
Abstract
Machine learning models must retrieve and process data from memory during 
training. Given the type, size, and shape of that data, as well as the compute 
hardware and software stack, the training time will be gated by either the 
computation speed (compute-bound) or the data retrieval speed (memory-bound). 
This article outlines behavior symptomatic of memory-bound deep learning 
applications, and suggests optimizations which may accelerate training times up to 
100X in similar settings.

Introduction
The terms compute-bound and memory-bound indicate which of those two 
actions - computation or data retrieval - demand the largest portion of the 
application’s runtime, and thus on which action that runtime is gated. Figure 1 
provides example signatures for each state.

Authors
Mattson Thieme (Intel),  

Wei Wang (Intel),  
Martin Kraus (Siemens Healthineers),  

Prashant Shah (Intel)

Accelerating Memory-Bound  
Machine Learning Models on  
Intel® Xeon® Processors

Table of Contents

Abstract . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Configuration. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

Problem Signature . .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

	� 1. Counterintuitive response  
to OMP_NUM_THREADS . .  .  .  .  .  .  . 2

	 2. Congested cores . .  .  .  .  .  .  .  .  .  .  .  . 2

	� 3. Operations performed  
on matrix vectors. .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

Optimizations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

	 Results . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4

Summary . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4

Most optimization techniques assume that the application is compute-bound, but 
optimizing the compute portion of a memory-bound application will have little to 
no effect on runtime. Standard recommendations may in fact substantially degrade 
performance in memory-bound settings, leaving the data scientist unsure about 
next steps. 

The model used in this study was a meta-learning topology with long short-term 
memory (LSTM) units and FC layers. As we will see in the coming sections, the FC 
layers play a critical role in the model being memory-bound. However, architectural 
details of this example topology are less relevant to the present discussion, and as 
such will not be reviewed. 

0.25

Data Retrieval

0.5 0.75 10

Relative Portion of Runtime

Compute-Bound

Memory-Bound

Computation

Figure 1. The runtime of compute-bound applications is mostly dependent on 
the computation, whereas the runtime of memory-bound applications is mostly 
dependent on the data retrieval speed.  

white paper



2

White Paper | Accelerating Memory-Bound Machine Learning Models on Intel® Xeon® Processors

Configuration
The model was written in Intel® Optimization for TensorFlow* 
1.91, which can be installed via the following command:

     conda install -c anaconda tensorflow

We investigate single-node runtime behavior on an Intel® 
Xeon® Platinum 8124M processor @ 3.00GHz with 36 
physical cores and 75 GB of RAM. This node was accessed 
via a c5.18xlarge AWS* instance running the Deep Learning 
AMI v10.02 with Intel® Hyper-Threading Technology (Intel® HT 
Technology) and Intel SpeedStep® technology enabled.

*Note: the size of the RAM was not a constraint in this 
application.

Problem Signature
This section details training behavior symptomatic of 
memory-bound models. Optimizations for, and explanations 
of, such behavior will be discussed in the following section.

1. Counterintuitive response to OMP_NUM_THREADS
The first indicator that a model may not be compute-bound 
is its runtime with respect to the OMP_NUM_THREADS 
environment variable. The OMP_NUM_THREADS variable 
dictates how many threads a Python* program may use at 
runtime. By default, each thread will be assigned its own 
physical core, and in most compute-bound scenarios, 
increasing OMP_NUM_THREADS up to the number of 
physical cores will allow the program to take full advantage 
of the entire machine for parallel processing. If increasing 
OMP_NUM_THREADS (again, only up to the number of physical  
cores on the machine) results in lower performance, the 
application may be biased toward memory-bound operations.

2. Congested cores
The recommended settings3 for OMP_NUM_THREADS is 
the number of physical cores on the machine. However, in 
memory-bound scenarios, such a setting may yield a great 
deal of idle thread activity across the cores due to threads 
waiting for data. Figure 2 shows core utilization while training 
the model with OMP_NUM_THREADS=36. Red bars indicate 
waiting, or idle, threads.

3. Operations performed on matrix vectors
Passing the following commands in the runtime environment 
forces Intel® Math Kernel Library (Intel® MKL) to print debug 
messages in real time:

     export MKLDNN_VERBOSE=1

     export MKL_VERBOSE=1

These debug messages include information about data types 
and tensor sizes being processed. With these environment 
variables set, information about each operation is printed to 
stdout and will look something like this:

     �MKL_VERBOSE SGEMM(N,N,1570,1,512,0x7fefcbffe168,0
x7fef32f92fc0,1570,0x7fef49fbf240,512,0x7fefcbffe170,0
x7fef49fe1040,1570) 104.38us CNR:OFF Dyn:1 FastMM:1 
TID:0  NThr:1

Bolded values represent the shape of the tensor being 
processed and the runtime for that particular operation. This 
message indicates that TensorFlow is processing a batch of 
512, 1570x1 dimensional tensors. When one of the tensors’ 
dimensions is 1, it is called a matrix-vector, and processing 
data in the form of matrix-vectors takes far longer than 
processing that same data in the form of a regular matrix. 
This is because each matrix-vector must be loaded and 
processed individually, whereas, in a standard matrix, all 
the columns can be loaded at once and processed together 
(standard matrices can be thought of as a series of matrix-
vectors zipped together). This is where the FC layers come in 
to play, as they operate on matrix-vectors. If the topology has 
a large number of FC layers, or the Intel MKL debug messages 
reveal large numbers of operations on matrix-vectors, one 
should be wary of the application being memory-bound.

Optimizations
Given the signature described above, we assume the model is 
memory-bound, and it follows that the idle threads observed 
in Figure 2 may be the result of spawning too many threads 
at the outset of the training run. Thus, our first action was 
to reduce the value of OMP_NUM_THREADS to reduce the 
number of threads spawned by the application - ideally 
alleviating the slowdown attributable to core congestion. 
Indeed, this is what happened.

Figure 2. Core utilization while training with OMP_NUM_THREADS=36. Red bars indicate idle or “waiting” threads. 



3

White Paper | Accelerating Memory-Bound Machine Learning Models on Intel® Xeon® Processors

Figure 3 shows the core utilization after reducing OMP_NUM_
THREADS from the number of physical cores (36) to 1. Note 
that idle threads have almost completely disappeared. Within 
TensorFlow, intra and inter-op threads were both set to the 
number of physical cores (default). This can be accomplished 
by setting intra_op_parallelism_threads and inter_op_
parallelism_threads = 0 in tf.ConfigProto()and allows 
TensorFlow to configure thread pools for parallelization3. 
This is why activity is seen across all the cores as opposed to 
just one - TensorFlow is spawning its own thread pools from 
the single Python thread.

We then lock execution to only one socket using the NUMA 
facility via the following command:

     numactl --cpunodebind=0 --membind=0 python main.py

The effect of this NUMA command is twofold:

     1. �NUMA locks the program execution to a single socket 
with --cpunodebind=0, and

     2. �NUMA enforces the policy that threads access only 
memory local to the socket on which they are running 
with --membind=0, which further reduces the effective 
memory latency. 

Figure 4 shows how NUMA constrains the execution to a 
single socket:

Figure 3. Core utilization during training after reducing OMP_NUM_THREADS to 1.

Figure 4. Core utilization after reducing OMP_NUM_THREADS to 1 and locking execution to only the physical cores on socket 0.



4

White Paper | Accelerating Memory-Bound Machine Learning Models on Intel® Xeon® Processors

Finally, we can apply multi-worker training techniques to 
spawn a second process on the remaining socket - utilizing 
every core on the machine for maximum throughput. The 
Horovod* communication library synchronizes gradients and 
handles communication between the two processes4. See 
our recent article on Multi-Node Scaling of TensorFlow with 
Horovod for details on installing and implementing multi-
worker training5. 

Results
While the core utilization in Figures 3 and 4 appear lower than 
that in Figure 2, removing idle threads congesting the cores 
allowed the remaining threads to execute more optimally. In 
conjunction with the NUMA commands locking execution to a 
single socket and giving threads access to only local memory 
resulted in a 100X speedup in training time§. Figure 5 details 
runtimes per epoch rounded to the nearest second.

Figure 5. Runtimes before and after reducing OMP_NUM_
THREADS to 1 and locking execution to the physical cores. 
Values shown are rounded to the nearest second.§

Summary
In this article, we’ve reviewed training behavior symptomatic 
of memory-bound deep learning models and proposed 
optimizations for resolving slowdowns in such scenarios. If 
your model presents a similar signature, namely:

• �Training time increases when increasing OMP_NUM_
THREADS (up to the number of physical cores).

• �Utilities for visualizing core utilization (such as htop) reveal 
significant core congestion from idle threads (red bars).

• �Exporting MKL_VERBOSE and MKLDNN_VERBOSE indicates 
that operations are being performed on matrix-vectors, as 
opposed to standard matrices. 

Then we recommend:

• �Reducing the value of OMP_NUM_THREADS to prevent core 
congestion.

• �Locking execution to a single socket using the numactl 
utility: 

     numactl --cpunodebind=0 --membind=0 python main.py

For more information on Intel’s entire suite of machine 
learning developer tools, and to get started using the Intel 
Optimization for TensorFlow, please see https://www.intel.
com/content/www/us/en/analytics/machine-learning/
overview.html.

500 10000

Seconds/Epoch (lower is better)

13

Initial

Final

1312

https://www.intel.com/content/www/us/en/analytics/machine-learning/overview.html
https://www.intel.com/content/www/us/en/analytics/machine-learning/overview.html
https://www.intel.com/content/www/us/en/analytics/machine-learning/overview.html


White Paper | Accelerating Memory-Bound Machine Learning Models on Intel® Xeon® Processors

1 https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture
2 Instructions for launching an Intel Optimized Deep Learning instance on AWS can be found at: https://aws.amazon.com/machine-learning/amis/
3 https://www.tensorflow.org/performance/performance_guide#optimizing_for_cpu
4 An overview of the Horovod training library can be found at: https://eng.uber.com/horovod/
5 Installation and implementation details for TensorFlow with Horovod can be found at: https://ai.intel.com/using-intel-xeon-for-multi-node-scaling-of-tensorflow-with-horovod/
		 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are 

measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more 
complete information visit http://www.intel.com/benchmarks.   

	 §	Configurations: Performance results are based on testing as of September 30, 2018 and may not reflect all publicly available security updates. 
		 Single Node Testing by Intel as of September 30, 2018:
		 1-node, Intel Xeon Platinum 8168 processor @ 3.00GHz, Total memory 75 GB, HyperThreading: Enable, SpeedStep: Enable, OS: CentOS 7, Kernel: centos-release-7-3.1611.el7.centos.x86_64
		 For more information go to http://www.intel.com/performance. 
		 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system 

configuration. Check with your system manufacturer or retailer or learn more at intel.com.
		 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
		 Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any 

warranty arising from course of performance, course of dealing, or usage in trade.
		 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative 

to obtain the latest forecast, schedule, specifications and roadmaps.
		 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.
		 This sample source code is released under the Intel Sample Source Code License Agreement.
		 Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. 
		 *Other names and brands may be claimed as the property of others.
		 © 2018 Intel Corporation     1018/EOH/MESH/PDF      338397-001US

http://www.intel.com

	Abstract
	Introduction
	Configuration
	Problem Signature
	1. Counterintuitive response to OMP_NUM_THREADS
	2. Congested cores
	3. Operations performed on matrix vectors



	Optimizations
	Results
	Summary



