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Abstract 

Floating-point processing utilizes a format defined in IEEE 754, and is supported by 

microprocessor architectures. However, the IEEE 754 format is inefficient to implement 

in hardware, and floating-point processing is not supported in VHDL or Verilog. Newer 

versions, such as SystemVerilog, allow floating-point variables, but industry-standard 

synthesis tools do not support floating-point technology. 

 

This paper describes a new approach which efficiently implements floating-point data 

processing in hardware architectures, specifically FPGAs. This allows for extremely high 

rates of floating-point processing, of at least 1 TeraFLOPS in a single FPGA die, and 

with significantly better power efficiency than the microprocessor-based alternatives. 
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Introduction 

Floating-point processing is widely used in computing for many different applications. In 

most software languages, floating-point variables are denoted as “float” or double.” 

Integer variables are also used for what is known as fixed-point processing. 

 

In embedded computing, fixed-point or integer-based representation is often used due to 

the simpler circuitry and lower power needed to implement fixed-point processing 

compared to floating-point processing. Many embedded computing or processing 

operations must be implemented in hardware—either in an ASIC or an FPGA. However, 

due to technology limitations, hardware-based processing is virtually always done as 

fixed-point processing. While many applications could benefit from floating-point 

processing, this technology limitation forces a fixed-point implementation. If feasible, 

applications in wireless communications, radar, medical imaging, and motor control all 

could benefit from the high dynamic range afforded by floating-point processing.  

 

Before discussing a new approach that enables floating-point implementation in hardware 

with performance similar to that of fixed-point processing, it is first necessary to discuss 

the reason why floating-point processing has not been very practical up to this point. This 

paper focuses on FPGAs as the hardware-processing devices, although most of the 

methods discussed can be applied to any hardware architecture. After a discussion of the 

challenges of implementing floating-point processing, a new approach used to overcome 

these issues will be presented. Next, some of the key applications for using floating-point 

processing, involving linear algebra, are discussed, as well as the additional features 

needed to support these type of designs in hardware. Performance benchmarks of FPGA 

floating-point processing examples are also provided.  

 

Floating-Point Issues in FPGAs 

Floating-point numerical format and operations are defined by the IEEE 754 standard, 

but the standard's numerical representation of floating-point numbers is not hardware 

friendly. To begin with, the mantissa representation includes an implicit 1. Each mantissa 

digital representation of range [0 : 0.999..], actually maps to a value in the range of [1 : 

1.999..]. Another issue is that the sign bit is treated separately, rather than using 

traditional twos complement signed representation. 

 

In addition, to preserve the dynamic range of a floating-point signal, the mantissa must be 

normalized after every arithmetic operation. This aligns the decimal point to the far left, 

and adjusts the exponent accordingly. This is normally done using a barrel shifter, which 

shifts any number of bits in one clock cycle. Additionally, for each arithmetic operation, 

specific floating-point “special cases” must be checked for and flagged as they occur. 

 

In floating-point processors, the CPU core has special circuits to perform these 

operations. Typical CPUs operate serially, so one or a small number of computational 

units are used to implement the sequence of software operations. Since CPU cores have a 

small number of floating-point computational units, the silicon area and complexity 

needed to implement the IEEE 754 standard is not burdensome, compared to the rest of 

buses, circuits, and memory needed to support the computational units. 
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Implementation in hardware, and in FPGAs in particular, is more challenging. In logic 

design, the standard format for signed numbers is the twos complement. FPGAs 

efficiently implement adders and multipliers in this representation. So the first step is to 

use the signed twos complement format to represent the floating-point mantissa, 

including the sign bit. The implicit 1 in the IEEE 754 format is not used. 

 

With the IEEE 754 standard, normalization and de-normalization using barrel shifters is 

implemented at each floating-point operation. For adder or subtracter circuits, the smaller 

number must first be de-normalized to match the exponent of the larger. After adding 

and/or subtracting the two mantissas, the result must be normalized again, and the 

exponent adjusted. Multiplication does not require the de-normalization step, but does 

require normalization of the product. 

 

Optimal Implementation of Floating-Point Processing 

With FPGAs, using a barrel-shifter structure for normalization requires high fan-in 

multiplexers for each bit location, and the routing to connect each of the possible bit 

inputs. This leads to very poor fitting, slow clock rates, and excessive routing. A better 

solution with FPGAs is to use multipliers. For a 24-bit single-precision mantissa (the 

signed bit is now included), the 24x24 multiplier shifts the input by multiplying by 2
N
. 

Many FPGAs today have very high numbers of hardened multiplier circuits that operate 

at high clock rates. 

 

Another technique used to minimize the amount of normalization and de-normalization is 

to increase the size of the mantissa. This allows the decimal place to move a few 

positions before normalization is required, such as in a multiplier product. This is easily 

accomplished in an FPGA, as shown in Figure 1. For most linear algebra functions, such 

as vector sums, vector dot-products, and cross products, a 27-bit mantissa reduces 

normalization frequency by over 50%. For more non-linear functions, such as 

trigonometric, division, square root, a larger mantissa is needed. A 36-bit mantissa works 

well in these cases. The FPGA must support 27x27 and 36x36 multipliers. For example, 

one recently announced FPGA offers over 2000 multipliers configured as 27x27, or over 

1000 multipliers configured as 36x36. 
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Figure 1. New Floating-Point Approach 

 

These techniques are used to build a high-performance floating-point datapath within the 

FPGA. Because IEEE 754 representation is still necessary to comply with floating-point 

processing, the floating-point circuits must support this interface at the boundaries of 

each datapath, such as a fast Fourier transform (FFT), a matrix inversion, or sine 

function.  

 

This floating-point approach has been found to yield more accurate results than if 

IEEE 754 compliance is performed at each operator. The additional mantissa bits provide 

better numerical accuracy, while the elimination of barrel shifters permits high clock-rate 

performance, as shown in Table 1. 

 

 
Table 1. FPGA Floating-Point Precision Results 

 

Table 1 lists the mean, the standard deviation, and the Frobenious norm where the SD 

subscript refers to IEEE 754-based single-precision architecture in comparison with the 
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reference double-precision architecture, and the HD subscript refers to the hardware-

based single-precision architecture in comparison with the reference double-precision 

architecture. 

 

Floating-Point Verification 

Floating-point results cannot be verified by comparing bit for bit, as is typical in fixed-

point arithmetic. The reason is that floating-point operations are not associative, which 

can be proved easily by writing a program in C or MATLAB to sum up a selection of 

floating-point numbers. Summing the same set of numbers in the opposite order will 

result in a few different LSBs. To verify the floating-point designs, the designer must 

replace the bit-by-bit matching of results typically used in fixed-point data processing 

with a tolerance-based method that comparex the hardware results to the simulation 

model results. 

 

The results of an R matrix calculation in a QR decomposition are shown Figure 2, using a 

three-dimensional plot to show the difference between the MATLAB-computed results 

and the hardware-computed results using an FPGA-based floating-point toolflow. Notice 

the errors are in the 10
-6

 range, which affects only smallest LSBs in the single-precision 

mantissa. 

  

 
Figure 2. R Matrix Error Plot 

 

To verify the accuracy of the non-IEEE 754 approach, matrix inversion was performed 

using single-precision floating-point processing. The matrix-inversion function was 

implemented using the FPGA and tested across different-size input matrices. These 

results were also computed using single-precision with an IEEE 754-based Pentium 

processor. Then a reference result was computed on the processor, using IEEE 754 

double-precision floating-point processing, which provides near-perfect results relative to 

single-precision. Comparing both the IEEE 754 single-precision results and the single-

precision hardware results, and computing norm and the differences, shows that the 

hardware implementation gives a more accurate result than the IEEE 754 approach, due 

to the extra mantissa precision used in the intermediate calculations. 
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FPGA Floating-Point Design-Flow Methodology 

Hardware, including FPGAs, is typically designed using an HDL, either Verilog or 

VHDL. These languages are fairly low level, requiring the designer to specify all data 

widths at each stage and specify each register level, and does not support the synthesis of 

floating-point arithmetic operations. To implement the approach above using HDL would 

be very arduous and has greatly discouraged the use of floating-point processing in 

hardware-based designs. Therefore, a high-level toolflow is needed to implement these 

floating-point techniques.  

 

The design environment chosen in this case is Simulink, a widely used product from The 

Mathworks. Simulink is model based, which allows the designer to easily describe the 

data flow and parallelism in the design, traditionally a challenge when using software 

language. Compared to HDL, Simulink provides a high level of design description, 

allowing the designer to describe the algorithm flow behaviorally, without needing to 

insert pipeline registers or know the details of the FPGA hardware, and to easily switch 

between fixed-point processing and single- and double-precision floating-point variables. 

This level of abstraction provides the opportunity for an automated tool to optimize the 

RTL generation, including the floating-point synthesis. 

 

An additional advantage of this choice is that the system can be simulated in the Simulink 

and MATLAB domains, and the same testbench used in system-level simulation is later 

used to verify the FPGA-based implementation. The automated back-end synthesis tool 

running under Simulink is called DSP Builder. It performs all the required floating-point 

optimizations to produce an efficient RTL representation. A simple circuit representation 

is shown in Figure 3. 

  

 
Figure 3. Simple DSP Builder Floating-Point Processing Example 

 

FPGAs, with their hardware architecture, distributed multipliers, and memory blocks, are 

ideal for high-bandwidth parallel processing. The distributed nature of the programmable 

logic, hardened blocks, and I/Os minimize the occurrence of bottlenecks in the processing 
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flow. The embedded memory blocks store the intermediate data results, and the extensive 

I/O options of FPGAs provide easy interconnects to the larger system, whether they are 

processors, data convertors, or other FPGAs. 

 

Vector Processing 

Many designs requiring the dynamic range of floating-point processing are based on 

linear algebra. Using linear algebra to solve problems is typical for multi-input and 

multidimensional systems, such as radar, medical imaging and wireless systems. For this 

reason, it is important to support vector processing of complex (quadrature) data. 

 

Vector processing is ideally suited for parallel processing. Processing serially 

dramatically reduces throughput and increase latency. Due to the inherent parallelism, 

hardware implementation is well suited to vector processing. However, vector processing 

must be representable and synthesizable in the design entry process. Figure 4 shows a 

simple dot products example where vectors are denoted by single lines, and the vector 

length or number of elements is displayed, all of which are implemented in a complex, 

single-precision floating-point numerical representation. The vector length is a parameter 

set in a top-level constant file, and the example uses a special block, SumOfElements, 

that acts as an accumulator to add together all the partial products. 

 

 
Figure 4. DSP Builder Floating-Point Dot Product Example 

 

Managing Data Flow in Hardware 

Simple flow diagrams can implement some algorithms, but other algorithms require more 

complex control. For example, matrix multiplication, which is a series of vector dot 

products, requires indexing of the rows and columns. Software languages have structures 
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to implement looping, and the same is needed in hardware flow. For this reason, a for 

loop block has been added to the Simulink library, as shown in Figure 5. 

 

 
Figure 5. DSP Builder For-Loop Block 

 

In addition, multiple for loops nest, just as in a software environment, to build indexing 

counters and control signals, as shown in Figure 6. This capability is critical in many 

applications, including the indexing often needed for linear algebra processing.  

 

 
Figure 6. DSP Builder Nested For-Loop Blocks 
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Solving systems of multiple equations or inverting matrices often requires back 

substitution, where each unknown is solved iteratively, one equation at time. The code for 

this solution is as follows: 

for (uint8 countA=0; countA<16; countA++) 

 { 

for (uint8 countB=0; countB<=countA; countB++) { 

qc1 = countA; 

qc2 = countB; 

           } 

} 

 

Figure 7 shows how it is necessary to index across both vertical and horizontal elements. 

Using nested for-loop blocks allows complex hardware control functions to manage data 

flow. 

 

 
Figure 7. DSP Builder Back Substitution Diagram 

 

Many algorithms requiring the dynamic range of floating-point processing are iterative. 

One such example is the recursive infinite impulse response (IIR) filter function. One of 

the challenges is to design the data flow in such a manner as to avoid stalls in the 

hardware blocks, and to parallelize the critical path as much as possible for maximum 

throughput. Additionally, to provide for fast clock rates, adequate delay registers must be 

placed in the feedback path.  

 

In the example shown in Figure 8, the IIR bi-quad filter is constructed just as in a 

textbook diagram. However, the toolflow has the capability to create multichannel 

designs. This example initially has four filter channels, though the design depicts the 

operations of only a single channel. Next, the design is increased to 20 channels. The 

channel-in and channel-out blocks denote the boundaries of this function, and the user 

can parameterize the function to have as many channels as necessary. The tool creates the 

scheduling logic to manage the N channels. In this example, using 20 channels requires 

each channel to have a delay of 20 registers between each feedforward and feedback 

multiplier. The tool automatically distributes these registers throughout the circuit to 

function both as algorithmic delay registers and as pipeline registers, thereby achieving a 
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high circuit fMAX. Also, should the input data type be changed from real to complex, the 

tool automatically implements the adders and multipliers to handle the complex 

arithmetic. 

 

 
Figure 8. IIR Filter 

 

More complicated algorithms require more complicated implementations. An example of 

such a dataflow is depicted in Figure 9 in the recursive part of the Mandelbrot 

implementation, which computes zn+1 = zn
2
 + c, then uses the feedback FIFO buffer to 

delay feedback data until needed to stream data without stalling In this case, additional 

latency in the recursive path is needed to allow enough register levels to efficiently 

implement the logic. This is accomplished through the use of FIFO buffers.  

 

 

 
Figure 9. Floating-Point Mandelbrot Design Example 
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Library Support Requirements 

In a software programming environment, the math.h utility is provided, which includes 

the following functions: 

 SIN 

 COS 

 TAN 

 ASIN 

 ACOS 

 ATAN 

 EXP 

 LOG 

 LOG10 

 POW(x,y) 

 LDEXP 

 FLOOR 

 CEIL 

 FABS 

 SQRT 

 DIVIDE 

 1/SQRT 

 

Given the very common use of these functions in many signal-processing algorithms, 

these functions are also provided in this hardware flow (Figure 10). 

 

 
Figure 10. Math.h Functions 
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In an FPGA implementation, parallelism is used to reduce the latency normally 

associated with such function. Computation of a trigonometric function in a processor 

easily takes over 100 cycles. For FPGA implementations, the use of multiplier-based 

algorithms and use of several multipliers typically results in latency and resources usage 

of three to five times what a basic floating-point add or multiply requires. This means that 

the hardware designer need not restructure the implementation to minimize use of divide, 

trigonometric, square root, or other functions. 

 

Matrix inversion is a critical function in many floating-point applications. Therefore, 

efficient implementation of common algorithms such as QR decomposition, LU 

decomposition, and Choleski is needed. This requires a toolflow to support the features 

discussed and very high degrees of parallelism. 

 

FPGA Floating-Point Performance Benchmarks 

Single or very few floating-point multiply-add circuits have been benchmarked at high 

clock rates. However, performance then tends to fall off very fast, as the traditional 

IEEE 754 implementation imposes unsustainable routing requirements in the FPGA. As 

the floating-point performance benchmarks for FFT and matrix multiplication in Table 2 

and Table 3 demonstrate, the new toolflow is able to reduce routing resources to a 

sustainable level by using non-IEEE 754 numerical representation and the techniques 

previously described. Additionally, the multiplier-to-logic ratios for these 

implementations are reasonable given the resource mixes of many FPGAs today. 

However, the benchmarks shown use FPGAs with 36x36 multipliers (composed of four 

18x18 multipliers), and a large reduction in multiplier usage is expected for the newer 

FPGAs with native 27x27 multipliers. 

 

 
Table 2. FFT Benchmarks 
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Table 3. Matrix Multipler Benchmarks 

 

QR decomposition was also implemented, using a complex, single-precision matrix of 

200x192. The performance achieved and resources used are as follows:  

 

 Algorithmic requirements 

o m*(k
2
+k) complex multiplies per QRD 

o 200 * (192
2
+192) = 7,411,200 

 System requirements 

o QRD performed in less than 1 ms 

o Clock rate of 250 MHz 

 Parallelism 

o 7,411,200 complex multipliers / (1 ms * 250 MHz) = 29.6 complex 

multipliers in parallel are needed 

o Chosen:  32 parallel complex multipliers = 128 real multipliers (either 27x27 

or 36x36) 

 FPGA resource requirements 

o 138 multipliers (27x27 or 36x36)  

o 120K registers  

o 96K FPGA look-up tables (LUTs)  

o 8-Mb memory  

 

Additional circuit blocks were used to implement both forward and back substitution, 

meeting the performance requirements in a radar application. This particular design used 

a vector of 34. By updating the design to support a vector to 200, a throughput increase of 

five times is achievable at the expense of more FPGA resources. This ability to easily 

trade resources for throughput is a key advantage of implementing these types of 

application in hardware. 

 

Another matrix inversion design using the Choleski algorithm was built using this 

toolflow. The complex, single-precision 256x256 matrix operated with a latency of less 

than 1 ms, or over 1,000 matrix inversions per second. 
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Conclusion 

This paper demonstrates that by using new floating-point processing techniques, high-

performance implementation of large designs on large FPGAs can be readily 

implemented. The throughput and clock rates are comparable to that of fixed-point 

implementations, but provide the floating-point benefit of high dynamic range and 

eliminate most numerical processing issues. Traditional IEEE 754-compatible interfaces 

are supported to allow easy integration, and support common test benches and simulation 

environments between system and hardware design teams.  

 

In order to synthesize floating-point circuits, the designer must give up the detailed 

circuit description using Verilog or VHDL. Instead, a model-based design description 

using The Mathworks's Simulink environment is used to provide a sufficient level of 

abstraction for automated synthesis of floating-point datapaths. This environment also 

provides the ability to incorporate other features that allow high productivity floating-

point design flow, such as vector representation and support, auto-pipelining, 

mathematical functions, and to leverage the extensive amount of hard multipliers 

available in today’s FPGAs. 


