Contents

Chapter 1. About This Kit
- Introduction .. 1–1
- Kit Features .. 1–1
 - Hardware .. 1–1
 - Software .. 1–1

Chapter 2. Getting Started
- Introduction .. 2–1
- Before You Begin .. 2–1
 - Inspect the Board ... 2–1
- References .. 2–1

Chapter 3. Software Installation
- Introduction .. 3–1
- Installing the Altera Complete Design Suite 3–1
- Licensing Considerations 3–1
- Installing the Cyclone III LS FPGA Development Kit 3–2
- Installing the USB-Blaster Driver 3–2

Chapter 4. Development Board Setup
- Introduction .. 4–1
- Setting Up the Board 4–1
- Factory Default Switch Settings 4–2

Chapter 5. Board Update Portal
- Introduction .. 5–1
- Connecting to the Board Update Portal Web Page 5–1
- Using the Board Update Portal to Update User Designs ... 5–2

Chapter 6. Board Test System
- Introduction .. 6–1
- Preparing the Board ... 6–3
- Running the Board Test System 6–3
Using the Board Test System .. 6–3
The Configure Menu ... 6–4
The Config Tab .. 6–4
MAX-II Registers ... 6–4
JTAG Chain .. 6–6
Board Information ... 6–6
Flash Memory Map .. 6–6
The GPIO Tab .. 6–6
Character LCD ... 6–7
User Dip Switch .. 6–7
User LEDs ... 6–7
Pushbutton Switches .. 6–8
The SRAM&Flash Tab .. 6–8
SRAM .. 6–8
Flash .. 6–9
The DDR2 Tab .. 6–9
Port .. 6–10
Start .. 6–10
Stop .. 6–10
Performance Indicators .. 6–10
Error Control ... 6–11
Number of addresses to write / read 6–11
Data Type .. 6–11
Read/Write control ... 6–11
The HSMC Tab .. 6–11
Status ... 6–12
Data Type .. 6–13
Error Control ... 6–13
Start .. 6–13
Stop .. 6–13
Performance Indicators .. 6–13
The Power Monitor .. 6–13
MAX II Information .. 6–14
Power Information ... 6–15
Power Graph ... 6–15
Graph Settings ... 6–15
Reset .. 6–15
Calculating Power ... 6–15
Configuring the FPGA Using the Quartus II Programmer 6–16

Appendix A. Programming the Flash Memory Device
Introduction .. A–1
CFI Flash Memory Map .. A–1
Preparing Design Files for Flash Programming A–2
Creating Flash Files Using the Nios II EDS A–2
Programming Flash Memory Using the Board Update Portal A–3
Programming Flash Memory Using the Nios II EDS A–3
Restoring the Flash Device to the Factory Settings A–4
Restoring the MAX II CPLD to the Factory Settings A–5

Additional Information
Revision History ... Info–1
How to Contact Altera .. Info–1
Typographic Conventions
1. About This Kit

Introduction

The Altera® Cyclone® III LS FPGA Development Kit is a complete design environment that includes both the hardware and software you need to develop Cyclone III LS FPGA designs. The board and the one-year license for the Quartus® II software provide everything you need to begin developing custom Cyclone III LS FPGA designs. The following list describes what you can accomplish with the development kit:

- Develop and test memory subsystems consisting of DDR2 memory
- Take advantage of the modular and scalable design by using the high-speed mezzanine card (HSMC) connectors to interface to over 20 different HSMCs provided by Altera partners

Kit Features

This section briefly describes the Cyclone III LS FPGA Development Kit contents.

Hardware

- Cyclone III LS FPGA development board—a development platform that allows you to develop and prototype hardware designs running on the Cyclone III LS EP3CLS200 FPGA.

- For detailed information about the board components and interfaces, refer to the Cyclone III LS FPGA Development Board Reference Manual.

- Power supply and cables—the development kit includes the following items:
 - Power supply and AC adapters for North America/Japan, Europe, and the United Kingdom
 - USB cable
 - Ethernet cable

Software

- Altera Complete Design Suite DVD—a DVD that includes the following items:
 - Quartus II Software—the Quartus II software, including the SOPC Builder system development tool, provides a comprehensive environment for system-on-a-programmable-chip (SOPC) design. The Quartus II software integrates into nearly any design environment and provides interfaces to industry-standard EDA tools.
Kit Features

The kit includes a development kit edition (DKE) license for the Quartus II software (Windows platform only). This license entitles you to all the features of the subscription edition for a period of one year. After the year, you must purchase a renewal subscription to continue using the software. For more information, refer to the Altera website (www.altera.com).

- MegaCore® IP Library—A library that contains Altera IP MegaCore functions. You can evaluate MegaCore functions by using the OpenCore Plus feature to do the following:
 - Simulate behavior of a MegaCore function within your system
 - Verify functionality of your design, and quickly and easily evaluate its size and speed
 - Generate time-limited device programming files for designs that include MegaCore functions
 - Program a device and verify your design in hardware

The OpenCore Plus hardware evaluation feature is an evaluation tool for prototyping only. You must purchase a license to use a MegaCore function in production.

For more information about OpenCore Plus, refer to AN 320: OpenCore Plus Evaluation of Megafunctions.

- Nios® II Embedded Design Suite (EDS)—A full-featured set of tools that allow you to develop embedded software for the Nios II processor which you can include in your Altera FPGA designs.

- Cyclone III LS FPGA Development Kit CD-ROM—A CD-ROM that includes all the documentation and design examples for the kit.

Use the following links to check the Altera website to ensure you have the latest software versions:

- For the Altera Complete Design Suite, refer to the Quartus II Subscription Edition Download page.
- For the Cyclone III LS FPGA Development Kit, refer to the Cyclone III LS FPGA Development Kit page.
Introduction

This user guide leads you through the following Cyclone III LS FPGA development board setup steps:

- Inspecting the contents of the kit
- Installing the Altera Complete Design Suite DVD software
- Setting up, powering up, and verifying correct operation of the development board
- Configuring the Cyclone III LS FPGA
- Running the Board Test System designs

For complete information about the development board, refer to the *Cyclone III LS FPGA Development Board Reference Manual*.

Before You Begin

Before using the kit or installing the software, check the kit contents and inspect the board to verify that you received all of the items listed in this section. If any of the items are missing, contact Altera before you proceed.

Inspect the Board

To inspect the board, perform the following steps:

1. Place the board on an anti-static surface and inspect it to ensure that it has not been damaged during shipment.

 ![CAUTION](image)

 Without proper anti-static handling, you can damage the board.

2. Verify that all components are on the board and appear intact.

 In typical applications with the Cyclone III LS FPGA development board, a heat sink is not necessary. However, under extreme conditions or for engineering sample silicon the board might require additional cooling to stay within operating temperature guidelines. You can perform power consumption and thermal modeling to determine whether your application requires additional cooling.

 For more information about power consumption and thermal modeling, refer to *AN 358: Thermal Management for FPGAs*.

References

Use the following links to check the Altera website for the following other related information:
For the latest board design files and reference designs, refer to the Cyclone III LS FPGA Development Kit page.

For additional daughter cards available for purchase, refer to the Development Board Daughtercards page.

For the Cyclone III LS device documentation, refer to the Literature: Cyclone III Devices page.

To purchase devices from the eStore, refer to the Devices page.

For Cyclone III LS OrCAD symbols, refer to the Capture CIS Symbols page.

For Nios II 32-bit embedded processor solutions, refer to the Embedded Processing page.
3. Software Installation

Introduction

This section explains how to install the following software:

- Altera Complete Design Suite
- Cyclone III LS FPGA Development Kit
- USB-Blaster™ driver

Installing the Altera Complete Design Suite

The Altera Complete Design Suite provides the necessary tools used for developing hardware and software for Altera FPGAs. Included on the Altera Complete Design Suite DVD are the Quartus II software and the Nios II EDS. The Quartus II software (including SOPC Builder) and the Nios II EDS are the primary FPGA development tools used to create the reference designs in this development kit. To install the Altera software tools, perform the following steps:

1. Insert the Altera Complete Design Suite DVD into your computer.
2. Follow the installer instructions to complete the installation process.

If you have difficulty installing the Quartus II software, refer to the Quartus II Installation & Licensing for Windows and Linux Workstations.

Licensing Considerations

Before using the Quartus II software, you must request a license file from the Altera Licensing page on the Altera website and install it on your computer. When you request a license file, Altera emails you a license.dat file that enables the software.

To license the Quartus II software, you need your computer’s network interface card (NIC) ID, a number that uniquely identifies your computer. On the computer you’ll use to run the Quartus II software, type `ipconfig /all` at a command prompt to determine the NIC ID. Your NIC ID is the 12-digit hexadecimal number on the Physical Address line.

To obtain a license, perform the following steps.

1. Go to the Get My Altera License page on the Altera website.
2. Under Development Kit Licenses Request, click Licenses for RoHS-Compliant Kits.
3. Follow the on-screen instructions to request your license. Altera sends you a license file through email.
4. To install your license, refer to Specifying the License File in Quartus II Installation & Licensing for Windows and Linux Workstations.
Installing the Cyclone III LS FPGA Development Kit

To install the Cyclone III LS FPGA Development Kit, perform the following steps:

1. Insert the Cyclone III LS FPGA Development Kit CD-ROM into your computer.

 The CD-ROM should start an auto-install process. If it does not, browse to the CD-ROM drive and double-click on the setup.exe file.

2. Follow the on-screen instructions to complete the installation process.

The installation program creates the directory structure for the Cyclone III LS FPGA Development Kit files shown in Figure 3–1.

Figure 3–1. Cyclone III LS FPGA Development Kit Installed Directory Structure

![Diagram of the directory structure](image)

Table 3–1 lists the file directory names and a description of their contents.

Table 3–1. Installed Directory Contents

<table>
<thead>
<tr>
<th>Directory Name</th>
<th>Description of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>board_design_files</td>
<td>Contains schematic, layout, assembly, and bill of material board design files. Use these files as a starting point for a new prototype board design.</td>
</tr>
<tr>
<td>demos</td>
<td>Contains demonstration applications.</td>
</tr>
<tr>
<td>documents</td>
<td>Contains the development kit documentation.</td>
</tr>
<tr>
<td>examples</td>
<td>Contains the sample design files for the Cyclone III LS FPGA Development Kit.</td>
</tr>
<tr>
<td>factory_recovery</td>
<td>Contains the original data programmed onto the board before shipment. Use this data to restore the board with its original factory contents.</td>
</tr>
</tbody>
</table>

Installing the USB-Blaster Driver

The Cyclone III LS FPGA development board includes integrated USB-Blaster circuitry for FPGA programming. However, for the host computer and board to communicate, you must install the USB-Blaster driver on the host computer.

Installation instructions for the USB-Blaster driver for your operating system are available on the Altera website. On the Altera Programming Cable Driver Information page of the Altera website, locate the table entry for your configuration and click the link to access the instructions.
4. Development Board Setup

Introduction

The instructions in this chapter explain how to set up the Cyclone III LS FPGA development board.

Setting Up the Board

To set up and power up the board, perform the following steps:

1. The Cyclone III LS FPGA development board ships with its board switches preconfigured to support the example designs in the development kit. If you suspect your board might not be currently configured with the default settings, follow the instructions in “Factory Default Switch Settings” on page 4–2 to return the board to its factory settings before proceeding.

2. The development board ships with example designs stored in the flash memory device. Verify the PGM/USER LOAD switch (SW2.6) is set to the on position to load the design stored in the factory portion of flash memory. Figure 4–1 shows the switch location on the Cyclone III LS FPGA development board.

3. Connect the DC adapter (+16 V, 3.75 A) to the DC power jack (J5) on the FPGA board and plug the cord into a power outlet.

 Use only the supplied power supply. Power regulation circuitry on the board can be damaged by power supplies with greater voltage.

4. Set the POWER switch (SW1) to the on position. When power is supplied to the board, a blue LED (D3) illuminates indicating that the board has power.

 The MAX II device on the board contains a parallel flash loader (PFL) megafunction. When the board powers up, the PFL reads one of two designs from flash memory and configures the FPGA. The PGM/USER LOAD switch (SW2.6) controls which design to load. When the switch is in the on position, the PFL loads the design from the factory portion of flash memory. When the switch is in the off position, the PFL loads the design from the user portion of flash memory.

 The development kit includes the MAX II configuration design in the <install dir>\kits\cycloneIIILS_3cls200_fpga\examples\max2 directory.

 When configuration is complete, the CONF DONE LED (D14) illuminates, signaling that the Cyclone III LS device configured successfully. If the loaded design has the Quartus II software INIT_DONE option on, the FPGA INIT DONE LED (D14) illuminates when the device enters user mode.

 For more information about the PFL megafunction, refer to AN 386: Using the Parallel Flash Loader with the Quartus II Software.
Factory Default Switch Settings

This section shows the factory switch settings for the Cyclone III LS FPGA development board. Figure 4–1 shows the switch bank locations and the default position of each switch.

Figure 4–1. Switch Locations and Default Settings on the FPGA Development Board

To restore the switches to their factory default settings, perform the following steps:

1. Set DIP switch bank (S7) to match Table 4–1 and Figure 4–1.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On</td>
</tr>
<tr>
<td>2</td>
<td>On</td>
</tr>
<tr>
<td>3</td>
<td>On</td>
</tr>
<tr>
<td>4</td>
<td>On</td>
</tr>
</tbody>
</table>

2. Set DIP switch bank (SW2) to match Table 4–2 and Figure 4–1.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On</td>
</tr>
<tr>
<td>2</td>
<td>On</td>
</tr>
<tr>
<td>3</td>
<td>On</td>
</tr>
<tr>
<td>4</td>
<td>On</td>
</tr>
<tr>
<td>5</td>
<td>Off</td>
</tr>
<tr>
<td>6</td>
<td>On</td>
</tr>
<tr>
<td>7</td>
<td>Off</td>
</tr>
<tr>
<td>8</td>
<td>Off</td>
</tr>
</tbody>
</table>
3. Set the board jumpers to match Table 4–3 and Figure 4–1.

<table>
<thead>
<tr>
<th>Board Reference</th>
<th>Shunt Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>J11 pins 1-2</td>
<td>Installed</td>
</tr>
<tr>
<td>J11 pins 3-4</td>
<td>Not Installed</td>
</tr>
<tr>
<td>J11 pins 5-6</td>
<td>Not Installed</td>
</tr>
<tr>
<td>J12</td>
<td>Not Installed</td>
</tr>
<tr>
<td>J18</td>
<td>Not Installed</td>
</tr>
</tbody>
</table>

For more information about the FPGA board settings, refer to the *Cyclone III LS FPGA Development Board Reference Manual*.
Chapter 4: Development Board Setup

Factory Default Switch Settings
5. Board Update Portal

Introduction

The Cyclone III LS FPGA Development Kit ships with the Board Update Portal example design stored in the factory portion of the flash memory on the board. The design consists of a Nios II embedded processor, an Ethernet MAC, and an HTML web server.

When you power up the board with the PGM/USER LOAD switch (SW2.6) in the on position, the Cyclone III LS FPGA configures with the Board Update Portal example design. The design can obtain an IP address from any DHCP server and serve a web page from the flash on your board to any host computer on the same network. The web page allows you to upload new FPGA designs to the user portion of flash memory, and provides links to useful information on the Altera website, including links to kit-specific and design resources.

After successfully updating the flash memory user design, you can load the user design from flash memory into the FPGA. To do so, set the PGM/USER LOAD switch (SW2.6) to the off position and power cycle the board.

The source code for the Board Update Portal design resides in the `<install dir>\kits\cycloneIIILS_3cls200_fpga\examples` directory. If the Board Update Portal is corrupted or deleted from the flash memory, refer to “Restoring the Flash Device to the Factory Settings” on page A–4 to restore the board with its original factory contents.

Connecting to the Board Update Portal Web Page

This section provides instructions to connect to the Board Update Portal web page.

Before you proceed, ensure that you have the following:

- A PC with a connection to a working Ethernet port on a DHCP enabled network.
- A separate working Ethernet port connected to the same network for the board.
- The Ethernet and power cables that are included in the kit.

To connect to the Board Update Portal web page, perform the following steps:

1. With the board powered down, set the PGM/USER LOAD switch (SW2.6) to the on position.
2. Attach the Ethernet cable from the board to your LAN.
3. Power up the board. The board connects to the LAN’s gateway router, and obtains an IP address. The LCD on the board displays the IP address.
4. Launch a web browser on a PC that is connected to the same network, and enter the IP address from the LCD into the browser address bar. The Board Update Portal web page appears in the browser.
5. Click **Cyclone III LS FPGA Development Kit** on the Board Update Portal web page and verify that you have the latest version of the development kit software (the software version also appears on the CD-ROM).

 ![If you download new software, double-click the downloaded .exe file to begin the installation process.]

6. Visit the Board Update Portal web page occasionally for documentation updates and additional new designs not included on the CD-ROM.

 ![If the Board Update Portal does not connect, refer to the Cyclone III LS FPGA Development Kit page on the Altera website to determine if you have the latest kit software.]

Using the Board Update Portal to Update User Designs

The Board Update Portal allows you to write new designs to the user portion of flash memory. Designs must be in the Nios II Flash Programmer File (.flash) format.

![Design files available from the Cyclone III LS FPGA Development Kit page on the Altera website include .flash files. You can also create .flash files from your own custom design. Refer to “Preparing Design Files for Flash Programming” on page A–2 for information about preparing your own design for upload.]

To upload a design over the network into the user portion of flash memory on your board, perform the following steps:

1. Perform the steps in “Connecting to the Board Update Portal Web Page” to access the Board Update Portal web page.

2. In the **Hardware File Name** field specify the .flash file that you either downloaded from the Altera website or created on your own. If there is a software component to the design, specify it in the same manner using the **Software File Name** field, otherwise leave the **Software File Name** field blank.

3. Click **Upload**. The progress bar indicates the percent complete.

4. To configure the FPGA with the new design after the flash memory upload process is complete, set the PGM/USER LOAD switch (SW2.6) to the off position and power cycle the board, or press the PGM_SELECT button (S9) until the PROGRAM LED1 LED (D30) illuminates and then press the PGM CONFIG button (S8). Refer to Table 6–1 on page 6–5 for information about the PROGRAM LEDs.

 ![As long as you don’t overwrite the factory image in the flash memory device, you can continue to use the Board Update Portal to write new designs to the user portion of flash memory. If you do overwrite the factory image, you can restore it by following the instructions in “Restoring the Flash Device to the Factory Settings” on page A–4.]

Cyclone III LS FPGA Development Kit User Guide © October 2009 Altera Corporation
6. Board Test System

Introduction

The kit includes an example design and application called the Board Test System to test the functionality of the Cyclone III LS FPGA development board. The application provides an easy-to-use interface to alter functional settings and observe the results. You can use the application to test board components, modify functional parameters, observe performance, and measure power usage. The application is also useful as a reference for designing systems. To install the application, follow the steps in “Installing the Cyclone III LS FPGA Development Kit” on page 3–2.

The application provides access to the following Cyclone III LS FPGA development board features:

- General purpose I/O (GPIO)
- SRAM
- Flash memory
- DDR2 memory
- HSMC connectors
- Programmable oscillator

The application allows you to exercise most of the board components. While using the application, you reconfigure the FPGA several times with test designs specific to the functionality you are testing.

A GUI runs on the PC which communicates over the JTAG bus to a test design running in the Cyclone III LS device. Figure 6–1 shows the initial GUI for a board that is in the factory configuration.
Several designs are provided to test the major board features. Each design provides data for one or more tabs in the application. The Configure menu identifies the appropriate design to download to the FPGA for each tab.

After successful FPGA configuration, the appropriate tab appears and allows you to exercise the related board features. Highlights appear in the board picture around the corresponding components.

The **Power Monitor** button starts the Power Monitor application that measures and reports current power information for the board. Because the application communicates over the JTAG bus to the MAX II device, you can measure the power of any design in the FPGA, including your own designs.

The Board Test System and Power Monitor share the JTAG bus with other applications like the Nios II debugger and the SignalTap® II Embedded Logic Analyzer. Because the Quartus II programmer uses most of the bandwidth of the JTAG bus, other applications using the JTAG bus might time out. Be sure to close the other applications before attempting to reconfigure the FPGA using the Quartus II Programmer.
Preparing the Board

With the power to the board off, perform the following steps:

1. Connect the USB cable to the board.
2. Verify the settings for the board settings DIP switch bank (SW2) match Table 4–2 on page 4–2.
3. Set the PGM/USER LOAD switch (SW2.6) to the off position.
4. Verify the settings for the JTAG jumper blocks (J11 and J12) match Table 4–3 on page 4–3. These settings determine the devices to include in the JTAG chain.

For more information about the board’s DIP switch and jumper settings, refer to the Cyclone III LS FPGA Development Board Reference Manual.

5. Turn the power to the board on. The board loads the design stored in the user portion of flash memory into the FPGA. If your board is still in the factory configuration or if you have downloaded a newer version of the Board Test System to flash memory through the Board Update Portal, the design that tests the GPIO, SRAM, and flash memory loads.

To ensure operating stability, keep the USB cable connected and the board powered on when running the demonstration application. The application cannot run correctly unless the USB cable is attached and the board is on.

Running the Board Test System

To run the application, navigate to the <install dir>/kits/cycloneIILS_3cls200_fpga/examples/board_test_system directory and run the BoardTestSystem.exe application.

On Windows, click Start > All Programs > Altera > Cyclone III LS FPGA Development Kit <version> > Board Test System to run the application.

A GUI appears, displaying the application tab that corresponds to the design running in the FPGA. The Cyclone III LS FPGA development board’s flash memory ships preconfigured with the design that corresponds to the Config, GPIO, and SRAM&Flash tabs.

If you power up your board with the PGM/USER LOAD switch (SW2.6) in the on position, or if you load your own design into the FPGA with the Quartus II Programmer, you receive a message prompting you to configure your board with a valid Board Test System design. Refer to “The Configure Menu” for information about configuring your board.

Using the Board Test System

This section describes each control in the Board Test System application.
The Configure Menu

Each test design tests different functionality and corresponds to one or more application tabs. Use the Configure menu to select the design you want to use. Figure 6–2 shows the Configure menu.

Figure 6–2. The Configure Menu

To configure the FPGA with a test system design, perform the following steps:

1. On the Configure menu, click the configure command that corresponds to the functionality you wish to test.
2. In the dialog box that appears, click **Configure** to download the corresponding design’s SRAM Object File (.sof) to the FPGA. The download process usually takes about a minute.
3. When configuration finishes, click **Close** to complete the configuration process and run the design in the FPGA. A corresponding application tab appears in the GUI that interfaces with the design in the FPGA.

The Config Tab

The **Config** tab shows information about the board’s current configuration. Figure 6–1 on page 6–2 shows the **Config** tab. The tab displays the contents of the MAX II registers, the MAX II code version, the JTAG chain, the board’s MAC address, and the flash memory map.

The following sections describe the controls on the **Config** tab.

MAX-II Registers

These controls allow you to view and change the current MAX II register values as described in Table 6–1. Changes to the register values with the GUI take effect immediately. For example, selecting a new frequency in the **OCR1** list immediately changes the clock frequency on the board.
Table 6–1. MAX II Registers

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Read/Write Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Reset (SRST)</td>
<td>Write only</td>
<td>Set to 0 to initiate an FPGA reconfiguration.</td>
</tr>
<tr>
<td>Page Select Register (PSR)</td>
<td>Read / Write</td>
<td>Determines which of the two pages of flash memory to use for FPGA reconfiguration. The flash memory ships with pages 0 and 1 preconfigured.</td>
</tr>
<tr>
<td>Page Select Override (PSO)</td>
<td>Read / Write</td>
<td>When set to 0, the value in PSR determines the page of flash memory to use for FPGA reconfiguration. When set to 1, the value in PSS determines the page of flash memory to use for FPGA reconfiguration.</td>
</tr>
<tr>
<td>Page Select Switch (PSS)</td>
<td>Read only</td>
<td>Holds the current value of the illuminated PROGRAM LED (D29-D31) based on the following encoding:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 0 = PROGRAM LED0 LED (D31) and corresponds to the flash memory page for the factory hardware design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1 = PROGRAM LED1 LED (D30) and corresponds to the flash memory page for the user hardware 1 design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 2 = PROGRAM LED2 LED (D29) and corresponds to the flash memory page for the user hardware 2 design</td>
</tr>
<tr>
<td>Oscillator Control Register 1 (OCR1)</td>
<td>Read / Write</td>
<td>Determines the U17 oscillator output frequency based on the following options:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 0 = 100 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1 = 125 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 2 = 150 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 3 = 156.25 MHz</td>
</tr>
</tbody>
</table>

- PSO—Sets the MAX II PSO register. The following options are available:
 - Use PSR—Allows the PSR to determine the page of flash memory to use for FPGA reconfiguration.
 - Use PSS—Allows the PSS to determine the page of flash memory to use for FPGA reconfiguration.
- PSR—Sets the MAX II PSR register. The numerical values in the list corresponds to the page of flash memory to load during FPGA reconfiguration. Refer to Table 6–1 for more information.
- PSS—Displays the MAX II PSS register value. Refer to Table 6–1 for the list of available options.
- OCR1—Sets the MAX II OCR1 register. Refer to Table 6–1 for the list of available options.
- SRST—Resets the system and reloads the FPGA with a design from flash memory based on the other MAX II register values. Refer to Table 6–1 for more information.

Because the Config tab requires that a specific design is running in the FPGA, writing a 0 to SRST or changing the PSO value can cause the Board Test System to stop running.
JTAG Chain

This control shows all the devices currently in the JTAG chain. The Cyclone III LS device is always the first device in the chain.

Installing the shunt jumper on jumper J11 pins 1-2 includes the MAX II device in the JTAG chain. Installing the shunt jumper on jumper J12 or setting the anti-tamper DIP switch SW2.3 to the off position breaks the JTAG chain.

For information about the anti-tamper design example, refer to `<install dir>\kits\cycloneIIILS_3cls200_fpga\examples\max2\at_example\readme_at_example.txt`.

Board Information

- **MAX-II rev**—Indicates the version of MAX II code currently running on the board. The MAX II code resides in the `<install dir>\kits\cycloneIIILS_3cls200_fpga\examples` directory. Newer revisions of this code might be available on the Cyclone III LS FPGA Development Kit page of the Altera website.
- **MAC**—Indicates the MAC address of the board.

Flash Memory Map

This control shows the memory map of the flash memory device on your board.

The GPIO Tab

The GPIO tab allows you to interact with all the general purpose user I/O components on your board. You can write to the LCD, read DIP switch settings, turn LEDs on or off, and detect push button presses. Figure 6–3 shows the GPIO tab.
The following sections describe the controls on the GPIO tab.

Character LCD
This control allows you to display text strings on the LCD on your board. Type text in the text boxes and then click Write.

If you exceed the 16 character display limit on either line, a warning message appears.

User Dip Switch
This read-only control displays the current positions of the switches in the user DIP switch bank (S7). Change the switches on the board to see the graphical display change accordingly.

User LEDs
This control displays the current state of the user LEDs. Click on the graphical representation of the LEDs to turn the board LEDs on and off.
Pushbutton Switches
This read-only control displays the current state of the board user push buttons. Press a push button on the board to see the graphical display change accordingly.

The SRAM&Flash Tab
The SRAM&Flash tab allows you to read and write SRAM and flash memory on your board. Figure 6–4 shows the SRAM&Flash tab.

Figure 6–4. The SRAM&Flash Tab

The following sections describe the controls on the SRAM&Flash tab.

SRAM
This control allows you to read and write the SRAM on your board. Type a starting address in the text box and click Read. Values starting at the specified address appear in the table. The base address of SRAM in this Nios II-based BTS design is 0x0D00.0000. The valid address range within the 2-MByte SRAM is 0x0000.0000 through 0x001F.FFFF, as shown in the GUI.
If you enter an address outside of the 0x0000.0000 to 0x001F.FFFF SRAM address space, a warning message identifies the valid SRAM address range.

To update the SRAM contents, change values in the table and click Write. The application writes the new values to SRAM and then reads the values back to guarantee that the graphical display accurately reflects the memory contents.

Flash

This control allows you to read and write the flash memory on your board. Type a starting address in the text box and click Read. Values starting at the specified address appear in the table. The base address of flash memory in this Nios II-based BTS design is 0x0800.0000. The valid address range within the 64-MByte SRAM is 0x0000.0000 through 0x03FF.FFFF, as shown in the GUI.

If you enter an address outside of the 0x0000.0000 to 0x003F.FFFF flash memory address space, a warning message identifies the valid flash memory address range.

To update the flash memory contents, change values in the table and click Write. The application writes the new values to flash memory and then reads the values back to guarantee that the graphical display accurately reflects the memory contents.

To prevent overwriting the dedicated portions of flash memory, the application limits the writable flash memory address range to 0x03FE.0000 to 0x003F.FFFF (which corresponds to the unused flash memory address range shown in Figure 6–1 on page 6–2 and Table A–1 on page A–1).

The DDR2 Tab

The DDR2 tab allows you to read and write the DDR2 memory on your board. Figure 6–5 shows the DDR2 tab.
The following sections describe the controls on the DDR2 tab.

Port
This control directs communication to one of two DDR2 memory ports on your board.

Start
This control initiates DDR2 port transaction performance analysis.

Stop
This control terminates transaction performance analysis.

Performance Indicators
These controls display current transaction performance analysis information collected since you last clicked **Start**:

- **Write**, **Read**, and **Total** performance bars—Show the percentage of maximum data rate that the requested transactions are able to achieve.
Write(MBytes/s), Read(MBytes/s), and Total(MBytes/s)—Show the number of bytes of data analyzed per second. Each data bus is 16 bits wide and the frequency is 167 MHz double data rate (334 Mbps per pin), equating to a theoretical maximum bandwidth of 668 MBps.

Error Control

These controls track transaction errors detected during analysis:

- **Detected Errors**—Displays the number of transaction errors detected in the hardware.
- **Inserted Errors**—Displays the number of errors inserted into the transaction stream.
- **Insert Error**—Inserts a one-word error into the transaction stream each time you click the button. Insert Error is only enabled during transaction performance analysis.
- **Clear**—Resets the Detected Errors and Inserted Errors counters to zeros.

Number of addresses to write / read

This control determines the number of addresses to use in each iteration of reads and writes. Valid values range from 2 to 8,191.

Data Type

This control specifies the type of data contained in the transactions. The following data types are available for analysis:

- **PRBS**—Selects pseudo-random bit sequences.
- **Memory**—Selects a generic data pattern stored in the on chip memory of the Cyclone III LS device.
- **Math**—Selects data generated from a simple math function within the FPGA fabric.

Read/Write control

This control specifies the type of transactions to analyze. The following transaction types are available for analysis:

- **Write/Read**—Selects read and write transactions for analysis.
- **Read Only**—Selects read transactions for analysis.
- **Write Only**—Selects write transactions for analysis.

The HSMC Tab

The HSMC tab allows you to perform loopback tests on the HSMC A and HSMC B ports. Figure 6–6 shows the HSMC tab.
You must have the loopback HSMC installed on the HSMC connector that you are testing for this test to succeed.

The following sections describe the controls on the HSMC tab.

Status
This control displays the following status information during the loopback test:
- **PLL Lock**—Shows the PLL locked or unlocked state.
- **Channel Lock**—Shows the channel locked or unlocked state. When locked, all lanes are aligned and bonded.
- **Pattern Sync**—Shows the pattern synced or not synced state. The pattern is considered synced when the start of the data sequence is detected.

Port
This control allows you to specify the type of test to run on the HSMC ports. The following HSMC port tests are available:
HSMA x41 Single Ended Loopback
HSMB x41 Single Ended Loopback

Data Type
This control specifies the type of data contained in the transactions. The following data types are available for analysis:
- **PRBS**—Selects pseudo-random bit sequences.
- **Memory**—Selects a generic data pattern stored in the on chip memory of the Cyclone III LS device. **This feature is not currently implemented.**
- **Math**—Selects data generated from a simple math function within the FPGA fabric. **This feature is not currently implemented.**

Error Control
These controls track transaction errors detected during analysis.
- **Detected Errors**—Displays the number of transaction errors detected in the hardware.
- **Inserted Errors**—Displays the number of errors inserted into the transaction stream.
- **Insert Error**—Inserts a one-word error into the transaction stream each time you click the button. **Insert Error** is only enabled during transaction performance analysis.
- **Clear**—Resets the **Detected Errors** and **Inserted Errors** counters to zeros.

Start
This control initiates HSMC transaction performance analysis.

Stop
This control terminates transaction performance analysis.

Performance Indicators
These controls display current transaction performance analysis information collected since you last clicked **Start**:
- **TX and RX performance bars**—Show the percentage of maximum data rate that the requested transactions are able to achieve.
- **Tx(MBytes/s) and Rx(MBytes/s)**—Show the number of bytes of data analyzed per second.

The Power Monitor
The Power Monitor measures and reports current power information for the board. To start the application, click **Power Monitor** in the Board Test System application.
You can also run the Power Monitor as a stand-alone application. `PowerTool.exe` resides in the `<install_dir>/kits/cycloneIIILS_3cls200_fpga/examples/board_test_system` directory. On Windows, click `Start > All Programs > Altera > Cyclone III LS FPGA Development Kit <version> > Power Monitor` to start the application.

The Power Monitor communicates to the MAX II device on the board through the JTAG bus. A power monitor circuit attached to the MAX II device allows you to measure the power that the Cyclone III LS FPGA device is consuming regardless of the design currently running. Figure 6–7 shows the Power Monitor.

Figure 6–7. The Power Monitor

The following sections describe the Power Monitor controls.

MAX II Information

These controls display information about the MAX II device.

MAX II Version—Indicates the version of MAX II code currently running on the board. The MAX II code resides in the `<install_dir>/kits/cycloneIIILS_3cls200_fpga/factory_recovery` directory. Newer revisions of this code might be available on the Cyclone III LS FPGA Development Kit page of the Altera website.
Power Rail—Selects the power rail to measure. After selecting the desired rail, click Reset to refresh the screen with new board readings.

A table with the power rail is available in the *Cyclone III LS FPGA Development Board Reference Manual*.

Power Information
This control displays current, maximum, and minimum power readings for the following units:

- mVolts
- mAmps
- mWatts

Power Graph
This control displays the mWatt power consumption of your board over time. The green line indicates the current value. The red line indicates the maximum value read since the last reset. The yellow line indicates the minimum value read since the last reset.

Graph Settings
These controls allow you to define the look and feel of the power graph.

Scale Select—Specifies the amount to scale the power graph. Select a smaller number to zoom in to see finer detail. Select a larger number to zoom out to see the entire range of recorded values.

Update Speed—Specifies how often to refresh the graph.

Reset
This control clears the graph, resets the minimum and maximum values, and restarts the Power Monitor.

Calculating Power
The Power Monitor calculates power by measuring two different voltages with the LT2418 A/D and applying the equation $P = V \times I$ to determine the power consumption. The LT2418 measures the voltage after the appropriate sense resistor (V_{sense}) and the voltage drop across that sense resistor (V_{dif}). The current (I) is calculated by dividing the measured voltage drop across the resistor by the value of the sense resistor ($I = V_{dif} / R$). Through substitution, the equation for calculating power becomes $P = V \times I = V_{sense} \times (V_{dif} / R) = (V_{sense}) \times (V_{dif}) \times (1/.003)$.

You can verify the power numbers shown in the Power Monitor with a digital multimeter that is capable of measuring microvolts to ensure you have enough significant digits for an accurate calculation. Measure the voltage on one side of the resistor (the side opposite the power source) and then measure the voltage on the other side. The first measurement is V_{sense} and the difference between the two measurements is V_{dif}. Plug the values into the equation to determine the power consumption.
Configuring the FPGA Using the Quartus II Programmer

You can use the Quartus II Programmer to configure the FPGA with a specific .sof. Before configuring the FPGA, ensure that the Quartus II Programmer and the USB-Blaster driver are installed on the host computer, the USB cable is connected to the development board, power to the board is on, and no other applications that use the JTAG chain are running.

To configure the Cyclone III LS FPGA, perform the following steps:

1. Start the Quartus II Programmer.
2. Click Add File and select the path to the desired .sof.
3. Turn on the Program/Configure option for the added file.
4. Click Start to download the selected file to the FPGA. Configuration is complete when the progress bar reaches 100%.
A. Programming the Flash Memory Device

Introduction

As you develop your own project using the Altera tools, you can program the flash memory device so that your own design loads from flash memory into the FPGA on power up. This appendix describes the preprogrammed contents of the common flash interface (CFI) flash memory device on the Cyclone III LS FPGA development board and the Nios II EDS tools involved with reprogramming the user portions of the flash memory device.

The Cyclone III LS FPGA development board ships with the CFI flash device preprogrammed with a default factory FPGA configuration for running the Board Update Portal example design and a default user configuration for running the Board Test System demonstration. There are several other factory software files written to the CFI flash device to support the Board Update Portal. These software files were created using the Nios II EDS, just as the hardware design was created using the Quartus II software.

For more information about Altera development tools, refer to the Design Software page on the Altera website.

CFI Flash Memory Map

Table A–1 shows the default memory contents of the 512-Mbit (64-MByte) Intel PC48F4400P0VB00 CFI flash device. For the Board Update Portal to run correctly and update designs in the user memory, this memory map must not be altered.

<table>
<thead>
<tr>
<th>Block Description</th>
<th>Size</th>
<th>Address Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unused</td>
<td>32 KB</td>
<td>0x03FF8000 - 0x03FFFFFF</td>
</tr>
<tr>
<td>Unused</td>
<td>32 KB</td>
<td>0x03FF0000 - 0x03FFFF</td>
</tr>
<tr>
<td>Unused</td>
<td>32 KB</td>
<td>0x03FE8000 - 0x03FFFF</td>
</tr>
<tr>
<td>Unused</td>
<td>32 KB</td>
<td>0x03FE0000 - 0x03FFFF</td>
</tr>
<tr>
<td>User software</td>
<td>24,320 KB</td>
<td>0x02820000 - 0x03FFFF</td>
</tr>
<tr>
<td>Factory software</td>
<td>8,192 KB</td>
<td>0x02020000 - 0x021FFFF</td>
</tr>
<tr>
<td>zipfs (html, web content)</td>
<td>8,192 KB</td>
<td>0x01820000 - 0x0201FFFF</td>
</tr>
<tr>
<td>Unused</td>
<td>5,898 KB</td>
<td>0x01280000 - 0x0181FFFF</td>
</tr>
<tr>
<td>User hardware 2</td>
<td>6,422 KB</td>
<td>0x00C60000 - 0x0127FFFF</td>
</tr>
<tr>
<td>User hardware 1</td>
<td>6,422 KB</td>
<td>0x00640000 - 0x00C5FFFF</td>
</tr>
<tr>
<td>Factory hardware</td>
<td>6,422 KB</td>
<td>0x00020000 - 0x0063FFFF</td>
</tr>
<tr>
<td>PFL option bits</td>
<td>32 KB</td>
<td>0x00018000 - 0x0001FFFF</td>
</tr>
<tr>
<td>Board information</td>
<td>32 KB</td>
<td>0x00010000 - 0x00017FFF</td>
</tr>
<tr>
<td>Ethernet option bits</td>
<td>32 KB</td>
<td>0x00008000 - 0x00007FFF</td>
</tr>
<tr>
<td>User design reset vector</td>
<td>32 KB</td>
<td>0x00000000 - 0x000007FFF</td>
</tr>
</tbody>
</table>
Altera recommends that you do not overwrite the factory hardware and factory software images unless you are an expert with the Altera tools or deliberately overwriting the factory design. If you unintentionally overwrite the factory hardware or factory software image, refer to “Restoring the Flash Device to the Factory Settings” on page A–4.

Preparing Design Files for Flash Programming

You can obtain designs containing prepared .flash files from the Cyclone III LS FPGA Development Kit page on the Altera website or create .flash files from your own custom design.

The Nios II EDS sof2flash command line utility converts your Quartus II-compiled .sof into the .flash format necessary for the flash device. Similarly, the Nios II EDS elf2flash command line utility converts your compiled and linked Executable and Linking Format File (.elf) software design to .flash. After your design files are in the .flash format, use the Board Update Portal or the Nios II EDS nios2-flash-programmer utility to write the .flash files to the user hardware and user software locations of the flash memory.

For more information about Nios II EDS software tools and practices, refer to the Embedded Software Development page on the Altera website.

Creating Flash Files Using the Nios II EDS

If you have an FPGA design developed using the Quartus II software, and software developed using the Nios II EDS, follow these instructions:

1. On the Windows Start menu, click All Programs > Altera > Nios II EDS > Nios II Command Shell.

2. In the Nios II command shell, navigate to the directory where your design files reside and type the following Nios II EDS commands:
 - For Quartus II .sof files:
     ```
     sof2flash --input=<yourfile>_hw.sof --output=<yourfile>_hw.flash --offset=0x0640000
     ```
 - For Nios II .elf files:
     ```
     elf2flash --base=0x0A000000 --end=0x0BFFFFF --reset=0x0A820000 --input=<yourfile>_sw.elf --output=<yourfile>_sw.flash --boot=$SOPC_KIT_NIOS2/components/altera_nios2/boot_loader_cfi.srec
     ```

The resulting .flash files are ready for flash device programming. If your design uses additional files such as image data or files used by the runtime program, you must first convert the files to .flash format and concatenate them into one .flash file before using the Board Update Portal to upload them.

The Board Update Portal standard .flash format conventionally uses either <filename>_hw.flash for hardware design files or <filename>_sw.flash for software design files.
Programming Flash Memory Using the Board Update Portal

Once you have the necessary .flash files, you can use the Board Update Portal to reprogram the flash memory. Refer to “Using the Board Update Portal to Update User Designs” on page 5–2 for more information.

If you have generated a .sof that operates without a software design file, you can still use the Board Update Portal to upload your design. In this case, leave the Software File Name field blank.

Programming Flash Memory Using the Nios II EDS

The Nios II EDS offers a nios2-flash-programmer utility to program the flash memory directly. To program the .flash files or any compatible S-Record File (.srec) to the board using nios2-flash-programmer, perform the following steps:

1. Set the PGM/USER LOAD switch (SW2.6) to the on position to load the Board Update Portal design from flash memory on power up.
2. Attach the USB-Blaster cable and power up the board.
3. If the board has powered up and the LCD displays either "Connecting..." or a valid IP address (such as 152.198.231.75), proceed to step 8. If no output appears on the LCD is seen or if the CONF DONE LED (D14) does not illuminate, continue to step 4 to load the FPGA with a flash-writing design.
4. Launch the Quartus II Programmer to configure the FPGA with a .sof capable of flash programming. Refer to “Configuring the FPGA Using the Quartus II Programmer” on page 6–16 for more information.
5. Click Add File and select <install dir>\kits\cycloneIIILS_3cls200_fpga\factory_recovery\c3ls200_fpga_bup.sof.
6. Turn on the Program/Configure option for the added file.
7. Click Start to download the selected configuration file to the FPGA. Configuration is complete when the progress bar reaches 100%. The CONF DONE LED (D14) and the four user LEDs (D25-D28) illuminate indicating that the flash device is ready for programming.
8. On the Windows Start menu, click All Programs > Altera > Nios II EDS > Nios II Command Shell.
9. In the Nios II command shell, navigate to the <install dir>\kits\cycloneIIILS_3cls200_fpga\factory_recovery directory (or to the directory of the .flash files you created in “Creating Flash Files Using the Nios II EDS” on page A–2) and type the following Nios II EDS command:
 nios2-flash-programmer --base=0x08000000 <yourfile>_hw.flash
10. After programming completes, if you have a software file to program, type the following Nios II EDS command:
 nios2-flash-programmer --base=0x0A000000 <yourfile>_sw.flash
11. Set the PGM/USER LOAD switch (SW2.6) to the off position and power cycle the board, or press the PGM_SELECT button (S9) until the PROGRAM LED1 LED (D30) illuminates and then press the PGM CONFIG button (S8) to load and run the user design. Refer to Table 6–1 on page 6–5 for information about the PROGRAM LEDs.

Programming the board is now complete.

For more information about the nios2-flash-programmer utility, refer to the Nios II Flash Programmer User Guide.

Restoring the Flash Device to the Factory Settings

This section describes how to restore the original factory contents to the flash memory device on the development board. Make sure you have the Nios II EDS installed, and perform the following instructions:

1. Set the board switches to the factory default settings described in “Factory Default Switch Settings” on page 4–2.

2. Launch the Quartus II Programmer to configure the FPGA with a .sof capable of flash programming. Refer to “Configuring the FPGA Using the Quartus II Programmer” on page 6–16 for more information.

3. Click Add File and select <install dir>\kits\cycloneIIILS_3cls200_fpga\factory_recovery\c3ls200_fpga_bup.sof.

4. Turn on the Program/Configure option for the added file.

5. Click Start to download the selected configuration file to the FPGA. Configuration is complete when the progress bar reaches 100%. The CONF DONE LED (D14) and the four user LEDs (D25-D28) illuminate indicating that the flash device is ready for programming.

6. On the Windows Start menu, click All Programs > Altera > Nios II EDS > Nios II Command Shell.

7. In the Nios II command shell, navigate to the <install dir>\kits\cycloneIIILS_3cls200_fpga\factory_recovery directory and type the following command to run the restore script:

   ```
   ./restore.sh
   ```

 Restoring the flash memory might take several minutes. Follow any instructions that appear in the Nios II command shell.

8. After all flash programming completes, cycle the POWER switch (SW1) off then on.

9. Using the Quartus II Programmer, click Add File and select <install dir>\kits\cycloneIIILS_3cls200_fpga\factory_recovery\c3ls200_fpga_bup.sof.

10. Turn on the Program/Configure option for the added file.

11. Click Start to download the selected configuration file to the FPGA. Configuration is complete when the progress bar reaches 100%. The CONF DONE LED (D14) and the four user LEDs (D25-D28) illuminate indicating the flash memory device is now restored with the factory contents.
12. Cycle the POWER switch (SW1) off then on to load and run the restored factory design.

13. The restore script cannot restore the board’s MAC address automatically. In the Nios II command shell, type the following Nios II EDS command:

 nios2-terminal

 and follow the instructions in the terminal window to generate a unique MAC address.

To ensure that you have the most up-to-date factory restore files and information about this product, refer to the Altera Development Kits page on the Altera website.

Restoring the MAX II CPLD to the Factory Settings

This section describes how to restore the original factory contents to the MAX II CPLD on the development board. Make sure you have the Nios II EDS installed, and perform the following instructions:

1. Set the board switches to the factory default settings described in “Factory Default Switch Settings” on page 4–2.

 Installing the shunt jumper on jumper J11 pins 1-2 includes the MAX II device in the JTAG chain. Installing the shunt jumper on jumper J12 or setting DIP switch SW2.3 to the off position breaks the JTAG chain.

2. Launch the Quartus II Programmer.

3. Click Auto Detect.

4. Click Add File and select <install dir>/kits/cycloneIIILS_3cls200_fpga/factory_recovery/max2.pof.

5. Turn on the Program/Configure option for the added file.

6. Click Start to download the selected configuration file to the MAX II CPLD. Configuration is complete when the progress bar reaches 100%.

To ensure that you have the most up-to-date factory restore files and information about this product, refer to the Cyclone III LS FPGA Development Kit page on the Altera website.
Additional Information

Revision History

The following table displays the revision history for this user guide.

<table>
<thead>
<tr>
<th>Date & Document Version</th>
<th>Changes Made</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2009 v1.0</td>
<td>Initial release.</td>
<td>—</td>
</tr>
</tbody>
</table>

How to Contact Altera

For the most up-to-date information about Altera products, refer to the following table.

<table>
<thead>
<tr>
<th>Contact (Note 1)</th>
<th>Contact Method</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical support</td>
<td>Website</td>
<td>www.altera.com/support</td>
</tr>
<tr>
<td>Technical training</td>
<td>Website</td>
<td>www.altera.com/training</td>
</tr>
<tr>
<td></td>
<td>Email</td>
<td>custrain@altera.com</td>
</tr>
<tr>
<td>Product literature</td>
<td>Website</td>
<td>www.altera.com/literature</td>
</tr>
<tr>
<td>Non-technical support (General)</td>
<td>Email</td>
<td>nacomp@altera.com</td>
</tr>
<tr>
<td>(Software Licensing)</td>
<td>Email</td>
<td>authorization@altera.com</td>
</tr>
</tbody>
</table>

Note to Table:
(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

This document uses the typographic conventions shown in the following table.

<table>
<thead>
<tr>
<th>Visual Cue</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold Type with Initial Capital Letters</td>
<td>Indicates command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box.</td>
</tr>
<tr>
<td>bold type</td>
<td>Indicates directory names, project names, disk drive names, file names, file name extensions, and software utility names. For example, \qdesigns directory, d: drive, and chiptrip.gdf file.</td>
</tr>
<tr>
<td>Italic Type with Initial Capital Letters</td>
<td>Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.</td>
</tr>
<tr>
<td>Italic type</td>
<td>Indicates variables. For example, n + 1. Variable names are enclosed in angle brackets (< >). For example, <file name> and <project name>.pof file.</td>
</tr>
<tr>
<td>Initial Capital Letters</td>
<td>Indicates keyboard keys and menu names. For example, Delete key and the Options menu.</td>
</tr>
<tr>
<td>Visual Cue</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>“Subheading Title”</td>
<td>Quotation marks indicate references to sections within a document and titles of Quartus II Help topics. For example, “Typographic Conventions.”</td>
</tr>
<tr>
<td>Courier type</td>
<td>Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. Active-low signals are denoted by suffix n. For example, resetn. Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).</td>
</tr>
<tr>
<td>1., 2., 3., and a., b., c., and so on.</td>
<td>Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.</td>
</tr>
<tr>
<td>■ ■ ■</td>
<td>Bullets indicate a list of items when the sequence of the items is not important.</td>
</tr>
<tr>
<td>■ ■ ■</td>
<td>The hand points to information that requires special attention.</td>
</tr>
<tr>
<td>❞ ❞ ❞</td>
<td>A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.</td>
</tr>
<tr>
<td>❞ ❞ ❞</td>
<td>A warning calls attention to a condition or possible situation that can cause you injury.</td>
</tr>
<tr>
<td>❞ ❞ ❞</td>
<td>The angled arrow instructs you to press Enter.</td>
</tr>
<tr>
<td>❞ ❞ ❞</td>
<td>The feet direct you to more information about a particular topic.</td>
</tr>
</tbody>
</table>