
White paper

STAMINA: Scalable Deep Learning
Approach for Malware Classification

Li Chen, Ravi Sahita – Intel Corporation
Jugal Parikh, Marc Marino – Microsoft Corporation

April 2020

Introduction

Intel Labs and Microsoft Threat Protection Intelligence Team are collaborating to research the application of deep
learning for malware threat detection. The goals of the joint research are:

- Leveraging deep learning techniques to avoid time-consuming manual feature engineering with high accuracy
and low false positives.

- Optimizing deep learning techniques in terms of model size and leveraging platform hardware capabilities to
optimize execution of deep-learning malware detection approaches.

In this paper, we focused on the first goal, leaving the other areas for future analysis.

Typically, malware analysis using machine-learning techniques can leverage static characteristics of programs
and/or dynamic characteristics of programs. For static analysis, observable artifacts of the objects analyzed are
utilized for deep learning. For dynamic analysis, the static information is augmented with dynamically generated
information derived from execution of the objects (or execution of the programs that handle the objects, such as a
PDF file). For this paper, the we have focused on static analysis to allow the broadest possible applicability of the
approach to malware classification; we will cover the dynamic analysis techniques in the future. We defined
malware as a combination of known malware (previously classified), potentially unwanted applications (PUAs), and
unknown binaries (with no known provenance or history).

We studied the practical benefits of applying deep transfer learning from computer vision to static malware
classification. Recall that in the transfer learning scheme, we borrowed knowledge from natural images or objects
and applied it to the target domain of static malware detection. The training time of deep neural networks is
accelerated while high classification performance is still maintained. In this paper, Intel Labs and the Microsoft
Threat Intelligence Team have demonstrated the effectiveness of this approach on a real-world user dataset and
have shown that transfer learning from computer vision for malware classification can achieve highly desirable
classification performance. For this collaboration, we called this approach STAtic Malware-as-Image Network
Analysis (STAMINA), which will be used throughout this paper to refer to this approach.

Malware is a type of software that possesses malicious characteristics to cause damage to the user, computer, or
network. Static analysis is a quick and straightforward way to detect malware without executing the application or
monitoring the run time behavior. Signature matching, a static analysis technique, is used to match malicious
signatures. However, as malware signatures are increasing exponentially every day, signature matching must keep
up with malware signatures in order to be effective.

STAMINA: Scalable Deep Learning Approach for Malware Classification

 2

Previously, Intel Labs proposed an enhanced malware detection framework [1] that employs deep transfer learning
to train directly on malware images. The approach was motivated by visual inspection of application binaries
plotted as grey-scale images: there are textural and structural similarities among malware from the same family and
dissimilarities between malware and benign software as well as across different malware families. The paper
examined three public benchmarks. Intel Labs collaborated with Microsoft to establish the practical value of this
image-based transfer learning approach for static malware classification, based on a real-world data set.

Classical malware detection approaches involve extracting the binary signatures or fingerprints of the malware.
However, the rapid increase of signatures, often in exponential growth, makes the signature matching less
straightforward. Other approaches include static and dynamic analysis, both of which have advantages and
disadvantages. Static analysis disassembles the code, but its performance can suffer from code obfuscation.
Dynamic analysis, while able to unpack the code, can be time consuming. Resizing as a preprocessing step does not
negatively impact the classification result, since our system trains a very deep neural network to extract the deep-
represented features. As seen in the experimental results, our system can outperform many other classifiers and
results from prior-art. Furthermore, for malware from the same family, resizing still results in similar patterns.

STAMINA Steps

To recap the proposed method [1], STAMINA essentially consists of four steps: preprocessing (image conversion),
transfer learning, evaluation and interpretation. For this study, we describe the first three steps in detail and refer to
the reader to [1] for more information on the interpretation stage.

Figure 1: First three steps of the STAMINA method

Preprocessing (Image Conversion)

The image conversion step consists of three sub-steps: pixel conversion, reshaping and resizing. Given a binary
application, pixel conversion is straightforward: we read every byte into a value between 0 and 255, directly
corresponding to pixel intensity. This step converts a binary into a one-dimensional pixel stream. In order to apply
transfer learning and computer vision, we needed to reshape the pixel streams into two dimensions. The width and
height were determined by the file size after converting to pixel stream, following an empirically validated table, as
shown below. In some prior publications, authors used the file size and image width directly. Our table uses the
pixel file size and image width relationship. The pixel file size is a multiplier of the file size, so that the relationships
are still linearly scaled. We recommend using this table because it helps set the width and height more concretely.

STAMINA: Scalable Deep Learning Approach for Malware Classification

 3

Pixel File Size Image Width

Between 0 to 10 32

Between 10 and 30 64

Between 30 and 60 128

Between 60 and 100 256

Between 100 and 200 384

Between 200 and 1000 512

Between 1000 and 1500 1024

Greater than 1500 2048

The image height is calculated as the number of pixels divided by the width. If the height is a decimal number, we
rounded it up and padded the extra pixels as zeros.

After reshaping, we considered resizing the images so that they can be used by transfer learning techniques.
Resizing as a preprocessing step does not negatively impact the classification result, since our system trains a very
deep neural network to extract the deep-represented features. As seen in the experimental results, our system can
outperform many other classifiers and results from prior-art. Furthermore, for malware from the same family,
resizing still results in similar patterns.

We recommend resizing to 224 or 299 so that the image models trained on ImageNet can be used for fine tuning
on the images. There are many ways to resize images. We recommend using the bilinear interpolation or nearest
neighbor algorithms for resizing. We advise not to use crop and resize combination since we are dealing with
benign and malware images, not natural images.

Transfer Learning Step

Deep learning has demonstrated state-of-the-art performance on large-scale image classification. In particular,
transfer learning has been heavily employed in computer vision. The idea of transfer learning is to borrow
knowledge learned from a model used in one domain and apply it to another targeted domain. Typically,
practitioners take a pre-trained model from a type of image dataset, freeze a portion of the layers, and fine-tune
the last few layers on the newly obtained dataset. The advantages of transfer learning include accelerating training
time, reducing parameters and architecture search for deep neural networks, and maintaining high classification
performance, especially on relatively smaller-sized datasets.

Our proposed method leverages the value of transfer learning to train a highly effective malware classifier for static
malware classification. The transfer learning step was done on the malware and benign images produced in the
preprocessing step. In practice, due to the limitation of datasets, training an entire deep neural network from
scratch can be difficult. What has been done in the computer vision space is that, for specific tasks, models pre-
trained on a large number of images are used, and transfer learning is conducted on target tasks. Major transfer
learning schemes include using as a feature extractor and fine-tuning the network.

STAMINA: Scalable Deep Learning Approach for Malware Classification

 4

In using as a feature extractor, the last fully connected layer is removed, with the rest of the network treated as a
fixed feature extractor. Fine-tuning the network means retraining the top of the pre-trained network and fine-
tuning the weights of the pretrained network via continued back propagation step. For this study, using as a fixed
feature extractor was not applicable to because the malware classification task is further away from natural image
classification.

Our malware dataset, which we describe below, is relatively large - but still small compared with ImageNet and
different from the original ImageNet dataset. We expected the cost to train a deep neural network such as
Inception or Resnet manageable. However, initializing weights from the pretrained model produces effective
classification performance.

Figure 2: We retrained the last fully connected layer and softmax.

Evaluation

The last step of STAMINA is evaluation. We considered accuracy, false positive rate, precision, recall, F1 score, and
area under the receiver operating curve (ROC) as evaluation. In particular, per feedback from malware analysis
practitioners, we also reported recall at 0.1% – 10% false positive rate via ROC.

All metrics are evaluated on the test set. The accuracy is defined as the number of correctly classified samples over
the total number of test samples. False positive rate is the number of benign software being misclassified as
malware divided by the total number of benign software. Precision is the ratio of true positive divided by the sum of
true positive and false positive. Recall is the ratio of true positive over the sum of true positive and false negative.
F1 score is the harmonic mean of precision and sensitivity (one minus sensitivity).

Data Description

The analysis was done on a Microsoft dataset of 2.2 million hashes of malware binaries and 10 columns of data
information. We split the training set, validation set and testing set 60:20:20, segmented along first time seen for
benign and malicious. For the malware set, we initially prepared 1,241,218 training hashes, 413,739 validation
hashes and 413,739 testing hashes, where the training hashes are seen at an earlier time than validation hashes
and test hashes are seen last. Similarly, we also prepared 119,362 training hashes, 39,787 validation hashes and
39,787 test hashes for benign data, also selected based on the time axis of file last seen by Microsoft. The
malicious files span through the past six months while the benign files span the past seven days.

STAMINA: Scalable Deep Learning Approach for Malware Classification

 5

We were able to successfully acquire 197,604 benign samples and 584,606 malicious samples. After removing files
with size zero due to network limitation, we collected 782,224 binary applications from both benign and malicious
classes. We split the training and testing samples using the time axes by benign and malicious files respectively.
Further due to network limitation, we missed downloading many malware files in the mid-20% of the time axes.
Hence, we combined the training and validation set together and still tested on the latest 20% of files seen. We
obtained 157,837 benign training and validation samples and 39,781 benign test samples, 495,077 malicious
training and validation samples and 89,529 malicious test samples. We noted that the malware-to-benign ratio
from the training and validation set is approximately 3.143:1 the malware to benign ratio from the test set is
approximately 2.251:1. Hence, the random guessing baseline is 74.74%, higher than 50%.

Figure 3: Benign training / validation / testing process

Because we received real-world data for our analysis, the file sizes are not distributed uniformly. We wanted to
understand how much correlation between file sizes and labels exist in this dataset. This correlation analysis is
important because if the file sizes are strongly correlated with labels, any model trained using the file size
information is vulnerable. An attacker could manipulate the file sizes to cause the system to misclassify a malicious
file into a benign application.

On the file sizes, we trained a light gradient boosting machine (lightGBM) [3] which is a gradient boosting
framework that uses tree-based learning algorithms. Essentially, gradient boosting is an ensemble of weak learners,
in this case, trees. To train gradient boosting, we first fit a tree to the training set, calculate the residuals, then fit a
second tree to the residuals to obtain predicted residuals. We repeated this process until the error reached a pre-
specified threshold. LightGBM was trained for epochs 5,000 but had an early stop at the 147th epoch.

The result of using file size as a 1-D feature yielded the following classification result. We used such a result to
understand whether file size can be effective for classification. Compared with our guessing baseline at 75%
accuracy, with 79.48%, we do not consider file size being very influential for malware classification. Hence for our
initial approach, in order to deal with files with many different levels of file sizes, we proposed a file size gating
scheme for our STAMINA model.

Approach I: Resizing and segmentation after file gating

Our initial approach was the following: To combat the highly skewed file size distribution, we proposed using a file
size gate to deal with applications of different size levels. To determine the file size to be used as a resizing
threshold, we calculated the pixel file sizes for all the samples in the training and validation dataset. We noted that
it is important to only use the training and validation samples to calculate the file size distribution, because we do

STAMINA: Scalable Deep Learning Approach for Malware Classification

 6

not want to peek into the test set. We selected median pixel file size 3.9 MB in the training and validation set to be
the cut-off gate. We will describe the results from this approach and discuss the pros and cons for this approach
toward the end of this paper.

Figure 4: File size gating approach

Resizing

For STAMINA model I, we used Inception-v1 for the fine-tuning step. The model starts to converge at the 10th
epoch. Due to bias-variance tradeoff, we selected the model trained from the 10th epoch. In our Inception
framework, we downloaded the MxNet [4] model trained at epoch 126. We trained using transfer learning with
Inception-v1 model on set of training + validation containing 81,417 benign and 327,592 malicious samples. Each
epoch ttook 2.5 hours to train with 40.8k batches of computation at batch size 128. The test contained 19,897
benign and 55,931 malicious samples. Below is STAMINA performance on the test set.

Looking at the training progress for STAMINA model I, the validation accuracy starts to decrease after the 10th
epoch. To avoid overfitting, we used the model checkpointed at epoch 10 as our final model and apply the model
on the test set.

The classification result on the test set is as follows: The accuracy is 99.07% with false positive rate at 2.58%. The
precision is at 99.09% and recall at 99.66%. F1 score is 0.9937.

STAMINA: Scalable Deep Learning Approach for Malware Classification

 7

We also plotted the confusion matrix below. The diagonals are the true positives and true negatives.

Figure 5: Confusion matrix for test set

At FPR 10%, we reported the recall or true positive rate at 99.94%. At FPR 0.1%, the recall is 87.05%. We also
reported the recall (or true positive rate) across all values of false positive rate via ROC.

Segmentation

For STAMINA model II, we used segmentation and resizing to deal with large files. Our initial approach used file size
as an extra gate, which is the model trained on large sized files. After examining the file size distribution for benign
and malicious files respectively, we decided to segment the benign files only – for each benign file, we segmented
and converted it into multiple images and for each malicious file, we resized and converted it into one single image.
By doing this, we also addressed the data imbalance issue between benign and malicious. The number of
segmented benign files for training is 31,965. The number of resized malware images for training is 58,630. We
trained STAMINA model II on this set and tested on a set-aside test set.

Using Inception-v1, our model started to converge on the 10th epoch. After the 25th epoch, we noticed the
accuracy on the validation set started to drop. Hence due to bias-variance tradeoff, we selected the model
checkpointed at epoch 25. We reported the classification result on the test set. The accuracy is 95.97% with
sensitivity at 97.90%, false positive rate at 4.49%. F1 score is 90.35. Precision is 83.89%. Recall is 97.90%.

The classification performance for STAMINA model II with segmentation processing is summarized as follows.

Accuracy False positive rate Precision Recall F1

95.97 4.49 83.88 97.90 90.35

STAMINA: Scalable Deep Learning Approach for Malware Classification

 8

Individual and aggregated classification result

Since we performed segmentation on benign images, we finally aggregated the individual predictions of the benign
images and produced the overall scoring by taking the average of the individual scores.

We reported the result in a ROC curve as shown in Figure 6 below. The area under the curve is 0.8975. Because we
segmented the benign files, we finally aggregated the benign predictions by taking the average. The area under the
curve is slightly lower at 0.8750.

Figure 6: ROC results on test set and after aggregation of benign prediction

Limitation of segmentation step

We commented on the pros and cons of the segmentation approach stated above. STAMINA model II also showed
excellent performance on the files with large file size. The reason we proposed the processing step in STAMINA

STAMINA: Scalable Deep Learning Approach for Malware Classification

 9

model II is because benign files are often in much larger size than malicious files. If resizing the giant images
directly, information will be lost for benign images.

However, we caution that the preprocessing step in STAMINA model II should be used along with a prior model to
infer the probability of a benign or malicious file. To elaborate, STAMINA model II is trained on large file sizes. We
noticed that the most benign files have much larger file sizes than malicious files, so we proposed image
segmentation. Most benign files result in more than 1,000 segmented images and malware images mostly result in
less than 100 segmented images. Hence, we only applied the segmentation step on the benign images, not
malware images. Although the results are very good, we must caution that processing the benign and malicious
files differently means one needs to have some knowledge about the labels of files a priori. Such information may
or may not be obtained during test time. Hence, we recommend that during deployment for STAMINA model II,
when there is some knowledge of the labels either from security domain expertise or from simple machine learning
classification, then STAMINA model II can achieve the best result.

Approach II: Resizing after file gating

We also explored the preprocessing technique of only resizing. However, we still stuck with the file size gating for
the following reasons: When very large files are mixed with very small files for training, the textural information is
much less preserved. The texture in the large files is more downsampled and the texture in the small files are
enlarged, where both cases can cause performance degradation. We pointed out some issues with directly resizing
the large application files. Many large files tend to result in correct JPEG data when reading with MxNet’s imread
function. Because the benign files are in several GBs in size, saving them into JPEG format results in corrupt JPEG
with extraneous bytes before marker. This is an internal bug in libjpeg that ships with OpenCV.

Related work

There have been various related efforts to apply deep learning on disassembled byte code as well as gray scale
images. The dissasembly based approaches [2] require preprocessing to dissasemble the binaries and specifically
anotating or padding instructions – in image-based approaches we avoid the preprocessing steps. In contrast to
alternate approaches using gray scale images corresponding to programs [5], we apply transfer learning, so we
bypass the heuristic search for parameters (and architectures) – saving time and achieving almost similar accuracy.
Other experiments have also analyzed using transfer learning for image-based malware classification [6] – our
study is one of the first to evaluate this approach at a large scale for portable executable (PE) binaries.

Conclusion and insights

Classical malware detection approaches involve extracting binary signatures or fingerprints of the malware.
However, the exponential growth of signatures makes signature-matching inefficient. Other approaches include
static and dynamic analysis, both of which have advantages and disadvantages. Static analysis disassembles the
code, but its performance can suffer from code obfuscation. Dynamic analysis, while able to unpack the code, can
be time-consuming.

Our study indicates the pros and cons between sample-based and meta data-based methods. The major
advantages are that we can go in-depth into the samples and extract textural information, so all the characteristics
of the malware files are captured during training. However, for bigger size applications, STAMINA becomes less
effective due to software not being able to convert billions of pixels into JPEG images and then resizing. In cases
like this, meta-data-based methods show advantages over sample-based models.

STAMINA: Scalable Deep Learning Approach for Malware Classification

 10

As malware variants continue to grow, traditional signature matching techniques cannot keep up. We looked to
applying deep-learning techniques to avoid costly feature engineering and used machine learning techniques to
learn and build classification systems that can effectively identify malware program binaries. We explored a novel
image-based technique on x86 program binaries, which resulted in 99.07% accuracy with 2.58% false positive rate.

For future work, we would like to evaluate hybrid models of using intermediate representations of the binaries and
information extracted from binaries with deep learning approaches – these datasets are expected to be bigger but
may provide higher accuracy. We also will continue to explore platform acceleration optimizations for our deep
learning models so we can deploy such detection techniques with minimal power and performance impact to the
end-user.

References

[1] L. Chen, “Deep transfer learning for static malware classification,” arXiv preprint arXiv:1812.07606, 2018.

[2] A. Davis, M. Wolff, “Deep learning on disassembly data,” Blackhat, 2015.

[3] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision tree,” Advances in Neural Information
Processing Systems, 2017.

[4] T. Chen et al., “MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems,”
arXiv preprint arXiv:1512.01274, 2015.

[5] D. Gibert, “Convolutional neural networks for malware classification,” Department of Computer Science – A
thesis presented for the degree of Master in Artificial Intelligence, 2016.

[6] N. Bhodia, P. Prajapati, F. Di Troia, M. Stamp, “Transfer learning for image-based malware classification,” arXiv
preprint arXiv:1903.11551, 2019.

Notices & Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information
visit www.intel.com/benchmarks.

Performance results are based on internal testing and may not reflect all publicly available updates. No product or
component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

STAMINA: Scalable Deep Learning Approach for Malware Classification

 11

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

