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Abstract—Real-time functional magnetic resonance
imaging (rtfMRI) is an emerging approach for study-
ing the functioning of the human brain. Computa-
tional challenges combined with high data velocity
have to this point restricted rtfMRI analyses to
studying regions of the brain independently. How-
ever, given that neural processing is accomplished via
functional interactions among brain regions, neuro-
science could stand to benefit from rtfMRI analyses of
full-brain interactions. In this paper, we extend such
an offline analysis method, full correlation matrix
analysis (FCMA), to enable its use in rtfMRI stud-
ies. Specifically, we introduce algorithms capable of
processing real-time data for all stages of the FCMA
machine learning workflow: incremental feature se-
lection, model updating, and real-time classification.
We also present an actor-model based distributed
system designed to support FCMA and other rtfMRI
analysis methods. Experiments show that our system
successfully analyzes a stream of brain volumes and
returns neurofeedback with less than 180 ms of lag.
Our real-time FCMA implementation provides the
same accuracy as an optimized offline FCMA toolbox
while running 3.6—6.2x faster.

Keywords-big data; real-time fMRI; streaming; ma-
chine learning; full correlation matrix analysis

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is the
dominant technique for investigating human brain activ-
ity in neuroscience research. A typical fMRI study gener-
ates a 3D brain volume consisting of 25000-35 000 data
points (called vozels) every 1-2 seconds. Almost all ex-
isting fMRI studies are conducted in an offfine fashion—
statistical analysis occurs only after all data have been
acquired and sent to a file server or lab for processing,
long after the research subject has been taken out of
the scanner. This offline approach allows researchers to
design an experiment, perform it on multiple subjects,
and then analyze the reliability of the data by examining
consistency across subjects. Although sufficient for many
purposes, this approach has three major limitations:
First, the pace of discovery is very slow, with typical
fMRI studies lasting 6-12 months total, and often at
least 2-3 months before even tentative results are known.
Second, it is assumed that the same exact experiment
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should be run for each participant, missing opportunities
to tailor the study (e.g., the level of difficulty) to an
individual’s cognitive abilities and to assess whether
enough data, or the right kind of data, has been collected
in a given session. Third, it misses the opportunity to use
information acquired during scanning as feedback to the
subject, either to enhance participation and/or training
(e.g., on attention [1]).

Recently, it has become possible to conduct online or
real-time, closed loop fMRI (rtfMRI) studies, in which
data are preprocessed and analyzed as they are collected,
keeping pace with the rate of data acquisition [2], [3],
[4]. This partially addresses the issues above, at least
for limited forms of analysis. For example, a stimulus
can be dynamically “triggered” based on the amount
or pattern of activity in a brain region, allowing for
stronger inferences about the region and behavior [5];
experimental parameters, such as stimuli and tasks, can
be altered in order to optimize the experiment to recruit
particular brain regions [6]; and some visualization of
activity in a brain region can be provided to subjects as a
form of “neurofeedback”, helping them better engage in
a task [7]. Despite these advancements, there still exists
a major gulf between online and offline measures.

A. Challenges

One critical constraint on existing rtfMRI methods
concerns the type of analyses that are possible. Most
analyses used in rtfMRI treat the activity observed in
each voxel independently of one another. However, brain
function relies not only on the isolated activity of differ-
ent areas, but also, if not more critically, on interactions
between different brain regions, which can be reflected in
correlations of activity among these. Such correlations,
sometimes referred to as functional connectivity, have
become an increasingly important focus of brain imaging
research as a big-data problem [8]. However, because of
computational constraints, such correlational analyses
have typically been restricted to predefined regions of
interest (ROIs). This is problematic not only because
it restricts the extent of analysis, but also because it
biases analysis to seed regions identified by their isolated
activity. This is blind to effects that reside entirely in



patterns of correlations (i.e., without notable changes in
mean activity). To address this limitation, we recently
developed a method for full correlation matrix analy-
sis (FCMA), allowing unbiased analysis of patterns of
correlations over all voxels in the entire brain. We have
shown that this can reveal aspects of brain function not
revealed by traditional, non-correlational methods [9].
However, because of the computational demands, to date
it has not been possible to incorporate this method into
rtfMRI studies.

Another problem that has limited the use of rtfMRI
is the lack of readily accessible, standardized tools for
implementing it. Today, different neuroscience research
teams have to set up their own rtfMRI experimental en-
vironments, typically using a standalone machine sitting
beside the scanner to receive and analyze the incoming
data stream. This results in considerable duplication of
effort, and often inefficient solutions, or ones limited by
local resources.

B. Solution

To surmount these limitations, we propose algorithms
to conduct FCMA in real-time (henceforth referred to
as rtFCMA) based on highly optimized batch FCMA
code [10] (henceforth referred to as batchFCMA) by
leveraging the characteristics of real-time data streams.
Specifically, we design a full-stack real-time machine
learning solution which includes feature selection, model
updating, and classification.

We also present the design and implementation of
a distributed system to support rtfMRI analysis and
showcase it using rtFCMA as an application. FCMA is
an computationally intensive analysis that was not pos-
sible even in offline analysis until recently; it represents
an upper limit on current computational demands for
rtfMRI analyses. The rtFCMA system can be deployed
in Software as a Service (SaaS) mode, which will allow
neuroscientists from MRI centers around the world to
conduct their own real-time neurofeedback experiments,
leveraging and creating shared computing resources. The
distributed system requires minimal resources in the
scanner room. The back-end, which resides on a local
compute cluster or potentially a cloud, has a simple
REST HTTPS API that allows easy integration and fits
into existing network administration rules. The REST
server is a gateway to the distributed back-end, which
provides a flexible set of processes to handle rtfMRI anal-
yses in various topologies, with different experimental
configurations, and using a variety of algorithms.

Figure 1 shows the general concept of the rtFCMA
system. An fMRI machine continuously scans the brain
of a human subject while they perform certain tasks to
generate a data stream of 3D brain volumes. The data
stream is sent to a compute cluster where it is processed.
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Figure 1. Conceptual diagram of rtFCMA.

The resulting feedback is sent back to the fMRI scanner
in real time to form a closed data transfer loop. Our
system is the first ever rtfMRI system with low latency
closed-loop feedback running on a compute cluster.

The rtFCMA system runs two tasks with different
latency requirements. First, it needs to generate neu-
rofeedback with low latency. As an example, it typically
takes 1.5 seconds to produce a functional brain volume
on an MRI scanner. To keep pace with this data stream
from the scanner, rtFCMA needs to process a given
volume (e.g., produce a confidence score of subject’s
mental state that can be used to adjust the stimulus)
before the end of the next volume. The latency from the
completion of a brain volume to its delivery to rttFCMA
by the scanner can be as high as 780 ms in practice
(because of image reconstruction, file writing, and net-
work transmission), which leaves 720 ms for rtFCMA
neurofeedback. Second, rtFCMA needs to dynamically
adjust the classification model to account for incoming
data. This process requires a latency of tens of seconds
at most, to minimize the time the subject is kept waiting
in the scanner. Hence, for real-time operation rtFCMA
must provide neurofeedback in 720 ms, and update its
model in tens of seconds.

The contribution of this paper can be highlighted as
follows: (1) We propose and implement new algorithms
for rtFCMA, which are able to provide neurofeedback
with < 180 ms of lag and to update the classification
model in < 25 seconds. The rtFCMA algorithms updates
its model 3.6-6.2x faster than batchFCMA without
sacrificing accuracy, with techniques that can be gen-
eralized to many other applications. (2) We design and
build a distributed system to enable rtFCMA, as well as
potentially other types of rtfMRI.

II. FuLL CORRELATION MATRIX ANALYSIS

In this section, we briefly describe FCMA and its
applicability to rtfMRI studies.

A. Background

In fMRI studies, scanned brain volumes consist of
voxels. Each voxel has a blood-oxygen level dependent
(BOLD) value representing neural activity in the brain
area corresponding to the voxel. A typical study is
divided in time epochs, with the subject performing a
certain cognitive tasks during the fMRI scan in each
epoch. Epochs are labeled based on the type of cognitive
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Figure 2. The data processing flow of FCMA.

task, e.g., the label specifies the sort of images shown to
the subject during that epoch.

The goal of FCMA is predicting the cognitive state
of the subject (i.e., the label of the epoch) by analyzing
functional interactions in the brain. Unlike traditional
approaches based on the activity of individual voxels,
FCMA uses as input the Pearson correlation between
the activity of different voxels. Figure 2 shows the
general data processing flow of FCMA. The basic unit
of operation for FCMA is a full correlation matrix—
i.e., the temporal correlation of the activity of every
voxel in the brain with every other voxel. A separate
full correlation matrix is computed for each epoch in the
scanning session. The size of a full correlation matrix in
our case is ~5 GB, and can be even larger when a higher
resolution fMRI scanner is used. Based on the task types
during the epochs, the matrices are labeled as different
categories (depicted in figure 2 as dark red and light
blue). For example, in epoch x, the subject is attending
to a face image, whereas in epoch y, the subject is
attending to a scene image. In a typical fMRI study,
the number of epochs is in hundreds, corresponding to
hundreds of full correlation matrices.

In order to extract useful information from the huge
and noisy full correlation matrices, FCMA first performs
voxel selection (i.e., feature selection), which picks a
subset of voxels whose correlation vectors are most
predictive of the label classes among all brain voxels. In
addition to removing noise, voxel selection also makes
results easier to interpret for neuroscientists (by localiz-
ing interesting voxels) and speeds up computation. The
voxels are selected based on the cross-validated predic-
tion accuracy of their individual correlation vectors: For
each voxel, we compute its correlation values with all
other voxels in the brain over multiple epochs and then
conduct cross validation. This step thus requires a lot of
computing and memory resources.

Once the most relevant voxels have been selected,
FCMA uses them to build correlation matrices of the
top-K selected voxels (the small matrices in figure 2)
and trains a machine learning model to classify these
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correlation matrices. In both voxel selection and clas-
sifier training phases, FCMA typically deals with only
hundreds of samples (corresponding to the number of
epochs of interest) but tens of thousands of dimensions
(proportional to the squared number voxels). Therefore,
we build models using linear SVM to reduce the risk of
overfitting.

The offline FCMA implementation, batchFCMA, runs
as a distributed program on a compute cluster. It uses
different nodes to deal with different portions of brain
voxels in parallel, which greatly reduces the memory and
computation burden of a single node and accelerates
the processing time. It takes seconds or minutes to

analyze a typical fMRI dataset in terms of correlation
in batchFCMA [10].

B. Real-time FCMA

It is beneficial to incorporate FCMA into rtfMRI
studies to understand subtle changes in functional in-
teractions in the human brain during different cognitive
tasks as we discussed in Section I. A closed-loop rtFCMA
system can use a “pre-trained” model generated by the
“pre-selected” voxels to classify the incoming data in
terms of correlation on the fly. In this case, only the clas-
sification component of FCMA is needed in the pipeline,
which is supposed to return the classification result as
the neurofeedback in a short time. However, in order to
better characterize functional interactions in the human
brain, it is advantageous to leverage the data collected
from the current scanning subject to asynchronously
update the model and the corresponding “pre-selected”
voxels. For example, the important voxels might change
as the subject learns or vary across subjects. As a result,
the computationally intensive voxel selection component
of FCMA also needs to be applicable to the real-time
experiments.

The rtFCMA system is a second-order machine learn-
ing system. Unlike most distributed machine learning
systems, it does not directly take the incoming data to
form samples for training and classification. Instead of
using voxel activity directly, it uses the Pearson corre-
lation between voxel activity, so it must compute the
correlation based on the incoming data before applying
any machine learning techniques. Using the correlation
data as input for machine learning expands the data size
by roughly three orders of magnitude. In order to meet
the real-time requirement, high-performance computing
techniques are critical in this scenario.

III. RTFCMA ALGORITHMS

FCMA contains three components: voxel selection,
model training and classification. In order to perform
FCMA in the real-time environment efficiently, we mod-
ify the batchFCMA voxel selection algorithm processing



the fMRI data in batch to work in an incremental
fashion. In the real-time setting, when a new brain
volume comes in, we can leverage what we already
have from previous processing to avoid unnecessary
re-computation. The model training using the top-K
selected voxels, however, is not able to be processed
incrementally because the top-K voxels can change after
a new round of voxel selection. Finally, the classification
must be done quickly for providing the neurofeedback
in time. From the algorithmic point of view, rtFCMA
improves the voxel selection by implementing a full-
stack incremental algorithm, and inherits the high-
performance model training and classification algorithms
from batchFCMA.

A. Vozel Selection

Voxel selection represents the feature selection step
in FCMA. Tt is a voxel-wise screening to pick the most
category-selective voxels in terms of correlation. As the
real-time stream of brain volumes comes in, we use the
master-worker model to do voxel selection in a distri-
bution fashion. Algorithm 1 describes the processing
procedure.

Algorithm 1 Voxel selection procedure
1: The master allocates voxels to workers
2: for each worker in parallel do
3:  for each assigned voxel do

4: for each epoch do

5: Compute the correlation vector (i.e., correla-
tion with every other voxel in the brain)

6: end for

7 Normalize the correlation vectors within subject

8: Compute the kernel matrix

9: Compute cross-validated linear SVM accuracy

10:  end for
11: end for
12: The master chooses the top-K voxels by accuracy

In practice, each worker is assigned V' disjoint voxels
by the master, so the correlation computation at Line 5
can be processed as a matrix multiplication. The nor-
malization at Line 7 is to bring the activation values
from different subjects to the same scale. The cross
validation at Line 9 uses subjects as folds and trains a
linear SVM classifier to test within fold for each voxel.
That is, for N subjects, we build IV linear SVM classifiers
for each voxel using normalized correlation vectors of
N — 1 subjects as training data and 1 subject as test
data. Moreover, in our SVM problems the number of
samples (hundreds) is much smaller than the number
of dimensions of a sample (tens of thousands), it saves
a lot of computation and memory to precompute the
kernel matrices before training (Line 8). Finally, the
master collects all voxels’ accuracy numbers, which are
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Figure 3. Incremental computation of voxel selection in one worker
node. The red blocks indicate the incrementally computed data.
the indicators of their category selectivity, to form the
voxel list sorted by cross-validated accuracy numbers in
descending order (Line 12).

Voxel selection is the most computationally intensive
component in FCMA. We have already optimized it in
batchFCMA by merging processing pipeline stages and
organizing the data layout to be cache and vectorization
friendly [10]. rtFCMA inherits the master-worker model
from the batchFCMA design. However, batchFCMA
reads all data in at once to process together, which is
not feasible in the real-time context, in which data come
in volume by volume as a stream.

Figure 3 shows the processing that takes place in a
worker node when the data of a new epoch of interest
(red) is completely received, after M epochs (white) have
already been processed. The worker is assigned V' voxels
by the master, with V chosen so data can reside in
memory. When a new voxel selection takes place after
receiving epoch M + 1, data from the first M epochs is
reused; the necessary operations are correlation compu-
tation over epoch M +1 (Figure 3a), normalization using
the existing data of the same subject (Figure 3b), and
computing the similarities with the existing correlation
samples to obtain SVM kernel matrices (Figure 3c).
This eliminates re-computation overhead and overlaps
computation with data acquisition.

Using the subject as the random effect, fMRI analysis
methods typically do leave-one-subject-out cross vali-
dation. In rtFCMA, we do not need to retrain SVM
models for every fold from scratch; instead, we are able
to leverage the historical models. Suppose the system
has performed N-fold cross validation on n,;y samples.
Now the data of the (N 4+ 1)th subject comes in to
make the total number of samples increase to Nyew.
When performing the (N + 1)-fold cross validation, in
the first N folds, which use the 1st to Nth subjects’
data as test data, the (N 4 1)th subject is added to
expand the training set. In the last fold, which uses the
(N + 1)th subject’s data as test data, the training set



can be expanded from any of the first N training sets by
adding in the missing subject. We apply the sequential
minimal optimization (SMO) algorithm [11] to train an
SVM model. The original SMO starts from a random
set of states and runs until convergence. If the training
set expands with new samples, SMO can start from the
last converged states, which is likely to converge sooner
than starting from a random set of states. Algorithm 2
shows how our incremental SMO works. The iteration
starts from the last converged states (specifically, the
weight vector «, the tracking vector f, and the boundary
values bp;gn and by, ) and converges when the tolerance
7 is reached again. Experiments in Section V show that
the number of iterations (i.e., lines 4-8 in Algorithm 2)
is significantly reduced compared to starting from a
random set of states.

Algorithm 2 Incremental SMO algorithm
Input: training data x;, labels y; Vi < ngpeq, conver-
gence tolerance 7, old state f;,a; Vi < ngq <
Nnew, bhigha blow
1: Initialize a; =0 Vi € {npig + 1 ... Npew }
Initialize f; = X7 ojy;d(zi, 25) — i
Vi€ {nog+1.. . Npew}t
Update bpigh, biow based on new f
repeat
Update f; Vi < nypeq (eqn 4 in [12])
Compute: bpigh, biow, thigh, liow (€qn 5,6 in [12])
Update aj,,,, and a4, (eqn 2,3 in [12])
until bjoyy < bpign + 27

Y

P NPT W

B. Training with the Latest Data

Traditionally, researchers have used a fixed machine
learning model trained from previously collected data [1]
in rtfMRI studies (e.g., from the same subject earlier
in the session) because of the difficulty of dynamically
updating a model using the latest data in real-time. A
fixed model does not reflect the neural status of the
subject, which therefore limits neuroscientific studies.

In rtFCMA, we implement a training pipeline that
incorporates the most recent data into the model. We
first compute the correlation matrices of selected voxels
consisting of correlations between the top-K selected
voxels produced by the latest voxel selection over all
training epochs. Then we serialize the matrices into high
dimensional samples, normalize them within subject,
and train a linear SVM model over them. Note that since
the top-K voxel list changes after a new round of voxel
selection, we have to reconstruct the correlation matrices
accordingly, which prevents reusing old training samples
as in the cross validation stage of voxel selection.

In the real-time context, it is not feasible to enlarge
the training set infinitely. Instead, we apply a moving
window to the training data, i.e., when the number
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of training samples reaches a configurable threshold,
we start to discard the oldest training sample while
incorporating the newly coming ones to maintain the
training set scale as illustrated in Figure 4.

C. Real-time Classification

The classification produces a prediction for incoming
data and returns it to the fMRI scanner. This must be
done in real-time so that the experimental task can be
updated depending on the prediction of the classifier.
Normally, an rtfMRI study requires the neurofeedback
from brain volume B to be produced while volume B+ 1
is being generated so that it can guide the cognitive task
the subject performs when volume B + 2 is scanned.

Because classification is based on the temporal corre-
lation, it is only performed after several brain volumes
within the same epoch of interest are collected. We
define a configurable window size L to compute the
correlation. After accumulating L volumes within the
same epoch of interest, we take the latest top-K voxels,
compute a correlation matrix, and apply it to the latest
model as a test sample. In practice, L is defined by the
neuroscientists for producing reliable correlation values.
If L is less than the length of an epoch of interest, the
window can be slid within epoch, i.e., each time a new
brain volume is received, we drop the volume that was
collected L time points before and incorporate the new
one to compute the correlation. When L is equal to the
length of an epoch, we only conduct one correlation-
based classification per epoch.

IV. SYSTEM ARCHITECTURE

In this section, we present the design and implementa-
tion of a distributed system that supports rtFCMA and
other rtfMRI analysis methods. The system is config-
urable so that various processes involved can be assigned
to nodes at launch time, and the communication and
system organization are independent of the machine
learning algorithms used.

A. Design

On receiving a brain volume, the system dispatches it
to different processes for different purposes. Specifically
for rtFCMA, the brain volumes go both to the classifica-
tion process to get the prediction results for neurofeed-
back, and to the voxel selection processes to assign an
accuracy to each voxel, as discussed in Section III. This
behavior naturally fits the master-worker model, where



the master is in charge of receiving the brain volumes
and dispatching them to different workers conducting
different analyses. Specifically in rtFCMA, there are a
classification worker and several voxel selection workers.

The classification worker is in the critical path of the
closed-loop system, which must provide neurofeedback
within a few hundred milliseconds. On the other hand,
the actions of the voxel selection workers must take at
most tens of seconds.

We depict the design of the rtFCMA system in Fig-
ure 5. The master node communicates with the front-end
fMRI scanner and coordinates the workers. In a closed-
loop rtFCMA experiment, the master hands the brain
volumes from the fMRI scanner to the classification
worker for classification. At the same time, the master
also sends the brain volumes to a number of voxel
selection workers for getting the latest voxel list so that
it can update the model and send it to the classification
worker asynchronously.

Closed-loop rtfMRI
(Critical path)

fMRI
Scanner

Auxiliary steps

(Not critical) R
Brain TR
. > o », .
image -~ _- . Voxel list &
L YOXEI Brain *\ Model
e list

Neuro-

Voxel selection feedback

‘\
:
Selection | | Selection Classification
worker worker worker
Figure 5. The rtFCMA system architecture.
B. Implementation

The services rtFCMA provides are accessed using a
RESTful web API via HTTPS. The REST server is
implemented using the Spray framework !. It does rela-
tively little processing itself, instead it relies on the other
distributed processes in the system. There is a reaper
that runs on the fMRI scanner’s computer. Its job is to
send brain volumes to the REST server (using HTTP
POST requests) as they are generated by the scanner.
The reaper is written in Python, and is borrowed from
the SciTran project [13] with minimal modification.

We built our rtFCMA system wusing the actor
model [14], as implemented in the Akka 2 toolkit, to
distribute computation across a cluster. The master,
voxel selection workers, and classification worker are all
abstracted as actors in Akka. These actors are written
in Scala and are lightweight and focused only on com-
munication and system management. As a message that

Thttp:/ /spray.io
2http://akka.io
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requires time to process arrives at one of the system’s
actors, it is validated and queued for processing by a
different thread dedicated for that purpose, so that the
actor is free to respond to the next message. Further-
more, the heavy analytical computation in the system
is delegated via Java Native Interface wrappers to C++
routines (in this case, rtFCMA algorithms) that analyze
the brain volumes. As a matter of design, the system is
built to be extended to use many different algorithms,
not only FCMA. Therefore, the actors communicate
with the algorithm-specific code via algorithm-agnostic
interfaces.

V. EVALUATION

To evaluate the performance of rtFCMA, we aim to
answers to the following questions:

1) Can the classification produce neurofeedback in
real-time?

2) Can the incremental voxel selection and training
update the model efficiently?

3) What is the performance gain of each of the incre-
mental algorithms?

4) Is rtFCMA classification accuracy comparable to
batchFCMA?

A. FExperimental Setup

All testing was done on Metacortex, a 50-node cluster
located at the Princeton Neuroscience Institute. All
nodes are interconnected by an Arista 10 Gbit/s Eth-
ernet switch. Each node has two Intel®Xeon®E5-2670
processors (2.6 GHz) and 256 GiB RAM. All our C++
code is multithreaded using OpenMP. We use 32 threads
per process and one process per compute node. We used
40 nodes to do voxel selection, 1 node to do model
updating and 1 node to do classification.

We use two datasets to simulate rtfMRI studies. The
face-scene dataset was used as a proof of concept for
FCMA [9]. It consists of 244 brain volumes per subject
from 18 subjects. The volumes are grouped in 12 epochs
per subject, each corresponding to the subject in the
fMRI scanner being shown a series of either face or
scene images. The interval between the starting points of
two epochs is 30 s. The attention dataset was collected
in [15]. It consists of 360 brain volumes per subject
from 30 subjects. The volumes are grouped in 18 epochs
per subject, each corresponding to the subject being
asked to attend to images on either the left or right
side of the screen. The interval between the starting
points of two epochs in attention is 30 seconds. Note
that in both datasets there is only one experimental run
per subject. In most rtfMRI studies, each subject goes
through multiple experimental runs, so in the simulation
we treated the interval between subjects as the interval
between experimental runs within the same subject.
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Figure 6. Duration of voxel selection and model update as a

function of the model size using 40 voxel selection workers.

In order to fully simulate an rtfMRI experiment, we
streamed the data to our system volume by volume with
a 1.5 seconds pause, equivalent to one fMRI scanner TR.
We also introduced a 1-minute pause between subjects,
which is a reasonable duration in practice between ex-
perimental runs.

Finally, we used top-K = 500 voxels for neurofeedback
since the number is enough to depict reasonable patterns
of correlations [9], [15].

B. Full System Performance

Our system created the SVM model for neurofeedback
from scratch and updated it using the incoming data
stream while the real-time experiment simulation was
taking place. The system invoked the voxel selection
workers at the end of each epoch to incrementally
compute the correlation. At the end of each subject, the
voxel selection workers updated the voxel list based on
the voxels’ accuracy numbers obtained from the leave-
one-subject-out cross validation. Then a new model with
the latest top-K voxels was constructed.

Figure 6 shows the incremental voxel selection and
model updating performance for both face-scene and
attention datasets. As more subjects’ volumes were col-
lected, the model size grew larger and correspondingly
the time it took to select voxels and update the model
got longer. The voxel list and model were updated after
every subject but the correlation data were computed
after each epoch to overlap the computation with the
data acquisition. From Figure 6 we can tell that the
model updating was able to complete before the next
subject came in. That is, the classification worker always
used an up-to-date model that was updated by the data
from the latest subject.

The classifier took the latest model along with the
top-500 voxels in its corresponding voxel list to classify
the correlation sample computed over a sliding window
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which included the latest brain volume. In our experi-
ment, we set the sliding window size to be 8, i.e., after
getting 8 TRs within the same epoch, the system started
to compute correlation to classify, and when the 9th
TR came in, the 1st TR was dropped to maintain the
length of the time course over which the correlation was
computed to be 8, so on and so forth until the end of
the epoch.

Figure 7 shows the classification performance of our
system. We used a dedicated node to run the classifi-
cation worker to prevent any unexpected interference
introduced by other components of the system. As we
mentioned in Section I, although the time interval of
generating a brain volume in our experiment is 1.5 s, the
time budget for classification is less than that consider-
ing the latency of other necessary steps in the rtfMRI
pipeline, e.g., reconstruction and preprocessing, which
in practice took up to 780 ms. Therefore, we set a
deadline of 720 ms to the classification. From the figure
we can see that the classification in our system always
finished faster than 180 ms, which is well bellow the
deadline. This indicates that our system is able to satisfy
the latency requirement of closed-loop rtfMRI studies,
resulting from our high-performance classification algo-
rithm, as well as our low latency distributed system.

Note that the times in Figure 7 do not include network
communication overhead between the scanner and the
REST server. Even if we consider cross-continental links,
if we use a conservative RTT estimate of 200 ms [16]
and assume the feedback system polls the REST server
for results every 100 ms, the overhead should be upper
bounded by 500 ms. Since the classification worker com-
pleted in less than 180 ms, the system meets the 720 ms
deadline, let alone the fact that additional optimizations,
such as keepalives and server side events could improve
these numbers. That said, even if we occasionally miss
the deadline because of noise in the network, this is likely
acceptable in the context of real-time fMRI experiments
because correlations are calculated over longer time win-
dows and because classifier output is often smoothed or
averaged over time to provide more continuous feedback
to the subject.

C. Overall Speedup of Incremental Vozxel Selection

We compared the overall speedup we achieved using
the incremental voxel selection algorithms. The voxel
selection component of rtFCMA was implemented in a
full-stack incremental fashion. It took advantage of the
characteristics of the data stream by accumulating and
processing the volumes when they were received and
storing the historical results for further use. On the other
hand, the offline algorithm in batchFCMA, although
fully optimized, had to read in and process all the data
and started from scratch every time, which introduced
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Figure 7. Duration of classification as a function of model size
using 1 classification worker.

overhead in the real-time context. Table I summarizes
the performance comparison between the voxel selection
of rtFCMA and batchFCMA at the last subject of each
dataset. Note that in the batch version, we excluded the
time it took to read data from storage and broadcast
them to all worker nodes. In total, the incremental voxel
selection works 3.6-6.2x faster than the batch version at
the end of these two datasets.

Dataset batchFCMA (s) rtFCMA (s)  Speedup
face-scene 14.8 2.4 6.2
attention 56.5 15.7 3.6

Table T

OVERALL SPEEDUP OF INCREMENTAL VOXEL SELECTION.

D. Performance Gain of Incremental Algorithms

We compared incremental algorithms and batch al-
gorithms at the last subject of each dataset. We broke
the voxel selection process into three stages: correlation
computation and normalization, kernel matrix computa-
tion, and cross validation. We combined the correlation
computation and normalization together because they
took very little time individually in the incremental
implementation. Table IT shows the results attained on
one out of 40 selection worker nodes.

Dataset Processing steps Batch (s)  Incremental (s)
corr comp & norm 5.58 0.29

face-scene  kernel matrix comp 6.84 0.93
cross validation 1.41 0.47

corr comp & norm 8.74 0.21

attention kernel matrix comp 21.04 2.68
cross validation 25.77 10.02

Table IT
VOXEL SELECTION TIME FOR THE LAST SUBJECT OF EACH DATASET
IN ONE SELECTION WORKER NODE.

The performance gain of using the incremental al-
gorithms in the computation and normalization stages
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is straightforward since only the computation involving
the newly coming data would be performed instead of
doing everything (see the red parts indicated in Fig-
ure 3). On the other hand, incremental cross validation
brings a smaller benefit, running 2.6-3x than batch
cross validation. We explore this further in Table III,
which shows the averaged iteration numbers to reach
the converged state across voxels and folds of rtFCMA
and batchFCMA at the last subject of both datasets.
The incremental cross validation generally saves 80%
and 64% of iterations in the two datasets to converge
compared to the batch version.

Dataset batchFCMA  rtFCMA
face-scene 1153 229
attention 7549 2697

Table ITT

AVERAGED ITERATIONS IN CROSS VALIDATION FOR ALL SVMSs
TRAINED. n = 620460 (FACE-SCENE), n = 757800 (ATTENTION).

E. Effectiveness of RtFCMA System

Finally, to verify the effectiveness of our system, we
compared the accuracy results it generated on both
datasets with the results batchFCMA generated using
leave-one-subject-out cross validation. In the rtFCMA
pipeline, we sent the data brain volume by brain volume
to the system, selected voxels and trained a model using
N — 1 subjects (where N is the number of subjects in a
dataset) and used this model to test on the last subject
(making one prediction per epoch). We did this for N
times to allow all subjects to be tested. In order to match
what batchFCMA did, in rtFCMA we set the correlation
window size of the classification to be the length of the
epoch, that is, only one classification per epoch, which
was based on the correlation over the entire epoch. In
batchFCMA, we replicated the published pipeline [9].
The top-500 voxels were used in both cases.

Figure 8 shows the averaged accuracy results of both
datasets produced by rtFCMA and batchFCMA with
standard errors across all predictions. 40 selection nodes
were used. For both datasets, rtFCMA has similar re-
sults to batchFCMA, verifying the correctness of the
rtFCMA system. The results were slightly different be-
cause in the correlation normalization steps, rtFCMA
could only normalize the data based on what it has got
so far, while batchFCMA normalized all data within the
same subject.

VI. RELATED WORK

In this section, we discuss the important related work
on real-time fMRI, incremental feature selection, and
distributed stream processing for machine learning.

Though modern rtfMRI systems are capable of pro-
ducing full brain scans every 1-2 seconds, analysis of
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these scans is typically performed offline. Incremen-
tal analysis of real-time functional magnetic resonance
imaging is a very recent advancement, motivated in part
by a surge in neurofeedback research [17]. A recent study
trained subjects to better sustain their attention, by
externalizing their internal attentional states using a
classifier such that they could be better monitored and
controlled [1]. The classifier was based on single-subject
voxel activity patterns processed in batch on a single
machine between experimental runs while the subject
was in the scanner. rtFCMA extends the features con-
sidered by the classifier to full-brain correlation patterns
(O(n?) features instead of O(n)), incrementally selects
the voxels that are most predictive with less time, and
uses the selected voxels to train classifiers to predict the
incoming fMRI data from the correlation perspective.

The incremental voxel selection algorithm presented
in this paper is, generally speaking, a form of feature
selection. Feature selection is a common technique in
machine learning, often used to increase model accuracy,
improve generalization of the model, and to speed up
model training. When the data come in as a stream
like in the rtfMRI context, the feature selection is usu-
ally done in an incremental fashion [18]. rtFCMA uses
data-driven feature selection based on pairwise voxel
correlations over the entire full brain, which is more
computationally challenging to implement incrementally
than the classic techniques due to the large amount of
memory and number of SVM models involved in the
cross validation. The idea of leveraging shared training
sets to do incremental learning in cross validation is not
new [19], but our implementation shows the advantage
of doing incremental learning in a massive parallelized
environment, which can be generalized to other applica-
tions as well. As far as we know, our cluster instantiation
of the pipeline is the most parallelized feature selection
model ever applied to fMRI data and the first use of
incremental learning on this data.

rtFCMA would not be possible without a parallel and
distributed framework. Many frameworks for stream-
based parallel and distributed machine learning exist.
Apache Spark supports Spark Streaming as a means of
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joining stream data with historical data or performing
window-based operations on the stream. It chops a data
stream up into mini-batches to process. Recently, the
Spark machine learning library, MLIlib, was extended
with streaming algorithms [20]. Spark’s Resilient Dis-
tributed Dataset (RDD), an immutable collection that
provides fault tolerance, is inefficient at dealing with
small changes to large data structures (e.g., updates to a
small number of vectors in the correlation matrix). Dis-
tributed stream processing engines (DSPEs), like Apache
Storm [21], S4 [22], and Samza [23], have emerged that
are designed from the ground up for stream processing
data in a reactive manner, one update at time, but may
not be feasible to our specific application. The Apache
incubator project SAMOA (Scalable Advanced Massive
Online Analysis) provides a machine learning framework
and library that utilizes DSPEs but abstracts away the
execution engine. Like some modern DSPEs and the
original Apache Spark, rtFCMA used the open-ended,
highly concurrent and resilient Akka runtime (Akka is
largely based on and inspired by Erlang [24]). And like
SAMOA we represented our algorithms with a directed
graph of nodes that communicate via messages. To the
best of our knowledge, rtFCMA is the first to implement
any form of stream-based machine learning on fMRI data
and the first streaming implementation of full correlation
matrix-based classification for any application.

VII. CONCLUSION

In this paper, we proposed a set of algorithms to
exhaustively study functional interactions in the human
brain in real-time. We also designed and implemented
a distributed system to support rtFCMA, and poten-
tially, other rtfMRI analysis applications. rtFCMA is
able to update a full-correlation model in 25 seconds
using incremental algorithms and classify brain volumes
in less than 180 ms to keep pace with MRI scanners,
without sacrificing the classification accuracy of offline
approaches. rtFCMA can be deployed as a cloud service,
which will allow neuroscientists around the world to
conduct their own real-time experiments.

As ours is the first known effort to build such a system,
there is a large amount of future work needed. Con-
structing additional real-time pipelines for other offline
fMRI analysis methods is of great interest. Although
those methods often seek to exploit different components
of the signal (e.g., spatial patterns), it remains an open
question how they compare to each other in terms of
performance and effectiveness for feedback purposes.
From a systems perspective, we will focus on making the
system more robust by introducing fault tolerance and
fine-grained resource allocation. We believe our effort
will help accelerate the pace of discovery in fMRI-based
neuroscience research.
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