
OPRA FAST decoder

Overview

Â Application Overview

Â Compiler Features
- IO Channels

- Loop Pipelining

Â Kernel Implementation

Â Host Implementation

2

Application Overview

3

10G OPRA FAST

Â 10G Ethernet UDP stream

Â Headers removed by OpenCL kernel

Â Decode compressed OPRA FAST data

Â Reconstruct messages

Â Platform with 10 GbE I/O channels and
kernels using Alteraôs OpenCL

Â < .5 uS Latency

4

HFT Trading platform

OpenCL kernels

10G UDP stack

 Rx Tx

M
A

C

IP

U
D

P

Compressed OPRA stream

OPRA decoder
Trading

algorithm

Trading decisions

OPRA

Data

Broadcast

 10G Ethernet 10G Ethernet

OPRA Application

Â Application structure
- OPRA FAST decoder kernel written in OpenCL

- The decoder outputs the reconstructed OPRA messages

- Output sent through a kernel to kernel channel for subsequent processing

Â Modularity
- Users can plug custom trading kernel

- Currently using a dummy trading kernel for verification

5

Field parsing Field location

decoding

Message

reconstruction

(UDP packets, split

into 8 byte frames)

 10G UDP

Trading

algorithm

 10G UDP

OPRA Decoder kernel Trading kernel

OPRA FAST encoding

Â Each message contains several compressed fields

Â Presence Map of each message tells us which fields of

the current message are encoded
- Other fields are repeated from the last message or incremented

Â Compressed fields are variable number of bytes
- Each byte contains 7 bits of data and óstop bitô for last byte

- Uncompressed fields are fixed size

6

01:02:30:30:30:30:30:31:38:36:33:33:30:30:31:

0c:fe:c8:ce:cf:a0:01:11:c9:2c:29:62:8d:03

SOH Ver. Sequence Number of 1st Message # Msgs in Frame

MsgSz
Presence

Map

Msg

Type
Fields

Trading algorithm

Â Dummy trading algorithm for verification purposes
- Demo goal to demonstrate parsing OPRA packets at line rate

- Sending all decompressed data back through UDP would bottleneck the
processing

Â Return a subset of the fields
- Required to throttle the amount of data sent out through UDP

- Host configures which field range is returned

7

Compiler Features

8

Altera I/O Channels

Â Allows kernels to interface to outside world
- Simple API to read and write data from external sources

- Available channel are board-specific, defined by board designer

Â This example uses IO channels connected to a UDP
Offload Engine to communicate over 10 Gbps Ethernet

9

10 G Ethernet
UDP Offload

Engine

OpenCL

Kernel

Source

Sink

kernel void foo(){

 read_channel_altera();

 process_data();

 write_channe_alteral();

}
PCIE Host

Processor

Loop Pipelining: Loop Carried Dependencies

Â Loop-carried dependencies are dependencies where

one iteration of the loop depends upon the results of

another iteration of the loop

Â The variable state in iteration 1 depends on the value

from iteration 0. Similarly, iteration 2 depends on the

value from iteration 1, etc.

10

__kernel void generate_rngs (ulong num_rnds)
{
 t_state_vector state = initial_state ();
 for (ulong i =0; i <num_rnds; i ++) {
 state = generate_next_state (state);
 unit y = extract_random_number (state);
 write_channel_altera (RANDOM_STREAM, y);
 }
}

Loop Pipelining (2)

Â To achieve acceleration, we can pipeline each iteration

of a loop containing loop carried dependencies
- Analyze any dependencies between iterations

- Schedule these operations

- Launch the next iteration as soon as possible

11

At this point, we can

launch the next

iteration

__kernel void generate_rngs (ulong num_rnds)
{
 t_state_vector state = initial_state ();
 for (ulong i =0; i <num_rnds; i ++) {
 state = generate_next_state (state);
 unit y = extract_random_number (state);
 write_channel_altera (RANDOM_STREAM, y);
 }
}

Loop Pipelining Example

Â No Loop Pipelining

12

i0

i1

i2

Â With Loop Pipelining

i0

i1

i2

i3

i4

Looks almost

like ND-

range thread

execution! C
lo

c
k
 C

y
c
le

s

C
lo

c
k
 C

y
c
le

s

No Overlap of Iterations!
Finishes Faster because Iterations

Are Overlapped

Kernel Implementation

13

OPRA Field Parser

Â UDP packet split into fixed length frames
- OPRA FAST processing expressed as a loop

- Allow the OpenCL compiler to extract pipeline parallelism from loop iterations

- Each iteration processes one frame

Â Fields may span across multiple frames
- Loop carried dependencies

- The compiler understands and generates efficient hardware in the presence of dependencies

14

UDP IP

Pipelined parallel processing of frames

OPRA Decoding Loop

Â Every loop iteration, 8 byte frame of data is read from
the UDP interface
- Except in rare case when there is data left from last frame

Â The multiple fields of the OPRA message are
constructed from over several iterations of the loop
- As each field is decoded, it is written to a location in the message structure

Â When the message is fully parsed, it is sent to the
trading kernel via a kernel-to-kernel channel
- Non-present fields (according to the Presense Map) are maintained from last

message or incremented

Â Loop carried dependencies are minimized to allow one
iteration to launch every cycle
- If hardware frequency >= 156.25 MHz , we can saturate the 10G connection

15

Other Kernels

Â UDP IO data interface is 16 bytes wide, while the

Decoder kernel takes 8 bytes, two kernels are used as

16-to-8 byte adaptors

Â Two kernels are used to choose between sending data

from the IO channels or from global memory

16

Latency measurement

17

UDP stack

latency

OPRA

decoder

latency

Kernel runs @ 192 MHz

25 cycles 38 cycles

0.328 ɛs

MAC+

UDP

interface

IO

Channel

Decoded

messages

 10G UDP OPRA Decoder

U
D

P
 I

P

 10G XCVR

Host Implementation

18

Host Program

Â OPRA Kernels can either communicate over UDP IO

Channels, or by reading and writing to memory

Â If UDP IO channels are being used, the host will send

and receive data over UDP sockets to the IP address of

the FPGA card
- 10G Ethernet card should be installed in host PC, connected to FPGA card

Â The host program forks into two processes, which

allows the host to send and receive data over UDP

independently

Â Tested using Solarflare network interface card
- OpenOnload drivers are used to accelerate UDP transfers, and are needed

to consistently saturate the 10G interface

19

Tips for tuning host to achieve line rate

Â Host OS is not a real time OS
- System jitter can cause packet loss on the host

- Do not run any unnecessary services or applications

Â Run app through demo.sh script
- Does some driver tuning to minimize overhead

- This proves sufficient on the test machine we have on our side

 (Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz)

20

Running the example design

 host/opra [mode] [UDP frames]

Â [mode] configures where the data source and

destination are located
- memory input Ą memory output (default, 0)

- UDP input Ą memory output (1)

- Memory input Ą UDP output (2)

- UDP input ĄUDP output (3)

Â [UDP frames] specifies how many frames to transmit
- The frames are read from a pcap file that comes with the example

21

