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OpenCL on FPGAs for GPU Programmers 

Introduction 
The aim of this whitepaper is to introduce developers who have previous experience with general-

purpose computing on graphics processing units (GPUs) to parallel programming targeting Altera® field-

programmable gate arrays (FPGAs) via the Open Computing Language (OpenCL™) framework. 

This paper provides a brief overview of OpenCL, highlights some of the underlying technology and 

benefits behind Altera FPGAs, then focuses on how OpenCL kernels are executed on Altera FPGAs 

compared to on GPUs.  This paper also presents the key differences in optimization techniques for 

targeting FPGAs. 

Overview of OpenCL 
OpenCL is an open standard framework for parallel programming that executes across heterogeneous 

processors, such as GPUs and FPGAs, as well as central processing units (CPUs) and digital signal 

processors (DSPs).  The standard uses a subset of ISO C99 with added extensions for supporting 

parallelism, and supports both data and task-based parallel programming models. 

Heterogeneous Programming 

The basis of the OpenCL platform model is a host connected to one or more devices, such as FPGAs and 

GPUs, possibly from multiple device vendors.  The host is responsible for device memory management, 

transferring data to devices, queuing work for devices, and error-management.   

Data Parallelism and Kernels 

Data parallelism is a form of parallelism across multiple processors that is achieved when each 

processor performs identical tasks on different pieces of distributed data.  Data-parallel portions of an 

algorithm are executed on devices as kernels, which are C functions with some restrictions and a few 

language extensions.  The host launches kernels across a 1D, 2D, or 3D grid of work-items to be 

processed by the devices. Conceptually, work-items can be thought of as individual processing threads, 

that each execute the same kernel function. Work-items have a unique index within the grid, and 

typically compute different portions of the result.  Work-items are grouped together into work-groups, 

which are expected to execute independently from one another. 

Memory Hierarchy – Global, Local, Constant, and Private 

The OpenCL kernels have access to four distinct memory regions distinguished by access type and scope.  

Global memory allows read-and-write access from all work-items across all work-groups.  Local memory 

also provides read-and-write access to work-items, however it is only visible to other work-items within 

the same work-group.  Constant memory is a region of read-only memory accessible to all work-items, 

thus immutable during kernel execution. Lastly, private memory provides read-and-write access visible 

to only individual work-items. 
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CUDA vs. OpenCL Terminology 

Developers with experience in NVIDIA’s CUDA parallel computing architecture for GPUs may notice 

similarities between CUDA concepts and OpenCL, albeit with a different naming convention. Table 1 

presents some equivalent CUDA terms:  

Table 1: OpenCL vs CUDA Terminology 

OpenCL CUDA 

Work-Item Thread 

Work-Group Thread Block 

Multi-dimension Range (NDRange) Grid 

Global / Constant Memory Global / Constant Memory 

Local Memory Shared Memory 

Private Memory Local Memory 

Altera FPGA Architectures 
FPGAs are highly configurable integrated circuits that can be customized and tailored for specific 

processing needs.  An FPGA is composed of large numbers of small building blocks: adaptive logic 

modules (ALMs), digital signal processing (DSP) blocks, and memory blocks, woven together amongst 

programmable routing switches. In addition to these FPGA fabric building blocks, additional features 

may be incorporated, such as high-speed transceivers, PCI Express® (PCIe®) interfaces, multiple memory 

controller interfaces, or even ARM® Cortex®-A9 processors, as part of a system on a chip (SoC) solution.   

For these SoC solutions, the ARM processor can serve as the OpenCL host, driving the FPGA in a self-

contained manner. 

For GPUs, kernels are compiled to a sequence of instructions that execute on fixed hardware processors.  

Typically, these hardware processors are composed of cores that are specialized for different functions, 

therefore some may be unused based upon kernel instruction requirements. On the other hand, kernels 

on FPGAs are compiled to custom processing pipelines built up from the programmable resources on 

the FPGA (for example ALMS, DSP, and memory blocks). By focusing hardware resources only on the 

algorithm to be executed, FPGAs can provide better performance per watt than GPUs for certain 

applications. 

ALMs can be configured to implement desired logic, arithmetic, and register functions. Variable-

precision DSP blocks with hardened single-precision floating-point capabilities implement commonly 

used logic and arithmetic functions in a power or performance optimized manner. Half or double 

precision is also possible, with the resources in the FPGA being used to accomplish the additional 

resolution. The total amount of memory blocks embedded within Altera FPGAs range from a few 

hundred kilobytes to tens of MBs, offering even higher bandwidth and lower latencies. Memory 

controllers allow access to larger amounts of external memory, and currently support a variety of 

memory standards, such as quad-data-rate (QDR) or double-data-rate (DDR) SDRAM.   
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Executing OpenCL Programs on Altera FPGAs 
The key difference between kernel execution on GPUs versus FPGAs is how parallelism is handled. GPUs 

are “single-instruction, multiple-data” (SIMD) devices – groups of processing elements perform the 

same operation on their own individual work-items. On the other hand, FPGAs exploit pipeline 

parallelism – different stages of the instructions are applied to different work-items concurrently.   

 

Figure 1 above illustrates the difference between these two methods; using a simplified example 

involving six work-items (1-6) executing a kernel with five stages (A-E), with the SIMD approach handling 

three work items at a time.  In this example, both parallelization methods finish in the same amount of 

total time, however the throughputs are slightly different; if additional work-items are to be processed, 

the SIMD parallelism approach would continue to complete three work items every 5 cycles, whereas 

the pipeline parallelism approach would average competition of one work item each cycle. 

  

Figure 1: Comparison of SIMD Parallelism Versus Pipeline Parallelism 
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The difference in parallelization strategies employed by GPUs and FPGAs can be mapped directly back to 

the underlying hardware. GPUs consist of hundreds of simple processing “cores”, which can each handle 

their own work-items.  A number of GPU cores execute the same instruction in lock-step with one 

another as a SIMD unit of fixed size (sometimes called a wavefront or warp).  On an FPGA, each OpenCL 

kernel is compiled to a custom circuit.  The operations within the kernel are implemented using the 

ALMs and DSPs, forming sub-circuits that are wired together according to the data flow of the algorithm.  

Load/store units allow access to global, local, and constant memory.  Figure 2 illustrates circuit synthesis 

for a simple OpenCL kernel.  As a result, all algorithmic operations of the kernel are allocated dedicated 

hardware resources on the FPGA, prior to kernel execution. During execution, work-items step through 

each stage of the kernel one at a time, however due to the fact that each stage has dedicated hardware, 

multiple work-items may be passing through the circuit at any given moment, thus yielding pipeline 

parallelism. 

 

One consequence of the different parallelization methods is how branching is handled. When branching 

occurs on a GPU, it is still necessary for all work-items within the same SIMD unit to correctly execute 

the various branches. However, because the SIMD unit as a whole operates on a single instruction at a 

time, all code-paths taken by the individual work-items must be executed one after another, with 

individual work-items disabled or enabled based upon how they evaluated the branching condition. As a 

result, encountering a branching condition with N options could potentially result in execution time 

equal to the sum of execution times for all N options (for N up to the SIMD width). Branching is less of 

an issue on FPGAs because all code-paths are already established in hardware. All branch options can be 

executed concurrently or even computed speculatively in some cases to allow overlap with branch 

condition computation. Figure 3 illustrates a simple example of how branching is handled for the two 

different parallelization methods. Each of the three work items execute the same first stage (A), but 

then branch and execute the next three stages conditionally (B,C, and D).   

 

kernel void Add(global float *a, 

                global float *b, 

                global float *c) 

{ 

  /* Collect unique work-item ID */ 

  int i = get_global_id(0); 

 

  c[i] = a[i] + b[i]; 

} 

Figure 2: Simplified Example of FPGA Circuit Synthesis from OpenCL Kernel 
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Key Differences in Optimizing OpenCL for FPGAs 
While optimization on GPUs mainly involves modifying code to effectively utilize the fixed underlying 

hardware, the configurable nature of FPGAs presents a different set of challenges.   

Throughput vs. Resource Usage Tradeoffs 
Given that OpenCL kernels are compiled to hardware circuits of fixed size, it may mean that a lot of 

remaining FPGA resources are not used. One method for improving performance on FPGAs is to create 

multiple copies of the kernel pipelines. Pipelines can execute independently from one another, and 

performance can scale linearly with the number of copies. Replication is handled in Altera OpenCL by 

setting the num_compute_units kernel attribute. 

In some instances, it may be better to incur some performance penalties by reducing the resources 

required for a single pipeline so that additional copies can fit onto the FPGA. One method to reduce 

resources is to cut back on the number of circuit-expensive operators, such as the cosine function; 

possibly computing the required values on the host and passing them into the FPGA as parameters to 

the kernel instead.  

  

Figure 3: Compare branching behavior - SIMD vs. pipeline parallelism 
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 Conversely, if additional FPGA resources are still available, performance may be improved by investing 

additional resources on the pipeline. One example of this would be to unroll for loops.  The removal of 

loop counter or loop testing logic is a benefit shared on both GPUs and FPGAs, however the added 

benefit on FPGAs is that throughput can be increased. Figure 4 illustrates that each work-item 

accumulates four values then writes to output.  In the loop version, one adder is used and throughput is 

roughly 0.25 work-items per clock cycle. In the unrolled version, four adders are used, however one 

work-item can complete per clock cycle. Altera OpenCL for FPGAs facilitates loop unrolling via the 

#pragma unroll directive, and works for loops of known size as well as loop with data-dependent trip 

counts. 

 

A different method of utilizing resources similar to replication is kernel vectorization. Whereas 

replication makes N exact copies of the kernel pipeline, kernel vectorization maintains a single pipeline 

where each work-item then does N times as much work. By dealing with larger units of work, kernel 

vectorization can even reduce the number of loads and stores (each load / store is larger). Kernel 

vectorization is essentially SIMD parallelization on an FPGA! 

Loop Entry 

Accumulate (id * i) 

/* Loop version */ 

 

  int sum = 0; 

  int id = get_global_id(0); 

 

█ for (int i = 0; i < 4; i++)    

█    sum += id * i;               

 

█ output[id] = sum;              

/* Unrolled version */ 

 

  int sum = 0; 

  int id = get_global_id(0); 

 

█ sum += id * 0;              

█ sum += id * 1;  

█ sum += id * 2; 

█ sum += id * 3; 

█ output[id] = sum;           

Store output 

Accumulate (id * 0) 

Accumulate (id * 1) 

Accumulate (id * 2) 

Accumulate (id * 3) 

Store output 

Figure 4: Loop Unrolling Example 
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Attempting to find ideal settings for replication, vectorization and loop unrolling can be a challenging 

task, however the Altera OpenCL compiler can optimize these settings via its resource-driven optimizer, 

which explores multiple design points and chooses the highest performance design. 

Memory / Input-Output Subsystems 
Unlike GPUs, which provide access to homogenous global (external) memory, Altera FPGAs can support 

heterogeneous memory interfaces with a variety of external memory types – DDR3 synchronous 

dynamic random access memory (SDRAM), DDR2 SDRAM, DDR SDRAM, and QDR II static random access 

memory (SRAM). Multiple memory interfaces may be configured on a single FPGA board, therefore it is 

important to direct which interface should be used for individual buffers, which can be done via 

attributes. When dealing with multiple memory banks, data is normally interleaved between banks, 

however certain applications may see improved performance by manually guiding which bank buffers 

should reside on.  

Another optimization possible on Altera FPGAs not currently present on GPUs is to take advantage of 

I/O channels and kernel channels (OpenCL 2.0 pipes).  Kernel channels allow kernels to transfer data to 

one another via a first-in-first-out (FIFO) buffer, without the need for host interaction.  Traditionally, 

GPU kernels that want to pass data to one another may do so by issuing reads and writes to global 

memory combined with some method of synchronization.  Performance and power efficiency gains are 

achieved by the removal of these intermediate reads and writes.  Altera FPGAs also extend the idea of 

kernel channels even further to allow I/O interfaces (I/O pipes), which allow kernels to access directly 

from a streaming interface without host interactions, known as IO channels.  Effectively the host 

configures the data pipeline and then steps out of the data path.  Figure 5 illustrates a kernel being 

executed on three sets of data coming from an I/O source. Significant time savings are possible because 

the FPGA communicates directly with the I/O source, and no longer needs the host to serve as a middle-

man. 
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Single Work-Item Execution (OpenCL Tasks) 
SIMD-based parallel processing is ideal for dealing with loops where there are no dependencies across 

iterations of the loop - usually parallelization can occur by simply mapping work-items to individual loop 

iterations. In most real-world applications, data-dependencies are inherent to the structure of the 

algorithm, and cannot be removed easily. Traditionally, GPU programmers must rely on relatively 

complicated constructs involving resources shared by work-items in a work group along with 

synchronization primitives in order to express computations correctly.  Alternatively, GPU programmers 

could choose to have the data-dependent section of work handled by only a single work-item (also 

called an OpenCL task), however this hampers parallelization and overall performance due to the 

idleness of other processing cores.  Pipeline-parallel devices such as FPGAs have less of an issue dealing 

with single work-items – single work-items are actually the unit of work in the pipeline anyways!  In fact, 

parallel pipelines can achieve additional performance by pipelining iterations of a loop containing loop 

carried dependencies – launching the next iteration as soon as loop dependencies have been 

completed. This scheduling is handled primarily by the compiler; however loop pipelining performance 

can also be improved by software developer in a number of ways – removing some dependencies, 

simplifying dependence complexity and relaxing dependence. Removing dependencies, for example by 

using simple access patterns results in faster launch times for the next iteration. Similar results occur 

when avoiding expensive operations when computing loop-carried values.  Relaxing dependence 

increases the number of iterations between generation and use of a value, which means that the 

immediate next iteration can be launched sooner.  Setting the kernel attribute “task” informs the Altera 

OpenCL compiler that the kernel will only run with a single work item.  Figure 6 illustrates a simple 

example of loop-pipelining. 

Figure 5: Example Highlighting I/O Channel Benefits  
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Development Process Differences 
Kernel development for FPGAs is slightly different than traditional GPU development in that the 

hardware is created for the specific functions being implemented.  FPGA circuit synthesis is a 

computationally-intensive task, and consumes much more time than compiling kernels into a series of 

instructions to be executed on a GPU.  To reduce development time and more closely resemble the 

traditional software friendly environment, the recommended approach for FPGA kernel development is 

to work in stages – syntax debugging, functional debugging, application debugging, and final 

performance tuning. Each stage is simply a modification of a compiler attribute.  During syntax 

debugging, the Altera compiler simply ensures proper OpenCL code syntax. For functional debugging, 

the OpenCL kernels are run on an x86 based host to rapidly verify functional correctness of the kernel.  

During application debugging, an optimization report is produced, providing information about 

throughput, memory transaction efficiency, as well as potential pipeline stalls.  This feedback can be 

used to modify the kernel accordingly to tune for performance at the functional level, but also on a 

virtual FPGA fabric that will show how changes in the code will improve performance when the FPGA is 

actually built.  During final performance tuning phase, a fully optimized FPGA circuit is generated and 

the profiler can be run to get detailed reports on kernel performance. 

Table 2: FPGA Development Stages 

Stage Time Execution Device 

Syntax Debugging Seconds None 

Functional Debugging Seconds Emulated kernels on x86 host 

Application Debugging Minutes Virtual FPGA fabric 

Summation code: 

sum = 0; 

FOR (x = 0; x < 4; x++) 

{ 

  █ sum += x;            // loop-carried dependency 

  █ output[x] = SUM;      

} 

1 Clock Cycle 2 3 4 5 6 7 8 
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Figure 6: Loop Pipelining Example, Both Devices Executing One Work-Item 
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Final Performance Tuning Hours Optimized circuit on FPGA with profiler 

Conclusions 
OpenCL is a parallel programming framework that is currently supported by devices, such as GPUs, 

CPUs, and FPGAs.  Kernels are code-portable across different platforms, but not performance-portable, 

meaning that the same code will execute on various devices, however the underlying parallelism 

mechanism and hardware features must be taken into consideration when attempting to optimize 

performance. Of course, since the FPGA creates a custom hardware implementation, code is completely 

portable between different FPGA families and generations without any modifications or new 

optimization requirements. Understanding the differences between SIMD parallelism and pipeline 

parallelism, and taking advantage of FPGA features, such as heterogeneous memory support, channels, 

and loop pipelining are keys to unlocking high performance-per-watt solutions. 

 


