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Introduction 

Intel Labs and Microsoft Threat Protection Intelligence Team are collaborating to research the application of deep 
learning for malware threat detection. The goals of the joint research are: 

- Leveraging deep learning techniques to avoid time-consuming manual feature engineering with high accuracy 
and low false positives. 

- Optimizing deep learning techniques in terms of model size and leveraging platform hardware capabilities to 
optimize execution of deep-learning malware detection approaches. 

In this paper, we focused on the first goal, leaving the other areas for future analysis.  

Typically, malware analysis using machine-learning techniques can leverage static characteristics of programs 
and/or dynamic characteristics of programs. For static analysis, observable artifacts of the objects analyzed are 
utilized for deep learning. For dynamic analysis, the static information is augmented with dynamically generated 
information derived from execution of the objects (or execution of the programs that handle the objects, such as a 
PDF file). For this paper, the we have focused on static analysis to allow the broadest possible applicability of the 
approach to malware classification; we will cover the dynamic analysis techniques in the future. We defined 
malware as a combination of known malware (previously classified), potentially unwanted applications (PUAs), and 
unknown binaries (with no known provenance or history).  

We studied the practical benefits of applying deep transfer learning from computer vision to static malware 
classification. Recall that in the transfer learning scheme, we borrowed knowledge from natural images or objects 
and applied it to the target domain of static malware detection. The training time of deep neural networks is 
accelerated while high classification performance is still maintained. In this paper, Intel Labs and the Microsoft 
Threat Intelligence Team have demonstrated the effectiveness of this approach on a real-world user dataset and 
have shown that transfer learning from computer vision for malware classification can achieve highly desirable 
classification performance. For this collaboration, we called this approach STAtic Malware-as-Image Network 
Analysis (STAMINA), which will be used throughout this paper to refer to this approach. 

Malware is a type of software that possesses malicious characteristics to cause damage to the user, computer, or 
network. Static analysis is a quick and straightforward way to detect malware without executing the application or 
monitoring the run time behavior. Signature matching, a static analysis technique, is used to match malicious 
signatures. However, as malware signatures are increasing exponentially every day, signature matching must keep 
up with malware signatures in order to be effective.  
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Previously, Intel Labs proposed an enhanced malware detection framework [1] that employs deep transfer learning 
to train directly on malware images. The approach was motivated by visual inspection of application binaries 
plotted as grey-scale images: there are textural and structural similarities among malware from the same family and 
dissimilarities between malware and benign software as well as across different malware families. The paper 
examined three public benchmarks. Intel Labs collaborated with Microsoft to establish the practical value of this 
image-based transfer learning approach for static malware classification, based on a real-world data set.  

Classical malware detection approaches involve extracting the binary signatures or fingerprints of the malware. 
However, the rapid increase of signatures, often in exponential growth, makes the signature matching less 
straightforward. Other approaches include static and dynamic analysis, both of which have advantages and 
disadvantages. Static analysis disassembles the code, but its performance can suffer from code obfuscation. 
Dynamic analysis, while able to unpack the code, can be time consuming. Resizing as a preprocessing step does not 
negatively impact the classification result, since our system trains a very deep neural network to extract the deep-
represented features. As seen in the experimental results, our system can outperform many other classifiers and 
results from prior-art. Furthermore, for malware from the same family, resizing still results in similar patterns. 

STAMINA Steps 

To recap the proposed method [1], STAMINA essentially consists of four steps: preprocessing (image conversion), 
transfer learning, evaluation and interpretation. For this study, we describe the first three steps in detail and refer to 
the reader to [1] for more information on the interpretation stage.   

 

 

 
Figure 1: First three steps of the STAMINA method 
 
Preprocessing (Image Conversion) 

The image conversion step consists of three sub-steps: pixel conversion, reshaping and resizing. Given a binary 
application, pixel conversion is straightforward: we read every byte into a value between 0 and 255, directly 
corresponding to pixel intensity. This step converts a binary into a one-dimensional pixel stream. In order to apply 
transfer learning and computer vision, we needed to reshape the pixel streams into two dimensions. The width and 
height were determined by the file size after converting to pixel stream, following an empirically validated table, as 
shown below. In some prior publications, authors used the file size and image width directly. Our table uses the 
pixel file size and image width relationship. The pixel file size is a multiplier of the file size, so that the relationships 
are still linearly scaled. We recommend using this table because it helps set the width and height more concretely. 
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Pixel File Size Image Width 

Between 0 to 10 32 

Between 10 and 30 64 

Between 30 and 60 128 

Between 60 and 100 256 

Between 100 and 200 384 

Between 200 and 1000 512 

Between 1000 and 1500 1024 

Greater than 1500 2048 

   

The image height is calculated as the number of pixels divided by the width. If the height is a decimal number, we 
rounded it up and padded the extra pixels as zeros.  

After reshaping, we considered resizing the images so that they can be used by transfer learning techniques. 
Resizing as a preprocessing step does not negatively impact the classification result, since our system trains a very 
deep neural network to extract the deep-represented features. As seen in the experimental results, our system can 
outperform many other classifiers and results from prior-art. Furthermore, for malware from the same family, 
resizing still results in similar patterns.  

We recommend resizing to 224 or 299 so that the image models trained on ImageNet can be used for fine tuning 
on the images. There are many ways to resize images. We recommend using the bilinear interpolation or nearest 
neighbor algorithms for resizing. We advise not to use crop and resize combination since we are dealing with 
benign and malware images, not natural images.  

Transfer Learning Step 

Deep learning has demonstrated state-of-the-art performance on large-scale image classification. In particular, 
transfer learning has been heavily employed in computer vision. The idea of transfer learning is to borrow 
knowledge learned from a model used in one domain and apply it to another targeted domain. Typically, 
practitioners take a pre-trained model from a type of image dataset, freeze a portion of the layers, and fine-tune 
the last few layers on the newly obtained dataset. The advantages of transfer learning include accelerating training 
time, reducing parameters and architecture search for deep neural networks, and maintaining high classification 
performance, especially on relatively smaller-sized datasets. 

Our proposed method leverages the value of transfer learning to train a highly effective malware classifier for static 
malware classification. The transfer learning step was done on the malware and benign images produced in the 
preprocessing step. In practice, due to the limitation of datasets, training an entire deep neural network from 
scratch can be difficult. What has been done in the computer vision space is that, for specific tasks, models pre-
trained on a large number of images are used, and transfer learning is conducted on target tasks. Major transfer 
learning schemes include using as a feature extractor and fine-tuning the network.  
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In using as a feature extractor, the last fully connected layer is removed, with the rest of the network treated as a 
fixed feature extractor. Fine-tuning the network means retraining the top of the pre-trained network and fine-
tuning the weights of the pretrained network via continued back propagation step. For this study, using as a fixed 
feature extractor was not applicable to because the malware classification task is further away from natural image 
classification.  

Our malware dataset, which we describe below, is relatively large - but still small compared with ImageNet and 
different from the original ImageNet dataset. We expected the cost to train a deep neural network such as 
Inception or Resnet manageable. However, initializing weights from the pretrained model produces effective 
classification performance. 

  

 

Figure 2: We retrained the last fully connected layer and softmax. 

Evaluation 

The last step of STAMINA is evaluation. We considered accuracy, false positive rate, precision, recall, F1 score, and 
area under the receiver operating curve (ROC) as evaluation. In particular, per feedback from malware analysis 
practitioners, we also reported recall at 0.1% – 10% false positive rate via ROC.   

All metrics are evaluated on the test set. The accuracy is defined as the number of correctly classified samples over 
the total number of test samples. False positive rate is the number of benign software being misclassified as 
malware divided by the total number of benign software. Precision is the ratio of true positive divided by the sum of 
true positive and false positive. Recall is the ratio of true positive over the sum of true positive and false negative. 
F1 score is the harmonic mean of precision and sensitivity (one minus sensitivity).   

Data Description 

The analysis was done on a Microsoft dataset of 2.2 million hashes of malware binaries and 10 columns of data 
information. We split the training set, validation set and testing set 60:20:20, segmented along first time seen for 
benign and malicious. For the malware set, we initially prepared 1,241,218 training hashes, 413,739 validation 
hashes and 413,739 testing hashes, where the training hashes are seen at an earlier time than validation hashes 
and test hashes are seen last. Similarly, we also prepared 119,362 training hashes, 39,787 validation hashes and 
39,787 test hashes for benign data, also selected based on the time axis of file last seen by Microsoft. The 
malicious files span through the past six months while the benign files span the past seven days.  
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We were able to successfully acquire 197,604 benign samples and 584,606 malicious samples. After removing files 
with size zero due to network limitation, we collected 782,224 binary applications from both benign and malicious 
classes. We split the training and testing samples using the time axes by benign and malicious files respectively. 
Further due to network limitation, we missed downloading many malware files in the mid-20% of the time axes. 
Hence, we combined the training and validation set together and still tested on the latest 20% of files seen. We 
obtained 157,837 benign training and validation samples and 39,781 benign test samples, 495,077 malicious 
training and validation samples and 89,529 malicious test samples. We noted that the malware-to-benign ratio 
from the training and validation set is approximately 3.143:1 the malware to benign ratio from the test set is 
approximately 2.251:1. Hence, the random guessing baseline is 74.74%, higher than 50%. 

 

Figure 3: Benign training / validation / testing process 

Because we received real-world data for our analysis, the file sizes are not distributed uniformly. We wanted to 
understand how much correlation between file sizes and labels exist in this dataset. This correlation analysis is 
important because if the file sizes are strongly correlated with labels, any model trained using the file size 
information is vulnerable. An attacker could manipulate the file sizes to cause the system to misclassify a malicious 
file into a benign application.  

On the file sizes, we trained a light gradient boosting machine (lightGBM) [3] which is a gradient boosting 
framework that uses tree-based learning algorithms. Essentially, gradient boosting is an ensemble of weak learners, 
in this case, trees. To train gradient boosting, we first fit a tree to the training set, calculate the residuals, then fit a 
second tree to the residuals to obtain predicted residuals. We repeated this process until the error reached a pre-
specified threshold. LightGBM was trained for epochs 5,000 but had an early stop at the 147th epoch.  

The result of using file size as a 1-D feature yielded the following classification result. We used such a result to 
understand whether file size can be effective for classification. Compared with our guessing baseline at 75% 
accuracy, with 79.48%, we do not consider file size being very influential for malware classification. Hence for our 
initial approach, in order to deal with files with many different levels of file sizes, we proposed a file size gating 
scheme for our STAMINA model.  

 

Approach I: Resizing and segmentation after file gating 

Our initial approach was the following: To combat the highly skewed file size distribution, we proposed using a file 
size gate to deal with applications of different size levels. To determine the file size to be used as a resizing 
threshold, we calculated the pixel file sizes for all the samples in the training and validation dataset. We noted that 
it is important to only use the training and validation samples to calculate the file size distribution, because we do 
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not want to peek into the test set. We selected median pixel file size 3.9 MB in the training and validation set to be 
the cut-off gate. We will describe the results from this approach and discuss the pros and cons for this approach 
toward the end of this paper.   

 

Figure 4: File size gating approach 

Resizing  

For STAMINA model I, we used Inception-v1 for the fine-tuning step. The model starts to converge at the 10th 
epoch. Due to bias-variance tradeoff, we selected the model trained from the 10th epoch. In our Inception 
framework, we downloaded the MxNet [4] model trained at epoch 126. We trained using transfer learning with 
Inception-v1 model on set of training + validation containing 81,417 benign and 327,592 malicious samples. Each 
epoch ttook 2.5 hours to train with 40.8k batches of computation at batch size 128. The test contained 19,897 
benign and 55,931 malicious samples. Below is STAMINA performance on the test set. 

Looking at the training progress for STAMINA model I, the validation accuracy starts to decrease after the 10th 
epoch. To avoid overfitting, we used the model checkpointed at epoch 10 as our final model and apply the model 
on the test set.  

 

The classification result on the test set is as follows: The accuracy is 99.07% with false positive rate at 2.58%. The 
precision is at 99.09% and recall at 99.66%. F1 score is 0.9937. 
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We also plotted the confusion matrix below. The diagonals are the true positives and true negatives.  

    

Figure 5: Confusion matrix for test set 

At FPR 10%, we reported the recall or true positive rate at 99.94%. At FPR 0.1%, the recall is 87.05%. We also 
reported the recall (or true positive rate) across all values of false positive rate via ROC. 

Segmentation 

For STAMINA model II, we used segmentation and resizing to deal with large files. Our initial approach used file size 
as an extra gate, which is the model trained on large sized files. After examining the file size distribution for benign 
and malicious files respectively, we decided to segment the benign files only – for each benign file, we segmented 
and converted it into multiple images and for each malicious file, we resized and converted it into one single image. 
By doing this, we also addressed the data imbalance issue between benign and malicious. The number of 
segmented benign files for training is 31,965. The number of resized malware images for training is 58,630. We 
trained STAMINA model II on this set and tested on a set-aside test set.  

Using Inception-v1, our model started to converge on the 10th epoch. After the 25th epoch, we noticed the 
accuracy on the validation set started to drop. Hence due to bias-variance tradeoff, we selected the model 
checkpointed at epoch 25. We reported the classification result on the test set. The accuracy is 95.97% with 
sensitivity at 97.90%, false positive rate at 4.49%. F1 score is 90.35. Precision is 83.89%. Recall is 97.90%. 

The classification performance for STAMINA model II with segmentation processing is summarized as follows.  
 

Accuracy False positive rate Precision Recall F1 

95.97 4.49 83.88 97.90 90.35 
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Individual and aggregated classification result 

Since we performed segmentation on benign images, we finally aggregated the individual predictions of the benign 
images and produced the overall scoring by taking the average of the individual scores.  

We reported the result in a ROC curve as shown in Figure 6 below. The area under the curve is 0.8975. Because we 
segmented the benign files, we finally aggregated the benign predictions by taking the average. The area under the 
curve is slightly lower at 0.8750. 

 

Figure 6: ROC results on test set and after aggregation of benign prediction 

Limitation of segmentation step 

We commented on the pros and cons of the segmentation approach stated above. STAMINA model II also showed 
excellent performance on the files with large file size. The reason we proposed the processing step in STAMINA 
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model II is because benign files are often in much larger size than malicious files. If resizing the giant images 
directly, information will be lost for benign images.  

However, we caution that the preprocessing step in STAMINA model II should be used along with a prior model to 
infer the probability of a benign or malicious file. To elaborate, STAMINA model II is trained on large file sizes. We 
noticed that the most benign files have much larger file sizes than malicious files, so we proposed image 
segmentation. Most benign files result in more than 1,000 segmented images and malware images mostly result in 
less than 100 segmented images. Hence, we only applied the segmentation step on the benign images, not 
malware images. Although the results are very good, we must caution that processing the benign and malicious 
files differently means one needs to have some knowledge about the labels of files a priori. Such information may 
or may not be obtained during test time. Hence, we recommend that during deployment for STAMINA model II, 
when there is some knowledge of the labels either from security domain expertise or from simple machine learning 
classification, then STAMINA model II can achieve the best result.  

Approach II: Resizing after file gating 

We also explored the preprocessing technique of only resizing. However, we still stuck with the file size gating for 
the following reasons: When very large files are mixed with very small files for training, the textural information is 
much less preserved. The texture in the large files is more downsampled and the texture in the small files are 
enlarged, where both cases can cause performance degradation. We pointed out some issues with directly resizing 
the large application files. Many large files tend to result in correct JPEG data when reading with MxNet’s imread 
function. Because the benign files are in several GBs in size, saving them into JPEG format results in corrupt JPEG 
with extraneous bytes before marker. This is an internal bug in libjpeg that ships with OpenCV. 

Related work 

There have been various related efforts to apply deep learning on disassembled byte code as well as gray scale 
images. The dissasembly based approaches [2] require preprocessing to dissasemble the binaries and specifically 
anotating or padding instructions – in image-based approaches we avoid the preprocessing steps. In contrast to 
alternate approaches using gray scale images corresponding to programs [5], we apply transfer learning, so we 
bypass the heuristic search for parameters (and architectures) – saving time and achieving almost similar accuracy. 
Other experiments have also analyzed using transfer learning for image-based malware classification [6] – our 
study is one of the first to evaluate this approach at a large scale for portable executable (PE) binaries. 

Conclusion and insights 

Classical malware detection approaches involve extracting binary signatures or fingerprints of the malware. 
However, the exponential growth of signatures makes signature-matching inefficient. Other approaches include 
static and dynamic analysis, both of which have advantages and disadvantages. Static analysis disassembles the 
code, but its performance can suffer from code obfuscation. Dynamic analysis, while able to unpack the code, can 
be time-consuming.  

Our study indicates the pros and cons between sample-based and meta data-based methods. The major 
advantages are that we can go in-depth into the samples and extract textural information, so all the characteristics 
of the malware files are captured during training. However, for bigger size applications, STAMINA becomes less 
effective due to software not being able to convert billions of pixels into JPEG images and then resizing. In cases 
like this, meta-data-based methods show advantages over sample-based models.   
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As malware variants continue to grow, traditional signature matching techniques cannot keep up. We looked to 
applying deep-learning techniques to avoid costly feature engineering and used machine learning techniques to 
learn and build classification systems that can effectively identify malware program binaries. We explored a novel 
image-based technique on x86 program binaries, which resulted in 99.07% accuracy with 2.58% false positive rate.  

For future work, we would like to evaluate hybrid models of using intermediate representations of the binaries and 
information extracted from binaries with deep learning approaches – these datasets are expected to be bigger but 
may provide higher accuracy. We also will continue to explore platform acceleration optimizations for our deep 
learning models so we can deploy such detection techniques with minimal power and performance impact to the 
end-user. 
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Notices & Disclaimers 

Software and workloads used in performance tests may have been optimized for performance only on Intel 
microprocessors.   

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, 
software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should 
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products.   For more complete information 
visit www.intel.com/benchmarks. 

Performance results are based on internal testing and may not reflect all publicly available updates.  No product or 
component can be absolutely secure.  

Your costs and results may vary.  

Intel technologies may require enabled hardware, software or service activation. 
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