
November 2011 Altera Corporation

WP-01172-1.0

© 2011 Altera Corporation. Al
QUARTUS and STRATIX wor
Office and in other countries. 
respective holders as described
products to current specificatio
products and services at any ti
of any information, product, o
advised to obtain the latest ver
for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Tips and Techniques for 28-nm Design
Optimization
White Paper
Timing closure is of critical importance in high-speed FPGA designs. This white paper 
focuses on the challenges that affect timing closure and discusses how simple HDL 
changes can help resolve timing issues and reduce the time needed to achieve timing 
closure.

Introduction
The tools available in Altera’s Quartus® II development software are designed to help 
address the challenges that effect timing closure—the availability of critical resources, 
the amount of routing congestion both local and global, and the ability to accurately 
time the logic to avoid timing volitions that could otherwise be caused by skews 
within the clock network—but often simple HDL changes will go a long way towards 
resolving timing issues and reducing the time it takes to achieve timing closure. This 
white paper addresses these possible HDL changes and their relationship to the 
architecture and layout of the FPGA. This paper is not intended to be a 
comprehensive look at all timing issues but a guideline to good coding practices with 
a specific emphasize on how these apply to designs implemented in Altera’s 28-nm 
portfolio of devices.

Optimizing for Timing, or Finding the Shortest Path
Figure 1 shows an abstract top-level view of Altera’s Arria® V FPGA architecture. All 
of the resources for the FPGA are laid out in a matrix of columns and rows with I/Os 
framing the top and bottom of the device and serializer/deserializer (SERDES) 
transceivers covering the left and right sides. Fractional phase-locked loops (PLLs) are 
collocated on the sides with the transceivers as well as in the center of the FPGA. 
Digital signal processors, adaptive logic modules (ALMs), and memory are 
distributed in regular columns throughout the FPGA. This column mapping of 
resources applies to the entire range of Altera’s 28-nm products with the exact mix of 
resources (columns) dependent upon the features of that FPGA.
l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, 
ds and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark 
All other words and logos identified as trademarks or service marks are the property of their 

 at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor 
ns in accordance with Altera's standard warranty, but reserves the right to make changes to any 

me without notice. Altera assumes no responsibility or liability arising out of the application or use 
r service described herein except as expressly agreed to in writing by Altera. Altera customers are 
sion of device specifications before relying on any published information and before placing orders 

Feedback Subscribe

ISO 
9001:2008 
Registered

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=WP-01172
mailto:whitepapers@altera.com?subject=Feedback on WP-01172
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/common/legal.html


Page 2 Optimizing for Timing, or Finding the Shortest Path
Figure 1. Top-Level Device View of Arria V Architecture

The layout of the FPGA is a regularly repeating matrix of resources, which are 
accessed via a mesh of interconnected fabrics. In other words, they are connected 
together through a series of horizontal and vertical pathways. As shown in Figure 2, 
the fitter tries to always choose the shortest available path through the device but 
often that path is blocked because it is used by other pieces in the design.

Figure 2. Path Analysis in an FPGA

The fitter therefore acts much like the GPS used in most cars today. It is constantly 
trying to find the shortest path through the network by choosing between different 
paths based on available resources and based on the constraints placed on it. The path 
it finds will vary depending on how many different paths it must choose from and the 
distance it must go.

General-Purpose I/Os (LVDS, Memory Interfaces)

General-Purpose I/Os (LVDS, Memory Interfaces)

ALM

Distributed Memory

Variable-Precision
DSP Blocks

PCIe Hard IP Gen2 x4

M10K Internal
Memory Blocks

Fractional PLLs

Hard IP Per Transceiver:
3G/6G PCS

High-Speed
Serial Transceivers

Integrated Multiport
Memory Controllers

Shortest Path Redirected due to Congestion
November 2011 Altera Corporation Tips and Techniques for 28-nm Design Optimization



Optimizing for Timing, or Finding the Shortest Path Page 3
Tip 1—The Highway is Not Always the Fastest Way (Retiming the Logic)
In 28-nm FPGAs, the amount of resources that can be placed within the mesh has 
grown dramatically. Gone are the days of devices with only 100K logic elements (LEs). 
Devices are now approaching 1M LEs, but the basic underlying interconnect mesh 
remains the same. This means that the cell delays have gotten faster while the 
interconnect delays have gotten slower. Using the GPS analogy, the main highways 
(interconnects) are often congested because there are so many more devices 
competing for access to those pathways in larger devices that sometimes using local 
streets (local cell connections) can be much faster. Anyone who has driven in rush-
hour traffic of any major city can understand the desire not to take main highways 
during peak times.

One way to avoid congestion is to collocate critical resources on critical pathways 
preferably within the same cell. The shorter the distance the signal must travel, the 
less likely the fitter must use the longer interconnect lines that may be congested and 
thereby cause delays on the path. This is often known as retiming the logic. The best 
way to do this is to evaluate the HDL code and break up large chunks of logic into 
smaller pieces and limit the number of dependencies between the different pieces. A 
good indicator of whether there will be issues is the numbers of layers of logic that 
exist between points in the timing paths. The more levels of logic there are, the more 
likely the resources available to complete the function are not collocated. The more 
resources are spread out across the device, the heavier use of interconnect paths is 
needed to reach them.

Tip 2—Don’t Drive During Rush Hour (Pipeline Aggressively)
Again using the GPS analogy, the time it takes to get from point A to point B in a 
major city is highly dependent upon the time of day. If someone attempts to drive 
during the end of a workday, it is more likely that person will encounter congestion 
because many people are trying to go home from work. On the other hand, that same 
path is completely free of traffic at midnight when most people in the city are asleep. 
In FPGA designs, the best way to manage congestion is to pipeline the design.

Pipelining a design adds additional latency in the system but it avoids timing 
problems by in effect changing the relationship between the clock and the data to 
ensure that they arrive at the destination at the same time. Pipelining can reduce the 
effect of longer interconnect delays that are not seen by the clock. Clocks travel on a 
separate network of paths than their data or logic counterparts, so timing problems 
can occur if the data comes before or after the clock expects it. (These are generally 
considered set-up and hold violations.) By inserting pipeline registers into the path, 
the signal is retimed so that both the clock and the data appear to the next piece of 
logic at the same time. This is the preferred way to handle long interconnect delays 
and is an easy way to avoid timing violations.

Altera recognized the need for more pipelining in its larger FPGAs and has 
redesigned its LEs and adaptive look-up tables (ALUTs) (Figure 3) to include an 
additional two registers. There are two reasons for this change. First, the additional 
registers provide more register resources so that normal logic functions are not 
impacted by the need for an additional pipeline register. Previously, an ALUT was 
wasted when a pipeline register was used to retime a design. Second, this change 
allows for collocation of the pipeline register with the logic it is intended for. 
Collocation is important because the pipeline registers are used to remove long 
November 2011 Altera CorporationTips and Techniques for 28-nm Design Optimization



Page 4 How Pipelining Helps Designs
interconnect delays. If the pipeline registers were not collocated with logic, then that 
would introduce yet another interconnect delay as the data must go to a register—
which may be located at the other end of the device—and come back to the ALUT. 
The additional registers ensure that the pipeline register can be placed close to the 
logic, thus minimizing any delays in the system.

Figure 3. Altera’s 28-nm ALUT

How Pipelining Helps Designs
This example addresses a 16-bit x 256-bit simple dual-port RAM (Figure 4) 
instantiated in an Arria V 360K-LE device. Due to high fanout of the RAM to multiple 
LEs, the speed on this path was restricted to 255 MHz.

Figure 4. 16x216 Simple Dual-Port RAM

Further analysis of the design, illustrated in Figure 5, shows that the interconnect 
delays between the RAM and the adder account for 54% of the total delay in the 
system.

Full
Adder

Full
Adder

Reg
>

Reg
>

Reg
>

Reg
>

1
2
3
4
5
6
7
8

Adaptive
LUT

R

R

R

R

R

R

216

18
16 x 216
Simple
Dual-Port
RAM
November 2011 Altera Corporation Tips and Techniques for 28-nm Design Optimization



How Pipelining Helps Designs Page 5
Figure 5. Path Analysis of Simple Dual Port Design

As shown in Figure 6, the insertion of a single pipeline register before the logic 
eliminates much of the interconnect delay, allowing the design to run at 325 MHz. 
This difference of 70 MHz is a 27% increase in performance provided just by inserting 
a single pipeline register in the design.

Figure 6. Simple Dual-Port Design with Addition of a Pipeline Register

R

R R R

Multiple
Memory Blocks

Multiple
LABs

Adder
(LEs)

Adder
(LEs)

Adder
(LEs)

Longer interconnect delay and large number of logic level
cause the critical path and restrict the fMAX to ~255 MHz

R

B18 B2 B1 B0

Adder (LEs)

co

ci

ia

ib

o

co

ci

ia

ib

o

co

ci

ia

ib

o

co

ci

ia

ib

o

R
R

R R R

Multiple
Memory Blocks Adder

(LEs)
Adder
(LEs)

Adder
(LEs)

Adding the pipeline increases the fMAX to 325 MHz

Multiple
LABs

R

B18 B2 B1 B0

Adder (LEs)

co

ci

ia

ib

o

co

ci

ia

ib

o

co

ci

ia

ib

o

co

ci

ia

ib

o

November 2011 Altera CorporationTips and Techniques for 28-nm Design Optimization



Page 6 Reducing Congestion
Tip 3—Carpool If Possible (Avoid High Fan-Out Nodes)
In logic, often the same signal must arrive at multiple locations at the same time. Since 
the signal is launched from the same resource, the fitter must find a path for all the 
copies of the signal and ensure that they all arrive at their respective locations at the 
same time. This type of situation is called a high fan-out node, and can be seen in 
Figure 4. The challenge is that it may become difficult to ensure all the signals arrive at 
their destination at the same time because all five copies cannot use the same routing 
resources to get to their respective destination and since the destination may be 
located in different areas of the device. The best way to avoid this problem is to use 
node replication.

Node replication can be done manually or automatically in the tool. As an example, 
20 copies of the same signal need to appear on the same logic at the same time. It may 
be extremely difficult to ensure that all 20 paths exactly match and meet timing, 
especially if the design is very full. Using node replication, the design is broken into 
two stages. The first stage is a 1-to-4 fan-out, and the second stage is a 1-to-5 fan-out. 
Adding the two stages together still provides the equivalent of a 1-to-20 fan-out of the 
signal, but it breaks it into two separate and more manageable problems. It is easier to 
match four or five paths through the FPGA than it is to match 20 paths.

Reducing Congestion
The previous sections address ways to retime the logic to avoid timing issues in the 
design. This section and the next address structural things to consider before even 
starting the design. The first of these is congestion in the FPGA, which is caused when 
too many LEs compete for the same set of resources, whether they are clock resources 
or interconnect lines. Because the fitter must trade off the needs of the different LEs, 
the more LEs that are used, the fewer available options the fitter has for choosing 
optimal paths. Designs more than 85% full will have a harder time closing timing than 
designs that are only 50% full. Altera’s fabric allows for designs up to 90% full but 
care must be taken to ensure timing closure on those designs. There are a couple of 
ways to improve timing in very congested designs. They are the use of partitioning 
and the management of clock networks.

Tip 4—Think Globally but Act Locally (Use Partitioning and Hierarchical 
Designs)

A hierarchical design approach has many advantages in FPGA design. First, it allows 
for partitioning of the design into smaller blocks. Partitioning allows for the use of 
incremental rapid recompile, a tool offered in Quartus II software that allows users to 
recompile only a portion of the design. This tool is a huge benefit because it helps the 
fitter focus only on the section of the design that may have changed, thus simplifying 
the routing problem and ensuring that the rest of the design remains unchanged.

By focusing the fitter, timing closure becomes easier because the fitter does not need 
to take into account all the paths in the design, as opposed to when a user complies an 
entire design, the fitter has to take into account all dependencies. This method can 
lead to different routes every time the design is compiled and result in different 
timing results. Since the fitter does not know what was and was not changed in the 
design, it will assume everything has changed and will use its algorithm to try to refit 
the entire design.
November 2011 Altera Corporation Tips and Techniques for 28-nm Design Optimization



Traffic Management Page 7
In addition, the overall compile time of a design will decrease when using rapid 
recompile because only the section that was changed will be rerouted. Figure 7 shows 
a portion of a design and how rapid recompile is used on it. A partition can be as 
small as a single ALUT and as big as the entire device.

Figure 7. Rapid Recompile vs. Regular Compile

Traffic Management
A second structural method is the use of hierarchical design to allow for the use of 
system-test bedding tools such as Altera’s Qsys system-integration tool. Qsys allows 
the user to quickly and easily connect different blocks of intellectual properties (IPs) 
and integrate them into Altera’s suite of debugging IP. This integration allows for 
virtual testing of the entire system and the ability to gauge performance as well as 
functionality of the design. Partitioning is a great way to break IPs into different 
blocks for integration into Qsys and an overall hierarchical design flow. Other benefits 
of partitioning include design reuse, because the IP can be preserved in blocks and 
can be preserved with the same routing, performance, and multisite design activities 
as different locations work on different parts of the overall design. Figure 8 shows the 
advantages of hierarchical design and Qsys.

A
B
C
D

x
y z

j
E

G

Unchanged

Changed
Logic

Regular Compile

QIC Compile

Rapid Recompile
November 2011 Altera CorporationTips and Techniques for 28-nm Design Optimization



Page 8 Traffic Management
Figure 8. Qsys Vision

Tip 5—Make Sure Trains Run on Time (Manage Clock Skews and Clock 
Networks)

There are six different types of clocks in Altera’s FPGAs: GCLK, QCLK, PCLK, SCLK, 
ROWCLK, and VIOCLK. Each clock from ROWCLK to GCLK covers a progressively 
wider area of the device. Unlike the interconnects where the suggestion was to avoid 
longer lanes (or highways) due to the amount of resources contending for access to 
those lanes, clocks are few in number. The larger clock lines such as GCLK allow 
quicker propagation of the clocks, which limits clock skew and improves both set-up 
and hold timings.

It is best to get the clock signal from PLL to the internal resources as quickly as 
possible. This means immediately transitioning from a local clock network such as a 
ROWCLK to a higher clock network such as QCLK or GCLK. This is called clock 
promotion, which the fitter will attempt to do automatically. In cases where the clocks 
are restricted due to a software design constraint (SDC) file, the user must ensure that 
the clocks are promoted where ever possible. Table 1 shows the different clocks and 
the regions they cover, while Figure 9 shows the layout of the clock network for 
Arria V FPGAs.

High
Performance
Interconnect

Industry-Standard
Interface

Hierarchy IP Management

Real-Time
System Debug

 

November 2011 Altera Corporation Tips and Techniques for 28-nm Design Optimization



Timing Closure is Complicated Page 9
Figure 9. Graphical View of Altera’s Clock Regions, PLLs, and Clock Multiplexers

Timing Closure is Complicated
Even with the best planning and the best HDL code, sometimes it is still difficult to 
close timing. This is especially a problem with very large designs where it is time 
consuming to understand every route and identify which ones can benefit from 
timing enhancements. Also simply knowing which enhancement would help the best 
in any given situation would be difficult to understand.

Table 1. Different Clocks and Clock Regions in Altera 28-nm Devices

Network Name Clock Region Coverage/Usage

GCLK Device-wide network

QCLK
Quadrant
Side-wide

Spine-segment

PCLK
Spine-segment

Vertical spine segment
Horizontal spine segment

SCLK Access 1/16 of core (4-spine segment device)
Access 1/8 of core (2-spine segment device)

ROWCLK Access core resource: LAB/M10K/DSP and HIO register

VIOCLK Access VIO register

PL
L

PL
L

PL
L

PL
L

PL
L

PL
L

VIO-CLK VIO-CLK

DPA Clock Tree

VIO-CLK VIO-CLK

VIO-CLK VIO-CLK VIO-CLK VIO-CLK

DPA PCLK MUX
Memory Interface PHY Clock Tree + LVDS Clock Tree

DPA Clock Tree
DPA PCLK MUX

Memory Interface PHY Clock Tree + LVDS Clock Tree

Q1
Mux

Q5 Mu
x

Q9 Mu
x

G1 Mu
x

Q1
2

Mu
x

Q8 Mu
x

Q6 Mu
x

Q1
0

Mu
x

G3 Mu
x

Q1
1

Mu
x

Q7 Mu
x

G4
Mux

Q2
Mux

PL
L

PL
L

Q4
Mux

G2
Mux

Q3
Mux

PL
L

PL
L

QC
LK

QC
LK

QC
LK

QC
LK

QC
LK

QC
LK

QC
LK

QC
LK

XP
LL

_B
C

PC
S

Tr
ipl

et 
XV

CR
Ch

an
ne

l / 
PM

A

V-
PC

LK

V-
PC

LK

V-
PC

LK

V-
PC

LK

H-PCLK

H-PCLK

GCLK

H-PCLK

H-PCLK

V-
PC

LK

V-
PC

LK

V-
PC

LK

V-
PC

LK

H-
PC

LK
 M

UX
s

fP
LL

fP
LL

fP
LL

fP
LL

fP
LL

PC
S

Tr
ipl

et 
XV

CR
Ch

an
ne

l / 
PM

A

H-
PC

LK
 M

UX
s

H-PCLK

H-PCLK

H-PCLK

H-PCLK

fP
LL
November 2011 Altera CorporationTips and Techniques for 28-nm Design Optimization



Page 10 Timing Closure is Complicated
Tip 6—Ask for Directions (Use Altera’s Automated Timing Closure Analysis 
Tool)

Within Quartus II software, Altera’s automated Timing Closure Analysis tool that can 
be launched via the TimeQuest timing analyzer. The tool is designed to help guide the 
designer by providing a set of recommendations that the user can evaluate and decide 
if it is worth trying. The recommendations will not be perfect because the tool does 
not know if the changes are feasible or easy to try. The tool does help determine what 
portions of design a user must revisit and explains what changes would most likely 
help with that circuit.

The overall goal is to provide intelligent advice to the user because it is often unclear 
where to start looking at timing failures. The tool looks for the following timing 
issues:

■ Large clock skews

■ Restricted optimizations where Quartus II software was not allowed to retime or 
duplicate

■ Unbalanced logic that would benefit from retiming the path

■ Region constraints where nodes on the path are locked to non-overlapping regions

■ Partition constraints that occur when a path crosses partition boundaries

■ Too much logic for the given timing constraint

■ Use of control signal paths on critical logic

■ Reduced optimization focus by Quartus II software because the fitter did not see 
this path as being critical

■ Interpath competition

The tool has a link that explains each problem and the corresponding 
recommendation. It also ranks recommendations using a star system so that the user 
can focus on those that will have the biggest impact on the timing of the system. 
Figure 10 shows an example of the tool and its results.

Figure 10. Timing Closure Analysis Tool
November 2011 Altera Corporation Tips and Techniques for 28-nm Design Optimization



Conclusion Page 11
Conclusion
Today’s larger FPGAs are quickly approaching 1M LEs, which can make timing 
closure a difficult process in extremely large designs. Good coding practices such as 
retiming logic, pipelining where practical, and avoiding high fan-out nodes can make 
the problem much easier. In addition, partitioning the design and good clock 
management at the start will go a long ways towards avoiding issues once the design 
is complete. However, these suggestions are not all inclusive and may not solve all 
timing issues, Altera has developed advanced tools and has highly trained support 
personnel who are ready and committed to help the user close timing in their designs.

Further Information
■ Arria V FPGAs: Balance of Cost, Performance, and Power:

www.altera.com/devices/fpga/arria-fpgas/arria-v/arrv-index.jsp

■ Cyclone V FPGAs: Lowest System Cost and Power:
www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp

■ Quartus II Subscription Edition Software:
www.altera.com/products/software/quartus-ii/subscription-edition/qts-se-
index.html

■ Webcast: “Optimize Your 28-nm FPGA Design for Maximum Performance”:
www.altera.com/education/webcasts/all/wc-2011-optimize-28nm-fpga-max-
performance.html

Acknowledgements
■ Trung Tran, Staff Product Marketing Manager, High-Density Products, Altera 

Corporation

Document Revision History
Table 2 shows the revision history for this document.

Table 2. Document Revision History

Date Version Changes

November 2011 1.0 Initial release.
November 2011 Altera CorporationTips and Techniques for 28-nm Design Optimization


	Tips and Techniques for 28-nm Design Optimization
	Introduction
	Optimizing for Timing, or Finding the Shortest Path
	Tip 1—The Highway is Not Always the Fastest Way (Retiming the Logic)
	Tip 2—Don’t Drive During Rush Hour (Pipeline Aggressively)

	How Pipelining Helps Designs
	Tip 3—Carpool If Possible (Avoid High Fan-Out Nodes)

	Reducing Congestion
	Tip 4—Think Globally but Act Locally (Use Partitioning and Hierarchical Designs)

	Traffic Management
	Tip 5—Make Sure Trains Run on Time (Manage Clock Skews and Clock Networks)

	Timing Closure is Complicated
	Tip 6—Ask for Directions (Use Altera’s Automated Timing Closure Analysis Tool)

	Conclusion
	Further Information
	Acknowledgements
	Document Revision History


