This user guide provides a brief overview of the various tabs in the device-specific PDN tool 2.0. You can quickly and accurately design a robust power delivery network with the PDN tool 2.0. This is done by calculating an optimum number of capacitors that meet the target impedance requirements for a given power supply.

Note: The PDN tool 2.0 only supports Microsoft Excel 2007 and newer, and either US or UK English language.

Table 1: PDN Tool 2.0 Software Verification

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Excel Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 8 (64-bit)</td>
<td>2010, 2013</td>
</tr>
<tr>
<td>Windows 7 (64-bit)</td>
<td>2010, 2013</td>
</tr>
<tr>
<td>Windows XP</td>
<td>2007, 2010</td>
</tr>
</tbody>
</table>

Overview

The Altera PDN tool 2.0 helps PCB designers estimate the number, value, and type of decoupling capacitors needed to develop an efficient PCB decoupling strategy. It allows you to do this during the early design phase, without going through extensive pre-layout simulations.

The PDN tool 2.0 is a Microsoft Excel-based spreadsheet that calculates an impedance profile based on your input. For a given power supply, the spreadsheet only requires basic design information to calculate the impedance profile and the optimum number of capacitors to meet the desired impedance target (Z_{TARGET}). Basic design information includes the board stackup, transient current information, and ripple specifications, for example. The tool also provides device- and power rail-specific PCB decoupling cut-off frequency ($F_{\text{EFFECTIVE}}$). The results obtained through the PDN tool 2.0 are intended only as a preliminary estimate and not as a specification. For an accurate impedance profile, Altera recommends a post-layout simulation approach using any available EDA tool, such as Sigrity PowerSI, Ansoft SIWave, Cadence Allegro PCB PI, and so on.
The device families supported by the Altera device-specific PDN tool 2.0 are shown at the top of the **Release Notes** tab and they include:

- Arria® 10 (as a separate .xls)
- Stratix® V
- Arria V
- Arria II GZ
- Arria V SoC
- Cyclone® V
- Cyclone V SoC
- Cyclone IV

PDN Decoupling Methodology Review

The PDN tool 2.0 provides two parameters for guiding PCB decoupling design: Z_{TARGET} and $F_{\text{EFFECTIVE}}$.

PDN Circuit Topology

The PDN tool 2.0 is based on a lumped equivalent model representation of the power delivery network topology.

Figure 1: PDN Topology Modeled as Part of the Tool

The PDN impedance profile is the impedance-over-frequency looking from the device side.

For first order analysis, the voltage regulator module (VRM) can be simply modeled as a series-connected resistor and inductor as shown above. At low frequencies, up to approximately 50 KHz, the VRM has a very low impedance and can respond to the instantaneous current requirements of the FPGA. The equivalent series resistance (ESR) and equivalent series inductance (ESL) values can be obtained from the

Notes:

1. You can define or change VRM parameters in the Library sheet of the PDN tool.
2. You can define or change Decoupling CAPs parameters in the Cap Mount, X2Y Mount, and Library sheets of the PDN tool.
VRM manufacturer. At higher frequency, the VRM impedance is primarily inductive, making it incapable of meeting the transient current requirement.

PCB decoupling capacitors are used for reducing the PDN impedance up to 100-150 MHz. The on-board discrete decoupling capacitors provide the required low impedance. This depends on the capacitor-intrinsic parasitics (R_{cN}, C_{cN}, L_{cN}) and the capacitor mounting inductance (L_{mntN}). The inter-planar capacitance between the power-ground planes typically has lower inductance than the discrete decoupling capacitor network, making it more effective at higher frequencies up to 150 MHz. As frequency increases, the PCB decoupling capacitors become less effective. The limitation comes from the parasitic inductance seen with respect to the FPGA. FPGA parasitic inductance includes capacitor mounting inductance, PCB spreading inductance, ball grid array (BGA) via inductance, and packaging parasitic inductance. All of these parasitics are modeled in the PDN tool 2.0 to capture the effect of the PCB decoupling capacitors accurately. To simplify the circuit topology, all parasitics are represented with lumped inductors and resistors despite the distributed nature of PCB spreading inductance.

Z_{TARGET}

According to Ohm’s law, voltage drop across a circuit is proportional to the current flow through the circuit, and impedance of the circuit. The dynamic component of PDN current gives rise to voltage fluctuation within the PDN, which may lead to logic and timing issues. You can reduce excessive voltage fluctuation by reducing PDN impedance. One design guideline is target impedance, Z_{TARGET}. Z_{TARGET} is defined using the maximum allowable die noise tolerance and dynamic current change, and is calculated as follows.

Figure 2: Z_{TARGET} Equation

$$Z_{TARGET} = \frac{\text{Voltage Rail}}{\frac{\text{Die Noise Tolerance\%}}{100} \times \frac{\text{Maximum Dynamic Current Change}}{\text{Maximum Dynamic Current Change}}}$$

For example, to reliably decouple a 1.8-volt power rail that allows 5% of die noise tolerance and a maximum 2 A current draw, 50% of which is dynamically changing, the desired target impedance is calculated as follows.

Figure 3: Z_{TARGET} Example Equation

$$Z_{TARGET} = \frac{1.8 \times 0.05}{2 \times 0.5} = 0.09 \Omega$$
To accurately calculate the Z_{TARGET} for any power rail, you must know the following information:

- The maximum dynamic current change requirements for all devices in the system that are powered by the power rail under consideration. You can obtain this information from manufacturers of the respective devices. You can calculate the maximum dynamic current change of a device using the maximum total current and the dynamic current change percentage.

Note: The dynamic current change is intended to parameterize the high-frequency current draws required to provide the energy for CMOS transistors changing state. In the case of the core rail, the transients are generated by switching inside the FPGA core. Thus, a design which involves extensive logical switching generates higher % transients (dynamic current change) than a more static design. For information about recommended settings, refer to the table in the Introduction tab of the PDN tool 2.0.

Note: You can obtain accurate estimations on the maximum total current for Altera devices using the Altera PowerPlay Early Power Estimator (EPE) tool or the Quartus® II PowerPlay Power Analyzer tools.

- The maximum allowable die noise tolerance on the power rail is given as a percentage of the supply voltage.

Note: Device switching activity leads to transient noise (high frequency spikes) seen on the power supply rails. This noise can cause functionality issues if they are too high. The noise must be dampened within a range defined as a percentage of power supply voltage. The recommended values for the maximum allowable AC die noise tolerance are listed in the Introduction tab of the PDN tool 2.0. Different rails have different specifications because of their sensitivity to the transient voltage noise as well as how much current is used by the power rail.

This AC die noise tolerance differs from the minimum and maximum voltage specifications in the device datasheet in that the voltage specifications in the device datasheet are DC values. The (DC) ripple of the voltage regulator module (VRM) is the change in the power supply voltage level. Altera devices are designed to operate within a specific voltage range, which is considered the DC specification. The DC specification is, in turn, translated to the requirement for the VRM ripple specification. This DC specification is not included in the die noise tolerance field in the PDN tool 2.0.

Table 2: Settings for the Arria 10 Device Power Rails

This information is from the PDN tool 2.0 for an Arria 10 device. You can optionally adjust the recommended number up or down slightly based on knowledge of the intended application.

<table>
<thead>
<tr>
<th>Rail Name (1)</th>
<th>Voltage (V)</th>
<th>Die Noise Tolerance (%)</th>
<th>Dynamic Current Change (%)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>0.85 - 0.9</td>
<td>5</td>
<td>50</td>
<td>Core</td>
</tr>
<tr>
<td>VCCIO</td>
<td>1.2 - 3.0</td>
<td>5</td>
<td>100</td>
<td>I/O Bank</td>
</tr>
<tr>
<td>VCCPT</td>
<td>1.8</td>
<td>5</td>
<td>50</td>
<td>I/O Pre-Drivers</td>
</tr>
<tr>
<td>VCCPGM</td>
<td>1.2/1.5/1.8</td>
<td>5</td>
<td>50</td>
<td>Programming Power</td>
</tr>
</tbody>
</table>

(1) For more information about power rail functions, refer to the Pin Connection Guidelines for the selected device family.
<table>
<thead>
<tr>
<th>Rail Name (1)</th>
<th>Voltage (V)</th>
<th>Die Noise Tolerance (%)</th>
<th>Dynamic Current Change (%)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCCERAM</td>
<td>0.95</td>
<td>5</td>
<td>50</td>
<td>Programmable Power Tech Aux</td>
</tr>
<tr>
<td>VCCBAT</td>
<td>1.2/1.5/1.8</td>
<td>5</td>
<td>100</td>
<td>Battery Back-up Power Supply</td>
</tr>
<tr>
<td>VCCA_PLL</td>
<td>1.8</td>
<td>5</td>
<td>10</td>
<td>PLL (Analog)</td>
</tr>
<tr>
<td>VCCA_FPLL</td>
<td>1.8</td>
<td>5</td>
<td>10</td>
<td>FPLL</td>
</tr>
<tr>
<td>VCCR_GXB</td>
<td>0.9/1.0/1.1</td>
<td>3</td>
<td>30</td>
<td>XCVR RX (Analog)</td>
</tr>
<tr>
<td>VCCT_GXB</td>
<td>0.9/1.0/1.1</td>
<td>2</td>
<td>60</td>
<td>XCVR TX (Analog)</td>
</tr>
<tr>
<td>VCCA_GXB</td>
<td>0.9/1.0/1.1</td>
<td>5</td>
<td>10</td>
<td>XCVR /CDB (Analog)</td>
</tr>
<tr>
<td>VCCH_GXB</td>
<td>0.9/1.0/1.1</td>
<td>3</td>
<td>15</td>
<td>XCVR I/O Buffer Block</td>
</tr>
<tr>
<td>VCCR_GTB</td>
<td>0.9/1.0/1.1</td>
<td>3</td>
<td>30</td>
<td>28 Gbps XCVR RX (Analog)</td>
</tr>
<tr>
<td>VCCT_GTB</td>
<td>0.9/1.0/1.1</td>
<td>2</td>
<td>60</td>
<td>28 Gbps XCVR TX (Analog)</td>
</tr>
<tr>
<td>VCCP</td>
<td>0.9</td>
<td>5</td>
<td>33</td>
<td>Periphery Supply Voltage</td>
</tr>
</tbody>
</table>

Related Information

- Altera PowerPlay Early Power Estimator (EPE)
- Arria 10 GX, GT, and SX Device Family Pin Connection Guidelines.
- Stratix V E, GS, and GX Device Family Pin Connection Guidelines.
- Stratix V GT Device Family Pin Connection Guidelines.
- Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.
- Arria II Device Family Pin Connection Guidelines.
- Cyclone V Device Family Pin Connection Guidelines.
- Cyclone IV Device Family Pin Connection Guidelines.

F_{EFFECTIVE}

As previously illustrated, a capacitor reduces PDN impedance by providing a least-impedance route between power and ground. Impedance of a capacitor at high frequency is determined by its parasitics.

(1) For more information about power rail functions, refer to the Pin Connection Guidelines for the selected device family.
(ESL and ESR). For a PCB-mount capacitor, the parasitics include not only the parasitic from the capacitors themselves but also those associated with mounting, PCB spreading, and packaging. Therefore, PCB capacitor parasitics are generally higher than those of on-package decoupling capacitor and on-die-capacitance. Decoupling using PCB capacitors becomes ineffective at high frequency. Using PCB capacitors for PDN decoupling beyond their effective frequency range brings little improvement to PDN performance and raises the bill of materials (BOM) cost.

To help reduce over-design of PCB decoupling, this release of the PDN tool provides a suggested PCB decoupling design cut-off frequency ($F_{\text{EFFECTIVE}}$) as another guideline. It is calculated using the PCB, package, and die parasitics. You only need to design PCB decoupling that keeps Z_{EFF} under Z_{TARGET} up to $F_{\text{EFFECTIVE}}$.

Note: $F_{\text{EFFECTIVE}}$ may not be enough when the Altera FPGA device shares a power rail with another device. The noise generated from other devices propagates along the PDN and affects FPGA device performance. The frequency of the noise is determined by the transfer impedance between the noise source and the FPGA device, and can be higher than $F_{\text{EFFECTIVE}}$. Reducing PDN parasitic inductance and increasing the isolation between the FPGA device and noise source reduces this risk. You must perform a transfer impedance analysis to clearly identify any noise interference risk.

Related Information

For more information about the PDN decoupling methodology behind the Altera PDN design tool, refer to the Power Distribution Network Design Using Altera PDN Design Tools online course.

Major Tabs of the PDN Tool 2.0

The tabs at the bottom of the PDN tool 2.0 application help you calculate your impedance profile.

Table 3: PDN Tool 2.0 Tabs

<table>
<thead>
<tr>
<th>Tab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release_Notes</td>
<td>Provides the legal disclaimers, the revision history of the tool, and the user agreement.</td>
</tr>
</tbody>
</table>
| **Introduction** | Displays the schematic representation of the circuit that is modeled as part of the PDN tool 2.0. It also provides the following related information:
| | • a quick start instruction
| | • recommended settings for some power rails
<p>| | • a brief description of decoupling design procedures under different power supply connection schemes |
| System_Decap | The principal tab that allows you to decouple your system. It displays by default when you launch the application. This tab provides an interface to enter your power sharing scheme for a selected FPGA device and derive the decoupling based on the input. |
| Stackup | Provides an interface to enter your stackup information into the PDN tool. |
| Library | Points to various libraries (capacitor, dielectric materials, and so on) that are called by other tabs. You can change the default values listed as part of these libraries. |</p>
<table>
<thead>
<tr>
<th>Tab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGA_Via</td>
<td>Provides an interface to calculate the BGA mounting inductance based on design-specific via parameters and the number of vias.</td>
</tr>
<tr>
<td>Plane_Cap</td>
<td>Provides an interface to calculate the plane capacitance based on design-specific parameters.</td>
</tr>
<tr>
<td>Cap_Mount</td>
<td>Provides an interface to input design-specific parameters for calculating the capacitor mounting inductance for two different capacitor orientations (Via on Side [VOS] and Via on End [VOE]).</td>
</tr>
<tr>
<td>X2Y_Mount</td>
<td>Provides an interface to input design-specific parameters for calculating the capacitor mounting inductance for X2Y type capacitors.</td>
</tr>
<tr>
<td>Enlarged_Graph</td>
<td>Provides an enlarged view of the Z-profile shown in the System_Decap tab.</td>
</tr>
</tbody>
</table>

System_Decap

You can determine the decoupling of selected FPGA devices based on the power sharing scheme entered in the **System_Decap** tab.

The **System_Decap** tab is divided into the following sections:

- Device selection
- Power rail data and configuration
- VRM Data
- Rail group summary
- VRM Impedance
- BGA Via
- Plane
- Spreading
- Feffective
- Decoupling selection
- Result summary

Device Selection Section

1. Select the **Family/Device** using the pull-down list.
2. Select your device from the **Available Devices** pull-down list.
3. Select your desired power rail configuration from the **Power Rail Configuration** pull-down list.

The tool updates the list of power rails and the contents in the power rail configuration sections based on your selections.
Power Rail Data and Configuration Section

This section of the application is divided into two areas. Area 1 is for the device power rail information, and Area 2 is for the power rail configuration.

1. Enter the power supply voltage in the **Voltage** column for each power rail listed in Area 1.

 Note: You must enter the total current consumption of related power rails before you can use the system decoupling function.

2. Enter the current consumption in the **I_max** column for each power rail.

3. Setup your device power sharing scheme in Area 2.
Each column in Area 2 represents a power group in your system. Add or remove a power group using the Add Group or Remove Group buttons. The first row of each group is the Regulator/Separator type. Set the source type for the power group and available options from the pull-down list as switcher, linear, or filter.

The second row is the Parent Group type. The available options for this row are None and the number representing all listed power groups. Input your power sharing hierarchy in this column, and set the power rail connection using the remaining rows.

<table>
<thead>
<tr>
<th>Rail</th>
<th>Voltage</th>
<th>I max</th>
<th>Regulator / Separator</th>
<th>Parent Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>0.9</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCIO2AF</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCIO2KL</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCIO3AB</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCIO3GH</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCA_FPLL</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCBAT</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCERAM</td>
<td>0.95</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCII_GXBL</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCII_GXBR</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCPGM</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCPT_2</td>
<td>1.8</td>
<td></td>
<td>switcher</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBL1C</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBL1D</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBL1E</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBL1F</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBL1G</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBL1H</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBR4E</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBR4F</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBR4G</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBR4H</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBR4I</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCRX_GXBR4J</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBL1C</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBL1D</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBL1E</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBL1F</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBL1G</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBL1H</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBR4E</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBR4F</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBR4G</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBR4H</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBR4I</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VCCXT_GXBR4J</td>
<td>1</td>
<td></td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
The PDN tool 2.0 defines the power rail configuration using the **Parent/Child** power group. A power group is a child power group if it attaches to another power group. The other power group is the parent group in this case. A parent group can have multiple child groups. A parent power group number is required for the child group. The parent group number of a parent power group is assigned to **None** because the group has no parent group.

The available options are:

- " " — Device rail does not connect to the power group.
- x — Device rail connects to the power group.
- x/related — Device rail connects to the group, and its activity is related to other rails that connect to the same group. You must select x/related if that VCCIO/VCCPT power rail is related to other rails within the same power rail group.

Note: Two IO rails are related if their output activities are synchronous. For example, when two VCCIO rails are assigned to the same memory interface. The maximum current will usually be reached at the same time for these related rails. As a result, the total current of related rails equals the sum of the current of all shared rails. The total current of unrelated rails is calculated using the root-mean-square (RMS) method.

The PDN tool 2.0 sets the default power rail sharing configuration based on the selected Altera-recommended power rail configuration listed above. Make changes to better match your design.

VRM Data Section

Enter the voltage regulator module (VRM) parameters for **DC supply voltage** at **Switcher VRM Efficiency** and **Switcher VRM Input Current**.

Rail Group Summary Section

In this section, you can find a list of the following calculated key parameters of all power groups:

- Voltage
- Total Current
- Dynamic Current Change
- Die Noise Tolerance
- Z_TARGET

The **Dynamic Current Change** and **Die Noise Tolerance** parameters have a pull-down menu with the following options:

- Calculate
- Override

These options allow you to customize how the data is collected or analyzed.

VRM Impedance Section

Enter the VRM impedance values for the regulators. Use the pull-down menu to enter data for **VRM Resistance** and **VRM Inductance**. The pull-down menu allows you to use Enpirion® regulators, data from the library, or custom data.

You can use the PowerPlay Early Power Estimator (EPE) to help select the appropriate Enpirion VRM module to use for each power supply in your system.
BGA Via Section

In the BGA Via table shows the L and R values per via. You can set the tool to Calculate, Custom, or Ignore. For a fully customized workflow in which each rail group can have different settings:

1. Select the System_Decap tab in the PDN tool 2.0.
2. Set the total effective R and L values in the BGA Via section to match your system.

Setting the BGA Via table to Calculate or Ignore causes the System_Decap tab to use the same global settings for all rail groups.

Plane Section

In the Plane table, you can set the tool to Calculate, Custom, or Ignore. For a fully customized workflow in which each rail group can have different settings:

1. Select the Plane_Cap tab in the PDN tool 2.0.
2. Set the total effective R and L values in the BGA Via section to match your system.
3. In the System_Decap tab, select the Custom option for each group where a custom plane is required.
4. Enter the calculated C_{total} and R_{total} values into the Plane section of the System_Decap tab.

Setting the Plane table to Calculate or Ignore causes the System_Decap tab to use the same global settings for all rail groups.

Spreading Section

In the Spreading table, you can set the tool to one of the following options:

- Ignore
- Low
- Medium
- High
- Custom

For a fully customized workflow in which each rail group can have different settings:

1. Select the Library tab in the PDN tool 2.0.
2. Set the parameters in the Spreading R and L table to match your system.
3. Examine the range of spreading R and L values to determine if you need a custom R and L. If a custom R and L is warranted, select Custom in the System_Decap tab and set the R and L values directly.

Setting the Spreading table to Low, Medium, High, or Ignore causes the System_Decap tab to use the same global settings for all rail groups.

F_{EFFECTIVE} Section

You can set F_{effective} to Calculate or Override. Select the Calculate option to use the Altera recommended cut off frequency based on package and die parasitics.
Decoupling Section

You can set Decoupling to Manual or Auto. If you select the Auto option, any change you make to the system is automatically reflected in the decoupling solution. You can also view the impedance chart per rail group or VRM.

Selecting the Manual option allows you to:

- Lock in calculated decoupling solutions from being further optimized by any changes made to the System_Decap tab.
- Add or remove the number and type of decoupling capacitors in the Results Summary section. You can see its immediate impact on the impedance profile curve.

Results Summary Section

You can find the list of the number and type of capacitors used for each group, and the summary of all the capacitors used. The values in each column indicate the number of capacitors needed of each value for each rail.

Figure 6: Results Summary Section of the System_Decap Tab

Recommended Flow for Deriving Decoupling for FPGA System using the System_Decap Tab

To use the System_Decap tab, perform the following steps:

1. Select the Altera device family or device.
2. Set up the stack up information in the Stackup tab.
3. Select the decoupling scheme.
 The tool updates the power rail connection configuration to the scheme recommended in the Pin Connection Guidelines.
4. Ensure that the following default parameters match your system, and make the necessary changes such as:
- power rail configuration
- relativity of power rails within the same power group
- power group layer
- number of power/ground Via pairs
- DC voltage supply for VRM module
- decoupling cap location

5. Enter the projected current consumption of each power rail.
If you applied the Custom setting, refer to BGA Via Section on page 11, Plane Section on page 11, or Spreading Section on page 11 to enter your values.

Stackup
Enter the PCB stackup information of your design in the Stackup tab. This tab updates related data in the BGA_Via, Plane_Cap, Cap_Mount and the X2Y_Mount tabs. The stackup information in this tab is also used for the System_Decap tab. Follow the instructions provided at the beginning of the tab to fill in the content for this tab.

Figure 7: Stackup Tab
Stackup Data

The Stackup Data section is where you enter board dimension data and other parameters, such as board stackup settings, power via, and dielectric material.

Stackup Stub

The content in this section is updated based on the settings in Stackup Configuration, in the Stackup Data section. Enter the thickness of the metal/dielectric material for each layer. The stackup shown in this section is used as the basic unit to construct the complete PCB stackup.

Full Stackup

This section lists the complete stackup of your board. You can modify content in the section to better match your board design. The last column in the section is the PWR plane types. In a single rail analysis case, assign the layer where the power rail is located as target, and the ground layer that the power rail refers to as reference.

Table 4: Full Stackup Buttons

<table>
<thead>
<tr>
<th>Button Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct Stackup</td>
<td>Populates the Full Stackup section to the number of layers defined in the Stackup Data section using the blocks listed in the Stackup Stub section.</td>
</tr>
<tr>
<td>Import Geometries</td>
<td>Updates geometry parameters in the BGA_Via, Plane_Cap, Cap_Mount, and X2Y_Mount tabs using your input from the Stackup Data section. The tool also checks that the PWR Planes column in the Full Stackup section has only one target layer, and provides a warning for this error.</td>
</tr>
<tr>
<td>Proceed to System Decap</td>
<td>Opens the System_Decap tab.</td>
</tr>
</tbody>
</table>

BGA_Via

The BGA Via tab calculates the vertical via loop inductance under the BGA pin field.
Figure 8: BGA_Via Tab

The values in the **Unit** column indicate a unit value per one pair.

<table>
<thead>
<tr>
<th>BGA Via Inductance</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via drill outer diameter</td>
<td>OD</td>
<td>mils</td>
<td>12</td>
</tr>
<tr>
<td>Via drill inner diameter</td>
<td>ID</td>
<td>mils</td>
<td>10</td>
</tr>
<tr>
<td>Via pitch</td>
<td>B</td>
<td>mils</td>
<td>50</td>
</tr>
<tr>
<td>Via length</td>
<td>C</td>
<td>mils</td>
<td>45.9</td>
</tr>
<tr>
<td>Number of BGA PWR/GND via pairs</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Linear inductance</td>
<td>Llin</td>
<td>nH</td>
<td>0.0215</td>
</tr>
<tr>
<td>Via inductance</td>
<td>Lvia</td>
<td>nH</td>
<td>0.9613</td>
</tr>
<tr>
<td>Via resistance</td>
<td>Rvia</td>
<td>mΩ</td>
<td>8.1738</td>
</tr>
<tr>
<td>Effective via inductance</td>
<td>Lvia eff</td>
<td>nH</td>
<td>0.0261</td>
</tr>
<tr>
<td>Effective via resistance</td>
<td>Rvia eff</td>
<td>mΩ</td>
<td>0.2161</td>
</tr>
</tbody>
</table>

Enter the layout-specific information such as via drill diameters, via length, via pitch, and the number of power/ground via pairs under the BGA in the **BGA Via Inductance** table. The tool calculates the effective via loop inductance and resistance value. You can save the change made to the tab, restore the changes, or restore the tab back to the default settings.

Plane_Cap

The **Plane Cap** tab calculates the distributed plane capacitance in microfarads (µF) that is developed between the power/ground planes based on the parallel plate capacitor equation.
Enter the design specific information such as plane dimensions, plane configuration and the dielectric material used in the **Planar Capacitance** table. The tool calculates a plane capacitance value. You can save custom values, restore custom values, or restore the default settings.

Cap_Mount

The **Cap Mount** tab calculates the capacitor mounting inductance seen by the decoupling capacitor.
The capacitor mounting calculation is based on the assumption that the decoupling capacitor is a two-terminal device. The capacitor mounting calculation is applicable to any two-terminal capacitor with the following footprints: 0201, 0402, 0603, 0805, and 1206. Enter all the information relevant to your layout, and the tool provides a mounting inductance for a capacitor mounted on either the top or bottom layer of the board. Depending on the layout, you can choose between VOE (Via on End) or VOS (Via on Side) to achieve an accurate capacitor mounting inductance value.

If you plan to use a footprint capacitor other than a regular two-terminal capacitor or X2Y capacitor for decoupling, you can skip the Cap Mount tab. In this case, you can directly enter the capacitor parasitics and capacitor mounting inductance in the Library tab (under the Custom field in the Decoupling Cap section of the library). As with the other tabs, you can save the changes made to the tab, restore the changes, or restore the tab back to the default settings.

X2Y_Mount

The X2Y Mount tab calculates the capacitor mounting inductance seen by the X2Y decoupling capacitor.
Enter all the information relevant to your layout in the **X2Y CAP Mounting Inductance** table. The tool then provides a mounting inductance for an X2Y capacitor mounted on either the top or bottom layer of the board. You can save the changes made to the tab, restore the changes, or restore the tab back to the default settings.

Library

The **Library** tab stores all the device parameters that are referred to in the other tabs.
You can change each of the default values listed in the respective sections to meet the specific needs of your design.

Two-Terminal Decoupling Capacitors

The decoupling capacitors section contains the default ESR and ESL values for the various two-terminal capacitors in the following footprints:

<table>
<thead>
<tr>
<th>Capacitor Value</th>
<th>ESR (ΩΩΩ)</th>
<th>ESL (nH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.190</td>
<td>2200</td>
</tr>
<tr>
<td>22</td>
<td>0.147</td>
<td>2200</td>
</tr>
<tr>
<td>47</td>
<td>0.140</td>
<td>2200</td>
</tr>
<tr>
<td>100</td>
<td>0.090</td>
<td>2200</td>
</tr>
<tr>
<td>220</td>
<td>0.058</td>
<td>2200</td>
</tr>
<tr>
<td>330</td>
<td>0.049</td>
<td>2200</td>
</tr>
<tr>
<td>470</td>
<td>0.049</td>
<td>2200</td>
</tr>
<tr>
<td>User1</td>
<td>0.030</td>
<td>2200</td>
</tr>
<tr>
<td>User2</td>
<td>0.030</td>
<td>2200</td>
</tr>
<tr>
<td>User3</td>
<td>0.030</td>
<td>2200</td>
</tr>
<tr>
<td>User4</td>
<td>0.030</td>
<td>2200</td>
</tr>
</tbody>
</table>

You can change each of the default values listed in the respective sections to meet the specific needs of your design.

Device-Specific Power Delivery Network (PDN) Tool 2.0 User Guide

Alterna Corporation

You can change each of the default values listed in the respective sections to meet the specific needs of your design.

Two-Terminal Decoupling Capacitors

The decoupling capacitors section contains the default ESR and ESL values for the various two-terminal capacitors in the following footprints:
Bulk Capacitors

- 0201
- 0402
- 0603
- 0805
- 1206

You also have the option to either modify the default values or enter your own commonly used custom values in the **Custom** field. If you are using a capacitor with a footprint that is not available in the tool, you must use the **Custom** field to enter the capacitor parasitics and the corresponding mounting inductance.

The decoupling capacitors section also provides the option for the user defined capacitors (such as User1,...,User4). You can define the ESR and ESL parasitics for the various footprints and enter the corresponding capacitor value in the **System_Decap** tab. Choose the corresponding footprint when defining the capacitor values.

Bulk Capacitors

The bulk capacitors section contains the commonly used capacitor values for decoupling the power supply at mid and low frequencies. You can change the default values to reflect the parameters specific to the design.

X2Y Decoupling Capacitors

The X2Y decoupling capacitors section contains the default ESR and ESL values for the various X2Y capacitors in the 0603, 0805, 1206, and 1210 footprints. You also can replace the default ESR and ESL values with your own commonly used custom values.

BGA Via and Plane Capacitance

This section allows you to directly enter the values for effective via loop inductance under the BGA and plane capacitance during the pre-layout phase when no design-specific information is available.

If you have access to design-specific information, you can ignore this section and enter the design-specific information in the **Plane Cap** and **BGA Via** tabs that calculate the plane capacitance and the BGA via parasitics, respectively.

VRM Library

The VRM section lists the default values for both the linear and switcher regulators. In the **Custom** field, you can change the VRM parasitics listed under the linear/switcher rows or add the custom parasitics for the VRM relevant to the design.

Spreading R, L Parasitics

This library provides various options for the default effective spreading inductance values that the decoupling capacitors see with respect to the FPGA. These values are based on the quality of the PDN
design. You can choose a **Low** value of effective spreading inductance if you have optimally designed your PDN Network. Optimum PDN design involves implementing the following design rules:

- PCB stackup that provides a wide solid power/ground sandwich for a given supply with a thin dielectric between the planes. This minimizes the current loop, which reduces the spreading inductance. The thickness of the dielectric material between the power/ground pair directly influences the amount of spreading/loop inductance that a decoupling cap can see with respect to the FPGA.
- Placing the capacitors closer to the FPGA from an electrical standpoint.
- Minimizing via perforations in the power/ground sandwich in the current path from the decoupling caps to the FPGA device.

Due to layout and design constraints, the PDN design may not be optimal. In this case, you can choose either a **Medium** or **High** value of spreading R and L. You can also change the default values or use the **Custom** field listed in the library specific to the design.

Dielectric Material Library

This library lists the dielectric constant values for the various commonly used dielectric materials. These values are used in the plane capacitance calculations listed under the **Plane_Cap** tab. You can change the values listed in this section.

If you change the default values listed in the various sections in the **Library** tab, you can save the changes by clicking **Save Custom**. You can restore the default library by clicking **Restore Default** located at the top right-hand corner of the **Library** page. You can also restore the saved custom library by clicking **Restore Custom**.

User Set F\text{EFFECTIVE}

You must decouple to a \(F_{\text{EFFECTIVE}} \) higher than what is calculated for the power rails of some Altera device families. In this case, you must set the \(F_{\text{EFFECTIVE}} \) option to **Override** in the **System_Decap** tab. The PDN tool 2.0 then uses the \(F_{\text{EFFECTIVE}} \) value entered here.

Enlarged_Graph

In the **Enlarged_Graph** tab, you can view the enlarged Z-profile plot. The PDN tool 2.0 switches to this tab when you click on the Z-profile plot in the **System_Decap** tab. You can go back to the **System_Decap** tab when you click the **Return** button.
Design PCB Decoupling Using the PDN Tool 2.0

PCB decoupling keeps PDN Z_{EFF} smaller than Z_{TARGET} with the properly chosen PCB capacitor combination up to the frequency where the capacitor on the package and die take over the PDN decoupling. This procedure uses the PDN tool 2.0 in different power rail configurations and provides design examples using the Arria 10 device PDN tool.

Pre-Layout Instructions

The PDN tool 2.0 provides an accurate estimate of the number and types of capacitors needed to design a robust power delivery network, regardless of where you are in the design phase. However, the accuracy of the results depends highly on the user inputs for the various parameters.

If you have finalized the board stackup and have access to board database and layout information, you can proceed through the tabs and enter the required information to arrive at an accurate decoupling scheme.
In the pre-layout phase of the design cycle when you do not have specific information about the board stack-up and board layout, you can follow these instructions to explore the solution space when finalizing key design parameters such as stackup, plane size, capacitor count, capacitor orientation, and so on.

In the pre-layout phase, ignore the **Plane Cap** and **Cap Mount** tabs and go directly to the **Library** tab when you do not have the layout information. If available, enter the values shown below in the **Library** tab. To use the default values, go directly to the **System_Decap** tab to begin the analysis.

Figure 14: Library Tab Fields

The callouts correspond to the fields in which you must enter values.
1. Enter the ESR, ESL, and Lmnt values for the capacitors listed in the **Custom** field.
2. Enter the effective BGA via (loop) parasitics for the power supply being decoupled in the **BGA Via & Plane Cap** field.
3. Enter the plane capacitance seen by the power/ground plane pair on the board for the power supply in the **BGA Via & Plane Cap** field.
4. Enter the VRM parasitics, if available, in the **Custom** row of the **VRM** field.
5. Enter the effective spreading inductance seen by the decoupling capacitors in the **Custom** row of the **Spreading R and L** field.

Deriving Decoupling in a Single-Rail Scenario

A power supply connects to only one power rail on the FPGA device in a single-rail scenario. The PDN noise is created by the dynamic current change of the single rail. You determine Z_{TARGET} and $F_{\text{EFFECTIVE}}$ based on the parameters related to the selected rail only.

The PDN tool 2.0 provides two ways to derive a decoupling network. You can set up the tool with the information needed and let the tool derive the PDN decoupling for your system. You can also manually enter the information and derive decoupling. To derive the desired capacitor combination:

1. Select the device/power rail to work with.
2. Select the parameter settings for the PDN components.
3. Enter the electric parameters to set Z_{TARGET} and $F_{\text{EFFECTIVE}}$. You need to have a good estimate of the parameters entered to derive the proper decoupling guidelines (Z_{TARGET} and $F_{\text{EFFECTIVE}}$). Although you need to determine those guidelines based on the worst-case scenario, pessimistic settings result in hard-to-achieve guidelines and over design of your PCB decoupling.

4. Derive the PCB decoupling scheme.

You must adjust the number and value of the PCB capacitors in the **Decoupling Capacitor (Mid/High Frequency)** and **Decoupling Capacitor (Bulk)** fields to keep the plotted Z_{EFF} below Z_{TARGET} until $F_{\text{EFFECTIVE}}$. You can derive the decoupling for the selected power rail manually. You can also select the **Auto Decouple** button and let the PDN tool 2.0 derive the decoupling scheme. If you are not able to find a capacitor combination that meets your design goal, you can try to change the parameters at step 2. For example, you can reduce the BGA via inductance used in the **Calculate** option by reducing the BGA via length in the **BGA_VIA** tab and using the **low** option for plane spreading. These changes reduce parasitic inductance and make it easier to achieve your decoupling goal. To achieve the low spreading setting, you must place the mid to high frequency PCB capacitors close to the FPGA device. You also must minimize the dielectric thickness between the power and ground plane.

If you are not able to meet the Z_{TARGET} requirement with the changes above, the PDN in your design may have reached its physical limitation under the electrical parameters you entered for Z_{TARGET} and $F_{\text{EFFECTIVE}}$. You should re-examine these parameters to check if they are overly pessimistic.
The design is a decoupling example for a 10AX115R_F40 VCC power rail. Assume that the minimum voltage supply is 0.9 V, I_{MAX} is 10 A, dynamic current change is 50% of I_{MAX}, and the maximum allowable die noise tolerance is 5% of supply voltage. The VCC rail has 50 power BGA vias. The length of BGA via is assumed to be 60 mil.

The PDN tool 2.0 calculated that Z_{TARGET} is 0.0090 Ω and $F_{\text{EFFECTIVE}}$ is 22.5 MHz. The figure above shows one of the capacitor combinations that you can select to meet the design goal. As shown in the plot, Z_{EFF} remains under Z_{TARGET} up to $F_{\text{EFFECTIVE}}$. There are many combinations, but the ideal solution is to minimize the quantity and the type of capacitors needed to achieve a flat impedance profile below the Z_{TARGET}.

Deriving Decoupling in the Power-Sharing Scenarios

It is a common practice that several power rails in the FPGA device share the same power supply. For example, you can connect VCCP, VCCA_PLL, VCCA_FPLL rails that require the same supply voltage to the same PCB power plane. This can be required by the design, such as in the memory interface case. This can also come from the need to reduce bill of materials (BOM) cost. You can use the System_Decap tab to facilitate the decoupling design for the power sharing scenarios.

When deriving decoupling capacitors for multiple FPGAs sharing the same power plane, each FPGA should be analyzed separately using the PDN tool 2.0. For each FPGA design, combine the required power rails as described above and analyze the decoupling scheme as if the FPGA was the only device on the power rail, taking note of how the current is divided across the devices.

High frequency decoupling capacitors are meant to provide the current needed for AC transitions, and must be placed in a close proximity to the FPGA power pins. Thus, the PDN tool 2.0 should be used to derive the required decoupling capacitors for the unique power requirements for each FPGA on the board.

The power regulators must be able to supply the total combined current requirements for each load on the supply, but the decoupling capacitor selections should be analyzed on a single FPGA basis.
Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2014</td>
<td>2014.09.12</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>