Monte Carlo Pricing of Asian Options on FPGAs using OpenCL
At the expiration date, an Asian Option’s payoff is the difference between the average price during the time interval and the strike price.
Efficiently Implementing Monte Carlo Simulation on FPGAs

- Arithmetic Asian Option pricing is an example of a derivative where no closed form solution is possible
- Monte Carlo methods are used to simulate many possible paths and derive an expected value for the payoff
- Typical characteristics of Monte Carlo simulations
 - Requires a very high quality random number generator
 - Many billions of simulations may be required
- **FPGAs are an ideal platform for addressing these challenges**
 - In this presentation, we address the use of channels and loop pipelining optimizations within OpenCL to create a highly efficient Monte Carlo Simulation of Asian Option Pricing.
Monte Carlo Asian Option Simulation

Channels are used for direct kernel-to-kernel communication without requiring intermediate global memory buffers.

Uses both Tasks (single work-item) and ND-range kernels.
- Random number generation poses a tremendous challenge in parallelizing using ND-range techniques.
- Altera has introduced a new class of loop pipelining optimizations for Task kernels that significantly improves application performance.

Results:
- Altera Stratix V D8: 12.0 Billion Simulations / Second @ 45 Watts
- Leading GPU: 10.1 Billion Simulations / Second @ 212 Watts
Host Centric OpenCL Architecture

Host CPU

On-chip RAM

User Kernel

Global Memory

Host Co-ordinates Kernel Invocations and Data Transfers
Drawbacks of the Host-Centric Model

- Intermediate data communicated between kernels must be transferred through global memory
 - High performance requires high bandwidth and high power!
 - Limited data buffer sizes when problem sizes scale to 100s of billions of simulations

- Having multiple kernels operating in parallel and communicating requires the host to synchronize and coordinate activities
New in 13.1: Altera Channels Support

- **Low-Latency and High Bandwidth Channels**
 - Enables **IO → Kernel** and **Kernel → Kernel** Communication

- **Simple and Intuitive API available**
 - Channels are program scope global variables that describes the communication links
 - Ex: `__channel float4 FLOATING_POINT_CHANNEL;`
 - `read_channel_altera`
 - Read data from channel endpoint
 - Ex: `float4 xvec = read_channel_altera(FLOATING_POINT_CHANNEL);`
 - `altera_write_channel`
 - Write data to channel endpoint
 - Ex: `write_channel_altera(FLOATING_POINT_CHANNEL, zvec);`
Key portion of the computation is generating and consuming 64 random numbers per clock cycle.

At a 200MHz clock, this equates to roughly 12 Billion time-step simulations / second.
Consider the typical random number generator:

```c
__kernel void generate_rngs(ulong num_rnds) {
    t_state_vector state = initial_state();
    for (ulong i=0; i<num_rnds; i++) {
        state = generate_next_state( state );
        unit y = extract_random_number( state );
        write_channel_altera(RANDOM_STREAM, y);
    }
}
```

Can this kernel be expressed in totally data parallel / ND-range fashion?
Recall: FPGA Pipeline Parallelism Implementation

- Very well suited to data parallel problems where all loop iterations can be executed in parallel

```c
__kernel void sum(__global const float *a,
                 __global const float *b,
                 __global float *answer)
{
    int xid = get_global_id(0);
    answer[xid] = a[xid] + b[xid];
}
```

- On the FPGA, we use the idea of pipeline parallelism to achieve acceleration

```
for (int i=0; i < n; i++)
{
    answer[i] = a[i] + b[i];
}
```
Loop Carried Dependencies

- Loop-carried dependencies are dependencies where one iteration of the loop depends upon the results of another iteration of the loop.

```c
__kernel void generate_rngs(ulong num_rnds)
{
    t_state_vector state = initial_state();
    for (ulong i=0; i<num_rnds; i++) {
        state = generate_next_state( state );
        unit y = extract_random_number( state );
        write_channel_altera(RANDOM_STREAM, y);
    }
}
```

- The variable state in iteration 1 depends on the value from iteration 0. Similarly, iteration 2 depends on the value from iteration 1, etc.
To achieve acceleration, we can **pipeline** each iteration of a loop containing loop carried dependencies

- Analyze any dependencies between iterations
- Schedule these operations
- Launch the next iteration as soon as possible

```c
__kernel void generate_rngs(ulong num_rnds)
{
    t_state_vector state = initial_state();
    for (ulong i=0; i<num_rnds; i++) {
        state = generate_next_state( state );
        unit y = extract_random_number( state );
        write_channel_altera(RANDOM_STREAM, y);
    }
}
```
Loop Pipelining Example

- **No Loop Pipelining**
 - No Overlap of Iterations!

- **With Loop Pipelining**
 - Finishes Faster because Iterations Are Overlapped
 - Looks almost like ND-range thread execution!
Parallel Threads vs. Loop Pipelining

So what’s the difference?

- Parallel threads launch 1 thread per clock cycle in pipelined fashion.
- Loop Pipelining enables Pipeline Parallelism *AND* the communication of state information between iterations.

Loop dependencies may not be resolved in 1 clock cycle.
Mersenne Twister Random Number Generator

_kernel __attribute__((task)) void mersenne_twister_generate(ulong N)
{
 unsigned int mt[MT_N];

 bool read_from_initialization = true;
 ushort num_initializers_read = 0;

 for (ulong n=0; n<N+MT_N; n++) {
 unsigned y;

 bool write_channel = false;
 if (read_from_initialization) {
 y = read_channel_altera(INIT_STREAM);
 if (++num_initializers_read == MT_N) read_from_initialization=false;
 } else {
 y = (mt[0]&UPPER_MASK)|(mt[1]&LOWER_MASK);
 y = mt[MT_M] ^ (y >> 1) ^ (y & 0x1UL ? MATRIX_A : 0x0UL);
 write_channel = true;
 }

 #pragma unroll
 for (int i=0; i<MT_N-1; i++) {
 mt[i]=mt[i+1];
 }
 mt[MT_N-1]=y;

 // Tempering
 y ^= (y >> 11);
 y ^= (y << 7) & 0x9d2c5680UL;
 y ^= (y << 15) & 0xefc60000UL;
 y ^= (y >> 18);

 float u = (float)y / 4294967296.0f;

 if (u == 0.0f) u = CLAMP_ZERO;
 if (u == 1.0f) u = CLAMP_ONE;

 if (write_channel) write_channel_altera(RANDOM_STREAM, u);
 }
}

- `__attribute__((task))` is a compilation style hint used to enable loop pipelining.
- The state of the MT RNG is maintained by 624 unsigned integers. The loop carried dependence is based on generating the next iteration state based on current state.
- For simplicity, we show code for 1 random number per clock cycle rather than 64 per clock cycle.
__kernel void black_scholes(int m, int n, float drift, float vol, float S_0, float K) {
 // running statistics -- use double precision for the accumulator
 double sum = 0.0;
 for(int path=0;path<m;path++) {
 float S = S_0;
 float arithmetic_average = 0.0f; // We're not including the initial price in the average
 for (int t_i=0; t_i<n/16; t_i++) {
 barrier(CLK_GLOBAL_MEM_FENCE);
 float Z[16];
 float16 U = read_channel_altera(RANDOM_STREAM);
 ...
 #pragma unroll 8
 for (int i=0; i<8; i++) {
 // Convert uniform distribution to normal
 float2 z = box_muller(U[2*i], U[2*i+1]);
 Z[2*i] = z.x; Z[2*i+1] = z.y;
 }
 #pragma unroll 16
 for (int i=0; i<16; i++) {
 // Simulate the path movement using geometric brownian motion
 S *= drift * exp(vol * Z[i]);
 arithmetic_average += S;
 }
 }
 arithmetic_average /= (float)(n);
 // Check if the average value exceeds the strike price
 float call_value = arithmetic_average - K;
 if (call_value > 0.0f) {
 sum += call_value;
 }
 }
 // send a final result to the accumulate kernel after each thread has already accumulated (m) paths
 write_channel_altera(ACCUMULATE_STREAM, sum);
}
The Asian Option demonstration runs on any board containing an Altera Stratix V D8 device.

Each FPGA in the system is capable of pricing an independent set of options in parallel.
<table>
<thead>
<tr>
<th></th>
<th>Performance</th>
<th>Power</th>
<th>Performance / Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altera Stratix V D8</td>
<td>12.0 Billion Sims/s</td>
<td>45 W</td>
<td>266 MSims / s / W</td>
</tr>
<tr>
<td>Leading GPU*</td>
<td>10.1 Billion Sims/s</td>
<td>212 W</td>
<td>48 MSims / s / W</td>
</tr>
</tbody>
</table>

- **Altera’s FPGA Platforms** can provide high-performance, power-efficient and programmer-friendly acceleration of complex financial simulations.
- **FPGA has 5.5x better performance / watt** than GPU based solution.

*Uses the largest available 28nm GPU and Vendor’s example code for Asian option pricing.
Thank You