified,
@@* published, uploaded, posted, transmitted, distributed, or disclosed
@@* in any way without Intel's prior express written permission.
@@*
@@*
@@* Except for the licensing of the source code as provided hereunder,
@@* no license under any patent, copyright, trade secret or other
@@* intellectual property right is granted to or conferred upon you by
@@* disclosure or delivery of the Materials, either expressly, by
@@* implication, inducement, estoppel or otherwise and any license under
@@* such intellectual property rights must be express and approved by
@@* Intel in writing.
@@*
@@*
@@* For further details, please see the file README.TXT distributed with
@@* this software.
@@* -- End Intel Copyright Notice --
@@**/

@ 2 point, 4 point, and first pass in the second loop are treated special

@ because no multiplication required

Figure 7. FFT Example, C Code (Sheet 20 of 20)

Application Note 79

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

#include <arch/arm/arm.h>

@ Split_Radix_FFT_ASM(short *xR, short *xI,short *cosRsinI, int N, short @*bi-
tRevTable, int H);
@ Split_Radix_FFT_ASM_DSP(short *xR, short *xI,short *cosRsinI, int N, short
@*bitRevTable, int H);

@@@
@@ split radix FFT
@@ function parameter:
@@
@@ r0 = xR: input/output real part pointer
@@ r1 = xI: input/output image part pointer
@@ r2 = cos -sin sin cos: cos sin table pointer
@@ r3 = N: length of FFT
@@ [sp,#40] = bitRevTable:bit reverse table
@@ [sp,#44] = Hbit reverse table size
@@
@@@

.global Split_Radix_FFT_ASM

.global _Split_Radix_FFT_ASM

.global Split_Radix_FFT_ASM__FPsN20iT0i

.global Split_Radix_FFT_ASM_DSP

.global _Split_Radix_FFT_ASM_DSP

.global Split_Radix_FFT_ASM_DSP__FPsN20iT0i

.balign 4

Split_Radix_FFT_ASM_DSP:
Split_Radix_FFT_ASM_DSP:
Split_Radix_FFT_ASM_DSP__FPsN20iT0i:

stmdb sp!,{r4-r12,lr}
 mov r4, #8 @ q=1 (8 bytes because of 4 shorts for the cos sin table)

bl Split_Radix_ButterFly_asm_DSP

 @ bit reverse
b reorderOutput

.balign 4
Split_Radix_FFT_ASM:
_Split_Radix_FFT_ASM:
Split_Radix_FFT_ASM__FPsN20iT0i:

 stmdb sp!,{r4-r12,lr}
 mov r4, #8@ q=1 (8 bytes because of 4 shorts for the cos sin table)

bl Split_Radix_ButterFly_asm

 @ bit reverse
reorderOutput:
 ldr r4, [sp,#40] @ bitRevTable
 ldr r5, [sp,#44] @ bitRevTable size

cmp r5, #0

beq doneNow

Figure 8. FFT Example, Assembly Code (Sheet 2 of 11)

80 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

loopR:
 ldrsh r6, [r4], #2 @ bitRevTable
 ldrsh r8, [r0,+r6] @ xR[n]
 ldrsh r9, [r1,+r6] @ xI[n]

 ldrsh r7, [r4], #2 @ bitRevTable
 ldrsh r10, [r0,+r7] @ xR[bitReverse[n]]
 ldrsh r11, [r1,+r7] @ xI[bitReverse[n]]

@ exchange

strh r8, [r0,+r7]
strh r9, [r1,+r7]
strh r10, [r0,+r6]
strh r11, [r1,+r6]

 subs r5, r5, #1
 bne loopR

doneNow:
 ldmia sp!,{r4-r12,pc} @ return

@@
@@ void Split_Radix_ButterFly_asm(short *xR, short *xI,short *cosR, short
@@ *sinI, int M, int q)
@@ r0 = xR: input/output real part pointer
@@ r1 = xI: input/output image part pointer
@@ r2 = cos -sin sin cosR: cos sin table pointer
@@ r3 = M:FFT
@@ r4 = q:FFT
@@

.align 4
Split_Radix_ButterFly_asm:
_Split_Radix_ButterFly_asm:

 stmdb sp!,{r0-r12,lr} @ push registers

 cmp r3, #4
 bne checkNext

fourPointFFT:
 mov r7, r3@ L
loop4:
 ldrsh r10, [r0] @ xR[n]
 ldrsh r11, [r0,r3] @ xR[n+L]
 sub r14, r10, r11 @ tmpRR=((int)xR[n])- xR[n+L];
 add r12, r10, r11 @ tmpR=((int)xR[n])+ xR[n+L]
 mov r14, r14, asr #1
 mov r12, r12, asr #1
 strh r14, [r0,r3] @ xR[n+L]=(short) (tmpRR>>1);
 strh r12, [r0], #+2 @ xR[n]=(short) (tmpR>>1); n=n+1

 ldrsh r10, [r1] @ xI[n]

Figure 8. FFT Example, Assembly Code (Sheet 3 of 11)

Application Note 81

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

ldrsh r11, [r1,r3] @ xI[n+L]
 sub r14, r10, r11 @ tmpII=((int)xI[n])- xI[n+L];
 add r12, r10, r11 @ tmpI=((int)xI[n])+ xI[n+L]
 mov r14, r14, asr #1
 mov r12, r12, asr #1
 strh r14, [r1,r3] @ xI[n+L]=(short) (tmpII>>1);
 strh r12, [r1], #+2 @ xI[n]=(short) (tmpI>>1); n=n+1

 subs r7, r7, #2
 bne loop4

 @ at this point, r0 exatly point to xR[L], r1 exactly point to xI[L]

mov r3, r3, asr #1 @ L=M/2

 ldrsh r10, [r0] @ xR[n]
 ldrsh r11, [r0,r3] @ xR[n+L]

 ldrsh r8, [r1] @ xI[n]
 ldrsh r9, [r1,r3] @ xI[n+L]

 add r12, r10, r9 @ tmpR=((int)xR[n])+ xI[n+L]
 sub r14, r8, r11 @ tmpI=((int)xI[n])- xR[n+L];

 sub r10, r10, r9 @ tmpRR=((int)xR[n])- xI[n+L]
 add r11, r8, r11 @ tmpII=((int)xI[n])+ xR[n+L];

 mov r12, r12, asr #1 @ tmpR
 mov r14, r14, asr #1 @ tmpI
 mov r10, r10, asr #1 @ tmpRR
 mov r11, r11, asr #1 @ tmpII

 strh r11, [r1,r3] @ xI[n+L]
 strh r10, [r0, r3] @ xR[n+L]
 strh r14, [r1], #-4 @ xI[n], point back to the begining
 strh r12, [r0], #-4 @ xR[n], point back to the begining
 b twoPointsDFT

checkNext:
cmp r3, #2
bne oneButterFly

twoPointsDFT:
 ldrsh r10, [r0], #+2 @ xR[0]
 ldrsh r11, [r0], #-2 @ xR[1]
 add r12, r10, r11 @ tmpR=((int)xR[0])+ xR[1]
 sub r14, r10, r11 @ tmpRR=((int)xR[0])- xR[1];
 mov r12, r12, asr #1
 mov r14, r14, asr #1
 strh r12, [r0], #+2 @ xR[0]=(short) (tmpR>>1);
 strh r14, [r0], #-2 @ xR[1]=(short) (tmpRR>>1);

 ldrsh r10, [r1], #+2 @ xI[0]
 ldrsh r11, [r1], #-2 @ xI[1]
 add r12, r10, r11 @ tmpI=((int)xI[0])+ xI[1]
 sub r14, r10, r11 @ tmpII=((int)xI[0])- xI[1];

 mov r12, r12, asr #1

Figure 8. FFT Example, Assembly Code (Sheet 4 of 11)

82 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

 mov r14, r14, asr #1
 strh r12, [r1], #+2 @ xI[0]=(short) (tmpI>>1);
 strh r14, [r1], #-2 @ xI[1]=(short) (tmpII>>1);

 ldmia sp!,{r0-r12,pc} @ return

oneButterFly:
 @ save variables for iterations
 stmdb sp!,{r0-r4} @ push registers

 @ section A of the butterfly
 mov r7, r3@ L
loop1:
 ldrsh r10, [r0] @ xR[n]
 ldrsh r11, [r0,r3] @ xR[n+L]
 sub r14, r10, r11 @ tmpRR=((int)xR[n])- xR[n+L];
 add r12, r10, r11 @ tmpR=((int)xR[n])+ xR[n+L]
 mov r14, r14, asr #1
 mov r12, r12, asr #1
 strh r14, [r0,r3] @ xR[n+L]=(short) (tmpRR>>1);
 strh r12, [r0], #+2 @ xR[n]=(short) (tmpR>>1); n=n+1

 ldrsh r10, [r1] @ xI[n]
 ldrsh r11, [r1,r3] @ xI[n+L]
 sub r14, r10, r11 @ tmpII=((int)xI[n])- xI[n+L];
 add r12, r10, r11 @ tmpI=((int)xI[n])+ xI[n+L]
 mov r14, r14, asr #1
 mov r12, r12, asr #1
 strh r14, [r1,r3] @ xI[n+L]=(short) (tmpII>>1);
 strh r12, [r1], #+2 @ xI[n]=(short) (tmpI>>1); n=n+1

 subs r7, r7, #2
 bne loop1

 @ section B of the butterfly

@ at this point, r0 exactly point to xR[L], r1 exactly point to xI[L]

 mov r3, r3, asr #1@ L=M/2
 sub r7, r3, #2 @ treat the first loop specially

 addr6, r4, r4, lsl #1@ r7=3*q
add r5, r2, r6
@ n+=3Q to skip first loop, point to cos&sin with 3q offset

 addr2, r2, r4 @ n+=q to skip first loop,

 @ first loop treated specially because there is no need to do
@ multiplication for n=0

 ldrsh r10, [r0] @ xR[n]
 ldrsh r11, [r0,r3] @ xR[n+L]

 ldrsh r8, [r1] @ xI[n]
 ldrsh r9, [r1,r3] @ xI[n+L]
 add r12, r10, r9 @ tmpR=((int)xR[n])+ xI[n+L]
 sub r14, r8, r11 @ tmpI=((int)xI[n])- xR[n+L];

 sub r10, r10, r9 @ tmpRR=((int)xR[n])- xI[n+L]

 add r11, r8, r11 @ tmpII=((int)xI[n])+ xR[n+L];

Figure 8. FFT Example, Assembly Code (Sheet 5 of 11)

Application Note 83

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

 mov r10, r10, asr #1 @ tmpRR
 mov r11, r11, asr #1 @ tmpII
 mov r12, r12, asr #1 @ tmpR
 mov r14, r14, asr #1 @ tmpI

 @ r8 & r9 are free now

 strh r11, [r1,r3] @ xI[n+L]
 strh r10, [r0, r3] @ xR[n+L]
 strh r14, [r1], #+2 @ xI[n]
 strh r12, [r0], #+2 @ xR[n], n+=2

 @ multiplication required for n>1
loop2:
 ldrsh r10, [r0] @ xR[n]
 ldrsh r11, [r0,r3] @ xR[n+L]

 ldrsh r8, [r1] @ xI[n]
 ldrsh r9, [r1,r3] @ xI[n+L]

 add r12, r10, r9 @ tmpR=((int)xR[n])+ xI[n+L]
 sub r14, r8, r11 @ tmpI=((int)xI[n])- xR[n+L];

 sub r10, r10, r9 @ tmpRR=((int)xR[n])- xI[n+L]
 add r11, r8, r11 @ tmpII=((int)xI[n])+ xR[n+L];

 mov r12, r12, asr #1 @ tmpR
 mov r14, r14, asr #1 @ tmpI
 mov r10, r10, asr #1 @ tmpRR
 mov r11, r11, asr #1 @ tmpII

 @ r8 & r9 are free now

 ldr r8, [r5,#4] @ {cosR[n], -sinI[n]}
 smulbt r9, r11, r8@ tmpII*cosR
 smlabb r9, r10, r8, r9 @ -tmpRR*sinI
 mov r9, r9, asr #15 @
 strh r9, [r1,r3] @ xI[n+L]

 ldrr8, [r5], r6 @ {sinI[n], cosR[n]}, n+=3*q
 smulbt r9, r11, r8@ tmpII*sinI
 smlabb r9, r10, r8, r9 @ tmpRR*cosR
 mov r9, r9, asr #15 @
 strh r9, [r0, r3] @ xR[n+L]

 ldrr8, [r2,#4] @ {cosR[n], -sinI[n]}
 smulbt r9, r14, r8@ tmpI*cosR
 smlabb r9, r12, r8, r9 @ -tmpR*sinI
 mov r9, r9, asr #15 @
 strh r9, [r1], #+2 @ xI[n]

 ldrr8, [r2], r4 @ {sinI[n], cosR[n]}, n+=q
 smulbt r9, r14, r8@ tmpI*sinI
 smlabb r9, r12, r8, r9 @ tmpR*cosR
 mov r9, r9, asr #15 @

 strh r9, [r0], #+2 @ xR[n], n+=2

Figure 8. FFT Example, Assembly Code (Sheet 6 of 11)

84 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

 subs r7, r7, #2
 bne loop2

 @ restore variables for iterations

 ldmia sp!,{r0-r4} @ pop

 cmp r3, #4
 beq twoPointsDFT @ do 2 points DFT

iterating:
 mov r3, r3, lsr #1 @ M=M/2
 mov r4, r4, lsl #1 @ q=q*2
 bl Split_Radix_ButterFly_asm

 add r0, r0, r3, lsl #1 @ xR+M
 add r1, r1, r3, lsl #1 @ xI+M
 mov r3, r3, lsr #1 @ M=M/2
 mov r4, r4, lsl #1 @ q=q*2
 bl Split_Radix_ButterFly_asm

 add r0, r0, r3, lsl #1 @ xR+M+M/2
 add r1, r1, r3, lsl #1 @ xI+M+M/2
 bl Split_Radix_ButterFly_asm

endNow:
 ldmia sp!,{r0-r12,pc} @ return

@@
@@
@@ void Split_Radix_ButterFly_asm_DSP(short *xR, short *xI,short *cosR, short
@@ *sinI, int M, int q)
@@ r0 = xR: input/output real part pointer
@@ r1 = xI: input/output image part pointer
@@ r2 = cos -sin sin cosR: cos sin table pointer
@@ r3 = M:FFT
@@ r4 = q:FFT
@@

.align 4

Split_Radix_ButterFly_asm_DSP:
_Split_Radix_ButterFly_asm_DSP:

 stmdb sp!,{r0-r12,lr} @ push registers

 cmp r3, #4
 bne checkNext_DSP

fourPointFFT_DSP:
 mov r7, r3@ L
loop4_DSP:
 ldrsh r10, [r0] @ xR[n]

 ldrsh r11, [r0,r3] @ xR[n+L]

Figure 8. FFT Example, Assembly Code (Sheet 7 of 11)

Application Note 85

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

 sub r14, r10, r11 @ tmpRR=((int)xR[n])- xR[n+L];
 add r12, r10, r11 @ tmpR=((int)xR[n])+ xR[n+L]
 mov r14, r14, asr #1
 mov r12, r12, asr #1
 strh r14, [r0,r3] @ xR[n+L]=(short) (tmpRR>>1);
 strh r12, [r0], #+2 @ xR[n]=(short) (tmpR>>1); n=n+1

 ldrsh r10, [r1] @ xI[n]
 ldrsh r11, [r1,r3] @ xI[n+L]
 sub r14, r10, r11 @ tmpII=((int)xI[n])- xI[n+L];
 add r12, r10, r11 @ tmpI=((int)xI[n])+ xI[n+L]
 mov r14, r14, asr #1
 mov r12, r12, asr #1
 strh r14, [r1,r3] @ xI[n+L]=(short) (tmpII>>1);
 strh r12, [r1], #+2 @ xI[n]=(short) (tmpI>>1); n=n+1

 subs r7, r7, #2
 bne loop4_DSP

 @ at this point, r0 exactly point to xR[L], r1 exactly point to xI[L]

mov r3, r3, asr #1@ L=M/2

 ldrsh r10, [r0] @ xR[n]
 ldrsh r11, [r0,r3] @ xR[n+L]

 ldrsh r8, [r1] @ xI[n]
 ldrsh r9, [r1,r3] @ xI[n+L]

 add r12, r10, r9 @ tmpR=((int)xR[n])+ xI[n+L]
 sub r14, r8, r11 @ tmpI=((int)xI[n])- xR[n+L];

 sub r10, r10, r9 @ tmpRR=((int)xR[n])- xI[n+L]
 add r11, r8, r11 @ tmpII=((int)xI[n])+ xR[n+L];

 mov r12, r12, asr #1 @ tmpR
 mov r14, r14, asr #1 @ tmpI
 mov r10, r10, asr #1 @ tmpRR
 mov r11, r11, asr #1 @ tmpII

 strh r11, [r1,r3] @ xI[n+L]
 strh r10, [r0, r3] @ xR[n+L]
 strh r14, [r1], #-4 @ xI[n], point back to the begining
 strh r12, [r0], #-4 @ xR[n], point back to the begining

 b twoPointsDFT_DSP

checkNext_DSP:

cmp r3, #2
bne oneButterFly_DSP

twoPointsDFT_DSP:
 ldrsh r10, [r0], #+2 @ xR[0]
 ldrsh r11, [r0], #-2 @ xR[1]
 add r12, r10, r11 @ tmpR=((int)xR[0])+ xR[1]
 sub r14, r10, r11 @ tmpRR=((int)xR[0])- xR[1];

 mov r12, r12, asr #1

Figure 8. FFT Example, Assembly Code (Sheet 8 of 11)

86 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

 mov r14, r14, asr #1 @
 strh r12, [r0], #+2 @ xR[0]=(short) (tmpR>>1);
 strh r14, [r0], #-2 @ xR[1]=(short) (tmpRR>>1);

 ldrsh r10, [r1], #+2 @ xI[0]
 ldrsh r11, [r1], #-2 @ xI[1]
 add r12, r10, r11 @ tmpI=((int)xI[0])+ xI[1]
 sub r14, r10, r11 @ tmpII=((int)xI[0])- xI[1];
 mov r12, r12, asr #1
 mov r14, r14, asr #1
 strh r12, [r1], #+2 @ xI[0]=(short) (tmpI>>1);
 strh r14, [r1], #-2 @ xI[1]=(short) (tmpII>>1);

 ldmia sp!,{r0-r12,pc} @ return

oneButterFly_DSP:

 @ save variables for iterations
 stmdb sp!,{r0-r4} @ push registers

 @ section A of the butterfly
 mov r7, r3@ L

loop1_DSP:
 ldrsh r10, [r0] @ xR[n]
 ldrsh r11, [r0,r3] @ xR[n+L]
 sub r14, r10, r11 @ tmpRR=((int)xR[n])- xR[n+L];
 add r12, r10, r11 @ tmpR=((int)xR[n])+ xR[n+L]
 mov r14, r14, asr #1
 mov r12, r12, asr #1
 strh r14, [r0,r3] @ xR[n+L]=(short) (tmpRR>>1);
 strh r12, [r0], #+2 @ xR[n]=(short) (tmpR>>1); n=n+1

 ldrsh r10, [r1] @ xI[n]
 ldrsh r11, [r1,r3] @ xI[n+L]
 sub r14, r10, r11 @ tmpII=((int)xI[n])- xI[n+L];
 add r12, r10, r11 @ tmpI=((int)xI[n])+ xI[n+L]
 mov r14, r14, asr #1
 mov r12, r12, asr #1
 strh r14, [r1,r3] @ xI[n+L]=(short) (tmpII>>1);
 strh r12, [r1], #+2 @ xI[n]=(short) (tmpI>>1); n=n+1

 subs r7, r7, #2
 bne loop1_DSP

 @ setion B of the butterfly
 @ at this point, r0 exactly point to xR[L], r1 exactly point to xI[L]
 mov r3, r3, asr #1 @ L=M/2
 sub r7, r3, #2 @ treat the first loop specially
 add r6, r4, r4, lsl #1 @ r7=3*q
 add r5, r2, r6

@ n+=3Q to skip first loop, point to cos&sin with 3q offset
 addr2, r2, r4 @ n+=q to skip first loop,

 @ first loop treated specially because there is no need to do
@ multiplication for n=0

 ldrsh r10, [r0] @ xR[n]

 ldrsh r11, [r0,r3] @ xR[n+L]

Figure 8. FFT Example, Assembly Code (Sheet 9 of 11)

Application Note 87

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples

Source Code Examples

ldrshr8, [r1] @ xI[n]
 ldrsh r9, [r1,r3] @ xI[n+L]

 add r12, r10, r9 @ tmpR=((int)xR[n])+ xI[n+L]
 sub r14, r8, r11 @ tmpI=((int)xI[n])- xR[n+L];

 sub r10, r10, r9 @ tmpRR=((int)xR[n])- xI[n+L]
 add r11, r8, r11 @ tmpII=((int)xI[n])+ xR[n+L];

 mov r10, r10, asr #1 @ tmpRR
 mov r11, r11, asr #1 @ tmpII
 mov r12, r12, asr #1 @ tmpR
 mov r14, r14, asr #1 @ tmpI

 @ r8 & r9 are free now
 strh r11, [r1,r3] @ xI[n+L]
 strh r10, [r0, r3] @ xR[n+L]
 strh r14, [r1], #+2 @ xI[n]
 strh r12, [r0], #+2 @ xR[n], n+=2

 @ multiplication required for n>1

loop2_DSP:
 ldrsh r10, [r0] @ xR[n]
 ldrsh r11, [r0,r3] @ xR[n+L]

 ldrsh r8, [r1] @ xI[n]
 ldrsh r9, [r1,r3] @ xI[n+L]

 add r12, r10, r9 @ tmpR=((int)xR[n])+ xI[n+L]
 sub r14, r8, r11 @ tmpI=((int)xI[n])- xR[n+L];

 sub r10, r10, r9 @ tmpRR=((int)xR[n])- xI[n+L]
 add r11, r8, r11 @ tmpII=((int)xI[n])+ xR[n+L];

 @ r8 & r9 are free now
 @ scale and pack the data

 mov r12, r12, lsl #15 @ tmpR
 mov r12, r12, lsr #16 @ tmpR >>1
 mov r14, r14, asr #1 @ tmpI >>1
 orr r12, r12, r14, lsl #16 @ r12={tmpI tmpR}

 mov r10, r10, lsl #15 @ tmpRR
 mov r10, r10, lsr #16 @ tmpRR >>1
 mov r11, r11, asr #1 @ tmpII >>1
 orr r10, r10, r11, lsl #16 @ r10={tmpII tmpRR}

 sub r8, r8, r8
 ldr r9, [r5,#4] @ {cosR[n], -sinI[n]}
 mar acc0, r8, r8 @ r10={tmpII tmpRR}
 miaph acc0, r10, r9 @ tmpII*cosR -tmpRR*sinI
 mra r11, r14, acc0 @ acc0=[r14 r11]
 mov r11, r11, asr #15
 strh r11, [r1,r3] @ xI[n+L]

 ldr r9, [r5], r6 @ {sinI[n], cosR[n]}, n+=3*q

Figure 8. FFT Example, Assembly Code (Sheet 10 of 11)

88 Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IIR Filters and FFT Examples
Source Code Examples

 mar acc0, r8, r8 @ r10={tmpII tmpRR}
 miaph acc0, r10, r9 @ tmpRR*cosR + tmpII*sinI
 mra r11, r14, acc0 @ acc0=[r14 r11]
 mov r11, r11, asr #15
 strh r11, [r0, r3] @ xR[n+L]

 ldr r9, [r2,#4] @ {cosR[n], -sinI[n]}
 mar acc0, r8, r8 @ r12={tmpI tmpR}
 miaph acc0, r12, r9 @ tmpI*cosR -tmpR*sinI
 mra r11, r14, acc0 @ acc0=[r14 r11]
 mov r11, r11, asr #15
 strh r11, [r1], #+2 @ xI[n]

 ldr r9, [r2], r4 @ {sinI[n], cosR[n]}, n+=q
 mar acc0, r8, r8 @ r12={tmpI tmpR}
 miaph acc0, r12, r9 @ tmpR*cosR + tmpI*sinI
 mra r11, r14, acc0 @ acc0=[r14 r11]
 mov r11, r11, asr #15
 strh r11, [r0], #+2 @ xR[n], n+=2

 subs r7, r7, #2
 bne loop2_DSP

 @ restore variables for iterations

 ldmia sp!,{r0-r4} @ pop

iterating_DSP:
 mov r3, r3, lsr #1 @ M=M/2
 mov r4, r4, lsl #1 @ q=q*2
 bl Split_Radix_ButterFly_asm_DSP

 add r0, r0, r3, lsl #1 @ xR+M
 add r1, r1, r3, lsl #1 @ xI+M
 mov r3, r3, lsr #1 @ M=M/2
 mov r4, r4, lsl #1 @ q=q*2
 bl Split_Radix_ButterFly_asm_DSP

 add r0, r0, r3, lsl #1 @ xR+M+M/2
 add r1, r1, r3, lsl #1 @ xI+M+M/2
 bl Split_Radix_ButterFly_asm_DSP

endNow_DSP:
 ldmia sp!,{r0-r12,pc} @ return

Figure 8. FFT Example, Assembly Code (Sheet 11 of 11)

	Contents
	Figures
	Tables

	1.0 Introduction
	1.1 FIR Filter
	1.2 IIR Filter
	1.3 Fast Fourier Transform
	1.4 Related Documents
	1.5 Acronyms

	2.0 Intel XScale® Microarchitecture and Multiply Accumulate DSP Instructions Description
	2.1 DSP - MAC Instructions Overview
	2.2 DSP Coprocessor 0 (CP0)
	2.2.1 Multiply With Internal Accumulate Format
	Table 1. Multiply with Internal Accumulate Format
	Table 2. MIA{<cond>} acc0, Rm, Rs
	Table 3. MIAPH{<cond>} acc0, Rm, Rs
	Table 4. MIAxy{<cond>} acc0, Rm, Rs
	2.2.2 Internal Accumulator Access Format
	Table 5. Internal Accumulator Access Format
	Table 6. MRA{<cond>} RdLo, RdHi, acc0

	3.0 FIR Filter Example
	3.1 Filter Description
	3.2 Testing Function - testFIR()
	3.2.1 FIR Testing Results
	3.2.1.1 FIR ASM Code Using DSP Coprocessor
	3.2.1.2 FIR ASM Code Without DSP Coprocessor
	3.2.1.3 FIR C Code

	3.2.2 FIR ARM* ASM Code Using DSP Coprocessor
	3.2.3 FIR ARM*ASM Code Without DSP Coprocessor
	3.2.4 FIR Straight C Code Without DSP Coprocessor
	3.2.5 FIR Initialization

	4.0 IIR Filter Example
	4.1 IIR Filter Description
	4.2 Testing Function TESTIIR()
	4.2.1 IIR Testing Results
	4.2.1.1 IIR - ASM Code Using DSP Instructions, M & N Must be Divisible by 4
	4.2.1.2 IIR - ASM Code Using DSP Instructions, M & N Must be Even Numbers
	4.2.1.3 IIR - ASM Code not Using DSP Instructions
	4.2.1.4 IIR - Straight C Code, not Using DSP Coprocessor

	4.2.2 IIR - ARM* ASM Code Using DSP Coprocessor
	4.2.3 IIR - ARM ASM Code without DSP Coprocessor
	4.2.4 IIR - Straight C Code Without DSP Coprocessor

	5.0 FFT Example
	5.1 FFT Description - Split-Radix FFT Implementation on Intel® IXP425 Network Processor
	5.1.1 FFT Formula Details

	5.2 Implementation
	5.2.1 FFT Results
	Figure 1. Sine Waveform
	Figure 2. FFT of the Sine Wave

	6.0 Source Code Examples
	6.1 FIR Filter
	Figure 3. FIR Filter Coded in C Language (Sheet 1 of 7)
	Figure 4. FIR Filter Example - Optimized Using MAC Instructions (Sheet 1 of 6)

	6.2 IIR Filter Source Code
	Figure 5. IIR Filter Example, C Code (Sheet 1 of 10)
	Figure 6. IIR Filter Example, Assembly Code (Sheet 12 of 12)

	6.3 FFT Source Code Example
	Figure 7. FFT Example, C Code (Sheet 20 of 20)
	Figure 8. FFT Example, Assembly Code (Sheet 11 of 11)

