Intel® IXP400 Software: Intel
XScale® Microarchitecture
Multiply Accumulate Instructions
— FIR / lIR Filters and FFT
Examples

Application Note

October 2004

Documen t Number: 302142-001

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Accumulate Instructions — FIR / IR Filters and FFT Examples In

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

This Application Note as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms
of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed
as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, 1960, iCOMP, InstantlP, Intel, Intel Centrino, Intel Centrino logo,
Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your Command, Sound Mark, The Computer Inside., The Journey
Inside, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2004, Intel Corporation

2 Application Note

http://www.intel.com
http://www.intel.com

intel.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples

Contents
Revision History
Date Revision Description
October 2004 001 Initial release.
Application Note 3

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply m
Accumulate Instructions — FIR / lIR Filters and FFT Examples In
Contents ®

Contents

IO 1 (oo [ez (o o FO TP PPPPPPTRPN 7
Pt O o 1 11 (= USSR 7
A 1 1 Y O OURRR 7
1.3 Fast Fourier TransSformo e e e e e e e e e e eeeeaeeas 7
L S S =Y F= 1 (= To B I T Yo U g 1T o (S 8
1. e (o] 0}/ 41 S P TPUPPP T RPR 8
2.0 Intel XScale® Microarchitecture and Multiply
Accumulate DSP Instructions DeSCPLIONooii i e e 8
2.1 DSP — MAC INStructions OVEIVIEWoiiiiiiiiiiiiiiie et e e e e e e e e 8
2.2 DSP CoProcessOr 0 (CPO)......ccuuiiiiiiiiiiie ettt e e e 9
2.2.1 Multiply With Internal Accumulate Format ..., 9
2.2.2 Internal Accumulator Access Format..........ooooviiiiiiiiiii e 12
3.0 FIR FIEr EXAMPIE..... ettt e e e ettt e et e e e e e e e e e e mnnneeeeeeaeeeaaannnnnnnes 14
3.1 1 (=T T Td o] (o o OSSR 14
3.2 Testing FUNCHON — tESTFIR() ..vvvvrieiiiiee et e e e e e e 15
3.21 FIR Testigg RESUIS ... e 15
3.22 FIR ARM* ASM Code Using DSP COProCESSOruvviiiieeieeeieeieiiiiiieieeeeeaeee e 16
3.2.3 FIR ARM ASM Code Without DSP COProCeSSOrcuueeieeieeeieeiiciiiiiieeeeeeaeeeeennn 16
3.2.4 FIR Straight C Code Without DSP COProCESSOreveiiieeieeeieeiiiiiirieieeeeeaeeeeenn 16
3.2.5 FIR INII@lIZAtON ...eeiiiiieie et 17
O 1 G 1 (= b = T o o] = 17
4.1 IR Filter D@SCIIPLION ...ttt e nneeas 17
4.2 Testing FUNCHON TESTHR() -..ettiiitieieeeiiieieee ettt 17
421 1R Testing* RESUILS ...t a e e e e 17
422 1IR—ARM ASM Code Using DSP COPrOCESSON.......ccuuvveieiiiiiiieeeiieieee e iiieee e 19
423 1IR-ARM ASM Code without DSP COproCessor.........ccccuuuuiiiieeiaeeee e 19
4.24 1IR — Straight C Code Without DSP COProCeSSOr..........uueeiiiiiiiiiieiiiiiee e 19
OO ol I b= o])[R 20
5.1 FFT Description — Split-Radix FFT
Implementation on INtel® IXP425 NEtWOrK PrOCESSONveeeereeeeeeeeeeeeeeeseeeeeeeeereeeeen e, 20
511 FFT Formula DetailSccooiiiiiiiiie e 20
LT [217 o1 1= o T=T] ¢= 1 1 o o R 21
5.2.1 FFT RESUIS ...ttt e e e e e e e 21
6.0 SoUrce Code EXAMPIES.........ccccuuiiiiiiiiiiie e e e st e e e e e e e e e s e e —rarraaaaeeeaaanraaes 24
20t N o | 11 =Y RO PEUSRRPN 24
6.2 IR FIer SOUICE COUEueiiiiiiiiiiie et e e et e e e e e e e 37
6.3 FFT Source Code EXAamPIEccoiiiiiiiiiiieicee ettt et eaaaeaa e 59
Figures
T TS I = 1Y {4 o o R 22
FFET Of the SiN€ WaVe.....coo et e e e e e e e e e e e e anan 22

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples
Contents

ntGI Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
®

3 FIRFilter Coded in C LanQUAGEcuiiiiiiiiiie ittt e 24
4 FIR Filter Example — Optimized Using MAC INStructions.............ooooiiiiiiiiiieeeee e 31
5 IR Filter EXamPle, C COQEuuuuiiiiiiieie e et r e e e e e e e e e e e e e e e eeeeeeeeeeeesraraeaees 37
6 IR Filter Example, ASSEMDIY COUEoiiiiiieiiii et e e e e e e e e e e e e e 47
7 FFT EXaMPIE, C COUE ...ttt ettt e e e e e e e e e e e aeaaaeeeeeeeeseeeeeesbaraeaees 59
8 FFT Example, ASSEMDBIY COE ... e e e e e e e e e e e 78
Tables
1 Multiply with Internal Accumulate FOrmat..........cccoooiiiiiiii e 9
2 MIA{<coNd>} aCCO, RM, RS ..coiiiiiiiiiiiie e e e e e e e e e e e e e s s rebaeeeeeeas 10
3 MIAPH{<cond>} accO, RM, RSo e e e e e e e e e e e 11
4 MIAxy{<cond>} accO, RM, RS ... 12
5 Internal Accumulator ACCESS FOIMAL.......ccoooiiieeiieieeee et 13
6 MRA{<cond>} RALO, RAHI, @CCOeeiiiiiiiiii e e e e e e 14

Application Note 5

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply m
Accumulate Instructions — FIR / IIR Filters and FFT Examples Intel .

This page is intentionally left blank.

6 Application Note

intel.

1.0

1.1

1.2

1.3

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Introduction

Introduction

This application note provides source code examples of several typical algorithm functions used
for signal processing, including a Finite Impulse Response (FIR) filter, an Infinite Impulse
Response (IIR) Filter, and a Fast Fourier Transform (FFT). The FIR and IIR Filter examples show
the performance advantages of using the Multiply Accumulate (MAC) instructions shown in the
optimized examples of each filter. The FFT example illustrates an optimized assembly language
example, but the MAC instructions of the Intel XScale® Core do not help the FFT algorithm to
execute any faster due to the particular nature of how the Fast Fourier function operates internally.
With study, a programmer can understand how these signal-processing algorithms can be
implemented for high performance. A brief description of each function follows.

FIR Filter

A FIR filter can be described as a discrete linear time-invariant system with output based upon the
weighted summation of a finite number of past inputs. FIR filters do not use feedback, so for a FIR
filter with N coefficients, the output always becomes zero after putting in N samples of an impulse
response.

This document first presents an example FIR filter written in Assembly Language. Then an
optimized FIR filter is presented, also coded in Assembly Language, but employing Intel XScale
core instruction set digital signal processing (DSP) opcodes for much higher efficiency — 16x
improvement in data throughput over C Language, and 1.5x improvement over standard ARM*
Assembly Language. The optimized example also includes a baseline version of the filter in C
Language.

lIR Filter

The impulse response of the IIR Filter is ‘infinite’ because there is feedback in the filter; if you put
in an impulse (a single ‘1’ sample followed by many ‘0’ samples), theoretically an infinite number
of non-zero values will be output.

As with the FIR example, this document presents an example IIR filter written in Assembly
Language. Then an optimized IIR filter is presented, also coded in Assembly Language, but
employing Intel XScale core instruction set digital signal processing (DSP) opcodes for much
higher efficiency — with improvements in data throughput over C Language, and over standard
ARM* Assembly Language. The optimized example also includes a baseline version of the IIR
filter in C Language.

Fast Fourier Transform

In this report, a optimized Split-Radix Fast Fourier Transform (FFT) algorithm is implemented and
described.

Following the format used to describe the FIR and IIR filter examples, the FFT section shows an
example FFT function written in Assembly Language. This particular example is the
highest-performance version in the set of FFT examples. The next example of a coded FFT filter is
presented, also in Assembly Language, but employing Intel XScale core instruction set digital

Application Note 7

Accumulate Instructions — FIR / IR Filters and FFT Examples

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply int9I
®

Intel XScale® Microarchitecture and Multiply Accumulate DSP

1.4

1.5

2.0

2.1

signal processing (DSP) opcodes. As it turns out, for the FFT algorithm, the MAC instructions do
not increase performance, for reasons described in the details of the FFT section. The optimized
example also includes a baseline version of the filter in C Language.

Related Documents

Document

Document Number

Intel® IXP400 Digital Signal Processing (DSP) Software Version 2.4 Programmer’s Guide | 252725_v2_4.pdf

Intel® IXP400 Digital Signal Processing (DSP) Software: Voice Over Internet Protocol
Application Note

300320

Acronyms
Acronym Description
ANSI American National Standards Institute
ARM* ARM* Ltd. [company]
ASM Assembly [Language]
FIR Finite Impulse Response
DSP Digital Signal Processing
MAC Multiply Accumulate Instruction

Intel XScale® Microarchitecture and Multiply
Accumulate DSP Instructions Description

The Intel XScale® Microarchitecture features a special set of instructions that enable a software
programmer to implement signal-processing algorithms that deliver high efficiency and
performance. Many types of functions, such as digital filters, use a sum-of-products computation
whose internal algorithm requirements are efficiently handled by the Intel XScale core MAC
instruction set of the Intel® IXP42X Product Line of Network Processors and IXC1100 Control
Plane Processor. The FIR and IIR filter examples, in particular, use these instruction enhancements
to good advantage in their respective highest-performance versions of sample code.

DSP — MAC Instructions Overview

Sixteen-bit integers, the data type normally associated with audio signal processing, are used by the
Multiply Accumulate instructions. The following sections show the Intel XScale core MAC
instructions available to the programmer.

Application Note

In Accumulate Instructions — FIR / IR Filters and FFT Examples

u Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Intel XScale® Microarchitecture and Multiply Accumulate DSP

2.2 DSP Coprocessor 0 (CP0)

The Intel XScale core adds a DSP coprocessor to the architecture for the purpose of increasing the
performance and the precision of audio processing algorithms. This coprocessor contains a 40-bit
accumulator and eight new instructions.

The 40-bit accumulator is referenced by several new instructions that were added to the
architecture; MIA, MIAPH and MIAxy are multiply/accumulate instructions that reference the
40-bit accumulator instead of a register specified accumulator. MAR and MRA provide the ability
to read and write the 40-bit accumulator.

Access to CPO0 is always allowed in all processor modes when bit 0 of the Coprocessor Access
Register is set. Any access to CPO when this bit is clear will cause an undefined exception. Note
that only privileged software can set this bit in the Coprocessor Access Register located in CP15.

The 40-bit accumulator will need to be saved on a context switch if multiple processes are using it.

Two new instruction formats were added for coprocessor 0: Multiply with Internal Accumulate
Format and Internal Accumulate Access Format. The formats and instructions are described next.

221 Multiply With Internal Accumulate Format

A new multiply format has been created to define operations on 40-bit accumulators. Table 1
shows the layout of the new format. The op code for this format lies within the coprocessor register
transfer instruction type. These instructions have their own syntax.

Table 1. Multiply with Internal Accumulate Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
cond 1(1(1{0{0 0 1|{0| opcode_3 Rs o|jojofo0 acc 1 Rm

Bits Description Notes

31:28 cond - ARM condition codes -

Intel XScale core defines the following:
0b0000 = MIA
0b1000 = mllﬁgg
- . . 0b1100 =
1916 _ort)codf_3 - spelmtfles the type of multiply with 0b1101 = MIABT
internal accumulate 0b1110 = MIATB
0b1111 = MIATT
The effect of all other encodings are
unpredictable.

15:12 Rs - Multiplier

Intel XScale core only implements accO;
75 acc - select 1 of 8 accumulators access to any other acc has unpredictable
effect.

3:0 Rm - Multiplicand -

Two new fields were created for this format, acc and opcode_3. The acc field specifies one of eight
internal accumulators to operate on and opcode_3 defines the operation for this format. The Intel
XScale core defines a single 40-bit accumulator referred to as acc0; future implementations may
define multiple internal accumulators. The Intel XScale core uses opcode 3 to define six
instructions, MIA, MIAPH, MIABB, MIABT, MIATB and MIATT.

Application Note 9

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply m

Accumulate Instructions — FIR / IR Filters and FFT Examples In
Intel XScale® Microarchitecture and Multiply Accumulate DSP

10

Table 2.

MIA{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1/1(1{0{0 0 1/0{0 0 0 O Rs 0 00 0|0 0 O0]1 Rm

Operation: if ConditionPassed(<cond>) then
accO = (Rm[31:0] * Rs[31:0])[39:0] + acc0[39:0]
Exceptions: none
Qualifiers Condition Code
No condition code flags are updated
Notes: Early termination is supported. Instruction timings can be found
Specifying R15 for register Rs or Rm has unpredictable results.
accO0 is defined to be 0b000 on Intel XScale core.

The MIA instruction operates similarly to ML A except that the 40-bit accumulator is used. MIA
multiplies the signed value in register Rs (multiplier) by the signed value in register Rm
(multiplicand) and then adds the result to the 40-bit accumulator (accO0).

MIA does not support unsigned multiplication; all values in Rs and Rm will be interpreted as
signed data values. MIA is useful for operating on signed 16-bit data that was loaded into a general
purpose register by LDRSH.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

Application Note

INal.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Intel XScale® Microarchitecture and Multiply Accumulate DSP

Table 3. MIAPH{<cond>} acc0, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1

0

cond 1

1(1/0{0 0 1/0(1 0 0 O Rs 000 0|0 O0 0|1 Rm

Operation:

Exceptions:
Qualifiers

Notes:

if ConditionPassed(<cond>) then
acc0 = sign_extend(Rm[31:16] * Rs[31:16]) +

sign_extend(Rm[15:0] * Rs[15:0]) +
acc0[39:0]

none

Condition Code

S bit is always cleared; no condition code flags are updated

Instruction timings can be found

Specifying R15 for register Rs or Rm has unpredictable results.

accO0 is defined to be 0b000 on Intel XScale core

The MIAPH instruction performs two16-bit signed multiplies on packed half word data and
accumulates these to a single 40-bit accumulator. The first signed multiplication is performed on
the lower 16 bits of the value in register Rs with the lower 16 bits of the value in register Rm.

The second signed multiplication is performed on the upper 16 bits of the value in register Rs with
the upper 16 bits of the value in register Rm. Both signed 32-bit products are sign extended and
then added to the value in the 40-bit accumulator (acc0).

The instruction is only executed if the condition specified in the instruction matches the condition

code status.

Application Note

11

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply m

Accumulate Instructions — FIR / IR Filters and FFT Examples In
Intel XScale® Microarchitecture and Multiply Accumulate DSP

Table 4. MIAxy{<cond>} acc0, Rm, Rs

222

12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1/1(1{0{0 0 1{0(1 1 x y Rs 0 00 0|0 0 01 Rm

Operation: if ConditionPassed(<cond>) then
if (bit[17] == 0)
<operandl> = Rm[15:0]
else
<operandl> = Rm[31:16]

if (bit[l6] == 0)
<operand2> = Rs[15:0]
else
<operand2> = Rs[31:16]

acc0[39:0] = sign_extend(<operandl> * <operand2>) + acc0[39:0]

Exceptions: none
Qualifiers Condition Code
S bit is always cleared; no condition code flags are updated

Notes: Instruction timings can be found
Specifying R15 for register Rs or Rm has unpredictable results.

accO is defined to be 0b000 on Intel XScale core.

The MIAXy instruction performs onel6-bit signed multiply and accumulates these to a single
40-bit accumulator. x refers to either the upper half or lower half of register Rm (multiplicand) and
y refers to the upper or lower half of Rs (multiplier). A value of 0x1 will select bits [31:16] of the
register which is specified in the mnemonic as T (for top). A value of 0x0 will select bits [15:0] of
the register which is specified in the mnemonic as B (for bottom).

MIAXxy does not support unsigned multiplication; all values in Rs and Rm will be interpreted as
signed data values.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

Internal Accumulator Access Format

The Intel XScale core defines a new instruction format for accessing internal accumulators in CPO.
Table 5, “Internal Accumulator Access Format” on page 13 shows that the op code falls into the
coprocessor register transfer space.

The RdHi and RdLo fields allow up to 64 bits of data transfer between ARM registers and an
internal accumulator. The acc field specifies 1 of 8 internal accumulators to transfer data to/from.
The Intel XScale core implements a single 40-bit accumulator referred to as accO; future
implementations can specify multiple internal accumulators of varying sizes, up to 64 bits.

Access to the internal accumulator is allowed in all processor modes (user and privileged) as long
bit 0 of the Coprocessor Access Register is set.

Application Note

u Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
In Accumulate Instructions — FIR / IR Filters and FFT Examples
® Intel XScale® Microarchitecture and Multiply Accumulate DSP

The Intel® IXP42X product line implements two instructions MAR and MRA that move two
ARM registers to accO and move acc0 to two ARM registers, respectively.

Table 5. Internal Accumulator Access Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1({1(0({0f(0f1(0|L RdHi RdLo 00 O0O0/0O0O0TO|O acc

Bits Description Notes

31:28 cond - ARM condition codes -

L - move to/from internal accumulator
20 0= move to internal accumulator (MAR) -
1= move from internal accumulator (MRA)

On a read of the acc, this 8-bit high order field
RdHi - specifies the high order eight (39:32) | Will be sign extended.

19:16 . .
bits of the internal accumulator. On a write to the acc, the lower 8 bits of this
register will be written to acc[39:32]
15:12 RdLo - specifies the low order 32 bits of the B
' internal accumulator
74 Should be zero
3 Should be zero -
2:0 acc - specifies 1 of 8 internal accumulators Intel XScale core only implements accO,

access to any other acc is unpredictable

Note: MAR has the same encoding as MCRR (to coprocessor 0) and MRA has the same encoding as
MRRC (to coprocessor 0). These instructions move 64-bits of data to/from ARM registers from/to
coprocessor registers. MCRR and MRRC are defined in ARM’s DSP instruction set.

Disassemblers not aware of MAR and MRA will produce the following syntax:
MCRR{<cond>} p0O, 0x0, RdLo, RdHi, cO0

The MAR instruction moves the value in register RdLo to bits[31:0] of the 40-bit accumulator
(acc0) and moves bits[7:0] of the value in register RdHi into bits[39:32] of accO.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

This instruction executes in any processor mode.

Application Note 13

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply m

Accumulate Instructions — FIR / IR Filters and FFT Examples In
FIR Filter Example ®
Table 6. MRA({<cond>} RdLo, RdHi, acc0

3.0

3.1

14

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1]1/0(0|0|1|0]1 RdHi RdLo 0 00 0|0 OO O|O0|O0 0O

Operation: if ConditionPassed(<cond>) then
RAHi[31:0] = sign_extend(acc0[39:32])
RALo[31:0] = acc0[31:0]
Exceptions: none
Qualifiers Condition Code
No condition code flags are updated

Notes: Instruction timings can be found in
Specifying the same register for RAHi and RdLo has unpredictable
results.

Specifying R15 as either RdAHi or RdLo has unpredictable results.

The MRA instruction moves the 40-bit accumulator value (acc0) into two registers. Bits[31:0] of
the value in accO are moved into the register RdLo. Bits[39:32] of the value in accO are sign
extended to 32 bits and moved into the register RdHi.

The instruction is only executed if the condition specified in the instruction matches the condition
code status.

This instruction executes in any processor mode.

FIR Filter Example

The main body of the FIR filter source code example is coded in high-level C Language.
Programming signal processing algorithms in C Language is not efficient; therefore, this
implementation is the lowest-performance version in the example. This FIR exercise employs three
variations of the filter function code produced for comparison: ARM* / Intel XScale core
Assembly Language implementation, ARM* / Intel XScale core Assembly Language using the
DSP Extension MAC instructions implementation, and a regular ANSI C language
implementation.

Filter Description

The source code for the filter shown in this example is a general-purpose FIR filter, and the chosen
filter coefficients illustrated in this example is a square-root-raised cosine function. This is a
commonly used matched filter in communication systems, offering the best signal-to-noise ratio
for processing. The table of coefficients that comprise the primary characteristics of the FIR filter
example could be changed for other types of filters. For example, by changing the coefficients
table, a programmer could turn this filter into a low-pass filter, high-pass filter, or a band-pass filter.

Application Note

In Accumulate Instructions — FIR / IR Filters and FFT Examples

= Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® FIR Filter Example

3.2 Testing Function — testFIR()

The testing function testFIR() calls function profile() to run each filter implementation 100 times to
measure performance. The performance data is gathered and printed during the running of each
routine, and this can then be used for comparing each implementation of the FIR filter.

testFIR() also calls testSequentialBlockProcessing(), which shows how each filter function can be
called to process input data sequentially block by block.

The data output of each filter is also compared to make sure the results match.

3.21 FIR Testing Results

Each of the versions of the FIR filter shown in this example will display performance data (output
results are shown in the following examples). This test was run using a 533-MHz Intel®™ IXP425
Network Processor.

3.211 FIR ASM Code Using DSP Coprocessor
total cycles = 2289074
filter order = 63
number of Run = 100
number of output per Run = 128

average cycle per tap = 2.838633

3.21.2 FIR ASM Code Without DSP Coprocessor
total cycles = 3603796
filter order = 63
number of Run = 100
number of output per Run = 128

average cycle per tap = 4.468993

3.21.3 FIR C Code
total cycles = 36442336
filter order = 63
number of Run = 100
number of output per Run = 128

average cycle per tap =45.191389

Application Note 15

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply = t9I
®

FIR Filter Example

3.2.2

3.2.3

3.24

16

FIR ARM" ASM Code Using DSP Coprocessor

The function prototype for this version of the FIR filter is called real_ FIR_asm, and is coded in
ARM Assembly Language. This version uses the DSP coprocessor to execute multiply accumulate
instructions in the function. Thanks to the efficiency of the DSP instructions, and the pipelined
architecture of the MAC instruction execution unit in the Intel XScale core, this version of the filter
will deliver the highest performance of the three examples, and is approximately 16x faster than the
C Language version filter. Further, this version is 1.5x faster than the ARM ASM version that does
not use the DSP coprocessor instructions.

int real_FIR_asm(short *x,short *h,short *vy,short L,short M, short
N)

For efficiency, this function processes eight filter coefficients in each pass of the inner loop. If the
original filter length M is not divisible by 8, zeros must be added to pad the end of the filter
coefficients. The new filter length L is divisible by 8. It is possible to modify the code so that fewer
coefficients are processed in the inner loop and hence fewer zeros are needed to pad the end.

The function calculates two filter outputs in each pass of the outer loop. Because of the requirement
of address alignment for 32-bit data access, the original filter coefficients are rearranged. The new
filter coefficients /4 has two L components. The first L components are used to calculate the
even-number indexed filter outputs, while the second L components are used to calculate the
odd-number indexed filter outputs. For the first L components of 4, the algorithm starts with the M/
original filter coefficients, followed by L-M zeros. For the second L components of #, it starts with
one 0, then M original filter coefficients, followed by L-M-1 zeros. Note that there is one sample
time offset between the first L components and the second L components in /.

Rearranging and padding zeros to the original filter coefficients are done in the initialization
function /nitiFIR() in Section 3.2.5.

FIR ARM'ASM Code Without DSP Coprocessor

The function prototype for this version of the FIR filter is called Fir_noCopro, is coded in ARM
Assembly Language, and does not use the DSP coprocessor. This version of the filter will be the
second highest performer — approximately 10x faster than the C Language version filter.

int Fir_noCopro (short *x, short *h, short *y, short L, short N);
This function processes two filter coefficients in each pass of the inner loop. A zero is needed to

pad in the end of the filter coefficients if the filter length L is an odd number. This is done in the
initialization function /nitiFIR() in Section 3.2.5.

FIR Straight C Code Without DSP Coprocessor

The function prototype for this version of the FIR filter is called real FIR, is coded in generic
ANSI C Language, and does not use the DSP coprocessor. This version of the filter is (by far) the
lowest performer — many magnitudes slower than the optimized versions.

real_FIR(x, RaisedCos,FIR_output3, FIR_length, N)

This is mainly used to verify the numerical result of the assembly code implementations.

Application Note

intel.

3.2.5

4.0

4.1

4.2

421

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
IIR Filter Example

FIR Initialization

This function allocates memory for the filter state and filter input. It also rearranges the filter
coefficients for the assembly function real_ FIR_asm () using the DSP coprocessor instructions
as explained in Section 3.2.2.

void InitiFIR(short *coef, short M, short N, short **h, short **s, short **x, short *L);

The complete source code for the FIR filter implementations described above is provided in
Figure 3 and Figure 4. The C Language mainline for the testFIR() routine that calls each of the FIR
filter examples, plus related routines and the C Language-version of the FIR filter, is in the first
section shown in Figure 3. The Assembly Language-version implementations of the filter function
follow in Figure 4.

lIR Filter Example

The main body of the IIR filter source code example is coded in high-level C Language. This
implementation is the lowest-performance version in the examples. This IIR exercise again
employs three variations of the filter function code produced for comparison: ARM* / Intel XScale
core Assembly Language implementation, ARM* / Intel XScale core Assembly Language using
the DSP Extension MAC instructions implementation, and a regular ANSI C Language
implementation.

lIR Filter Description

The source code for the filter shown in this example is a general-purpose Infinite Impulse
Response filter, the TIR filter uses feedback in calculation. and the chosen filter coefficients
illustrated in this example is similar to the FIR example, but in this instance is a square-root-raised
cosine function with a beta of 0.15.

Testing Function TESTIIR()

The testing function testIIR() calls function profile() to run each filter implementation 100 times to
measure performance. The performance data is gathered and printed during the running of each
routine, and this can then be used for comparing each implementation of the FIR filter.

testFIR() also calls testSequentialBlockProcessing(), which shows how each filter function can be
called to process input data sequentially block by block. The data output of each filter is also
compared to make sure the results match.

lIR Testing Results

Each of the versions of the IIR filter shown in this example will display performance data (output
results are shown in the following examples). This test was run using a 533-MHz Intel® IXP425
Network Processor.

Application Note 17

Accumulate Instructions — FIR / IR Filters and FFT Examples

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply in
IR Filter Example ®

4211 IR — ASM Code Using DSP Instructions, M & N Must be
Divisible by 4

Function: IIR_asm DSP4

total cycles =1275698

number Of Run =100

number Of output per Run =100
order M =16

order N =16

average cycle per tap (totalCycles/(M+N)) =3.986556

4.2.1.2 IR — ASM Code Using DSP Instructions, M & N Must be Even
Numbers

Function: IIR_asm DSP

total cycles =1528704

number Of Run =100

number Of output per Run =100
order M =16

order N =16

average cycle per tap (totalCycles/(M+N)) =4.777200

4213 IR — ASM Code not Using DSP Instructions
Function: IIR_asm (does not use DSP instructions)
total cycles =1749210
number Of Run =100
number Of output per Run =100
order M =16
order N =16

average cycle per tap (totalCycles/(M+N)) =5.466281

4.21.4 lIR — Straight C Code, not Using DSP Coprocessor

Function: IIR_C (C implementation)

18 Application Note

intel.

4.2.2

4.2.3

424

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
IIR Filter Example

total cycles =16622907

number Of Run =100

number Of output per Run =100
order M =16

order N =16

average cycle per tap (totalCycles/(M+N)) =51.946584

IIR - ARM" ASM Code Using DSP Coprocessor

The function prototype for this version of the IIR filter is called [IR_asm_DSP, and is coded in
ARM Assembly Language. This version uses the DSP coprocessor to execute multiply accumulate
instructions in the function. This version of the filter will deliver the highest performance of the
four examples, and is approximately 13x faster than the C Language version filter.

Void I[IR_arm_DSP4(short *x,short *h,short *y,short L,short M,short N)

IIR_asm_DSP4 use four coefficients in each pass of the inner loop, while IIR_asm_DSP uses only
one coefficient in each pass of the inner loop. As a result, the IIR_asm_DSP function has more
overhead. That is why IIR asm DSP4 is more efficient. [IR_asm DSP4 is useful for instances
where M and N are divisible by 4. Note that if N or M are not even or not divisible by 4, 0
coefficients can always be padded, to make N and M become even or divisible by 4.

IR — ARM ASM Code without DSP Coprocessor

The function prototype for this version of the IIR filter is called [IR_asm, and is coded in ARM
Assembly Language.

void IIR_asm(short *a, short *b, short *w, short *x, short *y, int
N, int M, int L);

lIR - Straight C Code Without DSP Coprocessor

The function prototype for this version of the IIR filter is called IIR_C and is written in generic C
Language. The MAC / DSP Instructions are not used in the formula.

void IIR_C(short *a, short *b, short *w, short *x, short *y, int
N, int M, int L)

Input parameters:

input

state

output
order of b

order of a

input block length

Application Note 19

Accumulate Instructions — FIR / IR Filters and FFT Examples

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply int9I
®

FFT Example

5.0

5.1

5.1.1

20

The complete source code for the IIR filter implementations described above is provided in
Chapter 6.0 in Figure 3. and Figure 4. The C Language mainline for the testIIR() routine that calls
each of the IIR filter examples, plus related routines and the C Language-version of the IIR filter, is
in the first section shown in Figure 3. The Assembly Language-version implementations of the
filter function follow in Figure 4.

FFT Example

The main body of the FFT source code example is coded in high-level C Language, this
implementation is, like the FIR and IIR filter examples presented before this section, the
lowest-performance version of all the FFT examples.

FFT Description - Split-Radix FFT
Implementation on Intel® IXP425 Network Processor

The IXP425 network processor has sufficient performance to perform computation intensive DSP
functions, such as FFT, FIR filters, IIR filters, etc. This example presents an FFT implementation
on the IXP425 network processor, which can be used in signal detection and estimation applications.

FFT Formula Details
The discrete Fourier transform (DFT) X[k] of a complex sequence x[n] of length N is calculated by:
X[k] =2 o V! x[n]*exp(-j2nnk/N) for k=0, 1,2 0.N-1

A direct calculation of N complex values of X[k] will require 4N? multiplications and 4N(N-1)
additions given the trigonometric function values. For example, if N=128, 65536 multiplications
and 65024 additions are required.

In this report, a Split-Radix FFT algorithm is implemented. This algorithm splits the input
sequence x[n] into two subsequences: an even-indexed sequence, and an odd-indexed sequence;
then apply radix-2 FFT on the N/2 point even-indexed subsequence sequence, and apply radix-4
FFT on the N/2 point odd-indexed subsequence. This iteration is repeated until finally 2 point FFTs
are applied at the final stage.

The fundamental operation of the algorithm is described in the following L-shaped butterfly:

Application Note

5.2

5.2.1

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
FFT Example

exp(-intn/N)

X[4k+1]

X[4k+3]

exp(-im3n/N)

Implementation

In this report, the implementation consists of:
* C code floating-point direct implementation of the DFT: DFT_FloatingPoint_N()
* C code fixed-point direct implementation of the DFT: DFT_FixedPoint_N()
* C code fixed-point implementation of Split-radix FFT: Split Radix FFT C()

* Assembly code fixed-point implementation of Split-radix FFT using Intel XScale core regular
assembly instructions: Split Radix FFT asm()

* Assembly code fixed-point implementation of Split-radix FFT using DSP coprocessor:
Split Radix FFT asm_DSP()
The L-shaped butterfly is implemented in:
e Split Radix ButterFly optimized()
* Split Radix ButterFly asm()
* Split Radix ButterFly asm DSP()

Note that these modules call themselves in the end, iterating through all the stages with different
order until 2- or 4-point DFT are performed.

This code applies to complex data with ANY length equal to power of 2.

FFT Results

A sine wave with frequency 343.75 Hz sampled at 8 KHz is used to test the code. The waveform
used as input data for processing is shown in Figure 1. Its FFT is shown in Figure 2. Their values
are in 16-bit fixed-point format.

Application Note 21

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply u
Accumulate Instructions — FIR / IR Filters and FFT Examples In

FFT Example ©
Figure 1. Sine Waveform

Figure 2.

22

40000 —e— Series1

30000

20000

R TN
PicOT3IaIxTT

-20000 -

-30000 -

-40000

FFT of the Sine Wave

343.75Hz -
12000 —— Series

* 4
10000 1 4 §>

8000

6000 -

4000

2000 -

1 14 27 40 53 66 79 92 105 118

The assembly code Split_Radix_FFT asm() is about 6.5 times faster than the C code
implementation Split_Radix_FFT C () . Fora 128 point FFT, for example, it takes about 138
cycles to calculate one point output, thus this example is quite efficient.

The C code floating-point and fixed-point implementation DFT_FloatingPoint_N() and
DFT_FixedPoint_N() were used to check if the numerical result is correct. Results of the
assembly code match exactly with the result of the C fixed-point code, but has very tiny numerical
error compared with the floating-point implementation due to precision in fixed point calculation.

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

= Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® FFT Example

The module Split_Radix_ FFT_ asm_DSP () using Intel XScale core DSP coprocessor
instructions is slightly slower then the module cSplit_Radix_FFT_asm() using the regular
Intel XScale core instructions. It turns out that the ARM / DSP coprocessor instructions are not that
useful for FFT because extra cycles are needed to set up the DSP coprocessor for use by the
function algorithm.

The following table provide some results for N=128 and N=256. To obtain an average
cycle-per-point time, each module is run 100 times.

Split_Radix | Split_Radix_FF | Split_Radix_
_FFT_C{() T _asm() FFT_asm_DSP
@)

N=128 Points

total cycles 11506273 1767859 1847674
Average 898.927578 138.113984 144.349531
cycle per

point

N=256 Points

total cycles 26439362 3972541 4174744
Average 1032.78757 155.177383 163.075938
cycle per

point

Application Note 23

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Accumulate Instructions — FIR / IR Filters and FFT Examples In
Source Code Examples

6.0 Source Code Examples

6.1 FIR Filter

Figure 3. FIR Filter Coded in C Language (Sheet 1 of 7)

*
*

@author Intel Corporation
@date 17 June 2004

Copyright 2004 Intel Corporation All Rights Reserved.

The source code contained or described herein and all documents

related to the source code ("Material") are owned by Intel Corporation

or its suppliers or licensors. Title to the Material remains with

Intel Corporation or its suppliers and licensors. The Material

contains trade secrets and proprietary and confidential information of
Intel or its suppliers and licensors. The Material is protected by
worldwide copyright and trade secret laws and treaty provisions. Except for
the licensing of the source code hereunder, no part of the Material may be
used, copied, reproduced, modified, published, uploaded, posted,
transmitted, distributed, or disclosed in any way without Intel's prior
express written permission.

Except for the licensing of the source code as provided hereunder, no license
under any patent, copyright, trade secret or other intellectual property
right is granted to or conferred upon you by disclosure or delivery of the
Materials, either expressly, by implication, inducement, estoppel or
otherwise and any license under such intellectual property rights must be
express and approved by Intel in writing.

For further details, please see the file README.TXT distributed with
this software.
-- End Intel Copyright Notice --

P S R e e T S R RS S S R R T R TS R T R T I S R N

~

#include "vxWorks.h"
#include "intLib.h"
#include "errnoLib.h"
#include "errno.h"
#include "stdio.h"
#include "memLib.h"
#include "stdlib.h"

void real_FIR(short *x, short *h, short *y, short L, short N);

extern int real_ FIR_asm(short *x, short *h, short *y, short L, short M, short
N) ;

extern int Fir_noCopro(short *x, short *h, short *y, short L, short N);

24 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 3. FIR Filter Coded in C Language (Sheet 2 of 7)

void InitiFIR(short *coef, short M, short N, short **h, short **s, short **x,
short *L);

void profile();
void checkDifference(short *yl, short *y2, int N);

extern int writePerfrmCtrl (int x);
extern int readCycleCounter();
long startClock, stopClock;

/* Square root raised cosin function with Beta=0.15 */
short RaisedCos[63]={

-99, -17, 91, 84, -37, -113, -31, 112,
111, =70, -206, -68, 235, 313, -36, -479,
-426, 234, 829, 535, -578, -1344, -633, 1190,
2191, 709, -2453, -4055, -758, 7325, 15982,
19704,
15982, 7325, -758, -4055, -2453, 709, 2191,
1190, -633, -1344, -578, 535, 829, 234, -426,
-479, -36, 313, 235, -68, -206, =70, 111,
112, -31, -113, =37, 84, 91, -17, -99};

void InitiFIR(short *coef,short M, short N, short **h,
short **s, short **x, short *L)

{

/** Create new filter coefficients suitable for the assembly code
coef: the original filter coefficients

the original filter length, it can be any value

max block length for the filter input

the new filter coefficients

array for the filter state and the filter input

new filter length, divisible by 8, 0 are appended to *coef

HFn s 2R

h={0, time reverse of *coef, 0,0,0....
time reverse of *coef, 0, 0,0,0...}

K=L is divisible by 8 because real FIR_asm() calculates 8 taps per pass

size of h is 2L because odd-index and even-index output will be calculated
per pass

**/

int i, K;

K=M+1l; /* to add a 0 to coef for 32 bit data access allignment*/
K=((K+7)>>3)<<3; /* because 8 tap will be calculated when using DSP co-
processor subroutine */

/* printf ("K=%d \n”, K); */

/* allocate space for the new filter */

/* h has the structure:

{coef[M-1...0]1, O, 0,0, first K elements
0, coef[M-1...0], 0,0} second K elements */

Application Note 25

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Source Code Examples ®

Figure 3. FIR Filter Coded in C Language (Sheet 3 of 7)

*h=(short *) malloc (2*K*sizeof (short));

for (i=0; 1i<M; i++)

{

(*h) [1]=coef [M-1-1];
(*h) [K+1+i]=coef[M-1-1];

}
(*h) [M]
(*h) [K]

0;
O .

/* pad more 0 to the end */
for (i=M+1; i<K; i++)

/* allocate space for the filter state and the filter input */

(*s)=(short *) malloc((K+N)*sizeof (short));
*x=(*s)+M-1; /* the filter input follows the filter state */

/* initialize the initial state */
for (i=0; i<M-1; 1++)

(*s) [1]1=0;

*L=K;

void testSequentialBlockProcessing()

{

/* N: filter will accept block of maximium N samples each time sequen-
tially */

short *h, *s, *xx, L;

int 1i;

short N, FIR_outputl[128], FIR_output2[128], FIR_output3[128],
FIR_outputd[128];

short filterLength;

filterLength=63;

N=128;

/* initialization */

InitiFIR (RaisedCos, filterLength, N, &h, &s, &xx, &L);
printf ("L=%d \n”, L);

for (i=0; 1i<N; i++)
xx[1]=0;

/* to check result */
for(i=0; i<filterLength-1; i++) /* initialize the state */
s[i1=0;

for (i=0; i<63; i++)
xx[1]=RaisedCos[1];

26 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 3. FIR Filter Coded in C Language (Sheet 4 of 7)

real_FIR_asm(s, h,FIR_outputl, L, filterLength, N);
/* call as a single block */
/* sequential block processing */

/* test real FIR_asm() */

/* first input block */

for(i=0; i<filterLength-1; i++) /* initialize the state */
s[il1=0;

for (1i=0; 1<63; i++)
xx[i]=RaisedCos[i];

real_FIR_asm(s, h,FIR_output2, L, filterLength, 64);

/* second input block */
for (i=0; 1<63; i++)
xx[11=0;

real_FIR_asm(s, h,FIR_output2+64, L, filterLength, 64);

/* test real FIR() */

/* first input block */

for(i=0; i<filterLength-1; i++) /* initialize the state */
s[i]=0;

for(i=0; 1<63; 1i++)
xx[i]=RaisedCos[i];

real_FIR(s, h,FIR_output3, filterLength, 64);

/* second input block */
for(i=0; 1<63; 1i++)
xx[11=0;
real FIR(s, h,FIR_output3+64, filterLength, 64);

/* test Fir_noCopro() */

/* first input block */

for(i=0; i<filterLength-1; i++) /* initialize the state */
s[1]1=0;

for (i=0; 1<63; i++)
xx[i]=RaisedCos[i];

Fir_noCopro(s, h,FIR_outputd, filterLength, 64);

/* second input block */

for (1=0; 1<63; i++)

xx[11=0;

Fir_noCopro(s, h,FIR_output4+64, filterLength, 64);

printf ("check test SequentialBlockProcessing error\n");
checkDifference (FIR_outputl, FIR_output2, N)

checkDifference (FIR_outputl, FIR_output3, N);
checkDifference (FIR_outputl, FIR_outputd4, N);

Application Note 27

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 3. FIR Filter Coded in C Language (Sheet 5 of 7)

intel.

void profile()
{
int i, j, numberOfRun;
short FIR_length,N, x[192], FIR_outputl[128], FIR_output2[128],
FIR_output3[128];
short *h, *s, *xx, L;
FIR_length=63;
N=128;
numberOfRun=100;
for (i=0; i<64; i++)
{
x[1]1=0;
x[1+64]1=0;
x[1+1281=0;
}
for (i=0; i<64; i++)
x[i+64]=RaisedCos[i];
/* initialization */
InitiFIR (RaisedCos, FIR_length, N, &h, &s, &xx,
writePerfrmCtrl (0x07); /* start all the counters*/
printf ("ASM code using DSP-coprocessor \n");
startClock=readCycleCounter () ;
for (j=0; j<numberOfRun; Jj++) /* run 100 times for measurement*/
real_FIR_asm(x, h,FIR_outputl, L, FIR_length, N);
stopClock=readCycleCounter () ;
printf("total cycles =%d \n”, stopClock-startClock);
printf("filter order =%d \n”, FIR_length);
printf ("number Of Run =%d \n”, numberOfRun) ;
printf ("number Of output per Run =%d \n”, \n”,
printf ("average cycle per tap =%f \n”, \n”, (stopClock-start-
Clock) *1.0/numberOfRun/N/FIR_length) ;
printf ("ASM code without DSP coprocessor \n");
startClock=readCycleCounter () ;
for (j=0; j<numberOfRun; Jj++) /* run 100 times for measurement*/
Fir_noCopro(x, h,FIR_output2, FIR_length, N);
stopClock=readCycleCounter () ;
printf ("total cycles =%d \n”, stopClock-startClock) ;
printf("filter order =%d \n”, FIR_length);
printf ("number Of Run =%d \n”, numberOfRun) ;
printf ("number Of output per Run =%d \n”, \n”, ;
printf ("average cycle per tap =%f \n”, \n”, (stopClock-start-
Clock) *1.0/numberOfRun/N/FIR_length) ;
printf ("C code \n");
28 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 3. FIR Filter Coded in C Language (Sheet 6 of 7)

startClock=readCycleCounter () ;

for (j=0; j<numberOfRun; Jj++) /* run 100 times for measurement*/
real FIR(x, h,FIR_output3, FIR_length, N);
stopClock=readCycleCounter () ;

printf("total cycles =%d \n”, stopClock-startClock);
printf("filter order =%d \n”, FIR_length);

printf ("number Of Run =%d \n”, numberOfRun) ;

printf ("number Of output per Run =%d \n”, \n”, N);

printf ("average cycle per tap =%f \n”, \n”, (stopClock-start-
Clock) *1.0/numberOfRun/N/FIR_length) ;

for (i=0; i<N; i++)

{

printf ("FIR_outputl [%d]=0x%x,FIR_output2[%d]=0x%x,,FIR_output3[%d]=0x%x
\n”,1i,FIR_outputl[i],i,FIR _output2[i],i,FIR_output3d[i]);

}

printf ("check one block call error.... \n”;

checkDifference (FIR_outputl, FIR_output3, N);
checkDifference (FIR_output2, FIR_output3, N);

}
void testFIR()
{
profile();
testSequentialBlockProcessing () ;
}

void checkDifference(short *yl, short *y2, int N)

{
int 1, Jj;
for(j=0, 1=0; i<N; i++)
{
/* printf ("y1[%$d]=0x%x,y2[%d]=0x%x \n”, 1i,y1[i],1i,y2[1i]); */
if(yl[ilt=y2[il)
{
printf ("!!!y1[%d]=0x%x,v2[%d]=0x%x \n”, i,y1[il,i,vy2[il);
J++;
}
}
if (3==0)
printf (" no error \n");
}

Application Note 29

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

intel.

Figure 3. FIR Filter Coded in C Language (Sheet 7 of 7)
void checkDifference(short *yl, short *y2, int N)
{
int i, J;
for(j=0, i=0; i<N; i++)
{
/* printf ("y1[%d]=0x%x,y2[%d]=0x%x \n”, 1i,y1[i],1,y2[1i]); */
if(yl[il!=y2[i])
{
printf("!!1!1y1[%d]=0x%x,y2[%d]=0x%x \n”, 1i,y1([i],1i,y2[i]);
J++;
}
}
if (j==0)
printf (" no error \n");
}
void real_FIR(short *x, short *h, short *y, short L, short N)
{
int i, j, z;
for (3j=0; Jj<N; Jj++)
{
for (z=0,1i=0; i<L; i++)
z+=x[1+j]1*h[i];
z=z>>15;
if (z > 32767) z = 32767;
else if (z < -32768) z = -32768;
*y++=(short) z;
}
/* update state */
for (3=0; Jj<L-1; Jj++)
{
x[J1=x[N+]1;
}
}
30 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 1 of 6)

@@/**
@@* @author Intel Corporation
@e* @date 17 June 2004

@@~*

@@* -- Intel Copyright Notice --

@@x*

@@* Copyright 2004 Intel Corporation All Rights Reserved.

@@x*

@@* The source code contained or described herein and all documents
@@* related to the source code ("Material") are owned by Intel

@@* Corporation or its suppliers or licensors. Title to the Material

@@* remains with Intel Corporation or its suppliers and licensors.

@@* The Material contains trade secrets and proprietary and confidential
@@* information of Intel or its suppliers and licensors. The Material
@@* is protected by worldwide copyright and trade secret laws and treaty
@@* provisions. Except for the licensing of the source code hereunder,
@@* no part of the Material may be used, copied, reproduced, modified,
@@* published, uploaded, posted, transmitted, distributed, or disclosed
@@* in any way without Intel's prior express written permission.

@@~*

@@* Except for the licensing of the source code as provided hereunder,
@@* no license under any patent, copyright, trade secret or other

@@* intellectual property right is granted to or conferred upon you by
@@* disclosure or delivery of the Materials, either expressly, by

@@* implication, inducement, estoppel or otherwise and any license under
@@* such intellectual property rights must be express and approved by
@@* Intel in writing.

@@~*

@@* For further details, please see the file README.TXT distributed with
@@* this software.

@@* -- End Intel Copyright Notice -- @@*/

#include <arch/arm/arm.h>
@ real_ FIR(short *x, short *h, short *vy, short L,, short M, short N)

clclctelcleleieielclcleleleleleleleleleleleleleleleielereieiereierereicieietciciclciciciclclclclclclclcleleleleleleleleleleleleleieiciee:
@@ function parameter:

Q@

@@ r0 = x: input pointer

@@ rl = h: filter coef

@@ r2 = y: Output pointer

@@ r3 = L: filter length

@@ [sp, #40] = M:original filter length

@@ [sp,#44] = N:length of output to calculate
Q@

@@ for j=0...N-1
@@ y[jl=sum of {x[i+j]l*h[i]} for i=0...L-1
@@ and 0x8000<= y[j] <= Ox7fff

@@ h has the structure: {h[0...L-21,0, 0, h[O0....L-21}
@@ it is assumed that L is divisible by 8
clcctelclelcieiclclelelelcleleleleleleleleleleleleielerereiereicrereicieietciciclciclciclclclclclclclcleleleleleleleleleleleleleieieree!

Application Note 31

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 4.

intel.

FIR Filter Example — Optimized Using MAC Instructions (Sheet 2 of 6)

.balign 4

.global _real_ FIR_asm
.global real FIR asm__FPsN20sss

.global _Fir_noCopro
.global Fir_noCopro__FPsN20ss

real FIR_asm:
real FIR _asm__FPsN20sss:

stmdb sp!,{rd4-rl2,1r}
1dr rl2, LSSATOx7fff @ rl2=0x7fff,
mov r9, r0 @ x
mov rl0, rl @ h
mov rll, r3 @ L
1dr r4, [sp,#44] @ N
movs r4d, r4, lsr #1 @ N/2
beq checkNagain
loopl:
mov r0, r9 @x
mov rl, rl0 @h
mov r3, rll QL
@first output
sub r5, r5, r5
mar accO, r5, r5 @ acc0=0
loopO0:
1ldr r5, [x0], #4
1ldr r6, [rl], #4
1dr r7, [x0], #4
1ldr r8, [rl], #4
miaph acc0, r6, r5
miaph accO0, r8, r7
1ldr r5, [x0], #4
1ldr r6, [rl], #4
1ldr r7, [x0], #4
ldr r8, [rl], #4
subs r3,r3, #8 @ 8 taps per loop
miaph acc0, r6, r5
miaph accO0, r8, r7
bne loop0
mra r5, r6, accO @ accO=[r6 r5]
mov r6, r6, asl #17
orr r¥6, r6, r5, lsr #15 @ acc0>>15

used for satuation

32

Application Note

intel.

Figure 4.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

FIR Filter Example — Optimized Using MAC Instructions (Sheet 3 of 6)

@satuation
cmp r6,
movgt r6
mvn rl2,
cmp r6,
movlt r6
strh r6,

@second
mov r0,
mov r3,
sub r5,
mar accO

loop00:
1ldr r5,
1ldr re6,
miaph ac

ldr r7,
1ldr r8,

1dr r5,
1ldr re6,

1ldr r7,
1ldr r8,

subs r3,
bne

r5,
r6,
r6,

mra
mov
orr

@satuation
cmp r6,

mvn rl2,
cmp r6,
strh ré6,
add r9,

subs r4,

@ check

miaph accO,

miaph accO,

miaph accO,

loop00

movlt r6,

movgt r6,

bne loopl

rl2 @ compare with 0x7fff
rl2

rl2

rl2 @ compare with 0x8000
rl2

[r2],#+2 @ save the output

’

’

output
roQ x
rll@ L
r5, r5

r5, r5

’

[rO0], #4
[r1], #4
c0, r6, x5
[rO0], #4
[r1], #4
r8, r7
[rO0], #4
[r1], #4
r6, r5
[rO0], #4
[r1], #4
r8, r7

r3, #8

accO @ accO=[r6 r5]
asl #17

r5, lsr #15

r6,
r6,
r6,

rl2 @compare with 0x8000
rl2

rl2

rl2 @compare with Ox7fff
rl2

[r2],#+2 @ save the output

r9,
r4,

#4 @ point to the next input
#1

if N is an odd number

Application Note

33

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

intel.

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 4 of 6)

checkNagain:
1ldr r4, [sp,#44] @ N
ands r4, r4, #1 @ is N odd ?
beg doneNow

mov r0, r9 @x
mov rl, rl0 @h
mov r3, rll QL

@first output
sub r5, r5, r5
mar accO, r5, r5 @ acc0=0

1loop000:
1dr r5, [rx0], #4
1ldr r6, [rl], #4
miaph acc0, r6, r5

1dr r7, [r0], #4
1dr r8, [rl], #4
miaph accO0, r8, r7

1ldr r5, [x0], #4
ldr r6, [rl], #4
miaph acc0, r6, r5

ldr r7, [x0], #4
1ldr r8, [rl], #4
miaph accO, r8, r7

subs r3,r3, #8 @ 8 taps per loop
bne 1loop000

mra r5, r6, accO @ accO=[r6 r5]
mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ acc0>>15

@satuation

cmp r6, rl2 @compare with Ox7fff

movgt r6, rl2

mvn rl2, rl2

cmp r6, rl2 @compare with 0x8000

movlt r6, rl2

strh r6, [r2],#+2 @ save the output

add r9, r9, #2 @ point to the next input

doneNow :
1dr r4, [sp,#44] @ N
1dr rl1ll, [sp,#40] @ M

sub rll,rll, #1 @ copy L-1 samples

sub r2, r9, r4, asl #1 @ r9=r9-2N, point to the begining of x

loop80:
ldrsh rl0, [r9], #+2 @ load it
strh r1l0, [r2], #+2 @ save it
subs rll, rll, #1
bne loop80
ldmia sp!, {rd4-rl12,pc} @ return
34 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

intGI Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
®

Source Code Examples

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 5 of 6)
QEEERRRECEELECELLRLAECECLELCRLELELELRCRLAEELELALRLALELEEARRRLREAECERRR
@@ r0 = x: input pointer
@@ rl = h: filter coef
@@ r2 = y: Output pointer
@@ r3 = L: filter length
@@ [sp,#40] = N:length of output to calculate
Q@
@@ if L is an odd number, h[L] has to be a 0
QEERRRRLALCELCELCCRLAELECELLCCRLELCEALCRRLALELLEEARRRLELCEARRRLREAERARRR
.align 4
_Fir noCopro:
Fir_noCopro__FPsN20ss:
stmdb sp!,{rd4-r12,1r} @ push registers
1ldr rd, [sp, #40] @ r4=N
stmdb sp!, {r3-r4d} @ save L, N
and r5, r3, #1 @ make L even
add r3, r3, r5
10: @ Outer loop
mov r5, #0 @ r5
mov r6, #0 @ ré6
mov r7, r0 @ r7 = x
mov r8, rl @r9 =nh
mov r9, r3 @ r8 =L
20: @ inner loop.
ldrsh rl0, [xr7], #+2 @
ldrsh rll, [r8], #+2 @
ldrsh rl2, [xr7], #+2 @
ldrsh rl4d, [r8], #+2 @
subs r9, r9, #2 @
smlabb r5, r1l0, rll, x5 @
smlabb r6, rl2, rl4d, ré6 @
bne 20b
add r6, r6, rb5 @ add them
ldr rl2, LS$SATOx7fLff
@ r12=0x7fff, used for satuation
mov r6, r6, asr #15 @ move the value to lower 16-bit
cmp r6, 1rl2 @ compare with O0x7fff
movgt r6, rl2
mvn rl2, rl2
cmp r6, 1rl2 @ compare with 0x8000
movlt 6, rl2
subs rd, rd, #1
strh r6, [r2], #+2 @ store the result
add r0, r0, #2 @ advance the input pointer
bne 10b

Application Note 35

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Source Code Examples ®

Figure 4. FIR Filter Example — Optimized Using MAC Instructions (Sheet 6 of 6)

updateState:

ldmia sp!,{r3-r4} @ L, N

sub r2, r0, r4, asl #1 @ r2=r0-2N, point to the begining of x

sub r3,r3, #1@ copy L-1 samples
loop81l:

ldrsh rl0, [r0], #+2 @ load it

strh rl0, [r2], #+2 @ save it

subs r3, r3, #1

bne loop81l

ldmia sp!,{rd-rl2,pc} @ return
.align 4
LSSATOx7fff: .long 0x07fff

36 Application Note

In Accumulate Instructions — FIR / IR Filters and FFT Examples

= Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

6.2 lIR Filter Source Code

Figure 5. lIR Filter Example, C Code (Sheet 1 of 10)

@@/**
@@* @author Intel Corporation
@@* @date 17 June 2004

@@~

@@* -- Intel Copyright Notice --

@@x

@@* Copyright 2004 Intel Corporation All Rights Reserved.

@@x

@@* The source code contained or described herein and all documents
@@* related to the source code ("Material") are owned by Intel

@@* Corporation or its suppliers or licensors. Title to the Material

@@* remains with Intel Corporation or its suppliers and licensors.

@@* The Material contains trade secrets and proprietary and confidential
@@* information of Intel or its suppliers and licensors. The Material
@@* is protected by worldwide copyright and trade secret laws and treaty
@@* provisions. Except for the licensing of the source code hereunder,
@@* no part of the Material may be used, copied, reproduced, modified,
@@* published, uploaded, posted, transmitted, distributed, or disclosed
@@* in any way without Intel's prior express written permission.

@@~

@@* Except for the licensing of the source code as provided hereunder,
@@* no license under any patent, copyright, trade secret or other

@@* intellectual property right is granted to or conferred upon you by
@@* disclosure or delivery of the Materials, either expressly, by

@@* implication, inducement, estoppel or otherwise and any license under
@@* such intellectual property rights must be express and approved by
@@* Intel in writing.

@@~

@@* For further details, please see the file README.TXT distributed with
@@* this software.

@@* -- End Intel Copyright Notice -- @@*/

#include "vxWorks.h"
#include "intLib.h"
#include "errnoLib.h"
#include "errno.h"
#include "stdio.h"
#include "math.h"
#include "memLib.h"
#include "stdlib.h"

extern int writePerfrmCtrl (int x);
extern int readCycleCounter();
long startClock, stopClock;

int numberOfRun=100;

int getNum(char *str);

void checkDifference(short *wR, short *vR, int N, bool flag);
void real_FIR(short *x, short *h, short *y, short L, short N);

Application Note 37

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Source Code Examples ®

Figure 5. lIR Filter Example, C Code (Sheet 2 of 10)

void checkSectionB() ;
void checkSectionA() ;
void Profile();

void InitiIIR(short *A, short *B, short M, short N, short L, short **a, short
**b, short **w);

void IIR_C(short *a, short *b, short *w, short *x, short *y, int N, int M,
int L) ;

extern int IIR_asm(short *a, short *b, short *w, short *x, short *y, int N,
int M, int L);

extern int ITR_asm_DSP(short *a, short *b, short *w, short *x, short *y, int
N, int M, int L);

extern int IIR_asm_DSP4 (short *a, short *b, short *w, short *x, short *y, int
N, int M, int L);

/* Square root raised cosin function with Beta=0.15 */
short RaisedCos[64]={

-99, -17, 91, 84, -37, -113, -31, 112,
111, -70, -206, -68, 235, 313, -36, -479,
-426, 234, 829, 535, -578, -1344, -633, 1190,
2191, 709, -2453, -4055, -758, 7325, 15982,
19704,
15982, 7325, -758, -4055, -2453, 709, 2191,
1190, -633, -1344, -578, 535, 829, 234, -426,
-479, -36, 313, 235, -68, -206, -70, 111,
112, -31, -113, -37, 84, 91, -17, -99,01};
void testIIR()
{
printf ("check setion A...\n”);
checkSectionA() ;
printf ("check setion B...\n”);
checkSectionB() ;
Profile();
}

void Profile()
{
short *a, *b, *w, *A, *B;
short *x, *y, M, N, L;
short *wl, *vyl1, *w2, *vy2, *w3, *vy3;
int i, J;
float d=0.5;

numberOfRun=100;
N=16;

M=16;
L=100;

38 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 5. lIR Filter Example, C Code (Sheet 3 of 10)
A=(short *) malloc (N*sizeof (short));
B=(short *) malloc (M*sizeof (short));
x=(short *) malloc(L*sizeof (short));
yv=(short *) malloc(L*sizeof (short));

wl=(short *) malloc((M+L) *sizeof (short));
yvl=(short *) malloc(L*sizeof (short));

w2=(short *) malloc((M+L) *sizeof (short));
yv2=(short *) malloc(L*sizeof (short));

w3=(short *) malloc((M+L) *sizeof (short));
yv3=(short *) malloc(L*sizeof (short));

for (1=0; i<M; i++)

{
wl[i]=0;
w2[11=0;
w3[1]1=0;
}

/* coefficients do not matter for profiling */
for (i=0; 1i<N; i++)

Alil=1;
for (1=0; i<M; 1i++)
[i1=1;

(=
B[1i
/* input */

for (i=0; i<L; i++4)/* input has only one pulse */
x[11=0;

x[0]1=32767;/* just to get impusle response */

InitiIIR(A, B, M, N, L, &a, &b, &w);
/* profile */

writePerfrmCtrl (0x07) ; /* start all the counters*/
printf ("IIR_asm_DSP \n”);

startClock=readCycleCounter () ;

for (j=0; j<numberOfRun; Jj++) /* run 100 times for measurement*/
IIR_asm_DSP(a, b, w, x, y, N, M,L);

stopClock=readCycleCounter () ;

printf ("total cycles =%d \n",stopClock-startClock) ;
printf ("number Of Run =%d \n”, numberOfRun) ;

printf ("number Of output per Run =%d \n”, L);

printf("order M =%d \n”, M);

printf ("order N =%d \n”, N);

printf ("average cycle per tap (totalCycles/(M+N)) =%f \n, \n", (stop-
Clock-startClock) *1.0/numberOfRun/L/ (M+N)) ;

Application Note 39

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 5. lIR Filter Example, C Code (Sheet 4 of 10)

intel.

printf ("IIR_asm_DSP4 \n”");
startClock=readCycleCounter () ;
IIR_asm_DSP4(a, b, w3, x, v3, N, M,L);

stopClock=readCycleCounter () ;

printf ("number Of Run =%d \n”, numberOfRun) ;
printf ("number Of output per Run =%d \n”, L);
(
(

Clock-startClock) *1.0/numberOfRun/L/ (M+N)) ;

checkDifference(y,y2,L, true);
checkDifference(y,y3,L, false);
checkDifference(yl,y2,L, false);
checkDifference (w,w2,M-1, false) ;
checkDifference (wl,w2,M-1, false);

40

printf ("total cycles =%d \n", stopClock-startClock) ;

for (j=0; j<numberOfRun; Jj++) /* run 100 times for measurement*/

printf ("order M =%d4d \n”, M);

printf ("order N =%d4 \n”, N);

printf ("average cycle per tap (totalCycles/ (M+N)) \n", (stop-
Clock-startClock) *1.0/numberOfRun/L/ (M+N)) ;

printf ("IIR_asm \n”);

startClock=readCycleCounter () ;

for (j=0; j<numberOfRun; j++) /* run 100 times for measurement*/

IIR _asm(a, b, wl, x, yl1, N, M,L);

stopClock=readCycleCounter () ;

printf ("total cycles =%d \n",stopClock-startClock) ;

printf ("number Of Run =%d \n”, numberOfRun) ;

printf ("number Of output per Run =%d \n”, L);

printf ("order M =%d4d \n”, M);

printf ("order N =%d \n”, N);

printf ("average cycle per tap (totalCycles/ (M+N)) \n", (stop-
Clock-startClock) *1.0/numberOfRun/L/ (M+N)) ;

printf ("IIR_C \n”");

startClock=readCycleCounter () ;

for (j=0; j<numberOfRun; Jj++) /* run 100 times for measurement*/
IIR_C(a, b, w2, x, y2, N, M,L);

stopClock=readCycleCounter () ;

printf ("total cycles =%d \n",stopClock-startClock) ;

printf ("number Of Run =%d \n”, numberOfRun) ;

printf ("number Of output per Run =%d \n”, L);

printf ("order M =%d4 \n”, M);

printf ("order N =%d4 \n”, N);

printf ("average cycle per tap (totalCycles/ (M+N)) \n", (stop-

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

intGI Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
®

Source Code Examples

Figure 5. lIR Filter Example, C Code (Sheet 5 of 10)

{

void checkSectionA ()

/* a smooth filter

yIn]l=d*x[n]+(1-4d)*y[n-11], d<1
impulse response h[n]=d(1-d)"n
*/

short *a, *b, *w, *A, *B;
short *x, *y, M, N, L;
short *wl, *yl, *y2;

int i, J;

float d=0.5;

numberOfRun=100;

=(short *) malloc(N*sizeof (short)) ;
=(short *) malloc (M*sizeof (short));

(short *) malloc (L*sizeof (short));
(short *) malloc (L*sizeof (short));

wl=(short *) malloc((M+L) *sizeof (short));
vl=(short *) malloc(L*sizeof (short));

v2=(short *) malloc(L*sizeof (short));

éhort) (-(1-d)*32767) ;
short) (d*32767);

W >

for(i=0; i<L; i++)/* input has only one pulse */
x[1]1=0;
x[0]1=32767;/* just to get impulse response */

InitiIIR(A, B, M, N, L, &a, &b, &w);
IIR_asm_DSP(a, b, w, X, v, N, M,L);

for (i=0; i<M; i++) wl[i]=0;
ITIR_C(a, b, wl, x, vl1, N, M,L);

/* theoretical result */
for (i=0; i<L; i++)
v2[i]l=(short) (d*pow(1-d,i) *32767) ;

checkDifference(y,y2,L, true) ;
checkDifference(y,yl,L, false);
checkDifference(w,wl,M-1, false) ;

Application Note 41

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 5. lIR Filter Example, C Code (Sheet 6 of 10)

intel.

void checkSectionB()
{
short *a, *b, *w, *A, *B;
short *x, *y, M, N, L;
short *x1, *vyl;
short *w2, *vy2;
int i, J;

numberOfRun=100;

A=(short *) malloc(N*sizeof (short));
B=(short *) malloc (M*sizeof (short));

x=(short *) malloc(L*sizeof (short));
v=(short *) malloc(L*sizeof (short));

w2=(short *) malloc((L+M) *sizeof (short));
v2=(short *) malloc(L*sizeof (short));

/* check section B */
for (i=0; i<N; 1i++)
A[il]l=0;/* turn off section A */

/* input */
for (i=0; i<L; i++)
x[1]1=0;

for (i=0; i<M; i++)
x[i]=RaisedCos[i];

InitiIIR(A, RaisedCos, M, N, L, &a, &b, &w);
IIR_asm_DSP(a, b, w, x, v, N, M,L);

for (i=0; i<M; i++) w2[1]=0;
ITIR_C(a, b, w2, x, y2, N, M,L);

/* compare Section B with FIR filter */

x1=(short *) malloc((L+M)*sizeof (short));
vl=(short *) malloc(L*sizeof (short));

for (i=0; i<M+L; 1++)
x1[11=0;
for (i=0; i<M; 1i++)
x1[M-2+i]=RaisedCos[i];
real_ FIR(x1, RaisedCos, yl1, M, L);

checkDifference(y,yl,L, false);
checkDifference(y,y2,L, false);
checkDifference(w,w2,N-1, false) ;

42

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 5. lIR Filter Example, C Code (Sheet 7 of 10)

void checkDifference(short *wR, short *vR, int N, bool flag)

{

int n, tmp, maxError, indMaxError;
printf (" checking the difference...

for (indMaxError=0, maxError=0, n=0; n<N; n++)
{
tmp=abs (WR[n]-vR[n]) ;

if (maxError<tmp)
{
maxError=tmp;
indMaxError=n;
}
if (flag==true)

printf ("wR[%d]=%d,vR[%d]=%d
}
if (maxError==0)
printf (" no difference
else
printf (" max difference maxError=%d, indMaxError=%d
}
int getNum(char *str)
{
int c;
int i = 0;

char input[100];

if(str && *str) printf("%s", str);
do
{
c = getc(stdin);
if (¢ == 0x08)
{
if(i) i--;
}
else
{
input[i++] = c;
}

} while(1<100 && c!="

input[i] = '\0';

return atoi (input) ;

}

Application Note 43

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Source Code Examples ®

Figure 5. lIR Filter Example, C Code (Sheet 8 of 10)

void InitiIIR(short *A, short *B, short M, short N, short L, short **a, short
**b, short **w)

{
/* require M and N be even number!
A,B: original filter coef H[z]=Bl[z]/Alz]
M: order of B
N: order of A, N>=M
L: max block input length
a: new coef
b: new coef
w: filter state
*/
/* short *b; bl 0, ... M-2 . M-1]
={B[M-1], ... B[1], B[O] 1}
short *a; al 0, N-2, . N-1]
={-A[N-1],.. -A[1] 01}
*/
int i, Jj;
short *q;

*a=(short *) malloc(2*N*sizeof (short));
*b=(short *) malloc((2*M+2) *sizeof (short));
*w=(short *) malloc((N+L) *sizeof (short)) ;

for(i=0; i<N-1; i++)
(*a) [1]1=-A[N-1-1i];
(*a) [N-1]1=0;

+N;

*a)
1=0;

o

(
0

— |l

q
aq
for(i=0; i<N-1; i++)
gll+il=(*a) [i];

for (1i=0; 1i<M; i++)
(*b) [1]=B[M-1-1];

for (1i=0; 1i<M; i++)
gll+il=(*Db) [i];

g[M+11=0;

44 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 5. lIR Filter Example, C Code (Sheet 9 of 10)

void ITIR_C(short *a, short *b, short *w, short *x, short *y, int N, int M,
int L)
{

/* x: 1input
w: state
v: output
M: order of b
N: order of a
L: input block length
*/
/* H(z)= {B[O0]+B[1l]*z[-1]+...+B[M-1]1*z[-(M-1)]1} /
{1+A[1]*z[-1]1+...+A[N-1]*z[-(N-1)]1} */
/* short *b; bl 0, ... M-2 . M-1]
={B[M-1], ... BI[1l], B[O] 1}
short *a; al 0, N-2, . N-1]
={-A[N-117, -A[1] 011} */

int 1, 3, v;

for(j=0; Jj<L; J++)
{
for(v=0, 1=0; i<N-1; i++)
v+=wl[i+jl*al[i];

v=v>>15;
v+=x[J];

if (v > 32767) v = 32767;
else if (v < -32768) v = -32768;

w[N-1+j]=v;

for(v=0, 1=0; i<M; i++)
v+=w [N-M+i+3]*b[1i];

v=v>>15;

if (v > 32767) v = 32767;
else if (v < -32768) v = -32768;
*yv++=(short)v;

}
/* update state */

for (j=0; Jj<N-1; J++)
{

wljl=wl[L+3j];
}

Application Note 45

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Source Code Examples ®

Figure 5. lIR Filter Example, C Code (Sheet 10 of 10)

void real_FIR(short *x, short *h, short *y, short L, short N)
{
int i, 3, z;
for (3=0; J<N; J++)

{

for (z=0,1=0; i<L; i++)
z+=x[1+j]1*h[i];

/* printf ("z[%d]=0x%x

z=z>>15;
if (z > 32767) z = 32767;
else if (z < -32768) z = -32768;

*yv++=(short) z;
}
/* update state */

for (3=0; J<L-1; j++)
{

}

x[J1=x[N+j];

46 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 6. lIR Filter Example, Assembly Code (Sheet 1 of 12)

@@/**

@@* @Qauthor Intel Corporation
@@* @date 17 June 2004

@@~

@@* -- Intel Copyright Notice --

@@x

@@* Copyright 2004 Intel Corporation All Rights Reserved.

@@~

@@* The source code contained or described herein and all documents
@@* related to the source code ("Material") are owned by Intel

@@* Corporation or its suppliers or licensors. Title to the Material

@@* remains with Intel Corporation or its suppliers and licensors.

@@* The Material contains trade secrets and proprietary and confidential
@@* information of Intel or its suppliers and licensors. The Material
@@* is protected by worldwide copyright and trade secret laws and treaty
@@* provisions. Except for the licensing of the source code hereunder,
@@* no part of the Material may be used, copied, reproduced, modified,
@@* published, uploaded, posted, transmitted, distributed, or disclosed
@@* in any way without Intel's prior express written permission.

@@~

@@* Except for the licensing of the source code as provided hereunder,
@@* no license under any patent, copyright, trade secret or other

@@* intellectual property right is granted to or conferred upon you by
@@* disclosure or delivery of the Materials, either expressly, by

@@* implication, inducement, estoppel or otherwise and any license under
@@* such intellectual property rights must be express and approved by
@@* Intel in writing.

@@x

@@* For further details, please see the file README.TXT distributed with
@@* this software.

@@* -- End Intel Copyright Notice -- @@

@@************************k*k*k*k*k*k*k*k*k*k*k*k************************************/

@ 2 point, 4 point, and fisrt pass in the second loop are treated specially
@ becuase no multiplication required

#include <arch/arm/arm.h>

@ extern void IIR_asm(short *a, short *b, short *w, short *x, short *y, int
N, int M, int L);

CRELERLLELEARCELCLERLCLECLARCEALCRARRCELCARREALCLALRLRLAECLCLARRELCLARRLAECLRARRRECRRRRERRRARRRRA
@@ IIR filter H(z)=B(z)/A(z)
@@ function parameter:

Q@

@@ r0 = a: coefficient pointer
@@ rl = b: coefficient pointer
@@ r2 = w: state pointer

@@ r3 = x: input pointer

@@ [sp,#40] = y:output pointer
@@ [sp, #44] = Norder of a

@@ [sp,#48] = Morder of b

@@ [sp,#52] = Linput length

Q@

QREEREEEEELLCLELLLLLLELLELLLELLELELEELELELELELEEELRERERERRRRRLREECECELELELELELELCLLLLELCLELELEELELEEEEME

Application Note 47

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 6. lIR Filter Example, Assembly Code (Sheet 2 of 12)

.global IIR_ASM
.global _IIR_ASM
.global IIR_asm__FPsN40iii

.global IIR_ASM_DSP
.global _IIR_ASM_DSP
.global IIR_asm DSP_ FPsN40iii
.global IIR_ASM_DSP4
.global _IIR_ASM DSP4
.global IIR_asm DSP4__ FPsN40iii
.balign 4
IIR_ASM_DSP:
_IIR_ASM_DSP:
IIR_asm_DSP_ FPsN40iii:
stmdb sp!,{rd4-rl12,1r}

1dr rl2, L$SSATOx7fff@ rl1l2=0x7fff, used for satuation

1ldr rd, [sp, #40] @ rd =y
1drh r5, [sp, #54] @ r5 = L
strh r5, [sp,#52] @ save L to higher 16 bits
movs r5, r5, lsr #1 @ L/2
strh rb5, [sp, #52]
beg checkNagain

loopO0:
@ ---- first sample -----
@ A section
mov r7, x0 @ r7 =a
mov r9, r2 @ r9 =w
1dr r8, [sp,#44] @ r8 =N
sub r5, r5, r5
mar accO, r5, r5@ acc0=0

loopl: @ inner loop.
1ldr r10, [xr71, #+4
ldr rl1ll, [r9], #+4
subs 8, r8, #2
miaph acc0O0, rll, rlo0
bne loopl
ldrsh r10, [r3], #+2 @ xI[7j]

mra r5, r6, accO @ accO=[r6 r5]
mov r6, r6, asl #17

orr r6, r6, r5, lsr #15 @ acc0>>15

add r6, 1r6, rl0 @ add x[j]

48

Application Note

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

intel.

Figure 6. lIR Filter Example, Assembly Code (Sheet 3 of 12)
@satuation

cmp r6, 1rl2 @ compare with O0x7fff

movgt r6, rl2

mvn rl2, rl2

cmp r6, 1rl2 @ compare with 0x8000

movlt r6, rl2

strh r6, [r9,#-2] @ save state

@ B section

@ r9 pointed to w[N]

mov r7, rl @ r7 =b

1dr r8, [sp,#48] @ r8 =M

sub r5, r5, r5

mar acc0, r5, r5 @ acc0=0

sub r9, r9, r8, 1lsl #1 @ w[N-M]
loop2: @ inner loop.

1ldr rl0, [r7]1, #+4

1ldr r11l, [r9], #+4

subs r8, r8, #2

miaph acc0, rll, rilo0

bne loop2

mra r5, r6, accO @ accO=[r6 r5]

mov r6, r6, asl #17

orr r6, r6, r5, lsr #15 @ acc0>>15

@satuation

cmp r6, rl2 @compare with 0x8000

movlt r6, rl2
mvn rl2, rl2

cmp r6, rl2 @compare with Ox7fff

movgt r6, rl2

strh r6, [rdl, #+2 @ store the result

@ ---- second sample -----

@ A section

1ldr r8, [sp,#44] @ r8 =N

mov r7, r0 @ r7 =a

mov r9, r2 @ r9 =w

add r7, r7, r8, 1lsl #1 @ point to one sample offset a coefficients

sub r5, r5, r5

mar acc0, r5, r5@ acc0=0
loop3: @ inner loop.

1ldr rl0, [r7]1, #+4

1ldr rll, [r9], #+4

subs r8, r8, #2

miaph acc0O0, rll, rilo0

bne loop3

Application Note

49

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Source Code Examples ®

Figure 6. lIR Filter Example, Assembly Code (Sheet 4 of 12)
ldrsh rl10, [r3], #+2 @ x[7j]
mra r5, ré6, accO @ accO0=[r6 r5]

mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ accO0>>15

add r6, r6, rl0 @ add x[j]
@satuation

cmp r6, rl2 @ compare with 0x7fff
movgt r6, rl2

mvn rl2, rl2

cmp r6, rl2 @ compare with 0x8000
movlt 6, rl2

strh r6, [r9] @ save state

@ B section
@ r9 pointed to w[N]

mov r7, rl @ r7 =b

1ldr r8, [sp,#48] @ r8 =M

sub r5, r5, r5

mar accO, r5, rb5 @ acc0=0

sub r9, r9, r8, 1lsl #1 @ w[N-M]

add r7, r7, r8, 1lsl #1 @ point to one sample offset a coefficients
loop4d: @ inner loop.

1ldr rl0, [xr7]1, #+4

ldr rll, [r9], #+4

subs r8, r8, #2

miaph acc0O0, rll, rlo0

bne loop4

@ one more for the offset
1ldr rl0, [xr7]1, #+4
ldr rll, [r9], #+4

miaph acc0O0, rll, rlo0

mra r5, r6, accO @ accO0=[r6 r5]
mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ acc0>>15

@satuation

cmp r6, rl2 @compare with 0x8000
movlt r6, rl2

mvn rl2, rl2

cmp r6, rl2 @Qcompare with Ox7fff
movgt r6, rl2

strh r6, [rd]l, #+2 @ store the result
ldrsh r8, [sp,#52] @ r8 =L

subs r8, r8, #1

strh r8, [sp,#52] @ r8 =L

add r2, r2, #4 @ advance the state pointer
bne loop0

50 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 6. lIR Filter Example, Assembly Code (Sheet 5 of 12)

checkNagain: @ one output only

1ldrh r8, [sp,#54] @ L
ands r8, r8, #1@ is L odd ?
beqg updateState

@ ---- first sample -----
@ A section

mov r7, r0 @ r7 =
mov r9, r2 @ r9 =w
1ldr r8, [sp,#44] @ r8 =N
sub r5, r5, r5
mar acc0, r5, r5@ acc0=0

loop51: @ inner loop.
1ldr rl0, [r7], #+4
1ldr rll, [r9], #+4
subs r8, r8, #2
miaph acc0, rll, rlo0
bne loop51
ldrsh r10, [r3], #+2 @ x[Jj]
mra r5, r6, accO @ accO=[r6 r5]

mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ acc0>>15

add r6, 1r6, rl0 @ add xI[j]
@satuation

cmp r6, 1rl2 @ compare with O0x7fff
movgt r6, rl2

mvn rl2, rl2

cmp r6, 1rl2 @ compare with 0x8000
movlt r6, rl2

strh r6, [r9,#-2] @ save state

@ B section
@ r9 pointed to w[N]

mov r7, rl @ r7 =b
1ldr r8, [sp,#48] @ r8 =M
sub r5, r5, r5

mar acc0, r5, r5 @ acc0=0

sub r9, r9, r8, 1lsl #1 @ w[N-M]

looph2: @ inner loop.
1ldr rl0, [r7]1, #+4
1dr rll, [r9], #+4
subs r8, r8, #2
miaph acc0, rll, rlo0
bne loop52
mra r5, r6, accO @ accO0=[r6 r5]

mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ acc0>>15

Application Note 51

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Source Code Examples ®

Figure 6. lIR Filter Example, Assembly Code (Sheet 6 of 12)

@satuation

cmp r6, rl2 @Qcompare with 0x8000
movlt r6, rl2

mvn rl2, rl2

cmp r6, rl2 @compare with O0x7fff
movgt r6, rl2

strh r6, [rd], #+2 @ store the result
add r2, r2, #2 @ advance the state pointer
updateState:
1drh r5, [sp,#54] @ r5 = L
sub r9, r2, r5, asl #1 @ r2=r0-2L, point to the begining of x
1ldr r8, [sp,#44] @ r8 =N
sub r8, r8, #1l@ copy N-1 samples
loop5:

1ldrsh r10, [r2], #+2 @ load it
strh rl0, [r9], #+2 @ save it
subs r8, r8, #1
bne loop5

doneNow :

ldmia sp!, {r4-rl2,pc} @ return

.balign 4

IIR_ASM:

_IIR_ASM:
IIR_asm__FPsN40iii:

stmdb sp!,{rd4-rl2,1r}

ldr r4d, [sp, #40] @ rd =y

1ldr r5, [sp, #52] @ r5 =1L

orr r5, r5, r5, 1lsl #16 @ save L to higher 16 bits
str r5, [sp, #52]
loopl0:

@ A section

mov r7, r0 @ r7 =

mov r9, r2 @ r9 =w

1ldr r8, [sp,#44] @ r8 =

mov r5, #0 @ r5 =0

mov r6, #0 @ r6 =0
loopll: @ inner loop.

ldrsh rl0, [r7], #+2

ldrsh rll, [r9], #+2

ldrsh rl2, [r7], #+2

ldrsh rld, [r9], #+2

subs r8, r8, #2

smlabb r5, rl1l0, rll, r5

smlabb r6, rl2, rl4d, r6

bne loopl

52 Application Note

intel.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 6. lIR Filter Example, Assembly Code (Sheet 7 of 12)
add r6, 1r6, r5 @ add them
ldrsh r5, [r3], #+2 @ x[j]
1ldr rl2, LSSATOx7fff @ rl12=0x7fff, used for satuation
mov r6, r6, asr #15 @ move the value to lower 16-bit
add r6, r6, rb @ add xI[j]
cmp r6, 1rl2@ compare with 0x7fff
movgt r6, rl2
mvn rl2, rl2
cmp r6, 1rl2@ compare with 0x8000
movlt «r6, rl2
strh r6, [r9,#-2]@ save state
@ B section
@ r9 pointed to w[N]
mov r7, rl @ r7 =b
1dr r8, [sp,#48] @ r8 =M
mov r5, #0 @ r5 =0
mov r6, #0 @ r6 =0
sub r9, r9, r8, 1lsl #1 @ w[N-M]
loopl2: @ inner loop.
ldrsh r1l0, [r7], #+2
ldrsh rll, [r9], #+2
ldrsh rl2, [r7], #+2
ldrsh rld, [r9], #+2
subs r8, r8, #2
smlabb r5, r1l0, rll, r5
smlabb r6, rl2, rld, ré6
bne loopl2
add r6, r6, r5 @ add them
1ldr rl2, LS$SATOx7fff@ rl12=0x7fff, used for satuation
mov r6, r6, asr #15 @ move the value to lower 16-bit
cmp r6, 1rl2@ compare with 0x7fff
movgt r6, rl2
mvn rl2, rl2
cmp r6, 1rl2@ compare with 0x8000
movlt r6, rl2
ldrsh r8, [sp,#52] @ r8 =L
strh r6, [rd], #+2 @ store the result
subs r8, r8, #1
strh r8, [sp,#52] @ r8 =L
add r2, r2, #2 @ advance the state pointer
bne loopl0

Application Note

53

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples

Source Code Examples

intel.

Figure 6. lIR Filter Example, Assembly Code (Sheet 8 of 12)
updateStatel:
1ldrh r5, [sp,#54] @ r5 =1L
sub r9, r2, r5, asl #1 @ r2=r0-2L, point to the begining of x
1dr r8, [sp,#44] @ r8 =N
sub r8, r8, #1 @ copy N-1 samples
loopl3:
ldrsh r10, [r2], #+2 @ load it
strh rl0, [r9], #+2 @ save it

subs r8, r8, #1
bne loopl3
doneNowl :

ldmia sp!, {r4-rl2,pc}

.balign 4

IIR_ASM_DSP4:
_TIIR_ASM_DSP4:

IIR_asm _DSP4__ FPsN40iii:

stmdb

1ldr rd, [sp, #40]
1ldrh r5, [sp, #54]
strh r5,

strh r5, [sp, #52]
beqg checkNagain4

@ return

sp!,{rd-rl2,1r}

1ldr rl2, LSSATOx7fff@ rl12=0x7fff, used for satuation

@ rd4 =y

@ r5 =1L

[sp,#52]@ save L to higher 16 bits
movs r5, r5, lsr #1l@ L/2

loop40:
@ ---- first sample -----
@ A section
mov r7, r0 @ r7 =
mov r9, r2 @ r9 =w
1ldr r8, [sp,#44] @ r8 =N
sub r5, r5, r5
mar acc0, r5, r5@ acc0=0
loop4l: @ inner loop.
1ldr rl0, [xr7]1, #+4
1ldr rll, [r9], #+4
1dr r5, [r7], #+4
1ldr r6, [xr9], #+4
subs r8, r8, #4
miaph acc0, rll, rio
miaph acc0, r5, r6
bne loop4dl

54

Application Note

intel.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples

Source Code Examples

Figure 6. lIR Filter Example, Assembly Code (Sheet 9 of 12)
ldrsh ri10, [r3], #+2 @ x[j]
mra r5, r6, accO @ accO=[r6 r5]
mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ acc0>>15
add r6, r6, rl0 @ add xI[j]
@satuation
cmp r6, 1rl2 @ compare with O0x7fff
movgt r6, rl2
mvn rl2, rl2
cmp r6, 1rl2 @ compare with 0x8000
movlt «r6, rl2
strh r6, [r9,#-2] @ save state
@ B section
@ r9 pointed to w[N]
mov r7, rl @ r7 =b
1ldr r8, [sp,#48] @ r8 =M
sub r5, r5, r5
mar accO0, r5, r5 @ acc0=0
sub r9, r9, r8, 1lsl #1 @ w[N-M]
loop4?2: @ inner loop.
1ldr rl0, [r7], #+4
1ldr rll, [r9], #+4
1ldr r5, [r7], #+4
1ldr r6, [r9], #+4
subs r8, r8, #4
miaph acc0O0, rll, ri1o0
miaph acc0, r5, ré6
bne loop42
mra r5, r6, accO @ accO0=[r6 r5]
mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ acc0>>15
@satuation
cmp r6, rl2 @Qcompare with 0x8000
movlt r6, rl2
mvn rl2, rl2
cmp r6, rl2 @Qcompare with O0x7fff
movgt r6, rl2
strh r6, [rd], #+2 @ store the result
@ ---- second sample -----
@ A section
1ldr r8, [sp,#44] @ r8 =N
mov r7, r0 @ r7 =a
mov r9, r2 @ r9 =w
add r7, r7, 8, 1lsl #1 @ point to one sample offset a coefficients
sub r5, r5, r5
mar accO, r5, r5 @ acc0=0

Application Note

55

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

intel.

Figure 6. lIR Filter Example, Assembly Code (Sheet 10 of 12)
loop43: @ inner loop.

ldr r1l0, [r7], #+4

ldr rll, [r9], #+4

ldr r5, [x7], #+4

1dr r6, [r9], #+4

subs r8, r8, #4

miaph acc0O, rll, rio0
miaph acc0, r5, re6

bne loop43
ldrsh r10, [r3], #+2 @ x[j]
mra r5, r6, accO @ accO0=[r6 r5]

mov r6, r6, asl #17

orr r6, r6, r5, lsr #15 @ acc0>>15

add r6, r6, rl0 @ add x[3j]
@satuation

cmp r6, rl2 @ compare with 0x7fff
movgt 6, rl2

mvn rlz, rl2

cmp r6, rl2 @ compare with 0x8000

movlt r6, rl2
strh r6, [r9] @ save state

@ B section
@ r9 pointed to w[N]

miaph acc0, rll, ri1o0
miaph acc0, r5, ré6
bne loop44

@ one more for the offset

1ldr rl0, [r7], #+4
1ldr rll, [r9], #+4
miaph acc0O0, rll, rlo0

mra r5, r6, accO @ accO0=[r6 r5]
mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ acc0>>15

mov r7, rl @ r7 =b

1ldr r8, [sp,#48] @ r8 =M

sub r5, r5, 5

mar acc0, r5, r5 @ acc0=0

sub r9, r9, r8, 1lsl #1 @ w[N-M]

add r7, r7, r8, 1lsl #1 @ point to one sample offset a coefficients
loop44d: @ inner loop.

1ldr rl0, [r7]1, #+4

1ldr rll, [r9], #+4

ldr r5, [r7], #+4

1ldr r6, [r9], #+4

subs r8, r8, #4

56

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

intGI Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
®

Figure 6. lIR Filter Example, Assembly Code (Sheet 11 of 12)

@satuation
cmp r6, rl2 @Qcompare with 0x8000
movlt r6, rl2
mvn rl2, rl2
cmp r6, rl2 @Qcompare with O0x7fff
movgt r6, rl2

checkNagaind: @ one output only

1drh r8, [sp,#54] @ L
ands r8, r8, #1 @ is L odd ?
beqg updateStated

@ ---- first sample -----
@ A section

mov r7, r0 @ r7 =a

mov r9, r2 @ r9 =w

1ldr r8, [sp,#44] @ r8 =N

sub r5, r5, r5

mar accO, r5, r5@ acc0=0
loop45l: @ inner loop.

1ldr rl0, [r7], #+4

1dr rll, [r9], #+4

1ldr r5, [xr7], #+4

1ldr r6, [r9], #+4

subs r8, r8, #4

miaph acc0, rll, rlo0
miaph acc0, r5, ré6

bne loop451
ldrsh r10, [r3], #+2 @ x[Jj]
mra r5, r6, accO @ accO=[r6 r5]

mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ acc0>>15

add r6, 1r6, rl0 @ add xI[j]
@satuation

cmp r6, rl2 @ compare with Ox7fff
movgt r6, rl2

mvn rl2, rl2

cmp r6, rl2 @ compare with 0x8000
movlt r6, rl2

strh r6, [r9,#-2] @ save state

strh r6, [rd], #+2 @ store the result
ldrsh r8, [sp,#52] @ r8 =L

subs r8, r8, #1

strh r8, [sp,#52] @ r8 =L

add r2, r2, #4 @ advance the state pointer
bne loop40

Application Note

57

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 6. lIR Filter Example, Assembly Code (Sheet 12 of 12)

intel.

@ B section
@ r9 pointed to w[N]

mov r7, rl @ r7 =b
ldr r8, [sp,#48] @ r8 =M
sub r5, r5, r5

mar accO0, r5, rb5 @ acc0=0

sub r9, r9, r8, 1lsl #1 @ w[N-M]

loop4d52: @ inner loop.
ldr rl0, [r7], #+4
1ldr rll, [r9], #+4
ldr r5, [r7], #+4
1dr r6, [r9], #+4
subs r8, r8, #4

miaph acc0O, rll, rlo0
miaph acc0, r5, re6
bne loop452

mra r5, r6, accO @ accO0=[r6 r5]
mov r6, r6, asl #17
orr r6, r6, r5, lsr #15 @ acc0>>15

@satuation

cmp r6, rl2 @compare with 0x8000
movlt r6, rl2

mvn rl2, rl2

cmp r6, rl2 @compare with Ox7fff
movgt r6, rl2

strh r6, [rd], #+2 @ store the result

add r2, r2, #2 @ advance the state pointer

ldrsh r10, [r2], #+2 @ load it
strh rl0, [r9], #+2 @ save it
subs r8, r8, #1

bne loop45

doneNow4 :

ldmia sp!,{r4-rl2,pc} @ return
.align 4
LSSATOx7fff: .long 0x07fff

updateStated:
1ldrh r5, [sp,#54] @ r5 =1L
sub r9, r2, r5, asl #1 @ r2=r0-2L, point to the begining of x
ldr r8, [sp,#44] @ r8 =N
sub r8, r8, #1 @ copy N-1 samples
loop45:

58

Application Note

= Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
In Accumulate Instructions — FIR / IR Filters and FFT Examples
® Source Code Examples

6.3 FFT Source Code Example

Figure 7. FFT Example, C Code (Sheet 1 of 20)

*
*

@author Intel Corporation
@date 17 June 2004

-- Intel Copyright Notice --

Copyright 2004 Intel Corporation All Rights Reserved.

The source code contained or described herein and all documents

related to the source code ("Material") are owned by Intel Corporation
or its suppliers or licensors. Title to the Material remains with

Intel Corporation or its suppliers and licensors. The Material

contains trade secrets and proprietary and confidential information of
Intel or its suppliers and licensors. The Material is protected by
worldwide copyright and trade secret laws and treaty provisions. Except
for the licensing of the source code hereunder, no part of the Material may
be used, copied, reproduced, modified, published, uploaded, posted,
transmitted, distributed, or disclosed in any way without Intel's prior
express written permission.

Except for the licensing of the source code as provided hereunder, no
license under any patent, copyright, trade secret or other intellectual
property right is granted to or conferred upon you by disclosure or
delivery of the Materials, either expressly, by implication, inducement,
estoppel or otherwise and any license under such intellectual property
rights must be express and approved by Intel in writing.

For further details, please see the file README.TXT distributed with
this software.
-- End Intel Copyright Notice --

Lo S S T I R R R R R R R S R R A A S N B R N

*
~

#include "vxWorks.h"
#include "intLib.h"
#include "errnoLib.h"

#include "errno.h"
#include "stdio.h"
#include "math.h"

#include "memLib.h"
#include "stdlib.h"

Application Note

59

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Accumulate Instructions — FIR / IR Filters and FFT Examples In
Source Code Examples

Figure 7. FFT Example, C Code (Sheet 2 of 20)

extern int writePerfrmCtrl (int x);
extern int readCycleCounter () ;
long startClock, stopClock;

int numberOfRun=2;

void Profile_Split_Radix FFT_C(short *xR, short *xI, int N);
void Profile_Split_Radix_ FFT_asm(short *xR, short *xI, int N);
void Profile_Split_Radix FFT_asm_DSP(short *xR, short *xI, int N);

/* All FFT and DFT outputs are scaled down by N */

int bitReverse(int b, int B);
void checkDifference(short *wR, short *wI, short *vR, short *vI, int N);

void DFT_FloatingPoint_N(short *xR, short *xI, float *yR, float *yI, int N);
void DFT_FixedPoint_N(short *xR, short *xI, short *yR, short *yI, int N);
void Split_Radix_FFT_C(short *xR, short *xI, int N);

void Split_Radix_ButterFly Optimized(short *xR, short *xI, int M, int q);
void Split_Radix_ButterFly(short *xR, short *xI, int M, int q);

void Split_Radix_ButterFly with_rouding(short *xR, short *xI, int M, int q);
void Split_Radix_ FFT_asm(short *xR, short *xI, int N);

void Split_Radix_FFT_asm_DSP(short *xR, short *xI, int N);

extern void Split_Radix FFT_ASM(short *xR, short *xI,short *cosRsinI, int N,
short *bitRevTable, int H);

extern void Split_Radix FFT_ASM_ DSP (short *xR, short *xI,short *cosRsinI, int
N, short *bitRevTable, int H);

float pi;
short *cosR, *sinI;

void DFT_FloatingPoint_N(short *xR, short *xI, float *yR, float *yI, int N)

{
/* the outputs are scaled down by N */
int k, n;

for (k=0; k<N; k++)
{
for(yR[k]=0, yI[k]=0, n=0; n<N; n++)
{
vR[k]+=xR[n] *cos (2*pi*k*n/N) + xI[n]*sin(2*pi*k*n/N) ;
vI[k]+=xI[n]*cos(2*pi*k*n/N) - xR[n]*sin(2*pi*k*n/N) ;

}
yR[k]=yR[k]/N;
yI[k]l=yI[k]/N;

}

void DFT_FixedPoint_N(short *xR, short *xI, short *yR, short *yI, int N)
{ /* the result is divided by N */

int k, n, B;

long long tmpR, tmpI;

cosR=(short *) malloc (N*sizeof (short));
sinI=(short *) malloc (N*sizeof (short));

60 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 7. FFT Example, C Code (Sheet 3 of 20)

B=(int) (Logl0 (N) /logl0(2)) ;

/* printf("B=%d \n”,B); */

for (n=0; n<N; n++)
{
cosR[n]=(short) (cos(2*pi*n/N)*32767);
sinI[n]=(short) (sin(2*pi*n/N)*32767);
}

for (k=0; k<N; k++)
{
for (tmpR=0, tmpI=0, n=0; n<N; n++)
{
tmpR+=xR[n] * ((long) cosR[k*n%N]) + xI[n]*((long)sinI[k*n%N]);
tmpI+=xI[n]*((long)cosR[k*n%N]) - xR[n]*((long)sinI[k*n%N]);

vR[k]=(short) (tmpR>>(B+15));

(short) (tmpI>>(B+15)); /* 15 bit for fixed scaling */

}

int bitReverse(int b, int B)
{

int i, tmp;

for (tmp=0, i=0; 1i<B; 1i++)
{
tmp=tmp<<1;
tmp | = (b&1) ;
b=b>>1;
}
return tmp;

3

void Split_Radix_FFT_asm(short *xR, short *xI, int N)

{

int n, B, h, H;

short *bitRevTable, tmp, *ptr;

int *cosSinTable; /* cosSinTable[0]={bit31~16...bitl5~0}= { sinI[n],
cosR[n] }

/* cosSinTable[l]={bit31~16...bitl5~0}= { cosR[n], -sinI[nl}...... */

B=(int) (logl0 (N) /logl0(2)) ;

/* create the cos& sin table */
cosSinTable=(int *) malloc (4*N*sizeof (short));
ptr=(short *)cosSinTable;
for (n=0; n<N; n++)
{
/* swap for big endian */
ptr[4*n+l]=(short) (cos(2*pi*n/N)*32767);
ptr[4*n+0]=(short) (sin(2*pi*n/N)*32767);

Application Note 61

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply = t9I
®

Source Code Examples

Figure 7. FFT Example, C Code (Sheet 4 of 20)

ptr[4*n+3]=-ptr[4*n+0];
ptr[4*n+2]=ptr[4*n+1];

/'k

printf ("cosSinTable[%d]=%x \n”, 2*n, cosSinTable[2*n]);
printf ("cosSinTable[%d]=%x \n”, 2*n+l, cosSinTable[2*n+1]);
printf (" cosR=%x, -sinI=%x, sinI=%x, cos=%x \n”,

ptr(4*n+2] ,ptr[4*n+3],ptr(4*n+0] ,ptr[4*n+1]);

*/

}
/* create bit reverse table */
bitRevTable=(short *) malloc (N*sizeof (short)) ;

for (h=0, H=0, n=0; n<N; n++)
{
tmp=bitReverse(n, B) ;
if (n<tmp)
{
bitRevTable[h]=2*n; /* 2 for word addressing */
bitRevTable[h+1]=2*tmp;
h+=2;
H+=1;

}
printf ("bitRevTable size H=%d \n”,H);

/* code above this line in this function should be put into a initializa-
tion section */

/* FFT */
Split_Radix FFT_ASM(xR, xXI, (short *)cosSinTable, N, bitRevTable,H);
}
void Split_Radix_FFT_asm_DSP(short *xR, short *xI, int N)
{
int n, B, h, H;
short *bitRevTable, tmp, *ptr;
int *cosSinTable; /* cosSinTable[0]={bit31~16...bitl5~0}= { sinI[n],
cosR[n] } /* cosSinTable[l]={bit31~16...bitl5~0}= { cosR[n], -si-
nInl}...... */
B=(int) (logl0(N) /1ogl0(2)) ;
/* create the cos& sin table */
cosSinTable=(int *) malloc (4*N*sizeof (short));
ptr=(short *)cosSinTable;
62 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 7. FFT Example, C Code (Sheet 5 of 20)
for (n=0; n<N; n++)
{
/* swap for big endian */
ptr[4*n+1]=(short) (cos(2*pi*n/N)*32767);
ptr[4*n+0]=(short) (sin(2*pi*n/N)*32767);
ptr[4*n+3]=-ptr[4*n+0];
ptr[4*n+2]=ptr[4*n+l];
/ *
printf ("cosSinTable[%d]=%x \n”, 2*n, cosSinTable[2*n]);
printf ("cosSinTable[%d]=%x \n”, 2*n+l, cosSinTable[2*n+1]);
printf (" cosR=%x, -sinI=%x, sinI=%x, cos=%x \n”,
ptr[4*n+2],ptr[4*n+3],ptr[4*n+0] ,ptr(4*n+1]);
*/
}
/* create bit reverse table */
bitRevTable=(short *) malloc (N*sizeof (short));
for (h=0, H=0, n=0; n<N; n++)
{
tmp=bitReverse(n, B) ;
if (n<tmp)
{
bitRevTable[h]=2*n; /* 2 for word addressing */
bitRevTable[h+1]=2*tmp;
h+=2;
H+=1;
}
}
printf ("bitRevTable size H=%d \n”, H);
/* code above this line in this function should be put into a ini-
tialization section */
/* FFT */
Split_Radix FFT_ASM DSP (xR, xI, (short *)cosSinTable, N, bi-
tRevTable, H) ;
}

Application Note 63

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Source Code Examples ®

Figure 7. FFT Example, C Code (Sheet 6 of 20)

void Split_Radix FFT C(short *xR, short *xI, int N)
{

int n, B, h, H;

short *bitRevTable, tmp;

B=(int) (logl0 (N) /logl0(2)) ;

/* create the cos& sin table */

cosR=(short *) malloc (N*sizeof (short));
sinI=(short *) malloc (N*sizeof (short));

for (n=0; n<N; n++)
{
cosR[n]=(short) (cos(2*pi*n/N)*32767);
sinI[n]=(short) (sin(2*pi*n/N)*32767);
}

/* create bit reverse table */
bitRevTable=(short *) malloc(N*sizeof (short));
for (h=0, H=0, n=0; n<N; n++)

{

tmp=bitReverse (n, B) ;

if (n<tmp)

{
bitRevTable[h]=n;
bitRevTable[h+1]=tmp;
h+=2;
H+=1;

/* FFT */
/* Split_Radix_ButterFly (xR, xI, N, 1); */

Split_Radix_ButterFly Optimized (xR, xI, N, 1);
/* Split_Radix_ ButterFly_ with_rouding (xR, xI, N, 1); */

/* reorder the output, optimized way */
for (n=0; n<H; n++)
{
tmp=xR [bitRevTable[2*n]];
xR [bitRevTable[2*n]]=xR[bitRevTable[2*n+1]];
xR [bitRevTable[2*n+1]]=tmp;
tmp=xI [bitRevTable[2*
xI[bitRevTable[2*n]]
xI[bitRevTable[2*n+1

nll;
xI[bitRevTable[2*n+1]1];
]:

1]l=tmp;

64 Application Note

intel.

Figure 7.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

FFT Example, C Code (Sheet 7 of 20)

{

void Split_Radix_ ButterFly Optimized(short *xR, short *xI, int M, int q)

/* the result is divided by N */
/* g=N/M */

int tmpR, tmpI, tmpRR, tmpII;
short n, L, N;

if (M==4)
{
L=M>>1;
for (n=0; n<L; n++)
{
tmpR=((int)xR[n]) +xXR[n+L] ;
tmpI=((int)xI[n])+xI[n+L];
tmpRR=((int)xR[n])-xR[n+L];
tmpII=((int)xI[n])-xI[n+L];
xR[n]=(short) (tmpR>>1);
xI[n]l=(short) (tmpI>>1);
xR[n+L]=(short) (tmpRR>>1);
xI[n+L]=(short) (tmpII>>1);
}
tmpR=((int)xR[2]+xI[3])>>1;
tmpI=((int)xI[2]-xR[3])>>1;
tmpRR=((int)xR[2]-xXI[3])>>1;
tmpII=((int)xI[2]+xR[3])>>1;
xR[2]=(short) tmpR;
xI[2]=(short) tmpI;
xR[3]=(short) tmpRR;
xI[3]=(short) tmpII;
/* top 2 points */
tmpR=((int)xR[0])+ xR[1];
tmpI=((int)xI[0])+ xI[1];
tmpRR=((int)x 1)- xR[1];
tmpII=((int)xI[0])- xI[1]
xR[0]=(short) (tmpR>>1);
xI[0]=(short) (tmpI>>1);
xR[1]=(short) (tmpRR>>1);
xI[1]=(short) (tmpII>>1);
}
else if (M==2)

Application Note 65

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 7.

FFT Example, C Code (Sheet 8 of 20)

intel.

else

() (tmpR>>1) ;
(short) (tmpI>>1);
() (tmpRR>>1) ;
() (tmpII>>1);

hort)

s tmpR>>1) ;
short)

tmpI>>1);
(tmpRR>>1) ;
(tmpII>>1);

(short
(short

—_—— o —

n=0; /* is treated especially */
tmpR=((int)XR[n+M] +xI [n+M+L])>>1;
tmpI=((int)xXI[n+M]-xXR[n+M+L])>>1;

tmpRR= ((int) xR [n+M] -xI [n+M+L]) >>1;
tmpII=((int)xI[n+M]+xR[n+M+L])>>1;

xR[n+M] = (short)
xI [n+M] = (short)

tmpR;
tmpI;

xR [n+M+L] = (short)
xI [n+M+L] = (short)

tmpRR;
tmpII;

for (n=1;

{

n<L; n++)

tmpR=((int)XR[Nn+M]+xI [n+M+L])>>1;
tmpI=((int)xI[n+M]-xXR[n+M+L])>>1;
tmpRR=((int) xR [n+M] -xI [n+M+L])>>1;
tmpII=((int)xI[n+M]+xR[n+M+L])>>1;

xR [n+M]=(short) ((tmpR*cosR[(n*qg)S$N]+tmpI*si-
nI[(n*qg)%N])>>15);

xI[n+M]=(short) ((tmpI*cosR[(n*g)S%N]-tmpR*si-
nI[(n*qg)%N])>>15);

66

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 7. FFT Example, C Code (Sheet 9 of 20)

xR[n+M+L]=(short) ((tmpRR*cosR[(3*n*q)3N]+tmpII*si-
nI[(3*n*qg)%N])>>15);

xI [n+M+L]=(short) ((tmpII*cosR[(3*n*qg)3N]-tmpRR*si-
nI[(3*n*qg)S%N])>>15) ;

q=q*2;

Split_Radix_ButterFly Optimized (xR, xI, M, q);
Split_Radix_ButterFly Optimized (xR+M, xI+M, L, g*2);
Split_Radix_ButterFly Optimized (xR+M+L, xI+M+L, L, g*2);

3

void Split_Radix_ButterFly with_rouding(short *xR, short *xI, int M, int q)
{

/* the result is divided by N */

/* more accurate because we are using rounding */

/* g=N/M */
int tmpR, tmpI, tmpRR, tmplI;
short n, L, N;

if (M==1)

return;
else if (M==2)
{

tmpR=((int)xR[0])+ xR[1];
tmpI=((int)xI[0])+ xI[1];

tmpRR=((int)xR[0])- xR[1];
tmpII=((int)xI[0])- xI[1];
xR[0]=(short) (tmpR>>1);
xI[0]=(short) (tmpI>>1);
xR[1]=(short) (tmpRR>>1);
xI[1]=(short) (tmpII>>1);

}

else

{
L=M>>1;

tmpI=((int)xI[
tmpRR=((int)xR[n])-xR[n+L];
tmpII=((int)xI[n])-xI[n+L];

Application Note 67

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 7. FFT Example, C Code (Sheet 10 of 20)

intel.

=(short)
=(short)
L]=(short
L]=(short

tmpR>>1) ;

tmpI>>1) ;
(tmpRR>>1) ;
(tmpII>>1) ;

~_— — o —

for(n=0; n<L; n++)

{
tmpR=((int)xXR[n+M] +xXI [n+M+L])>>1;
tmpI=((int)xXI[n+M]-xXR[n+M+L])>>1;
tmpRR=((int) xR [n+M] -xI [n+M+L])>>1;
tmpII=((int)xI[n+M]+xR[n+M+L])>>1;
nI[(n*qg)%N])>>14)+1)>>1;
nI[(n*qg)%N])>>14)+1)>>1;

nI[(3*n*qg)3N])>>14)+1)>>1;

nI[(3*n*qg)%N])>>14)+1)>>1;
}

q=q*2;
Split_Radix_ ButterFly with_rouding (xR, xI,

Split_Radix_ ButterFly_ with_rouding (xR+M+1L,
)

{
/* the result is divided by N */

/* g=N/M */

int tmpR, tmpI, tmpRR, tmpII;
short n, L, N;

if (M==1)
return;

XR[n+M]=(short) (((tmpR*cosR[(n*qg)%N]+tmpI*si-

xI[n+M]=(short) (((tmpI*cosR[(n*g)%N]-tmpR*si-

xR [n+M+L]=(short) (((tmpRR*cosR[(3*n*q)$N]+tmpII*si-

xI [n+M+L]=(short) (((tmpII*cosR[(3*n*qg)3N]-tmpRR*si-

M, q);

Split_Radix_ ButterFly with_rouding (xR+M, xI+M, L, g*2);

xI+M+L, L, g*2);

void Split_Radix_ ButterFly(short *xR, short *xI, int M, int q)

68

Application Note

intel.

Figure 7.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

FFT Example, C Code (Sheet 11 of 20)

{

else

else 1f (M==2)

tmpR=((int)xR[0])+ xR[1];
tmpI=((int)xI[0])+ xI[1];
tmpRR=((int)xR[0])- xR[1];
tmpII=((int)xI[0])- xI[1];
xR[0]=(short) (tmpR>>1);
xI[0]=(short) (tmpI>>1);
xR[1]=(short) (tmpRR>>1);
xI[1]=(short) (tmpII>>1);
L=M>>1;
for (n=0; n<L; n++)
{
tmpR=((int)xR[n])+xXR[n+L];
tmpI=((int)xI[n])+xI[n+L];
tmpRR—((lnt) R[n])-xR[n+L];
tmpII=((int)xI[n])-xI[n+L];
xR[n]=(short) (tmpR>>1);
xI[n]=(short) (tmpI>>1);
xR [n+L]=(short) (tmpRR>>1) ;
xI[n+L]=(short) (tmpII>>1);
}
N=M*q;
M=M>>1;
L=L>>1;

for(n=0; n<L; n++)

{

tmpR=((int)XR[n+M] +xI [n+M+L])>>1;
tmpI=((int)xXI[n+M]-xXR[n+M+L])>>1;
tmpRR=((int) xR [n+M] -xI [n+M+L])>>1;
tmpII=((int)xI[n+M]+xR[n+M+L])>>1;

xR [n+M]=(short) ((tmpR*cosR[(n*qg)%N]+tmpIl*si-
nI[(n*q)%N])>>15);

xI[n+M]=(short) ((tmpI*cosR[(n*g)%N]-tmpR*si-
nI[(n*q)%N])>>15);

xR [n+M+L]=(short) ((tmpRR*cosR[(3*n*qg)S$N]+tmpII*si-
I[(3*n*qg)3N])>>15);

xI [n+M+L]=(short) ((tmpII*cosR[(3*n*qg)S%N]-tmpRR*si-
I[(3*n*qg)3N])>>15);

}

=g*2;

Split_Radix_ButterFly (xR, xXI, M, q);

Split_Radix_ ButterFly (xR+M, xI+M, L, g*2);

Split_Radix ButterFly (xR+M+L, xI+M+L, L, g*2);

Application Note

69

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples

Source Code Examples

Figure 7.

FFT Example, C Code (Sheet 12 of 20)

intel.

int getNum(char *str)
{
int c;
int i = 0;
char input[100];

if(str && *str) printf("%$s", str);
do
{
c = getc(stdin);
if (¢ == 0x08)
{
if(i) i--;
}
else
{
input[i++] = c;

3

} while(i<100 && c!
input[i] = "\0';

return atoi (input) ;

void testFFT()
{

short *xR, *xXI;
short *yR, *vI;
short *uR, *ul;
short *vR, *VI;
short *wR, *wI;
short *pR, *pIl;
short *gR, *qI;
float *zR, *zI, *A;

int k,n, i, N;
float f0, fs;

N=128;
£0=343.75;
£s=8000;

/* 625=8000/128*10,

N=getNum ("Number of Point=");
numberOfRun=getNum ("Number of run

printf ("%$d-point FFT \n”,N);

343.75=8000/128*5.5

to profile=");

*/

70

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 7. FFT Example, C Code (Sheet 13 of 20)
xR=(short *) malloc(N*sizeof (short));
yR=(short *) malloc(N*sizeof (short));
uR=(short *) malloc (N*sizeof (short));
vR=(short *) malloc(N*sizeof (short));
wR=(short *) malloc (N*sizeof (short)) ;
pPR=(short *) malloc (N*sizeof (short));
gR=(short *) malloc (N*sizeof (short));
xI=(short *) malloc(N*sizeof (short));
yvI=(short *) malloc (N*sizeof (short));
ulI=(short *) malloc(N*sizeof (short));
vI=(short *) malloc(N*sizeof (short));
wl=(short *) malloc (N*sizeof (short));
pI=(short *) malloc (N*sizeof (short));
gI=(short *) malloc(N*sizeof (short));

zR=(float *) malloc(N*sizeof (float));
zI=(float *) malloc(N*sizeof (float));
A=(float *) malloc (N*sizeof(float));

pi=asin(1)*2;
printf ("pi=%f \n", pi);

printf("a %$f Hz real sin waveform sampled at %$fkHz, scaled for 16-bit
fixed point \n", £0, fs);

for (n=0; n<N; n++)
{

xR[n]=(short) (cos(2*pi*f0*n/fs)*32767);
xI[n]=0;

#if 1
printf ("input samples \n”);

for (n=0; n<N; n++)
/* printf ("xR[%d]=%d \n”,n,xR[n]); */

printf("%d \n", xR[nl);

#endif

DFT_FloatingPoint_N(xR, xI, zR, zI, N);

#if O
printf ("floating point DFT output \n”);

for (n=0; n<N; n++)
printf ("zR[%d]=%f, zI[%d]=%f \n", n, zR[n], n, zI[n]);

#endif

Application Note 71

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply = t9I
®

Source Code Examples

Figure 7. FFT Example, C Code (Sheet 14 of 20)

printf ("floating point DFT output amplitude \n”);

for (n=0; n<N; n++)
{
A[n]=sgrt(zR[n]*zR[nl]+zI[n]*zI[n]);
/* printf ("Amplitude[%d]=%f \n”, n, Aln]); */

/* printf ("$f \n”, Alnl); */
}

printf ("floating point DFT output converted into 16 bit fixed-point \n”);

for (n=0; n<N; n++)
{
uR[n]=(short) (zR[n]
ul[n]=(short) (zI[n]
/* printf ("uR[%d]=%

).

)

d, ulI[%d]l=%d \n”, n, uR[n], n, ulIln]); */
}

printf ("C fixed-point DFT \n”);

DFT_FixedPoint N (xR, xI, VvR, vI, N);

printf ("C fixed-point FFT \n”);

for(n=0; n<N; n++)
{
wR[n]=xR[n];
wl[n]l=xI[n];

}

Split_Radix FFT_C(wR, wI, N);
printf ("asm fixed-point FFT \n”);

for(n=0; n<N; n++)
{
PRI[n]=xRI[n];
pI[n]=xI[n];
}
Split_Radix_ FFT_asm(pR, pI, N);

printf ("asm+DSP-copro fixed-point FFT \n”);
for (n=0; n<N; n++)
{

gR[n]=xR[n];
glln]l=xI[n];

Split_Radix FFT_asm_DSP(gR, gI, N);

printf ("fixed point DFT output \n”);

72

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 7. FFT Example, C Code (Sheet 15 of 20)
for (n=0; n<N; n++)
{
printf ("floating point DFT: zR[%d]1=%f, zI[%d]=%f \n”, n, zR[n],
n, zI[n]);

printf ("rounding floating point DFT: uR[%d]=%d, uI[%d]l=%d \n”",

n, uR[n], n, ulln]);

printf ("fixed point DFT: vR[%d]=%d, vI[%d]=%d \n",

n, vR[n], n, vI[n]);

printf ("C fixed point FFT: wR[%d]=%d, wI[%d]=%d \n”, n, wR[n],
n, wI[n]);

printf ("ASM fixed point FFT: PR[%d]=%d, pI[%d]=%d \n \n”, n,

pR[n], n, pI[nl);

printf ("ASM+DSP-copro fixed point FFT: gR[%d]=%d, gI[%d]l=%d \n \n”, n,
gR[nl, n, gIlnl);

}

printf ("difference between ASM and ASM+DSP_Copro Split_Radix FFT \n”);
checkDifference(gR,qI,pR,pI,N);

printf ("difference between C and ASM for Split_Radix_FFT \n”);
checkDifference (wR,wI,pR,pI,N);

printf ("difference between C fixed DFT and ASM Split_Radix_FFT \n”);
checkDifference (vR,vI,pR,pI,N);

printf ("difference between Rounding floating point DFT and ASM
Split_Radix_FFT \n”);

checkDifference (uR,ul,pR,pI,N);
printf (" \n \n @EEEEEEEFFT profiling..... @EEeeRREeE@ \n”);

printf ("C fixed-point FFT \n”);

for(n=0; n<N; n++)
{
wR[n]=xR[n];
wl[n]l=xI[n];
}
Profile_Split_Radix_FFT C(wR, wI, N);
printf ("asm fixed-point FFT \n”);

for (n=0; n<N; n++)
{
PR[n]=xR[n];
pI[n]=xI[n];
}
Profile_Split_Radix_FFT asm(pR, pI, N);
printf ("asm_DSP-copro fixed-point FFT \n”);
for(n=0; n<N; n++)
{
PR[n]=xR[n];
pI[n]=xI[n];
}
Profile_Split_Radix_FFT asm_DSP(pR, pI, N);

Application Note 73

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 7. FFT Example, C Code (Sheet 16 of 20)

intel.

void checkDifference(short *wR, short *wI, short *vR, short *vI
{

int n, tmp, maxError, indMaxError;

printf (" checking the difference... \n”);

for (indMaxError=0, maxError=0, n=0; n<N; n++)
{
tmp=abs (wR [n]-vR[n]) ;
if (maxError<tmp)
{
maxError=tmp;
indMaxError=n;

}

tmp=abs (wI[n]-vI[n]);
if (maxError<tmp)

{
maxError=tmp;
indMaxError=n;

}

printf (" . max difference maxError=%d, indMaxError=%d \n”,
maxError, indMaxError) ;
}

void bitReverseOnArry (short *xR, short *xI, int N)
{
int n, B;
short *bitRevTable, tmp;
B=(int) (logl0(N) /logl0(2)) ;

/* create bit reverse table */
bitRevTable=(short *) malloc (N*sizeof (short)) ;

for (n=0; n<N; n++)

{
}

bitRevTable[n]=bitReverse(n, B) ;

/* reorder the output, simple way */

for (n=0; n<N; n++)
{
if (n>bitRevTablel[n])
continue;
tmp=xR [n] ;
xR[n]=xR[bitRevTable[n]];
xR[bitRevTable[n]]=tmp;

tmp=xTI [n];
xI[n]=xI[bitRevTable[n]];
xI[bitRevTable[n]]l=tmp;

, int N)

74

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 7. FFT Example, C Code (Sheet 17 of 20)

void Profile_Split_Radix_ FFT_asm(short *xR, short *xI, int N)

{
int n, B, h, H;
short *bitRevTable, tmp, *ptr;
int *cosSinTable; /* cosSinTable[0]={bit31~16...bitl5~0}= { sinI[n],
cosR[n]} /* cosSinTable[l]={bit31~16...bitl5~0}= { cosR[n], -si-
nInl}...... */

B=(int) (loglO (N) /logl0(2)) ;

/* create the cos& sin table */
cosSinTable=(int *) malloc (4*N*sizeof (short));
ptr=(short *)cosSinTable;

for (n=0; n<N; n++)

{
/* swap for big endian */
ptr[4*n+1]=(short) (cos(2*pi*n/N)*32767);

ptr[4*n+0]=(short) (sin(2*pi*n/N)*32767);

ptr[4*n+3]=-ptr[4*n+0];
ptr[4*n+2]=ptr[4*n+l1];
/* printf ("cosSinTable[%d]=%x \n”, 2*n, cosSinTable[2*n]);
printf ("cosSinTable[%d]=%x \n”, 2*n+l, cosSinTable[2*n+1]);
printf ("cosR=%x,-sinI=%x,sinlI=%x,cos=%x\n",
ptr[d4d*n+2] ,ptr[4*n+3] ,ptr[4*n+0] ,ptr(4*n+l]) ;
*/

}

/* create bit reverse table */
bitRevTable=(short *) malloc (N*sizeof (short));
for (h=0, H=0, n=0; n<N; n++)

{
tmp=bitReverse (n, B) ;
if (n<tmp)
{

bitRevTable[h]=2*n; /* 2 for word addressing */
bitRevTable[h+1]=2*tmp;
h+=2;
H+=1;
}
}
printf ("bitRevTable size H=%d \n”, H);

/* the following is to profile the code, should be removed */

writePerfrmCtrl (0x07); /* start all the counters*/
startClock=readCycleCounter () ;
for (n=0;n<numberOfRun; n++) /* run 10 times for measurement*/
{/* FFT */

Split_Radix FFT_ASM(xR, XI, (short *)cosSinTable, N, bi-
tRevTable, H) ;

}
stopClock=readCycleCounter () ;
printf ("%d point FFT using Split_Radix_ FFT_ASM \n”,N) ;
printf ("total cycles =%d \n”, stopClock-startClock) ;
printf ("number of Run =%d \n”, numberOfRun) ;
printf ("average cycle per point =%f \n\n”,
(stopClock-startClock) *1.0/numberOfRun/N) ;

Application Note 75

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 7. FFT Example, C Code (Sheet 18 of 20)

intel.

{
int n, B, h, H;

short *bitRevTable, tmp, *ptr;

int *cosSinTable; /* cosSinTable[0]={bit31~16...bitl5~0}=
cosR[n] }/* cosSinTable[l]={bit31~16...bitl5~0}= { cosR[n],
nI[nl}...... */

B=(int) (logl0(N) /1logl0(2)) ;

/* create the cos& sin table */
cosSinTable=(int *) malloc (4*N*sizeof (short));
ptr=(short *)cosSinTable;

for(n=0; n<N; n++)

/* create bit reverse table */
bitRevTable=(short *) malloc (N*sizeof (short));
for (h=0, H=0, n=0; n<N; n++)

{
tmp=bitReverse (n, B) ;
if (n<tmp)
{

bitRevTable[h]=2*n; /* 2 for word addressing */
bitRevTable[h+1]=2*tmp;
h+=2;
H+=1;
}

}
printf ("bitRevTable size H=%d

{/* FFT */

tRevTable, H) ;
}

stopClock=readCycleCounter () ;

void Profile_Split_Radix_ FFT_asm_DSP (short *xR, short *xI, int N)

{
/* swap for big endian */
ptr[4*n+1]=(short) (cos(2*pi*n/N)*32767);
ptr[4*n+0]=(short) (sin(2*pi*n/N)*32767);
ptr[4*n+3]=-ptr[4*n+0];
ptr[4*n+2]=ptr[4*n+l1];
/* printf ("cosSinTable[%d]=%x \n”, 2*n, cosSinTable[2*n]);
printf ("cosSinTable[%$d]=%x \n”, 2*n+l1, cosSinTable[2*n+1]);
printf ("cosR=%x,-sinI=%x,sinI=%x,cos=%x\n",
ptr[4*n+2] ,ptr[4*n+3] ,ptr[4*n+0] ,ptr[4*n+l]);
*/
}

/* the following is to profile the code, should be removed */
writePerfrmCtrl (0x07); /* start all the counters*/
startClock=readCycleCounter () ;

for (n=0;n<numberOfRun; n++) /* run 10 times for measurement*/

Split_Radix FFT_ASM DSP(xXR, xI, (short *)cosSinTable, N, bi-

{ sinI[n],
—gi-

76

Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 7. FFT Example, C Code (Sheet 19 of 20)

printf ("%d point FFT using Split_Radix_FFT_ASM \n”, N);

printf ("total cycles =%d \n”, stopClock-startClock) ;

printf ("number of Run =%d \n”, numberOfRun) ;

printf ("average cycle per point =%f \n \n”, stopClock-start-
Clock) *1.0/numberOfRun/N) ;

}

void Profile_Split_Radix_FFT_C (short *xR, short *xI, int N)
{

int m, n, B, h, H;

short *bitRevTable, tmp;

B=(int) (logl0(N) /1logl0(2)) ;

/* create the cos& sin table */

cosR=(short *) malloc (N*sizeof (short));
sinI=(short *) malloc (N*sizeof (short));

for (n=0; n<N; n++)
{
cosR[n]=(short) (cos(2*pi*n/N)*32767);
sinI[n]=(short) (sin(2*pi*n/N)*32767);
}

/* create bit reverse table */

bitRevTable=(short *) malloc (N*sizeof (short)) ;
for (h=0, H=0, n=0; n<N; n++)

{
tmp=bitReverse(n, B) ;
if (n<tmp)
{
bitRevTable[h]l=n;
bitRevTable[h+1]=tmp;
h+=2;
H+=1;
}
}
/* the following is to profile the code, should be removed */
writePerfrmCtrl (0x07); /* start all the counters*/
startClock=readCycleCounter () ;
for (m=0; m<numberOfRun; m++) /* run 10 times for measurement*/
{
/* FFT */

Split_Radix_ButterFly Optimized (xR, xI, N, 1);
/* reorder the output, optimized way */
for (n=0; n<H; n++)

{
tmp=xR [bitRevTable[2*n]];
xR[bitRevTable[2*n]]=xR[bitRevTable[2*n+1]];
xR[bitRevTable[2*n+1]]=tmp;
tmp=xI[bitRevTable[2*n]];
xI [bitRevTable[2*n]]=xI[bitRevTable[2*n+1]];
xI[bitRevTable[2*n+1]]=tmp;

}

Application Note 77

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Accumulate Instructions — FIR / IR Filters and FFT Examples In
Source Code Examples

Figure 7. FFT Example, C Code (Sheet 20 of 20)

stopClock=readCycleCounter () ;

printf ("%d point FFT using Split_Radix_FFT_C \n”, N);

printf ("total cycles =%d \n”, stopClock-startClock);

printf ("number of Run =%d \n”, numberOfRun) ;

printf ("average cycle per point =%f \n \n”, stopClock-start-
Clock) *1.0/numberOfRun/N) ;

Figure 8. FFT Example, Assembly Code (Sheet 1 of 11)

@@/**

@@~

@@* @author Intel Corporation

@@* @date 17 June 2004

@@~

@@x*

@@* -- Intel Copyright Notice --

@@~

@@x*

@@x*

@@~

@@* Copyright 2004 Intel Corporation All Rights Reserved.

@@x*

@@~

@@* The source code contained or described herein and all documents

@@* related to the source code ("Material") are owned by Intel

@@* Corporation or its suppliers or licensors. Title to the Material

@@* remains with Intel Corporation or its suppliers and licensors.

@@* The Material contains trade secrets and proprietary and confidential
@@* information of Intel or its suppliers and licensors. The Material
@@* is protected by worldwide copyright and trade secret laws and treaty
@@* provisions. Except for the licensing of the source code hereunder,
@@* no part of the Material may be used, copied, reproduced, modified,
@@* published, uploaded, posted, transmitted, distributed, or disclosed
@@* in any way without Intel's prior express written permission.

@@~

@@x*

@@* Except for the licensing of the source code as provided hereunder,
@@* no license under any patent, copyright, trade secret or other

@@* intellectual property right is granted to or conferred upon you by
@@* disclosure or delivery of the Materials, either expressly, by

@@* implication, inducement, estoppel or otherwise and any license under
@@* such intellectual property rights must be express and approved by
@@* Intel in writing.

@@~

@@x*

@@* For further details, please see the file README.TXT distributed with
@@* this software.

@@* -- End Intel Copyright Notice --

@@************************************'k'k'k'k'k'k'k'k'k'k'k'k************************/

@ 2 point, 4 point, and first pass in the second loop are treated special
@ because no multiplication required

78 Application Note

Accumulate Instructions — FIR / IR Filters and FFT Examples

in Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
® Source Code Examples

Figure 8. FFT Example, Assembly Code (Sheet 2 of 11)

#include <arch/arm/arm.h>

@ Split_Radix FFT_ASM(short *xR, short *xI,short *cosRsinI, int N, short @*bi-
tRevTable, int H);

@ Split_Radix_FFT_ASM_DSP(short *xR, short *xI,short *cosRsinI, int N, short
@*bitRevTable, int H);

CRRRLLLLLLLLELCELECECCECCECELECLELLERARRRRARRRRRRRLLCCRLLLLCLCLCECLELELELECECEAECECRLRLRRRRRRRR
@@ split radix FFT
@@ function parameter:

Q@

@@ r0 = xR: input/output real part pointer

@@ rl = xI: input/output image part pointer

@@ r2 = cos -sin sin cos: cos sin table pointer
@@ r3 = N: length of FFT

@@ [sp,#40] = bitRevTable:bit reverse table

@@ [sp,#44] = Hbit reverse table size

Q@

QEEREEREEREERELERAELEEAELEEAEERAELREERLEELREELRLEELREELREELREELREELREELREELREAERERERERERREA

.global Split_Radix_FFT_ASM
.global _Split_Radix_FFT_ASM
.global Split_Radix_ FFT _ASM__FPsN20iTO0i

.global Split_Radix_FFT_ASM_DSP
.global _Split_Radix_FFT_ASM_DSP
.global Split_Radix_FFT ASM_DSP__ FPsN20iTOi

.balign 4

Split_Radix FFT_ASM DSP:
Split_Radix_ FFT_ASM DSP:
Split_Radix FFT_ASM_DSP__FPsN20iTO0i:

stmdb sp!,{rd4-rl2,1r}

mov r4, #8 @ g=1 (8 bytes because of 4 shorts for the cos sin table)
bl Split_Radix_ ButterFly asm_ DSP

@ bit reverse
b reorderOutput

.balign 4

Split_Radix_ FFT_ASM:
_Split_Radix_ FFT_ASM:
Split_Radix FFT_ ASM__FPsN20iTO0i:

stmdb sp!,{rd4-rl12,1r}

mov r4d, #8@ g=1 (8 bytes because of 4 shorts for the cos sin table)
bl Split_Radix_ButterFly_asm

@ bit reverse

reorderOutput:

1ldr r4, [sp,#40] @ bitRevTable

1dr r5, [sp,#44] @ bitRevTable size
cmp r5, #0

beg doneNow

Application Note 79

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Accumulate Instructions — FIR / IR Filters and FFT Examples In
Source Code Examples

Figure 8. FFT Example, Assembly Code (Sheet 3 of 11)
loopR:

ldrsh r6, [r4], #2 @ bitRevTable

ldrsh r8, [r0,+r6] @ xR[n]

ldrsh r9, [rl,+r6] @ xI[n]

1ldrsh r7, [r4], #2 @ bitRevTable

ldrsh r10, [x0,+r7] @ xR[bitReverse[n]]

ldrsh rl1ll, [rl,+xr7] @ xI[bitReverse[n]]

@ exchange

strh r8, [r0,+r7]
strh r9, [rl,+r7]
strh rl0, [rx0,+r6]
strh rll, [rl,+r6]
subs r5, r5, #1
bne loopR
doneNow :
ldmia sp!, {r4-rl2,pc} @ return

QEEEEEEEEREEREEREERELEREEREEREEREEREErEreErRErRRErReE

@@ *sinI, int M, int q)

@@ r0 = xR: input/output real part pointer

@@ rl = xI: input/output image part pointer

@@ r2 = cos -sin sin cosR: cos sin table pointer
@@ r3 = M:FFT

@@ rd4d = g:FFT

CREEEEEEEELLLLLLLELELLLLELELELEEEEEEELELELELEERERERRRRRRRRERERRRER

.align 4

Split_Radix_ButterFly_asm:
_Split_Radix_ButterFly_ asm:

stmdb sp!,{r0-rl1l2,1r} @ push registers
cmp r3, #4
bne checkNext
fourPointFFT:
mov r7, r3e L
loop4:
ldrsh r10, [x0] @ xR[n]
ldrsh r1l1l, [x0,r3] @ xR[n+L]
sub rld, rl0, rll @ tmpRR=((int)xR[n])- xR[n+L];
add rl2, rl0, rll @ tmpR=((int)xR[n])+ xR[n+L]

mov rl4d, rld, asr #1
mov rl2, rl2, asr #1

strh rld, [r0,r3] @ xR[n+L]=(short) (tmpRR>>1);
strh rl2, [r0], #+2 @ xR[n]=(short) (tmpR>>1); n=n+l
ldrsh r10, [rl] @ xI[n]

@@ void Split_Radix_ButterFly_asm(short *xR, short *xI,short *cosR, short

80 Application Note

intel.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples

Source Code Examples

Figure 8. FFT Example, Assembly Code (Sheet 4 of 11)

ldrsh rl1l, [rl,r3] @ xI[n+L]
sub rld4, r1l0, rlil @ tmpII=((int)xI[n])- xI[n+L];
add rl2, rl0, rll @ tmpI=((int)xI[n])+ xI[n+L]
mov rl4d, rld, asr #1
mov rl2, rl2, asr #1
strh rld, [rl,r3] @ xI[n+L]=(short) (tmpII>>1);
strh rl2, [rl], #+2 @ xI[n]=(short) (tmpI>>1); n=n+l
subs r7, r7, #2
bne loop4
@ at this point, r0 exatly point to xR[L], rl exactly point to xI[L]
mov r3, r3, asr #1 @ L=M/2
ldrsh r10, [xO0] @ xR[n]
ldrsh rl1l, [r0,r3] @ xR[n+L]
ldrsh r8, [rl] @ xI[nl]
ldrsh r9, [rl,xr3] @ xI[n+L]
add rl2, rl1l0, r9 @ tmpR=((int)xR[n])+ xI[n+L]
sub rld, r8, rll @ tmpI=((int)xI[n])- xR[n+L];
sub rl0, rl1l0, r9 @ tmpRR=((int)xR[n])- xI[n+L]
add rll, r8, rll @ tmpII=((int)xI[n])+ XR[n+L];
mov rl2, rl2, asr #1 @ tmpR
mov rl4d, rl4d, asr #1 @ tmpI
mov rl1l0, rl0, asr #1 @ tmpRR
mov rll, rll, asr #1 @ tmpIT
strh rll, [rl,r3] @ xI[n+L]
strh r10, [x0, r3] @ xR[n+L]
strh rl14, [rl], #-4 @ xI[n], point back to the begining
strh rl12, [x0], #-4 @ xR[n], point back to the begining
b twoPointsDFT

checkNext :
cmp r3, #2
bne oneButterFly

twoPointsDFT:
ldrsh r10, [x0], #+2 @ xR[0]
ldrsh r11, [x0], #-2 @ xR[1]
add rl2, rl0, rlil @ tmpR=((int)xR[0])+ xR[1]
sub rl4, r10, rll @ tmpRR=((int)xR[0])- xR[1];
mov rl2, rl2, asr #1
mov rl4d, rld, asr #1
strh rl2, [r0], #+2 @ xR[0]=(short) (tmpR>>1);
strh rld, [rQ0], #-2 @ xXR[1l]=(short) (tmpRR>>1);
ldrsh r10, [rl], #+2 @ xI[0]
ldrsh r11, [rl], #-2 @ xI[1]
add rl2, rl0, rll @ tmpI=((int)xI[0])+ xI[1]
sub rld, rl1l0, rll @ tmpII=((int)xI[0])- xI[1];
mov rl2, rl2, asr #1

Application Note

81

Accumulate Instructions — FIR / IR Filters and FFT Examples In

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Source Code Examples ®

Figure 8. FFT Example, Assembly Code (Sheet 5 of 11)
mov rl1l4d, rld, asr #1
strh rl2, [rl], #+2 @ xI[0]=(short) (tmpI>>1);
strh rld, [rll, #-2 @ xI[1l]=(short) (tmpII>>1);
ldmia sp!, {r0-rl12,pc} @ return
oneButterFly:
@ save variables for iterations
stmdb sp!, {r0-r4d} @ push registers
@ section A of the butterfly
mov r7, r3@ L
loopl:
ldrsh r10, [xO0] @ xR[n]
ldrsh rl11, [x0,r3] @ xR[n+L]
sub rld, rl0, rll @ tmpRR=((int)xR[n])- xXR[n+L];
add rl2, rl0, rll @ tmpR=((int)xR[n])+ xR[n+L]

mov rl4d, rld, asr #1
mov rl2, rl2, asr #1

strh rld, [r0,r3] @ xR[n+L]=(short) (tmpRR>>1);
strh rl2, [r0], #+2 @ xR[n]=(short) (tmpR>>1); n=n+l
ldrsh r10, [rl] @ xI[n]

ldrsh r1l, [rl,r3] @ xI[n+L]

sub rld, rl0, rll @ tmpII=((int)xI[n])- xI[n+L];

add rl2, rl0, rll @ tmpI=((int)xI[n])+ xI[n+L]

mov rl4d, rld, asr #1

mov rl2, rl2, asr #1

strh rld, [rl,r3] @ xI[n+L]=(short) (tmpII>>1);
strh rl2, [rll, #+2 @ xI[n]=(short) (tmpI>>1); n=n+1

subs r7, r7, #2
bne loopl

@ section B of the butterfly
@ at this point, r0 exactly point to xR[L], rl exactly point to xI[L]

mov r3, r3, asr #1@ L=M/2

sub r7, r3, #2 @ treat the first loop specially

addré6, rd, rd, 1lsl #1@ r7=3*qg

add r5, r2, r6

@ n+=3Q to skip first loop, point to cos&sin with 3g offset
addr2, r2, rd @ n+=gq to skip first loop,

@ first loop treated specially because there is no need to do
@ multiplication for n=0

ldrsh r10, [xO0] @ xR[n]

ldrsh r1l, [r0,r3] @ xR[n+L]

ldrsh r8, [rl] @ xI[n]

ldrsh r9, [rl,r3] @ xI[n+L]

add rl2, rl0, r9 @ tmpR=((int)xR[n])+ xI[n+L]
sub rld, r8, rll @ tmpI=((int)xI[n])- xR[n+L];
sub rl0, 10, r9 @ tmpRR=((int)xR[n])- xI[n+L]
add rll, r8, rll @ tmpII=((int)xI[n])+ xXR[n+L];

82 Application Note

intel.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 8. FFT Example, Assembly Code (Sheet 6 of 11)
mov rl0, rl0, asr #1 @ tmpRR
mov rll, rll, asr #1 @ tmpIT
mov rl2, rl2, asr #1 @ tmpR
mov rl4d, rld, asr #1 @ tmpI
@ r8 & r9 are free now
strh r1l, [rl,r3] @ xI[n+L]
strh rl10, [x0, r3] @ xR[n+L]
strh rl4d, [rl], #+2 @ xI[n]
strh rl1l2, [r0], #+2 @ xR[n], n+=2
@ multiplication required for n>1

loop2:
ldrsh r10, [xO0] @ xR[n]
ldrsh r1l, [x0,r3] @ xR[n+L]
1ldrsh r8, [rl] @ xI[n]
ldrsh r9, [rl,r3] @ xI[n+L]
add rl2, rl1l0, r9 @ tmpR=((int)xR[n])+ xI[n+L]
sub rld, r8, rll @ tmpI=((int)xI[n])- xR[n+L];
sub rl0, rl0, r9 @ tmpRR=((int)x 1) - xI[n+L]
add rll, r8, rll @ tmpII=((int)xI[n])+ xR[n+L];
mov rl2, rl2, asr #1 @ tmpR
mov rld, rld, asr #1 @ tmpI
mov rl0, rl0, asr #1 @ tmpRR
mov rll, rll, asr #1 @ tmpIT
@ r8 & r9 are free now
1dr r8, [r5,#4] @ {cosR[n], -sinI[n]}
smulbt r9, rll, r8@ tmpII*cosR
smlabb r9, rl1l0, r8, r9 @ -tmpRR*sinI
mov r9, r9, asr #15 @
strh r9, [rl,r3] @ xI[n+L]
1ldrr8, [r5], r6 @ {sinI[n], cosR[nl}, n+=3*g
smulbt r9, rll, r8@ tmpII*sinT
smlabb r9, rl1l0, r8, r9 @ tmpRR*cosR
mov r9, r9, asr #15 @
strh r9, [r0, r3] @ xR[n+L]
1drr8, [r2,#4] @ {cosR[n], -sinI[n]}
smulbt r9, rl4d, r8@ tmpI*cosR
smlabb r9, rl2, r8, r9 @ -tmpR*sinI
mov r9, r9, asr #15 @
strh r9, [rl], #+2 @ xI[n]
1drr8, [r2], r4d @ {sinI[n], cosR[nl}, n+=qg
smulbt r9, rl4d, r8@ tmpI*sinT
smlabb r9, rl2, r8, r9 @ tmpR*cosR
mov r9, r9, asr #15 @
strh r9, [x0], #+2 @ xR[n], n+=2

Application Note

83

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 8. FFT Example, Assembly Code (Sheet 7 of 11)

intel.

subs r7, r7, #2
bne loop2

@ restore variables for iterations
ldmia sp!, {r0-rd} @ pop

cmp r3, #4
beg twoPointsDFT @ do 2 points DFT

iterating:
mov r3, r3, lsr #1 @ M=M/2
mov r4, rd4, 1lsl #1 @ g=g*2
bl Split_Radix_ButterFly_asm

add r0, r0, r3, 1lsl #1 @ xXR+M
add rl, rl, r3, 1lsl #1 @ xI+M
mov r3, r3, lsr #1 @ M=M/2
mov r4, rd4, 1lsl #1 @ g=g*2
bl Split_Radix_ButterFly_asm

add r0, r0, r3, 1lsl #1 @ xXR+M+M/2
add rl, rl, r3, 1lsl #1 @ xI+M+M/2
bl Split_Radix_ButterFly_asm

endNow :
ldmia sp!,{r0-rl2,pc} @ return

CREEEEEEEELELLELELLLELELLLELELELEEEEEELELELELELEERERERRRRRRRRERERRRER
CQREEREEEEEELLLLLLLELELELLLELELEEEEEEEELELELELEEEERRRRRRRRERERRRER

@@ *sinI, int M, int q)

@@ r0 = xR: input/output real part pointer

@@ rl = xI: input/output image part pointer

@@ r2 = cos -sin sin cosR: cos sin table pointer
@@ r3 = M:FFT

@@ r4 = g:FFT

clclcleielclcleleleielclcleleleictclclcleielcleleleletelclclcleielclelelclelelcleleleleclcleleiele]
.align 4

Split_Radix_ButterFly_asm_DSP:
_Split_Radix_ButterFly_ _asm_DSP:

cmp r3, #4
bne checkNext_ DSP

fourPointFFT DSP:

mov r7, r3Qe L

loop4_DSP:
ldrsh r10, [xO0] @ xR[n]
ldrsh r1l, [r0,r3] @ xR[n+L]

stmdb sp!, {r0-rl1l2,1r} @ push registers

@@ void Split_Radix_ButterFly_asm_ DSP(short *xR, short *xI,short *cosR, short

84

Application Note

intel.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples

Source Code Examples

Figure 8. FFT Example, Assembly Code (Sheet 8 of 11)
sub rld4, r10, rlil @ tmpRR=((int)xR[n])- xXR[n+L];
add rl2, rl1l0, rlil @ tmpR=((int)xR[n])+ xR[n+L]
mov rld, rld, asr #1
mov rl2, rl2, asr #1
strh rld, [r0,r3] @ xR[n+L]=(short) (tmpRR>>1);
strh rl2, [r0], #+2 @ xR[n]=(short) (tmpR>>1); n=n+1l
ldrsh r10, [rl] @ xI[n]
ldrsh r1l, [rl,r3] @ xI[n+L]
sub rld4, r10, rlil @ tmpII=((int)xI[n])- xI[n+L];
add rl2, rl1l0, rlil @ tmpI=((int)xI[n])+ xI[n+L]
mov rld, rld, asr #1
mov rl2, rl2, asr #1
strh rld, [rl,r3] @ xI[n+L]=(short) (tmpII>>1);
strh rl2, [rll, #+2 @ xI[n]=(short) (tmpI>>1); n=n+1
subs r7, r7, #2
bne loop4_DSP
@ at this point, r0 exactly point to xR[L], rl exactly point to xI[L]
mov r3, r3, asr #l@ L=M/2
ldrsh r10, [xO0] @ xR[n]
ldrsh r1l, [x0,xr3] @ xR[n+L]
ldrsh r8, [r1l] @ xI[n]
ldrsh r9, [rl,r3] @ xI[n+L]
add rl2, rl0, r9 @ tmpR=((int)xR[n])+ xI[n+L]
sub rld, r8, rll @ tmpI=((int)xI[n])- xR[n+L];
sub rl0, rl0, r9 @ tmpRR=((int)x 1) - xI[n+L]
add rll, r8, rll @ tmpII=((int)xI[n])+ XR[n+L];
mov rl2, rl2, asr #1 @ tmpR
mov rld, rld, asr #1 @ tmpI
mov rl0, rl0, asr #1 @ tmpRR
mov rll, rll, asr #1 @ tmpIT
strh r1l, [rl,r3] @ xI[n+L]
strh r10, [r0, r3] @ xR[n+L]
strh rl14, [rl], #-4 @ xI[n], point back to the begining
strh r12, [r0], #-4 @ xR[n], point back to the begining
b twoPointsDFT_ DSP
checkNext_DSP:
cmp r3, #2
bne oneButterFly_DSP
twoPointsDFT_DSP:
ldrsh r10, [x0], #+2 @ xR[0]
ldrsh r11l, [x0], #-2 @ xR[1]
add rl2, rl10, rll @ tmpR=((int)xR[0])+ xR[1]
sub rld, rl1l0, rll @ tmpRR=((int)xR[0])- xR[1];
mov rl2, rl2, asr #1

Application Note

85

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply =
Accumulate Instructions — FIR / IR Filters and FFT Examples In
Source Code Examples

Figure 8. FFT Example, Assembly Code (Sheet 9 of 11)
mov rl4d, rl4d, asr #1 @
strh rl2, [r0], #+2 @ xR[0]=(short) (tmpR>>1);
strh rld, [r0], #-2 @ xXR[1l]=(short) (tmpRR>>1);
1ldrsh r10, [rl1l], #+2 @ xI[0]
ldrsh r11, [rl], #-2 @ xI[1]
add rl2, rl0, rll @ tmpI=((int)xI[0])+ xI[1]
sub rld, rl0, rll @ tmpII=((int)xI[0])- xI[1];
mov rl2, rl2, asr #1
mov rl4d, rl4d, asr #1
strh rl2, [rl], #+2 @ xI[0]=(short) (tmpI>>1);
strh rld, [rll, #-2 @ xI[1l]=(short) (tmpII>>1);
ldmia sp!, {r0-rl12,pc} @ return

oneButterFly DSP:
@ save variables for iterations
stmdb sp!, {r0-r4d} @ push registers
@ section A of the butterfly
mov r7, r3e L

loopl_DSP:
ldrsh r10, [xO0] @ xR[n]
ldrsh r1l, [r0,r3] @ xR[n+L]
sub rld, rl0, rll @ tmpRR=((int)xR[n])- xR[n+L];
add rl2, rl0, rll @ tmpR=((int)xR[n])+ xR[n+L]
mov rl4d, rl4d, asr #1
mov rl2, rl2, asr #1
strh rld, [r0,r3] @ xR[n+L]=(short) (tmpRR>>1) ;
strh rl2, [r0], #+2 @ xR[n]=(short) (tmpR>>1); n=n+l
ldrsh r10, [rl] @ xI[n]
ldrsh rl1l, [rl,r3] @ xI[n+L]
sub rld, rl0, rll @ tmpII=((int)xI[n])- xI[n+L];
add rl2, rl0, rll @ tmpI=((int)xI[nl])+ xI[n+L]
mov rl4d, rl4d, asr #1
mov rl2, rl2, asr #1
strh rld, [rl,r3] @ xI[n+L]=(short) (tmpII>>1);
strh rl2, [rl], #+2 @ xI[n]=(short) (tmpI>>1); n=n+l

subs r7, r7, #2
bne loopl_DSP

@ setion B of the butterfly

mov r3, r3, asr #1 @ L=M/2

sub r7, r3, #2 @ treat the first loop specially

add r6, rd, rd4d, 1lsl #1 @ r7=3*qg

add r5, r2, r6

@ n+=3Q to skip first loop, point to cos&sin with 3g offset
addr2, r2, rd @ n+=gq to skip first loop,

@ first loop treated specially because there is no need to do
@ multiplication for n=0
ldrsh r10, [xO0] @ xR[n]

ldrsh r1l, [r0,r3] @ xR[n+L]

@ at this point, r0 exactly point to xR[L], rl exactly point to xI[L]

86 Application Note

intel.

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply
Accumulate Instructions — FIR / IR Filters and FFT Examples

Source Code Examples

Figure 8. FFT Example, Assembly Code (Sheet 10 of 11)
ldrshrs8, [rl] @ xI[n]
ldrsh r9, [rl,r3] @ xI[n+L]
add rl2, rl1l0, r9 @ tmpR=((int)xR[n])+ xI[n+L]
sub rld, r8, rll @ tmpI=((int)xI[n])- xR[n+L];
sub rl0, rl1l0, r9 @ tmpRR=((int)xR[n])- xI[n+L]
add rll, r8, rlil @ tmpII=((int)xI[n])+ XR[n+L];
mov rl0, rl0, asr #1 @ tmpRR
mov rll, rll, asr #1 @ tmpIT
mov rl2, rl2, asr #1 @ tmpR
mov rl4d, rld, asr #1 @ tmpI
@ r8 & r9 are free now
strh rll, [rl,r3] @ xI[n+L]
strh r10, [x0, r3] @ xR[n+L]
strh rl14, [rl], #+2 @ xI[n]
strh rl12, [x0], #+2 @ xXR[n], n+=2

@ multiplication required for n>1

loop2_DSP:
ldrsh r10, [xO0]
ldrsh r1l1l, [x0,xr3]
ldrsh r8, [r1l]
ldrsh r9, [rl,r3]
add rl2, rl0, r9
sub rld4, r8, rll
sub rl0, rl0, r9
add rll, r8, rll

@ r8 & r9 are free now
@ scale and pack the data

mov rl2, rl2, 1lsl #15
mov rl2, rl2, lsr #16
mov rl4d, rld, asr #1
orr rl2, rl2, rld, 1lsl #16
mov rl1l0, rl1l0, 1lsl #15
mov rl1l0, rl0, lsr #16
mov rll, rll, asr #1
orr r1l0, rl0, rll, 1lsl #16

sub r8, r8, r8

™ ®®

P®®®

@ xR[n]
@ xR[n+L]

@ xI[n]
@ xI[n+L]

@ tmpR=((int)
@ tmpI=((int)

@ tmpRR=((int)xR[n
@ tmpII=((int)xI[n

tmpR

tmpR >>1

tmpI >>1
rl12={tmpI tmpR}

tmpRR

tmpRR >>1

tmpII >>1
r10={tmpII tmpRR}

-sinI[n]}

1ldr r9, [x5,#4] @ {cosR[n],

mar accO, r8, r8 @ rl1l0={tmpII tmpRR}

miaph accO, rl0, r9 @ tmpII*cosR -tmpRR*sinT
mra rll, rld, accO0 @ accO=[rld rll]

mov rll, rll, asr #15

strh rl1l, [rl,r3] @ xI[n+L]

1dr r9, [r5], r6 @ {sinI[n],

cosR[n]},

n+=3*qg

Application Note

87

Intel® IXP400 Software: Intel XScale® Microarchitecture Multiply

Accumulate Instructions — FIR / IR Filters and FFT Examples
Source Code Examples

Figure 8. FFT Example, Assembly Code (Sheet 11 of 11)

mar accO, r8, r8 @ rlO0={tmpII tmpRR}

mra rll, rl4, accO @ accO=[rld rll]
mov rll, rll, asr #15
strh r11, [r0, r3] @ xR[n+L]
1dr r9, [r2,#4]
mar accO, r8, r8 @ rl2={tmpI tmpR}

mra rll, rld, accO0 @ accO=[rld rll]
mov rll, rll, asr #15

mra rll, rld, accO0 @ accO=[rl4d rll]
mov rll, rll, asr #15
strh rl1l, [r0], #+2 @ xR[n], n+=2
subs r7, r7, #2

bne loop2_DSP

@ restore variables for iterations
ldmia sp!, {r0-r4d} @ pop

iterating_ DSP:
mov r3, r3, lsr #1 @ M=M/2
mov r4d, r4, lsl #1 @ g=g*2
bl Split_Radix_ButterFly_asm_DSP

add r0, r0, r3, 1lsl #1 @ xR+M
add rl, rl, r3, 1lsl #1 @ xI+M
mov r3, r3, lsr #1 @ M=M/2

mov r4d, r4, lsl #1 @ g=g*2

bl Split_Radix_ButterFly_asm_DSP

add r0, r0, r3, 1lsl #1 @ xXR+M+M/2
add rl, rl, r3, 1lsl #1 @ xI+M+M/2
bl Split_Radix_ ButterFly_asm_DSP

endNow_DSP:

ldmia sp!, {r0-rl12,pc} @ return

miaph acc0, rl2, r9 @ tmpI*cosR -tmpR*sinI

strh rl1l, [rl]l, #+2 @ xI[n]

1ldr r9, [xr2], r4d @ {sinI[n], cosR[n]},
mar accO0, r8, r8 @ rl2={tmpI tmpR}

miaph accO, rl2, r9 @ tmpR*cosR + tmpI*sinI

miaph accO0, rl1l0, r9 @ tmpRR*cosR + tmpII*sinI

@ {cosR[n], -sinI[n]}

n+=q

88

Application Note

	Contents
	Figures
	Tables

	1.0 Introduction
	1.1 FIR Filter
	1.2 IIR Filter
	1.3 Fast Fourier Transform
	1.4 Related Documents
	1.5 Acronyms

	2.0 Intel XScale® Microarchitecture and Multiply Accumulate DSP Instructions Description
	2.1 DSP - MAC Instructions Overview
	2.2 DSP Coprocessor 0 (CP0)
	2.2.1 Multiply With Internal Accumulate Format
	Table 1. Multiply with Internal Accumulate Format
	Table 2. MIA{<cond>} acc0, Rm, Rs
	Table 3. MIAPH{<cond>} acc0, Rm, Rs
	Table 4. MIAxy{<cond>} acc0, Rm, Rs
	2.2.2 Internal Accumulator Access Format
	Table 5. Internal Accumulator Access Format
	Table 6. MRA{<cond>} RdLo, RdHi, acc0

	3.0 FIR Filter Example
	3.1 Filter Description
	3.2 Testing Function - testFIR()
	3.2.1 FIR Testing Results
	3.2.1.1 FIR ASM Code Using DSP Coprocessor
	3.2.1.2 FIR ASM Code Without DSP Coprocessor
	3.2.1.3 FIR C Code

	3.2.2 FIR ARM* ASM Code Using DSP Coprocessor
	3.2.3 FIR ARM*ASM Code Without DSP Coprocessor
	3.2.4 FIR Straight C Code Without DSP Coprocessor
	3.2.5 FIR Initialization

	4.0 IIR Filter Example
	4.1 IIR Filter Description
	4.2 Testing Function TESTIIR()
	4.2.1 IIR Testing Results
	4.2.1.1 IIR - ASM Code Using DSP Instructions, M & N Must be Divisible by 4
	4.2.1.2 IIR - ASM Code Using DSP Instructions, M & N Must be Even Numbers
	4.2.1.3 IIR - ASM Code not Using DSP Instructions
	4.2.1.4 IIR - Straight C Code, not Using DSP Coprocessor

	4.2.2 IIR - ARM* ASM Code Using DSP Coprocessor
	4.2.3 IIR - ARM ASM Code without DSP Coprocessor
	4.2.4 IIR - Straight C Code Without DSP Coprocessor

	5.0 FFT Example
	5.1 FFT Description - Split-Radix FFT Implementation on Intel® IXP425 Network Processor
	5.1.1 FFT Formula Details

	5.2 Implementation
	5.2.1 FFT Results
	Figure 1. Sine Waveform
	Figure 2. FFT of the Sine Wave

	6.0 Source Code Examples
	6.1 FIR Filter
	Figure 3. FIR Filter Coded in C Language (Sheet 1 of 7)
	Figure 4. FIR Filter Example - Optimized Using MAC Instructions (Sheet 1 of 6)

	6.2 IIR Filter Source Code
	Figure 5. IIR Filter Example, C Code (Sheet 1 of 10)
	Figure 6. IIR Filter Example, Assembly Code (Sheet 12 of 12)

	6.3 FFT Source Code Example
	Figure 7. FFT Example, C Code (Sheet 20 of 20)
	Figure 8. FFT Example, Assembly Code (Sheet 11 of 11)

