Intel® Quartus® Prime Pro Edition
User Guide

Design Constraints

Updated for Intel® Quartus® Prime Design Suite: 21.3
3.7. Scripting API...78
 3.7.1. Generate Mapped Netlist...78
 3.7.2. Reserve Pins... 78
 3.7.3. Set Location..79
 3.7.4. Exclusive I/O Group...79
 3.7.5. Slew Rate and Current Strength...79
3.8. Managing Device I/O Pins Revision History..80

A. Intel Quartus Prime Pro Edition User Guides... 82
1. Constraining Designs

The design constraints, assignments, and logic options that you specify influence how the Intel® Quartus® Prime Compiler implements your design. The Compiler attempts to synthesize and place logic in a manner that meets your constraints. In addition, design constraints also have an impact on how the Timing Analyzer and the Power Analyzer influence synthesis, placement, and routing.

You can specify design constraints in the GUI, with scripts, or directly in the files that store the constraints. The Intel Quartus Prime software preserves the constraints that you specify in the GUI in the following files:

- **Intel Quartus Prime Settings file** (`<project_directory>/<revision_name>.qsf`) — contains project-wide and instance-level assignments for the current revision of the project, in Tcl syntax. Each revision of a project has a separate `.qsf` file.

- **Synopsys Design Constraints file** (`<project_directory>/<revision_name>.sdc`) — the Timing Analyzer uses industry-standard Synopsys Design Constraint format and stores those constraints in `.sdc` files.

By combining the syntax of the `.qsf` files and the `.sdc` files with procedural Tcl, you can automate iterations over several different settings, changing constraints and recompiling.

Related Information

- [Tcl Scripting](#) In *Intel Quartus Prime Pro Edition User Guide: Scripting*
- [Command Line Scripting](#) In *Intel Quartus Prime Pro Edition User Guide: Scripting*

1.1. Specifying Design Constraints Designs in the GUI

Intel Quartus Prime software provides tools that help you manually implement your project. These tools can also support design visualization, pre-filled parameters, and window cross probing, facilitating design exploration and debugging.

When you create or update a constraint in the Intel Quartus Prime software, the **System** tab of the **Messages** window displays the equivalent Tcl command. Utilize these commands as references for future scripted design definition and compilation.
1.1.1. Global Constraints and Assignments

Global constraints and project settings affect the entire Intel Quartus Prime project and all the applicable logic in the design. You often define global constraints in early project development; for example, when running the New Project Wizard. Intel Quartus Prime software stores global constraints in .qsf files, one for each project revision.

Table 1. Intel Quartus Prime Tools to Set Global Constraints

<table>
<thead>
<tr>
<th>Setting Type</th>
<th>New Project Wizard</th>
<th>Device Dialog Box</th>
<th>Settings Dialog Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project-wide</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Synthesis</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fitter</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Third-party Tools</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>IP Settings</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Related Information
Managing Project Settings
In Intel Quartus Prime Pro Edition User Guide: Getting Started

1.1.2. Node, Entity, and Instance-Level Constraints

Node, entity, and instance-level constraints apply to a subset of the design hierarchy. These constraints take precedence over any global assignment that affects the same sections of the design hierarchy. The following tools are available in the Intel Quartus Prime software to specify node, entity, and instance-level constraints:

Table 2. Intel Quartus Prime Pro Edition Tools to Set Node, Entity and Instance Level Constraints

<table>
<thead>
<tr>
<th>Assignment Type</th>
<th>Assignment Editor</th>
<th>Interface Planner</th>
<th>Chip Planner</th>
<th>Pin Planner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Routing</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Although you can specify constraints using a variety of tools, the following table shows the most effective constraint tools at each design phase:

Table 3. Constraint Tools per Design Phase

<table>
<thead>
<tr>
<th>Design Phase</th>
<th>Assignment Editor</th>
<th>Interface Planner</th>
<th>Tile Interface Planner</th>
<th>Chip Planner</th>
<th>Timing Analyzer</th>
<th>Pin Planner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Synthesis</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Synthesis</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Fit</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.2.1. Specify Instance-Specific Constraints in Assignment Editor

Intel Quartus Prime Assignment Editor (Assignments ➤ Assignment Editor) provides a spreadsheet-like interface for assigning all instance-specific settings and constraints. To help you explore your design, the Assignment Editor allows you to filter assignments by node name or category.

![Intel Quartus Prime Assignment Editor](image)

Use the Assignment Editor to:
- Add, edit, or delete assignments for selected nodes
- Display information about specific assignments
- Enable or disable individual assignments
- Add comments to an assignment

Additionally, you can export assignments to a Comma-Separated Value File (.csv).

1.1.2.2. Specifying Multi-Dimensional Bus Constraints

The Intel Quartus Prime Pro Edition software traditionally supports only 1- and 2-dimensional bus names for specifying constraints. The Intel Quartus Prime Pro Edition version 19.3 and later now supports multi-dimensional bus names for more efficient constraints.
For example, you can specify the following assignment to apply a constraint to all bits in the `reg [31:0] r [0:2][4:5]` three-dimensional bus:

```
set_instance_assignment -name PRESERVE_REGISTER ON -to r
```

The constraint then applies to all bits `r[0][4][31], r[0][4][30], … , r[1][5][0].`

1.1.2.3. Specify I/O Constraints in Pin Planner

Intel Quartus Prime Pin Planner allows you to assign design elements to I/O pins. You can also plan and assign IP interface or user nodes not yet defined in the design.

Figure 2. Pin Planner GUI

The Interface Planner simplifies the planning of accurate constraints for physical implementation. Similarly, you can use the Tile Interface Planner to build a plan for placement of IP components in each tile available on Intel Agilex™ F-tile devices. Use Interface Planner to prototype interface implementations, plan clocks, and rapidly define a legal device floorplan.

Interface Planner and Tile Interface Planner interact dynamically with the Intel Quartus Prime Fitter to accurately verify placement legality while you plan. You can evaluate different floorplans, using interactive reports to accurately plan the best implementation without iterative compilation. Fitter verification ensures the highest
correlation between your interface plan and actual implementation results. You can apply the interface plan constraints to your project with high confidence in the final implementation.

Figure 3. Interface Planner GUI

![Interface Planner GUI](image)

Related Information
- Using Interface Planner on page 19
- Using Tile Interface Planner on page 41

1.1.2.5. Adjust Constraints with the Chip Planner

With the Chip Planner you can adjust existing assignments to device resources, such as pins, logic cells, and LABs in a graphical representation of the device floorplan. You can also view equations and routing information and demote assignments by dragging and dropping to Logic Lock regions in the **Logic Lock Regions Window**.
1. Constraining Designs

1.1.2.6. Constraining Designs with the Design Partition Planner

The Design Partition Planner allows you to view design connectivity and hierarchy and can assist you in creating effective design partitions.

Additionally, the Design Partition Planner allows you to optimize design performance by isolating and resolving failing paths on a partition-by-partition basis.

Related Information
Creating Partitions and Logic Lock Regions with the Design Partition Planner and the Chip Planner
In Intel Quartus Prime Pro Edition User Guide: Design Optimization

1.1.3. Probing Between Components of the Intel Quartus Prime GUI

The Intel Quartus Prime software allows you to locate nodes and instances within the compilation database from any of the following:

- Project Navigator
- Assignment Editor
- Chip Planner
- Timing Analyzer
To locate nodes or instances, follow these steps:

1. Right-click the resource you want to display.
2. Click **Locate Node**, and then click any of the available menu options.

The corresponding window opens—or appears in the foreground if it is already open—and shows the element you clicked.

Example 1. Locate a Resource Selected in the Project Navigator

In the **Entity** list of the **Hierarchy** tab, right-click any object, and click **Locate ➤ Locate in Chip Planner**.

The Chip Planner opens and displays the instance you selected.
1.1.4. Specifying Timing Constraints in the GUI

You can specify timing constraints in the Timing Analyzer GUI. Click the Constraints menu in the Timing Analyzer to specify timing constraints that you can apply to your project.

Figure 5. Constraint menu in Timing Analyzer

When you specify a constraint in the GUI, the dialog box displays the equivalent SDC command syntax.

Example 2. Create Clock Dialog Box

Individual timing assignments override project-wide requirements.

- To avoid reporting incorrect or irrelevant timing violations, you can assign timing exceptions to nodes and paths.
- The Timing Analyzer supports point-to-point timing constraints, wildcards to identify specific nodes when making constraints, and assignment groups to make individual constraints to groups of nodes.
1.2. Constraining Designs with Tcl Scripts

You can perform all your design assignments using .sdc and .qsf setting files. To integrate these files in compilation and optimization flows, use Tcl scripts. Even though .sdc and .qsf files are written in Tcl syntax, they are not executable by themselves.

When you use Intel Quartus Prime Tcl packages, your scripts can open projects, make the assignments, compile the design, and compare compilation results against known goals and benchmarks. Furthermore, such a script can automate the iterative design process by modifying constraints and recompiling the design.

1.2.1. Create a Project and Apply Constraints

The command-line executables include options for common global project settings and commands. You can use a Tcl script to apply constraints such as pin locations and timing assignments. You can write a Tcl constraint file, or generate one for an existing project by clicking Project ➤ Generate Tcl File for Project.

The example creates a project with a Tcl script and applies project constraints using the tutorial design files in the <Intel Quartus Prime installation directory>/qdesigns/fir_filter/ directory.

```tcl
project_new filtref -overwrite
# Assign family, device, and top-level file
set_global_assignment -name FAMILY "Arria 10"
set_global_assignment -name DEVICE <Device>
set_global_assignment -name VERILOG_FILE filtref.v
# Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
#
project_close
```

Save the script in a file called setup_proj.tcl and type the commands illustrated in the example at a command prompt to create the design, apply constraints, compile the design, and perform fast-corner and slow-corner timing analysis. Timing analysis results are saved in two files, filtref_sta_1.rpt and filtref_sta_2.rpt.

```tcl
quartus_sh -t setup_proj.tcl
quartus_syn filtref
quartus_fit filtref
quartus_asm filtref
quartus_sta filtref --model=fast --export_settings=off
mv filtref_sta.rpt filtref_sta_1.rpt
quartus_sta filtref --export_settings=off
mv filtref_sta.rpt filtref_sta_2.rpt
```

Type the following commands to create the design, apply constraints, and compile the design, without performing timing analysis:

```tcl
quartus_sh -t setup_proj.tcl
quartus_sh --flow compile filtref
```
The `quartus_sh --flow compile` command performs a full compilation, and is equivalent to clicking the **Start Compilation** button in the toolbar.

1.2.2. Assigning a Pin

To assign a signal to a pin or device location, use the Tcl command shown in this example:

```
set_location_assignment -to <signal name> <location>
```

Valid locations are pin location names. Some device families also support edge and I/O bank locations. Edge locations are **EDGE_BOTTOM**, **EDGE_LEFT**, **EDGE_TOP**, and **EDGE_RIGHT**. I/O bank locations include **IOBANK_1** to **IOBANK_n**, where n is the number of I/O banks in a device.

1.2.3. Generating Intel Quartus Prime Settings Files

Intel Quartus Prime software allows you to generate .qsf files from your revision. You can embed these constraints in a scripted compilation flow, and even create sets of .qsf files for design optimization.

To generate a .qsf file from the Intel Quartus Prime software, click **Assignments ➤ Export Assignments**.

To organize the .qsf in a human readable form, **Project ➤ Organize Intel Quartus Prime Settings File**.

Example 3. Organized .qsf File

This example shows how .qsf files characterize a design revision. The `set_global_assignment` command makes all global constraints and software settings and `set_location_assignment` constrains each I/O node in the design to a physical pin on the device.

```
# Project-Wide Assignments
# =============
set_global_assignment -name SYSTEMVERILOG_FILE top.sv
set_global_assignment -name SYSTEMVERILOG_FILE blinking_led.sv
set_global_assignment -name SDC_FILE blinking_led.sdc
set_global_assignment -name SDC_FILE jtag.sdc
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output_files
set_global_assignment -name LAST_QUARTUS_VERSION "17.1.0 Pro Edition"
set_global_assignment -name TEXT_FILE blinking_led_generated.txt

# Pin & Location Assignments
# ===============
set_location_assignment PIN_AN18 -to clock
set_location_assignment PIN_AR23 -to led_zero_on
set_location_assignment PIN_AM21 -to led_two_on
set_location_assignment PIN_AR22 -to led_one_on
set_location_assignment PIN_AL20 -to led_three_on

# Analysis & Synthesis Assignments
# ===============
set_global_assignment -name FAMILY "Arria 10"
set_global_assignment -name TOP_LEVEL_ENTITY top

# Fitter Assignments
# ===============
set_global_assignment -name DEVICE 10AS066N3F40E2SG
```

Send Feedback
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_zero_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_one_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_two_on
set_instance_assignment -name IO_STANDARD "1.8 V" -to led_three_on
set_instance_assignment -name SLEW_RATE 1 -to led_zero_on
set_instance_assignment -name SLEW_RATE 1 -to led_one_on
set_instance_assignment -name SLEW_RATE 1 -to led_two_on
set_instance_assignment -name SLEW_RATE 1 -to led_three_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to clock
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_zero_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_one_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_two_on
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to led_three_on

Related Information

For information about all settings and constraints in the Intel Quartus Prime software.

1.2.4. Synopsys Design Constraint (.sdc) Files

Intel Quartus Prime software keeps timing constraints in .sdc files, which use Tcl syntax. You can embed these constraints in a scripted compilation flow, and even create sets of .sdc files for timing optimization.

Example 4. .sdc File

The example shows the timing constrains of a small design.

```
## PROGRAM "Quartus Prime"
## VERSION "Version 17.1.0 Internal Build 91 05/07/2017 SJ Pro Edition"
## DATE    "Wed May 10 14:22:08 2017"
#
## DEVICE  "10AX115R4F40I3SG"
#
#**********************************************************
# Time Information
#**********************************************************
set_time_format -unit ns -decimal_places 3
#**********************************************************
# Create Clock
#**********************************************************
create_clock -name {clk_in} -period 10.000 -waveform { 0.000 5.000 } [get_ports {clk_in}]
#**********************************************************
# Create Generated Clock
#**********************************************************
derive_pll_clocks
#**********************************************************
# Set Clock Uncertainty
#**********************************************************
derive_clock_uncertainty
#**********************************************************
# Set Input Delay
#**********************************************************
set_input_delay -add_delay -clock [get_clocks {clk_in}] 1.500 [get_ports {async_rst}]
set_input_delay -add_delay -clock [get_clocks {clk_in}] 1.200 [get_ports {data_in}]
#**********************************************************
# Set Output Delay
#**********************************************************
set_output_delay -add_delay -clock [get_clocks {clk_in}] 2.000 [get_ports...
1.2.5. Tcl-only Script Flows

As an alternative to .sdc and .qsf files, you can perform all design assignments and timing constraints inside the Tcl scripts. In this case, the script that automates compilation and custom results reporting also contains the design constraints.

You can export a design's contents to a procedural, executable Tcl (.tcl) file, and then use the generated script to restore settings after experimenting with other constraints.

To export your constraints as an executable Tcl script, click Project ➤ Generate Tcl File for Project.

Example 5. blinking_led_generated.tcl File

```tcl
package require ::quartus::project
set need_to_close_project 0
set make_assignments 1
Check that the right project is open
if {{[is_project_open]}} {
 if {{[string compare $quartus(project) "blinking_led"]}} {
 puts "Project blinking_led is not open"
 set make_assignments 0
 }
} else {
 # Only open if not already open
 if {{[project_exists blinking_led]}} {
 project_open -revision blinking_led blinking_led
 } else {
 project_new -revision blinking_led blinking_led
 }
 set need_to_close_project 1
}

Make assignments
if {{$make_assignments}} {
 set_global_assignment -name SYSTEMVERILOG_FILE top.sv
 set_global_assignment -name SYSTEMVERILOG_FILE blinking_led.sv
 set_global_assignment -name SDC_FILE blinking_led.sdc
 set_global_assignment -name SDC_FILE jtag.sdc
 set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output_files
 set_global_assignment -name LAST_QUARTUS_VERSION "17.1.0 Pro Edition"
 set_global_assignment -name TEXT_FILE blinking_led_generated.txt
 set_global_assignment -name FAMILY "Arria 10"
 set_global_assignment -name TOP_LEVEL_ENTITY top
 set_global_assignment -name DEVICE 10AS066N3F40E2SG
 set_location_assignment PIN_AN18 -to clock
 set_location_assignment PIN_AR23 -to led_zero_on
 set_location_assignment PIN_AR22 -to led_one_on
 set_location_assignment PIN_AM21 -to led_two_on
 set_location_assignment PIN_AR21 -to led_one_on
}```
The example:

- Opens the project
- Assigns Constraints
- Writes assignments to QSF file
- Closes project

1.3. A Fully Iterative Scripted Flow

The `::quartus::flow` Tcl package in the Intel Quartus Prime Tcl API allows you to modify design constraints and recompile in an iterative flow.

Related Information

- `::quartus::flow`
 In Intel Quartus Prime Help
- Command Line Scripting
 In Intel Quartus Prime Pro Edition User Guide: Scripting

1.4. Constraining Designs Revision History

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Intel Quartus Prime Version</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2021.10.04 | 21.3 | • Removed obsolete Tcl-only Timing Analysis topic.
| | | • Updated Node, Entity, and Instance-Level Constraints topic for latest tools and Constraint Tools per Design Phase table.
| | | • Revised Plan Interface Constraints topic for Tile Interface Planner.
| | | • Revised Probing Between Components of the Intel Quartus Prime GUI for latest tools. |
| 2019.10.16 | 19.3 | • Added "Specifying Multi-Dimensional Bus Constraints" topic.
| | | • Updated examples in "Create a Project and Apply Constraints." |
| 2019.08.21 | 18.1 | Corrected minor typo in "Tcl-only Script Flows" topic. |

continued...
1. Constraining Designs

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Intel Quartus Prime Version</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2019.01.04 | 18.1 | • Clarified default location of .sdc and .qsf files in " Constraining Designs" topic.
• Added "Plan Interface Constraints with Interface Planner" topic.
• Added screenshots to "Constrain Designs with the Pin Planner" and "Constrain Designs with the Chip Planner."
• Added two new "Assigning a Pin" and "Creating a Project and Applying Constraints" topics showing Tcl examples.
• Added link to Using Timing Constraints topic in Timing Analyzer UG that explains all of the commands. |
| 2017.11.06 | 17.1 | • Renamed topic: Constraining Designs with the GUI to Constraining Designs with Quartus Prime Tools.
• Renamed topic: Global Constraints to Global Constraints and Assignments.
• Added table: Quartus Prime Tools to Set Global Constraints.
• Removed topic: Common Types of Global Constraints.
• Removed topic: Settings That Direct Compilation and Analysis Flows.
• Updated topic: Node, Entity and Instance-Level Constraints.
• Added table: Quartus Prime Tools to Set Node, Entity and Instance Level Constraints.
• Added topic: Assignment Editor.
• Updated topic: Constraining Designs with the Pin Planner.
• Updated topic: Constraining Designs with the Chip Planner.
• Added topic: Constraining designs with the Design Partition Planner.
• Updated topic: Probing Between Components of the Quartus Prime GUI.
• Added example: Locate a Resource Selected in the Project Navigator.
• Updated topic: SDC and the Timing Analyzer, and renamed to Specifying Individual Timing Constraints.
• Added figure: Constraint Menu in Timing Analyzer.
• Added example: Create Clock Dialog Box.
• Updated topic: Constraining Designs with Tcl, and renamed to Generating Quartus Prime Settings Files.
• Updated topic: Quartus Prime Settings Files and Tcl, and renamed to
• Updated topic: Blinking_.led.qsf File.
• Updated topic: Timing Analysis with Synopsys Design Constraints and Tcl Scripts.
• Added example: .sdc File with Timing Constraints.
• Added topic: Tcl-only Script Flows.
• Updated topic: A Fully Iterative Scripted Flow. |
| 2017.05.08 | 17.0 | • Removed references to deprecated Fitter Effort logic option. |
| 2016.10.31 | 16.1 | • Implemented Intel rebranding. |
| 2015.11.02 | 15.1 | • Changed instances of Quartus II to Intel Quartus Prime. |
| June 2014 | 14.0 | Formatting updates. |
| November 2012 | 12.1 | Update Pin Planner description for task and report windows. |
| June 2012 | 12.0 | Removed survey link. |
| November 2011 | 10.0 | Template update. |
| December 2010 | 10.0 | Template update. |
| July 2010 | 10.0 | Rewrote chapter to more broadly cover all design constraint methods. Removed procedural steps and user interface details, and replaced with links to Quartus II Help. |

continued...
<table>
<thead>
<tr>
<th>Document Version</th>
<th>Intel Quartus Prime Version</th>
<th>Changes</th>
</tr>
</thead>
</table>
| November 2009 | 9.1 | • Added two notes.
| | | • Minor text edits. |
| March 2009 | 9.0 | • Revised and reorganized the entire chapter.
| | | • Added section “Probing to Source Design Files and Other Quartus Windows” on page1–2.
| | | • Added description of node type icons (Table1–3).
| | | • Added explanation of wildcard characters. |
| November 2008 | 8.1 | Changed to 8½” × 11” page size. No change to content. |
| May 2008 | 8.0 | Updated Quartus II software 8.0 revision and date. |
2. Interface Planning

Interface planning—the feasibility analysis of interface physical constraints—is a fundamental early step in advanced FPGA design. Periphery placement can be a complex process involving many variables. The Intel Quartus Prime Interface Planner simplifies the planning of accurate constraints for physical implementation.

You can use the Interface Planner to prototype interface implementations, plan clocks, and rapidly define a legal device floorplan.

Similarly, when targeting the Intel Agilex F-tile devices, you can use the Tile Interface Planner build a plan for placement of IP components in each tile available on the FPGA device.

Interface Planner and Tile Interface Planner (launched from the Tools menu) interact dynamically with the Intel Quartus Prime Fitter to accurately verify placement legality while placing elements. You can evaluate different floorplans, using interactive reports to accurately plan the best implementation without iterative compilation. Fitter verification ensures the highest correlation between your interface plan or tile interface plan and actual implementation results. You can apply the interface plan or tile interface plan constraints to your project with high confidence in the final implementation.

Related Information
- Video Demo: Using Interface Planner to Place DDR-3 and PCI Express Gen3
- Video Demo: Using the Tile Interface Planner

2.1. Using Interface Planner

After design synthesis, you can use Interface Planner to help you to rapidly define a legal device floorplan.

Interface Planner displays your project's logical hierarchy, post-synthesis design elements, and Fitter-created design elements, alongside a view of target device locations. The GUI supports a variety of methods for placing design elements in the floorplan. As you place elements in the floorplan, the Fitter verifies legality in real time to ensure accurate correlation with the final implementation.
Intel FPGAs contain core and periphery device locations. The device core locations are adaptive look-up tables (ALUTs), core flip-flops, RAMs, and digital signal processors (DSPs). Device periphery locations include I/O elements, phase-locked loops (PLLs), clock buffers, and hard processor systems (HPS).

Intel FPGAs contain many silicon features in the device periphery, such as hard PCI Express® IP cores, high speed transceivers, hard memory interface circuitry, and embedded processors. Interactions among these periphery elements can be complex. Interface Planner simplifies this complexity and allows you to quickly visualize and place I/O interface and periphery elements, such as:

- I/O elements
- LVDS interfaces
- PLLs
- Clocks
- Hard interface IP Cores
- High-Speed Transceivers
- Hard Memory Interface IP Cores
- Embedded Processors

Related Information

Managing Device I/O Pins on page 58

2.1.1. Interface Planner User Interface

The Interface Planner user interface includes the following controls for planning your design platform.

- Flow Controls on page 21
- Home Tab Controls on page 21
- Assignments Tab Controls on page 21
- Plan Tab Controls on page 22
- Reports Tab Controls on page 23
2.1.1.1. Flow Controls

The Flow control panel provides immediate access to common Interface Planner commands from anywhere within Interface Planner. The Flow controls appear in order of a typical interface planning flow.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Project</td>
<td>Allows you to select and open an Intel Quartus Prime project in Interface Planner. Use of Open Project command is only required when using Interface Planner in standalone mode.</td>
</tr>
<tr>
<td>Initialize Interface Planner</td>
<td>Loads the synthesis netlist, starts the Fitter verification engine, and imports assignments from your Intel Quartus Prime project.</td>
</tr>
<tr>
<td>View Assignments</td>
<td>Opens the Assignments tab, which allows you to review and reconcile any conflicting assignments that Interface Planner imports from your project. Enable or disable specific project assignments to resolve any conflicts.</td>
</tr>
<tr>
<td>Update Plan</td>
<td>Applies the enabled project assignments to your interface plan. You cannot perform periphery planning on the Plan tab until you update the plan.</td>
</tr>
<tr>
<td>Plan Design</td>
<td>Opens the Plan tab for placing logic in the interface plan.</td>
</tr>
<tr>
<td>Validate plan</td>
<td>Verifies that all constraints in the interface plan are compatible with placement of all remaining unplaced design elements. You can then directly locate and resolve the source of any reported validation errors. You must successfully validate the plan before running Write Plan File.</td>
</tr>
<tr>
<td>Export Constraints</td>
<td>Saves your interface plan as a Tcl script file for subsequent application in your project. This command is available only after successfully running Validate Plan.</td>
</tr>
<tr>
<td>View Reports</td>
<td>Opens the Reports tab for filtering data and finding entities and locations.</td>
</tr>
<tr>
<td>View Summary Reports</td>
<td>Opens the Interface Planner Summary report that summarizes the percentage of placed and unplaced periphery cells.</td>
</tr>
</tbody>
</table>

2.1.1.2. Home Tab Controls

The Interface Planner Home tab contains controls for opening projects in Interface Planner. You only need the Home tab when Interface Planner is in standalone mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent Projects</td>
<td>Provides quick access to recently opened Intel Quartus Prime projects. A named tile represents each project. Click the tile to display Details about the project. Double-click the tile to open the project in Interface Planner.</td>
</tr>
<tr>
<td>Browse</td>
<td>Allows you to locate and open an Intel Quartus Prime project in Interface Planner. Interface Planner requires the project’s synthesized netlist for operation.</td>
</tr>
<tr>
<td>Details</td>
<td>Provides project and file details such as the file path, revision, and creation date of the Intel Quartus Prime project. You can select a specific project revision.</td>
</tr>
</tbody>
</table>

2.1.1.3. Assignments Tab Controls

The Assignments tab contains controls for resolving potential conflicts with project assignments. Click View Assignments to display the Assignments tab.
You can enable or disable specific or classes of assignments until you resolve all potential conflicts. After you are satisfied with the status of all project assignments, click **Update Plan** to update your interface plan with the enabled project assignments. Interface Planner reports an error for any remaining assignment conflicts.

Table 6. Assignments Tab Controls

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter field</td>
<td>Supports creation of wildcard expressions for assignment targets. Enabled and Disabled buttons filter only enabled or disabled assignments in the list.</td>
</tr>
<tr>
<td>Enable All Project Assignments</td>
<td>Enables all imported project assignments in your interface plan.</td>
</tr>
<tr>
<td>Disable All Project Assignments</td>
<td>Disables all imported project assignments in the plan.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears any filter from the Assignments list.</td>
</tr>
</tbody>
</table>

2.1.1.4. Plan Tab Controls

The **Plan** tab contains the following controls to help you locate and place logic in the interface plan. Click **Plan Design** to display the **Plan** tab.

Placement or unplacement in the interface plan does not apply to your Intel Quartus Prime project until you add the generated Interface Planner constraints script to your project.

Table 7. Plan Tab Controls

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lists legal locations for placement.</td>
</tr>
<tr>
<td>Locate Node</td>
<td>Display a list of Intel Quartus Prime Pro Edition tools where the selected design element is referenced in the hierarchical database. If the Locate Node command is disabled for a specific element in the Design Elements list, it is because that element is not represented as an element in the design.</td>
</tr>
<tr>
<td>Autoplace All</td>
<td>Attempts to place all unplaced design elements in legal locations in the interface plan.</td>
</tr>
<tr>
<td>Autoplace Fixed</td>
<td>Attempts to place all unplaced design elements that have only one legal location into the interface plan.</td>
</tr>
<tr>
<td>Unplace All</td>
<td>Unplaces all placed design elements in the interface plan.</td>
</tr>
<tr>
<td>Right-click ➤ Auto-place selected element</td>
<td>Attempts to place the selected design element and all its children in a legal location in the interface plan.</td>
</tr>
<tr>
<td>Chip View</td>
<td>Displays the target device chip. Zoom in to display chip details.</td>
</tr>
<tr>
<td>Package View</td>
<td>Displays the target device package. Zoom in to display chip details.</td>
</tr>
<tr>
<td>Show I/O Banks</td>
<td>Selects and color codes the I/O banks in the Plan tab.</td>
</tr>
<tr>
<td>Show Differential Pin Pair Connections</td>
<td>In Package View, displays a red connection line between a pair of differential pins. The Package View labels the positive and negative pins with the letters p and n, respectively.</td>
</tr>
<tr>
<td>Show PCIe Hard IP Interface Pins</td>
<td>In Package View, selects and color codes the PCIe Hard IP interface pins in the Plan tab. To access this command, right-click in the Plan tab package view, and select x1 Lanes, x2 Lanes, x4 Lanes, x8 Lanes, or by 16 Lanes. After enabling, view color coding in the Color Legend.</td>
</tr>
</tbody>
</table>
Table 8. Reports Tab Controls

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create all Summary Reports</td>
<td>Creates the following summary reports:</td>
</tr>
<tr>
<td></td>
<td>- Interface Planner Summary</td>
</tr>
<tr>
<td></td>
<td>- All Periphery Cells</td>
</tr>
<tr>
<td></td>
<td>- Placed/Unplaced Periphery Cells</td>
</tr>
<tr>
<td></td>
<td>- Periphery Location Types</td>
</tr>
<tr>
<td>Report All Placed/Unplaced Pins</td>
<td>Reports the name, parent (if any), and type of all placed (Report All Placed Pins) or unplaced (Report All Unplaced Pins) pins in the interface plan, respectively. The Placed Pins report includes the placement location name. The Unplaced Pins report includes the number of potential placement locations. Right-click any cell to place, unplace, or report connectivity or location information.</td>
</tr>
<tr>
<td>Report All Placed/Unplaced HSSI Channels</td>
<td>Reports the name, parent (if any), and type of all placed (Report All Placed HSSI Channels) or unplaced (Report All Unplaced HSSI Channels) channels in the interface plan, respectively. The Unplaced HSSI Channels report includes the placement location name. The Unplaced HSSI Channels report includes the number of potential placement locations. Right-click any cell to place, unplace, or report connectivity or location information.</td>
</tr>
<tr>
<td>Right-click ➤ Report Placed/Unplaced Periphery Cells of Selected Type</td>
<td>Reports the name, parent (if any), and type of placed (Report Placed Periphery Cells of Selected Type) or unplaced (Report Unplaced Periphery Cells of Selected Type) cells matching the selected type. The placed cells report includes the placement location name. The unplaced cells report includes the number of potential placement locations. Right-click any cell to place, unplace, or report connectivity or location information.</td>
</tr>
<tr>
<td>Right-click ➤ Report Periphery Locations of Selected Type</td>
<td>Reports all locations in the device of the selected type, and whether the location supports merging.</td>
</tr>
</tbody>
</table>

2.1.1.5. Reports Tab Controls

The Interface Planner Reports tab contains the following Task pane controls to help you filter data and find entities and locations.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-click ➤ Report Periphery Cell Connectivity</td>
<td>Reports the source port and type, destination port and type, of connections to the selected cell. Right-click any cell to report the individual cell connectivity.</td>
</tr>
<tr>
<td>Right-click ➤ Place/Unplace Cell</td>
<td>Places the cell in the selected location of the interface plan. Similarly, you can right-click any cell and then click Place Cell of Selected Type or Unplace Cell of Selected Type to place or unplace multiple cells of the same type.</td>
</tr>
<tr>
<td>Right-click ➤ Report Cell Locations for Custom Placement</td>
<td>Reports the preferred legal locations for the selected cell in the interface plan in the Legal Location report. Right-click to immediately place the cell in a location or report all periphery location of the selected type.</td>
</tr>
<tr>
<td>Remove Invalid Reports</td>
<td>Removes outdated Interface Planner reports that you invalidate by changes to the interface plan.</td>
</tr>
<tr>
<td>Report Instance Assignments</td>
<td>Shows all imported project assignments in the interface plan. You can delete these assignments from the plan.</td>
</tr>
</tbody>
</table>

2.1.2. Interface Planner Tool Flow

Interface Planner's user interface guides you through the design planning steps. Use Interface Planner's **Flow** control to execute the main initialization, planning, and validation functions of the flow in sequence.

Figure 7. Interface Planner Flow Control

As you run each step in the **Flow** control, downstream commands and the **Assignments**, **Plan**, and **Reports** tabs become available. Interface Planner only allows you to run commands after completing any prerequisite steps in the flow.

After you **Initialize Interface Planner**, you are prompted to confirm any project assignments that you made before planning starts. Disable or enable any imported project assignments on the **Assignments** tab to resolve any conflicts and evaluate different implementations.
After you **Update Plan** with the project assignments, you are ready to place design elements onto the target device **Chip View** or **Package View** on the **Plan** tab. As you place design elements in the **Plan** tab, the Fitter verifies placement legality in real-time. Once planning is complete and validated, you export the constraints as a Tcl script for application in your project.

Note: The Interface Planner constraints you define do not apply to your project until you export and source them with the generated Tcl script.
The following topics describe these interface planning flow steps in detail:

Step 1: Setup and Synthesize the Project on page 27
Step 2: Initialize Interface Planner on page 27
Step 3: Update Plan with Project Assignments on page 28
Step 4: Plan Periphery Placement on page 28
Step 5: Report Placement Data on page 32
Step 6: Validate and Export Plan Constraints on page 33
2.1.2.1. Step 1: Setup and Synthesize the Project

Interface Planner requires at least a partially complete, synthesized Intel Quartus Prime project as input. You can also use Interface Planner to adjust placement for a fully complete design project.

Follow these steps to setup the project and run synthesis:
1. Complete at least the following steps for your design:
 - Fully define known device periphery interfaces.
 - Instantiate all known interface IP cores.
 - Declare all general purpose I/Os.
 - Define the I/O standard, voltage, drive strength, and slew rate for all general purpose I/Os.
 - Define the core clocking (optional, but recommended).
 - Connect all interfaces of the periphery IP to virtual pins or test logic. This technique creates loop backs on any interfaces in the shell design, helping to ensure that periphery interfaces persist after synthesis optimization.
2. To synthesize the design, click Processing ➤ Start ➤ Start Analysis & Synthesis. You must run at least Analysis & Synthesis before running Interface Planner.

2.1.2.2. Step 2: Initialize Interface Planner

Initializing Interface Planner loads the compilation database for the synthesis snapshot, and enables the View Assignments command and Assignments tab for reconciling project assignments.

To initialize Interface Planner:
1. Click Tools ➤ Interface Planner. The Interface Planner opens, displaying the Home tab.
2. On the Flow control, click Initialize Interface Planner. After initialization, the Fitter dynamically validates your interface plan as you make changes.

Figure 11. Interface Planner Home Tab
2.1.2.3. Step 3: Update Plan with Project Assignments

Before periphery planning in Interface Planner, you must reconcile any conflicting imported project assignments and **Update Plan** with the assignments you want to retain in the plan.

Follow these steps to review imported project assignments and reconcile any conflicts:

1. On the **Flow** control, click **View Assignments**.
2. On the **Assignments** tab, enable or disable specific or groups of project assignments to resolve any conflicts or experiment with different settings. You can filter the list of assignments by assignment name or status.
3. After resolving all conflicts, click **Update Plan** on the **Flow** control to apply the enabled project assignments to your interface plan.

![Interface Planner (Assignments Tab)](image)

Figure 12. Interface Planner (Assignments Tab)

- **Filter Assignments**
- **Enable All Assignments**
- **Disable All Assignments**

- **Disabled Assignment**

- **Related Information**
 - [Home Tab Controls](#) on page 21
 - [Assignments Tab Controls](#) on page 21
 - [AN 821: Interface Planning for Intel Stratix 10 FPGAs](#)

2.1.2.4. Step 4: Plan Periphery Placement

Click **Plan Design** on the **Flow** control to interactively place IP cores and other design elements in legal locations in the device periphery. The **Plan** tab displays a list of your project's design elements, alongside a graphical abstraction of the target device architecture.
For efficiency, place design elements in the following order in Interface Planner:
1. Place all I/O pins or elements, such as PLLs, that have known, specific location requirements.
2. Place all known periphery interface IP.
3. (Optional) Place all remaining unplaced cells.

Use the following controls to place design elements in the Interface Planner floorplan:
1. Locate design elements that you want to place in the Design Element list. You can search and filter the list by name, IP, placement status, I/Os, and other criteria.
2. To customize design element color coding definitions, click the Highlight column.

Figure 13. Interface Planner (Plan Tab)

3. Use any of the following methods to place design elements in the floorplan:
 - Drag elements from the Design Elements list and drop them onto available device resources in the Chip or Package view. Use Ctrl+Click to drag and pan across the Chip or Package views. You may experience a small delay while dragging as Interface Planner calculates the legal locations.
 - To allow Interface Planner to place an unplaced design element in a legal location, right-click and select Autoplace Selected. You must use Autoplace Selected for all unplaced clocks.
 - Click the button next to the Design Elements to display a list of Legal Locations. Click any legal location in the list to highlight the location in the floorplan. Double-click any location in the list to place the element in the location.
4. To step forward and backward though your plan changes, click the **Undo** and **Redo** buttons.

5. To visualize and traverse design connectivity (for example, to view the reference clock pin and driven destination cells of a PLL), select any design element and then click the **Link Info** tab. Click the **Back** and **Forward** buttons to traverse design connectivity.

6. To generate a report that shows the placement locations the Fitter prefers, select a design element and click **Report Placeability of Selected Element**.

Figure 15. Link Info Tab for Traversing Connectivity

Note: Changes made in Interface Planner do not apply to your Intel Quartus Prime project until you apply the generated interface plan constraints script to your project.

Related Information

Plan Tab Controls on page 22
2. Interface Planning

2.1.2.4.1. Plan Clock Networks

Interface Planner allows you to visualize and plan clock networks. For Intel Arria® 10 and Intel Cyclone® 10 GX devices, you can locate, highlight, place, and edit the type of clock elements in the Plan tab.

Note: The Intel Stratix® 10 device family does not support the Clocking filter in Interface Planner. For Intel Stratix 10 designs, use the Autoplace Selected command to place all unplaced clock elements.

Interface Planner generates a Clocks report that details the signals using low-skew routing networks (clock networks) in the device.

To identify and place clocking elements in your design, click the Clocking filter in the Plan tab. You can refine the list further by entering search text in the Design Element Filter. Interface Planner represents clock networks as groupings of the following clock network elements:

- Clock source
- Clock mux
- Clock region

Figure 16. Clocking Design Elements

You can place an entire clock group or individual clock elements by dragging into the location, or using the Report Legal Locations of Selected Element or the Autoplace Selected commands. After placement, hover the cursor over the item in the Design Element list to highlight the placement. The placement of clock elements impacts the placement of dependent core and periphery elements.

You can edit the clock type for clocking design elements. The clock type impacts the placement of dependent core and periphery elements. Right-click any clock element to specify one of the following clock types:

- Not Set
- Locally Routed
- Global
2.1.2.4.2. Saving & Loading Floorplans

You can save the state of your Interface Planner floorplan for use in subsequent Interface Planner sessions. Interface Planner saves your plan in Interface Planner Floorplan Format (.plan). You can load a .plan file in Interface Planner to reopen the floorplan.

1. To save an Interface Planner floorplan, click File ▶ Save Floorplan and specify a file name.
2. To load an Interface Planner floorplan, click File ▶ Load Floorplan and browse for the .plan file.

Note: .plan files are for use only in Interface Planner and are not for use directly in the Intel Quartus Prime software. Interface Planner generates an error if you attempt to load a .plan file that is not associated with the current Interface Planner project.

2.1.2.5. Step 5: Report Placement Data

Generate Interface Planner placement and connectivity reports to help locate cells and make the best decisions about placement for the interfaces and elements in your design. Click View Reports on the Flow control to open the Reports tab from which you can generate a range of reports.

Follow these steps to report Interface Planner placement data:

1. In the Flow control, click View Reports. The list of reports appears in the Tasks pane.
2. In the Tasks pane, double-click any report name to generate the report in the Table of Contents pane.
3. Select design elements in the report and click Place, Unplace, or report detailed data about the selected elements or locations.
2. Interface Planning

2.1.2.6. Step 6: Validate and Export Plan Constraints

You must validate your interface plan before exporting the plan constraints to your project as a generated Tcl script. Validation must confirm that the Fitter can place all remaining unplaced design elements before you can generate the script. When you are satisfied with your interface plan, follow these steps to validate and apply the interface plan to your Intel Quartus Prime project:

1. In the Flow control, click **Validate Plan**. The Fitter confirms placement of all remaining unplaced design elements. You must correct any errors before you can export constraints.

2. After validation, click **Export Constraints** to generate a Tcl script that applies the plan to your project. The output Tcl file contains instructions to apply the interface plan to your Intel Quartus Prime project.

3. Close Interface Planner.

4. To apply the exported interface plan constraints to your Intel Quartus Prime project, click **Tools ➤ Tcl Scripts** and select the `<project name>.pdp_assignments.tcl` script file.

5. Click **Run**. The script runs, applying the Interface Planner constraints to the project. Alternatively, you can run the script from the project directory:

   ```
   quartus_sh -t <assignments_file>.tcl
   ```
6. To run synthesis and apply the interface plan in your project, click **Start ➤ Start Analysis & Synthesis**.

7. Confirm the implementation of your plan by reviewing the Compilation Report.

2.1.3. Interface Planner Reports

Use Interface Planner reports to locate cells and assign suitable placement locations for specific interfaces and elements in your design. Interface Planner reports provide detailed, actionable feedback to help you quickly implement the best plan for your design. You can access placement and further reporting functions directly from Interface Planner reports. Interface Planner generates the following reports that provide detailed planning information:

- Report Summary on page 34
- Report Pins on page 35
- Report HSSI Channels on page 37
- Report Clocks on page 37
- Report Periphery Locations on page 38
- Report Cell Connectivity on page 39
- Report Instance Assignments on page 39

2.1.3.1. Report Summary

Click **Create all Summary Reports** on the Reports tab to generate summary reports about periphery cells in the interface plan. Right-click any cell type to report placed, unplaced, connectivity, or location information.
Table 9. Report Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create all Summary Reports</td>
<td>Creates the following summary reports:</td>
</tr>
<tr>
<td></td>
<td>• Interface Planner Summary—reports software version and total number of periphery and top-level periphery cells.</td>
</tr>
<tr>
<td></td>
<td>• All Periphery Cells—reports the name, parent, and type of all periphery cells in the design.</td>
</tr>
<tr>
<td></td>
<td>• Placed/Unplaced Periphery Cells—reports the name, parent, and type of all placed and unplaced periphery cells in the interface plan.</td>
</tr>
<tr>
<td></td>
<td>• Periphery Location Types—reports the number of each type of periphery location available in the target device and the number required by your design.</td>
</tr>
</tbody>
</table>

2.1.3.2. Report Pins

Generate reports about I/O pins in the design. Right-click any cell type to place, unplace, or report connectivity or location information.

Table 10. Report Pin Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report All Placed Pins</td>
<td>Generates the Placed Pins report. This report lists the name, parent, type, and location of all placed pins in the interface plan.</td>
</tr>
<tr>
<td>Report All Unplaced Pins</td>
<td>Generates the Unplaced Pins report. This report lists the name, parent, type, and the number of potential placements for all unplaced pins in the interface plan.</td>
</tr>
</tbody>
</table>
Figure 19. Placed Pins Report

Right-Click To
Unplace Placed Pins

Figure 20. Unplaced Pins Report

Right-Click to
Place Unplaced Pins
2.1.3.3. Report HSSI Channels

Generate reports about HSSI channels in the interface plan. Right-click any cell type to place, unplace, or report connectivity or location information.

Table 11. Report Channel Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report All Placed HSSI Channels</td>
<td>Generates the Placed HSSI Channels report. This report lists the name, parent, type, and location of all placed HSSI RX/TX channels in the interface plan.</td>
</tr>
<tr>
<td>Report All Unplaced HSSI Channels</td>
<td>Generates the Unplaced HSSI Channels report. This report lists the name, parent, type, and location of all unplaced HSSI RX/TX channels in the interface plan.</td>
</tr>
</tbody>
</table>

Figure 21. Unplaced HSSI Channels Report

2.1.3.4. Report Clocks

Generate reports showing clock networks in the plan. Use this report to analyze clock network scenarios and ensure that specific device regions are fed by high fan-out signals.

Table 12. Report Clocks Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Clocks</td>
<td>Generates the Global and other Fast Signals report.</td>
</tr>
</tbody>
</table>
2.1.3.5. Report Periphery Locations

Generate reports that show the status of periphery cells in the interface plan.

Table 13. Report Periphery Locations Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-click ➤ Report Placed Periphery Cells</td>
<td>Accessible from the All Periphery Cells report. This command reports the</td>
</tr>
<tr>
<td>of Selected Type</td>
<td>name, parent (if any), type, and location of the selected placed periphery</td>
</tr>
<tr>
<td></td>
<td>cells matching the selected type. Right-click any cell to place, unplace, or</td>
</tr>
<tr>
<td></td>
<td>report connectivity or location information.</td>
</tr>
<tr>
<td>Right-click ➤ Report Unplaced Periphery</td>
<td>Accessible from the All Periphery Cells report. This command reports the</td>
</tr>
<tr>
<td>Cells of Selected Type</td>
<td>name, parent (if any), type, and number of suitable locations for the</td>
</tr>
<tr>
<td></td>
<td>selected unplaced periphery cells matching the selected type. Right-click</td>
</tr>
<tr>
<td></td>
<td>any cell to place, unplace, or report connectivity or location information.</td>
</tr>
<tr>
<td>Right-click ➤ Report Periphery Locations</td>
<td>Reports all locations in the device of the selected type, and whether the</td>
</tr>
<tr>
<td>of Selected Type</td>
<td>location supports merging.</td>
</tr>
</tbody>
</table>

Figure 22. Clocks Report

Figure 23. Placed Periphery Cells Report
2.1.3.6. Report Cell Connectivity

Generate reports showing the connections between all cells in the interface plan.

Table 14. Report Cell Connectivity Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-click ➤ Report Periphery Cell Connectivity</td>
<td>Right-click any Cell Name in the reports to Report Periphery Cell Connectivity. The report lists the source and destination ports and type of connections to the selected cell. Right-click any cell to report all connections to the cell.</td>
</tr>
</tbody>
</table>

Figure 24. Periphery Cell Connectivity Report

2.1.3.7. Report Instance Assignments

Click Report Instance Assignments to show all imported project assignments in the interface plan. You can delete these assignments from the plan.

Table 15. Report Instance Assignments Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Instance Assignments</td>
<td>Reports all enabled instance assignments in your design. Right-click any cell to delete the assignment or to delete all assignments of the same type.</td>
</tr>
</tbody>
</table>
Instance Assignments Report

<table>
<thead>
<tr>
<th>ID</th>
<th>Status</th>
<th>From</th>
<th>To</th>
<th>Assignment Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled</td>
<td>u_blinking_led</td>
<td>PLACE_REGION</td>
<td></td>
<td>X57 Y6 X61 Y</td>
</tr>
<tr>
<td>1</td>
<td>Enabled</td>
<td>u_top_counter</td>
<td>PLACE_REGION</td>
<td></td>
<td>X64 Y6 X68 Y</td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>u_blinking_led</td>
<td>ROUTE_REGION</td>
<td></td>
<td>X56 Y5 X62 Y</td>
</tr>
<tr>
<td>3</td>
<td>Enabled</td>
<td>u_top_counter</td>
<td>ROUTE_REGION</td>
<td></td>
<td>X63 Y5 X69 Y</td>
</tr>
<tr>
<td>4</td>
<td>Enabled</td>
<td>u_blinking_led</td>
<td>RESERVE_PLACE_REGION</td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>5</td>
<td>Enabled</td>
<td>u_top_counter</td>
<td>RESERVE_PLACE_REGION</td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>6</td>
<td>Enabled</td>
<td>u_blinking_led</td>
<td>CORE_ONLY_PLACE_REGION</td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>7</td>
<td>Enabled</td>
<td>u_top_counter</td>
<td>CORE_ONLY_PLACE_REGION</td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>8</td>
<td>Enabled</td>
<td>u_blinking_led</td>
<td>REGION_NAME</td>
<td>u_blinking_led</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Enabled</td>
<td>u_top_counter</td>
<td>REGION_NAME</td>
<td>u_top_counter</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Enabled</td>
<td>clock</td>
<td>LOCATION</td>
<td></td>
<td>PIN_AU33</td>
</tr>
<tr>
<td>11</td>
<td>Enabled</td>
<td>led_one_on</td>
<td>LOCATION</td>
<td></td>
<td>PIN_K25</td>
</tr>
<tr>
<td>12</td>
<td>Enabled</td>
<td>led_three_on</td>
<td>LOCATION</td>
<td></td>
<td>PIN_125</td>
</tr>
</tbody>
</table>
2.2. Using Tile Interface Planner

The Intel Quartus Prime Tile Interface Planner helps you to quickly place component IP in legal tile locations of device F-tiles. Tile Interface Planner is an interactive floorplanning tool that simplifies this process.

Tile Interface Planner displays your project's component IP in a hierarchical tree view, next to a visual representation of the device tile segments. You can then locate the potential legal locations for each IP within the tile, place each IP at one of these locations, and apply generated placement constraints to the project for downstream Compiler stages.

As you place elements in the tile floorplan, the legality engine verifies that the placement is legal in real-time, thus ensuring correlation with your intent in the final implementation.

Figure 26. Tile Interface Planner GUI

In contrast with Interface Planner, Tile Interface Planner is specifically for placing component IP on the F-tile, and requires you to run an initial Design Analysis stage before you define a legal tile floorplan for all component IP targeting device tiles.

- Tile Interface Planner Tool Flow on page 43
- Tile Interface Planner GUI Reference on page 53
2.2.1. Tile Interface Planner Terminology

Tile Interface Planner refers to the following key terminology to describe use of the tool:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floorplan</td>
<td>The layout of physical resources on the device. Creating a design floorplan, or floorplanning, is the process of mapping the logical design hierarchy to physical regions in the device. Tile Interface Planner is a tile IP floorplanning tool.</td>
</tr>
<tr>
<td>IP building block</td>
<td>Intel FPGA IP cores are comprised of building blocks that combine to provide all functionality of the IP. The Design Tree view in Tile Interface Planner displays each IP’s building blocks. Building blocks can be movable, fixed, or always movable types.</td>
</tr>
<tr>
<td></td>
<td>• Movable building blocks—building blocks are initially movable. Movable building blocks can be re-placed by the legality engine in potentially one of several legal locations to accommodate other building blocks. You can convert a movable building block to fixed by specifying a fixed placement location. The legality engine cannot change the placement of fixed building blocks. Movable building block placements appear in italic text in the Design Tree view. Movable building blocks have a dithered fill in Chip View.</td>
</tr>
<tr>
<td></td>
<td>• Fixed building blocks—building blocks that you place in a fixed, legal location that the legality engine cannot change. You can convert a movable building block to fixed, and a fixed building block to movable. Fixed building block placements appear in plain text in the Design Tree view. Fixed building blocks have a solid fill in the Chip View.</td>
</tr>
<tr>
<td></td>
<td>• Always movable building blocks—building blocks that are always movable by the legality engine and cannot be fixed. These building blocks must remain movable to prevent inadvertent conflicting constraints. Always movable building blocks appear in gray italic text in the Design Tree view.</td>
</tr>
<tr>
<td>Intel Quartus Prime Settings File (.qsf)</td>
<td>Intel Quartus Prime software file that preserves project settings and assignments, including the placement of fixed IP building blocks and fixed tile assignments that you specify in Tile Interface Planner.</td>
</tr>
<tr>
<td>JSON file</td>
<td>Intel Quartus Prime software internal file that preserves the most recent placement from the Logic Generation stage of the Compiler. You can load this placement when you click Update Assignments if you want the starting point for planning to include the last Logic Generation assignments.</td>
</tr>
<tr>
<td>Legal location</td>
<td>Tile Interface Planner legality engine identifies the legal locations in the tile floorplan for placement of the IP or building block that you select in the Design Tree.</td>
</tr>
<tr>
<td>Legality engine</td>
<td>Tile Interface Planner function that generates valid legal locations for tile placement, and places movable and always movable building blocks in the tile plan.</td>
</tr>
<tr>
<td>Placed design element</td>
<td>IP or building block that you or the legality engine has assigned to a fixed or movable legal location.</td>
</tr>
<tr>
<td>Support-Logic Generation stage</td>
<td>A Compiler stage, preceding Analysis & Synthesis, that includes the Design Analysis and Logic Generation sub-stages. This stage is only present when targeting F-tile.</td>
</tr>
<tr>
<td></td>
<td>• Design Analysis stage—A Compiler stage, preceding Analysis & Synthesis, that elaborates the design RTL to extract design information about component IP targeting F-tile. You must run this stage before running Tile Interface Planner. This stage is not present for other FPGA device families or for designs without required IP.</td>
</tr>
<tr>
<td></td>
<td>• Logic Generation stage—A Compiler stage, following Design Analysis, that uses your Tile Interface Plan to generate logic for synthesis and implementation of your tile configuration plan. You must run Logic Generation after Design Analysis before you can synthesize your tile plan.</td>
</tr>
<tr>
<td>Tile plan</td>
<td>One or more fixed placements that you define and save in Tile Interface Planner using the (.qsf).</td>
</tr>
<tr>
<td>Unplaced design element</td>
<td>IP or building blocks that are unassigned to a fixed or movable legal location.</td>
</tr>
</tbody>
</table>
2.2.2. Tile Interface Planner Tool Flow

The Tile Interface Planner user interface guides you through each step in the tile interface planning process.

Figure 27. Tile Interface Planner Tool Flow

- **Step 1: Instantiate IP and Run Design Analysis** on page 43—Tile Interface Planner first requires a design with component IP, targeting the Intel Agilex FPGA with F-tile. After initial design setup, you run Design Analysis to elaborate the component IP in the design.

- **Step 2: Initialize Tile Interface Planner** on page 44—launch Tile Interface Planner, component IP and existing assignment data loads, and the legality engine initializes.

- **Step 3: Update Plan with Project Assignments** on page 45—enable or disable any existing placement assignments and optionally load placement data from previous planning sessions for the current tile planning session.

- **Step 4: Create a Tile Plan** on page 46—use the **Plan** tab to locate the potential legal locations for each unplaced component IP, place the IP in the tile location, and verify that the placement is legal in real-time to ensure correlation in the final implementation.

- **Step 5: Save Tile Plan Assignments** on page 52—save the tile IP plan assignments to the project for design compilation.

- **Step 6: Run Logic Generation and Design Synthesis** on page 53—run the Compiler Logic Generation stage to implement your tile plan and continue synthesis and the remaining design compilation stages.

2.2.2.1. Step 1: Instantiate IP and Run Design Analysis

Tile Interface Planner requires an Intel Quartus Prime project that includes component IP targeting the Intel Agilex FPGA with F-tile.

After instantiating the component IP in a top-level project design file (for example, `top.v`), you run the Design Analysis compilation stage to elaborate the design RTL to extract component IP and target device information. Upon launch, Tile Interface Planner initializes and displays this component IP information in the Design Tree view.

Follow these steps to instantiate IP and run Design Analysis:

1. Open or create an Intel Quartus Prime project that includes component IP targeting F-tile:
• Create a new project, add design files, and specify the target Intel Agilex FPGA by clicking **File ➤ New Project Wizard**.

Or

• Parameterize and instantiate component IP with IP Catalog (**View ➤ IP Catalog**) or Platform Designer (**Tools ➤ Platform Designer**).

2. To run the Design Analysis stage of the Compiler, double-click **Design Analysis** on the Compilation Dashboard (**Processing ➤ Compilation Dashboard**).

Figure 28. Design Analysis Stage in Compilation Dashboard

![Design Analysis Stage in Compilation Dashboard](image)

3. Initialize Tile Interface Planner, as **Step 2: Initialize Tile Interface Planner** on page 44 describes.

2.2.2.2. Step 2: Initialize Tile Interface Planner

When you launch Tile Interface Planner, the tool initializes the placement legality engine and loads component IP and target device data extracted by Design Analysis. Tile Interface Planner then displays the component IP information in the Design Tree view and enables the **Flow** control.

Figure 29. Tile Interface Planner Flow Control

![Tile Interface Planner Flow Control](image)

To initialize Tile Interface Planner:
1. Run the Design Analysis stage of the Compiler, as Step 1: Instantiate IP and Run Design Analysis on page 43 describes.

2. When Design Analysis is complete, launch Tile Interface Planner by clicking the Tile Interface Planner icon in the Compilation Dashboard, the main toolbar, or by clicking **Tools ➤ Tile Interface Planner**.

![Launching Tile Interface Planner](image)

Tile Interface Planner launches and initializes with the legality engine and the component IP and target device data that Design Analysis extracts.

3. Load existing project assignments, as Step 3: Update Plan with Project Assignments on page 45 describes.

2.2.2.3. Step 3: Update Plan with Project Assignments

You can determine which fixed assignments to load from the project settings `.qsf`, and optionally load the latest placement from Logic Generation. The enabled assignments become the starting point for the tile plan. Follow these steps to update the plan with existing assignments:

1. On the **Flow** control, click **View Assignments**.

![Plan Assignment Options](image)

2. On the **Assignments** tab, select the assignment types to load for the current planning session, as Assignments Tab Controls on page 54 describes.

3. On the **Assignments** tab, enable or disable assignments to resolve any conflicts or experiment with alternative placements. Filter the list of assignments by assignment name or status.
4. When assignment selections are complete, or if you have no existing assignments, click **Update Plan** on the **Flow** control to apply the enabled project assignments to your current tile interface plan.

5. Place IP components and building blocks on the **Plan** tab, as Step 4: Create a Tile Plan on page 46 describes.

2.2.2.4. Step 4: Create a Tile Plan

Click **Plan Design** on the **Flow** control to interactively place component IP in legal locations on device tiles. The **Plan** tab displays a hierarchical list of your project component IP design elements, alongside a graphical abstraction of the target device tile architecture. Place IP (and IP building blocks) in legal tile locations within the graphical tile floorplan.

Figure 32. Enable or Disable Existing Assignments for Current Planning Session

<table>
<thead>
<tr>
<th>Home</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Enable All Project Assignments]</td>
<td>![Disable All Project Assignments]</td>
</tr>
<tr>
<td>![Filter]</td>
<td>![Disabled]</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>m...0</td>
<td>IP_TILE_ASSIGNMENT</td>
</tr>
<tr>
<td>m...t</td>
<td>IP_BB_LOCATION</td>
</tr>
<tr>
<td>m...0</td>
<td>IP_TILE_ASSIGNMENT</td>
</tr>
<tr>
<td>m...t</td>
<td>IP_BB_LOCATION</td>
</tr>
</tbody>
</table>

Figure 33. Tile Interface Planner Design Elements and Chip View

Recommended Two-Stage Tile IP Placement

Handle IP tile placement in two stages for the most efficiency:

Table 17. Two-Stage Tile IP Placement

<table>
<thead>
<tr>
<th>Tile IP Placement</th>
<th>Description</th>
</tr>
</thead>
</table>
| Stage 1 | • Place all of the IPs targeting the same tile to ensure that all IP can be placed within the tile, as Placing IP Components on page 47 describes.
• Fill each tile with the desired IP, before refining any IP building block placement for any specific placement requirements you may have for a particular building block. |
| Stage 2 | • Review the placement of IP building blocks.
• Refine any building block placement to meet any specific placement requirements, as Constraining IP Building Blocks on page 49 describes. |

Note: Changes made in Tile Interface Planner do not apply to your Intel Quartus Prime project until you apply the generated tile interface plan constraints to your project, as Step 5: Save Tile Plan Assignments on page 52 describes.

2.2.2.4.1. Placing IP Components

To place IP components and create a tile plan, follow these steps:

1. Update the plan with existing assignments, as Step 3: Update Plan with Project Assignments on page 45 describes.

2. In Tile Interface Planner, click the Plan tab. Tile Interface Planner displays the Design Element hierarchy, alongside a graphical representation of the tile chip or package view.

3. In the Design Element list, locate the tile interface IP that you want to place. You can search and filter the list by name, IP, placement status, I/Os, and other criteria.

4. To customize design element color coding, double-click a color in the Highlight column to specify a new color.

5. Use any of the following methods to locate legal tile placements for component IP:
 • In the Design Element list, right-click the tile interface IP that you want to place, and then click Generate Legal Locations for Selected Element.
 Note: You can select multiple IP targeting the same tile to generate legal locations for all IP at once.
 • Click the button next to the Design Element to display a list of Legal Locations.
6. In **Legal Locations**, click any location in the list to highlight the location in the floorplan.

7. Double-click any location in **Legal Locations** to place the element in a legal location. Tile Interface Planner places the IP in the legal location on the device tile, as indicated by color highlighting in the Chip View. When listing legal locations for multiple IPs at once, you can also place multiple IPs at once.
2.2.2.4.2. Constraining IP Building Blocks

Intel FPGA IP cores are comprised of building blocks that combine to provide all functionality of the IP. The Design Tree view displays each IP building block hierarchy.

When you place component IP, Tile Interface Planner also places the corresponding IP building blocks in the tile. Each building block has a movable, fixed, or always movable state. You can review the building block placement and determine whether to refine any building block placement, or allow the legality engine to determine the best building block placement.

Figure 38. IP Core Comprised of IP Building Blocks in Design Tree View

The placement column indicates the movable, fixed, and always-movable state of the design element. In general, use movable building block placement to allow placement flexibility. Only apply fixed building blocks if a specific building block placement is essential.

Follow these steps to constrain or relax the placement of IP building blocks:

1. Place all IP on the tile, as Placing IP Components on page 47 describes.
2. To the left of the **Placement** column, click the List Legal Locations button to display all legal locations for a building block.
3. To constrain building blocks to specific placement:
 - To fix a movable building block, right-click one or more movable building blocks and click **Make Selected Element Fixed**. The building block is fixed and does not move to accommodate other components.
 - To fix an IP component's building blocks, right-click the IP component and click **Make Child Elements Fixed**. The IP and child building blocks are fixed and do not move to accommodate other components.

Figure 39. Make Selected Element Fixed

4. To remove specific building block placement constraints from fixed building blocks:
To make fixed building blocks movable, right-click one or more fixed building blocks and click **Make Selected Element Movable**. The building block can move to accommodate other components.

To make all of an IP component's fixed building blocks movable, right-click the IP component and click **Make Child Elements Movable**. All child building blocks can move automatically to accommodate other components.

Figure 40. Make Child Elements Movable

5. When all tile IP placement is complete, save the tile plan, as Step 5: Save Tile Plan Assignments on page 52 describes.

2.2.2.4.3. Multi-Rate IP Tile Planning

Tile Interface Planner provides support for tile planning with multi-rate IP components, such as the F-tile CPRI PHY Multi-Rate Intel FPGA IP.

Tile Interface Planner displays the tile location of multi-rate IP and building blocks in your project. Tile Interface Planner shows the initial, read-only multi-rate IP profile as **profile_0** in the **Design Element** hierarchy.

You cannot edit the multi-rate IP tile location in the current version of Tile Interface Planner. However, you can view the multi-rate IP tile location, and then place other IP components in relation to that location.

To perform tile planning with multi-rate IP, follow these steps:

1. Instantiate and elaborate a multi-rate IP component in your design, as Step 1: Instantiate IP and Run Design Analysis on page 43 describes.

 Note: Tile Interface Planner currently supports only the F-tile CPRI PHY Multi-Rate Intel FPGA IP for multi-rate tile planning.

2. Start Tile Interface Planner, as Step 2: Initialize Tile Interface Planner on page 44 describes.

3. Update the plan with existing assignments, as Step 3: Update Plan with Project Assignments on page 45 describes.

4. In Tile Interface Planner, click the **Plan** tab. Tile Interface Planner displays the initial, read-only multi-rate IP profile as **profile_0** in the **Design Element** hierarchy. The **Placement** column is grayed, indicating that the multi-rate IP placement is not editable in the current version of Tile Interface Planner.
5. Expand the multi-rate IP's "bb_" subfolders to view the multi-rate IP's building blocks for the initial dynamic reconfiguration profile.

6. Place other IP components in relation to that location, as Placing IP Components on page 47 describes.
2.2.2.5. Step 5: Save Tile Plan Assignments

Once you have placed all IP components, and fixed any movable building blocks that you want to constrain, you save the constraints in Tile Interface Planner. Tile Interface Planner saves the fixed tile constraints to the project .qsf. The Compiler reads the .qsf assignments during the Logic Generation stage.

To save the tile plan assignments, follow these steps:

1. Review and consider constraining any IP building blocks. To guarantee placement to exact locations, you must fix the IP building blocks connected to the IP pins to preserve those constraints in the .qsf, as Constraining IP Building Blocks on page 49 describes.

2. In Tile Interface Planner, click Save Assignments on the Flow control, and then click OK.

3. Close Tile Interface Planner and return to the Intel Quartus Prime GUI. The tile IP assignments are visible in the Assignment Editor (Assignments ➤ Assignment Editor) and in the .qsf file.
4. Run the Logic Generation stage, as Step 6: Run Logic Generation and Design Synthesis on page 53 describes.

2.2.2.6. Step 6: Run Logic Generation and Design Synthesis

After saving your tile plan assignments, run the Compiler’s Logic Generation stage to implement your tile plan and continue synthesis and the remaining design compilation stages.

To run Logic Generation and design synthesis, follow these steps:

1. Save your tile interface plan, as Step 5: Save Tile Plan Assignments on page 52 describes.
2. In the Intel Quartus Prime software, double-click the Logic Generation stage in the Compilation Dashboard. Logic Generation reads the tile plan assignments from the .qsf.

3. When Logic Generation is complete, double-click Analysis & Synthesis on the Compilation Dashboard.

4. When Analysis & Synthesis is complete, you can run the other remaining downstream stages in the compilation flow when ready.

2.2.3. Tile Interface Planner GUI Reference

The Tile Interface Planner user interface includes the following controls for floorplanning your design.
2.2.3.1. Flow Controls

The Flow control panel provides immediate access to common Tile Interface Planner commands from anywhere within Tile Interface Planner.

Table 18. Flow Controls

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize Tile Interface Planner</td>
<td>Launches the placement legality engine and loads the component IP and target device data that Design Analysis extracts.</td>
</tr>
<tr>
<td>View Assignments</td>
<td>Opens the Assignments tab, which allows you to review and enable or disable any existing placement assignments for the current planning session.</td>
</tr>
<tr>
<td>Update Plan</td>
<td>Optionally applies a previous tile planning session fixed placement assignments from the .qsf, and movable placements from a .json to the current tile interface plan.</td>
</tr>
<tr>
<td>Plan Design</td>
<td>Opens the Plan tab for placing component IP in the tile interface plan.</td>
</tr>
<tr>
<td>Save Assignments</td>
<td>Opens the Save Assignments dialog box for saving the fixed tile constraints to the project .qsf and the movable building block constraints to a .json file.</td>
</tr>
</tbody>
</table>

The Flow controls appear in order of a typical tile interface planning flow.

Figure 47. Tile Interface Planner Flow Control

2.2.3.2. Home Tab

The Tile Interface Planner Home tab is the default tab that displays the Flow control and an introductory interface planning infographic. There are no controls specific to the Tile Interface Planner Home tab.

2.2.3.3. Assignments Tab Controls

The Assignments tab allows you to review and enable or disable any existing placement assignments for the current tile interface planning session. Click View Assignments on the Flow control to display the Assignments tab.

You can enable or disable any placement assignments that Design Analysis finds. After you are satisfied with the status of all project assignments, click Update Plan on the Flow control to update your tile interface plan with the enabled project assignments.
Table 19. Assignments Tab Controls

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter field</td>
<td>Supports creation of wildcard expressions for assignment targets. Enabled and Disabled buttons filter only enabled or disabled assignments in the list.</td>
</tr>
<tr>
<td>Enable All Project Assignments</td>
<td>Enables all existing assignments for the current tile interface planning session. These assignments then become the starting point for your tile plan.</td>
</tr>
<tr>
<td>Disable All Project Assignments</td>
<td>Disables all existing assignments for the current tile interface planning session.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears any filter from the Assignments list.</td>
</tr>
<tr>
<td>Plan Assignment Options</td>
<td>The following options are mutually exclusive:</td>
</tr>
<tr>
<td></td>
<td>• Load enabled fixed assignments—loads fixed assignments from .qsf. These assignments then become the starting point for your tile plan.</td>
</tr>
<tr>
<td></td>
<td>• Load enabled fixed assignments and the most recent placement from Logic Generation—loads fixed assignments from .qsf and the most recent placement data from the last Logic Generation stage of the Compiler.</td>
</tr>
</tbody>
</table>

2.2.3.4. Plan Tab Controls

The Plan tab contains the Design Tree and tile visualization panes. The Design Tree lists design elements for placement. The tile visualization pane displays a graphical view of the target device tile to help you visualize the appropriate legal locations for placement of component IP.

Click Plan Design on the Flow control to display the Plan tab.

Table 20. Plan Tab Controls

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>></td>
<td>Lists legal locations for placement in the Legal Locations pane.</td>
</tr>
<tr>
<td>Unplace All</td>
<td>Unplaces all placed design elements in the interface plan.</td>
</tr>
<tr>
<td>Chip View</td>
<td>Displays the target device at the chip level of detail, showing a representation of the divisions of device resources spread across the device. Zoom in to display chip details.</td>
</tr>
<tr>
<td>Package View</td>
<td>Displays the target device package at the package level of detail, showing the I/O pin details of the device package. Zoom in to display package details.</td>
</tr>
<tr>
<td>Birdseye View</td>
<td>Displays the target device chip or package view at maximum Zoom Out.</td>
</tr>
<tr>
<td>Reset Plan</td>
<td>Unplaces all placed design elements and removes applied project assignments from the tile interface plan.</td>
</tr>
<tr>
<td>Zoom In and Zoom Out</td>
<td>Increases or decreases the magnification of the tile view to show more or less detail.</td>
</tr>
<tr>
<td>Fit in Window</td>
<td>Increases or decreases the magnification of the tile view to fit in the current window.</td>
</tr>
</tbody>
</table>

2.2.3.4.1. Design Tree and Filters

The Design Tree View displays a hierarchy of the IP components and building block design elements found during the Design Analysis compilation stage. You can locate the IP and building blocks in the design tree, and then assign the elements to legal locations in the tile floorplan on the Plan tab.
The Design Tree view includes these columns:

- **Design Element**—lists all component IP and building blocks that Design Analysis identifies. IP cores and building blocks are distinguished by different icons. Fixed IP building blocks are shown in plain text. Movable IP building blocks are shown in italic text. Always movable building blocks are shown in gray italic text.
- **Highlight**—indicates the color for display of design elements in the tile visualization pane.
- **Placement**—indicates the placement status (placed, unplaced) or placement tile location for design elements.

You can type a partial or complete name in the design element filter field to refine the list of elements displayed.

- Click the **Full** icon to show all design elements in the tree.
- Click the **IP** icon to show only IP level hierarchy in the tree.
- Click the **Unplaced** icon to show only unplaced design elements in the tree.
- Click the **I/Os** icon to show only I/O design elements in the tree.

2.2.3.4.2. Legal Locations Pane

The Legal Locations pane lists the legal locations for tile placement that the legality engine determines. You can enter a text string in the **Filter** field to limit the list.

- Click any legal location in the list to highlight that location in the tile visualization pane.
- Double-click any legal location in the list to assign placement to that tile location.

2.2.3.5. Tcl Console Window

The Tcl Console Window echoes the commands that you run in the Tile Interface Planner GUI. The Tile Interface Planner GUI operates on top of the Tile Interface Planner API. You can alternatively execute Tile Interface Planner commands in the Tcl console.

Related Information

Video Demo: Using the Tile Interface Planner

2.3. Interface Planning Revision History

This document has the following revision history:

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Intel Quartus Prime Version</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2021.10.04 | 21.3 | • Updated *Tile Interface Planner Terminology* JSON file and IP building block definitions.
 • Updated GUI options in Step 3: *Update Plan Assignments* and Assignments Tab Controls topics.
 • Added "Multi-Rate IP Tile Planning" topic.
 • Updated "Step 5: Save Tile Plan Assignments" for latest GUI.
 • Added new video demo link to Interface Planning topic. |

continued...
<table>
<thead>
<tr>
<th>Document Version</th>
<th>Intel Quartus Prime Version</th>
<th>Changes</th>
</tr>
</thead>
</table>
| | | • Added new controls to Flow Controls topic.
| | | • Revised Plan Tab Controls topic for new toolbar controls.
| | | • Added application note link to Step 3: Update Plan with Project Assignments
| 2021.06.21 | 21.2 | • Integrated new Tile Interface Planning section.
| 2019.04.01 | 19.1.0 | • Updated “Plan Tab Controls” to describe new color coding controls for I/O banks, differential pin pairs, DQ/DQS pins, and PCIe hard IP pins.
| | | • Update screenshots and procedure steps for latest user interface.
| 2018.05.07 | 18.0.0 | • Initial release in Design Constraints User Guide: Intel Quartus Prime Pro Edition.
| | | • Updated Step 2: Initialize Interface Planner to remove the requirement to close Intel Quartus Prime.
| | | • Updated Step 4: Plan Periphery Placement to describe when the Locate Node command is disabled.
| 2017.11.06 | 17.1.0 | • Removed support for the Clocking feature for Intel Stratix 10. Intel Stratix 10 clocks must use Autoplace Selected.
| | | • Renamed BluePrint to Interface Planner.
| | | • Renamed chapter from BluePrint Design Planning to Interface Planning.
| 2016.10.31 | 16.1.0 | • Implemented Intel rebranding.
| 2016.05.03 | 16.0.0 | • Added Plan Clock Networks topic.
| | | • Added Saving and Loading Floorplans topic.
| | | • Added Undo/Redo command descriptions.
| | | • Added Flow control description.
| | | • Added note about panning feature.
| | | • Updated all screenshots for latest GUI.
| 2015.11.02 | 15.1.0 | • Changed instances of Quartus II to Quartus Prime.
| | | • Integration of content into Quartus Prime Handbook.
| | | • Added descriptions of new dynamic reports.
| | | • Added Package View description.
| | | • Added GUI controls reference.
| 2015.05.04 | 15.0.0 | Second beta release of document on Molson. Added information about the following subjects:
| | | • Overview information
| | | • Reset Plan command
| | | • Legal Assignments list and prompt
| | | • Tcl console
| | | |
3. Managing Device I/O Pins

This chapter describes efficient planning and assignment of I/O pins in your target device. Consider I/O standards, pin placement rules, and your PCB characteristics early in the design phase.

Figure 48. Pin Planner GUI

Table 21. Intel Quartus Prime I/O Pin Planning Tools

<table>
<thead>
<tr>
<th>I/O Planning Task</th>
<th>Click to Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan interfaces and device periphery</td>
<td>Tools ➤ Interface Planner</td>
</tr>
<tr>
<td>Edit, validate, or export pin assignments</td>
<td>Assignments ➤ Pin Planner</td>
</tr>
</tbody>
</table>

Related Information

- Using Interface Planner on page 19
- Instantiating the HPS Component
3.1. I/O Planning Overview

On FPGA design, I/O planning includes creating pin-related assignments and validating them against pin placement guidelines. This process ensures a successful fit in your target device. When you plan and assign I/O pins in the initial stages of your project, you design for compatibility with your target device and PCB characteristics. As a result, your design process goes through fewer iterations, and you develop an accurate PCB layout sooner.

You can plan your I/O pins even before defining design files. Assign expected nodes not yet defined in design files, including interface IP core signals, and then generate a top-level file. The top-level file instantiates the next level of design hierarchy and includes interface port information like memory, high-speed I/O, device configuration, and debugging tools.

Assign design elements, I/O standards, interface IP, and other properties to the device I/O pins by name or by dragging to cells. You can then generate a top-level design file for I/O validation.

Use I/O assignment validation to fully analyze I/O pins against VCCIO, VREF, electromigration (current density), Simultaneous Switching Output (SSO), drive strength, I/O standard, PCI_IO clamp diode, and I/O pin direction compatibility rules.

Intel Quartus Prime software provides the Pin Planner tool to view, assign, and validate device I/O pin logic and properties. Alternatively, you can enter I/O assignments in a Tcl script, or directly in HDL code.

3.1.1. Basic I/O Planning Flow

The following steps describe the basic flow for assigning and verifying I/O pin assignments:

1. Click Assignments ➤ Device and select a target device that meets your logic, performance, and I/O requirements. Consider and specify I/O standards, voltage and power supply requirements, and available I/O pins.

2. Click Assignments ➤ Pin Planner.

3. Assign I/O properties to match your device and PCB characteristics, including assigning logic, I/O standards, output loading, slew rate, and current strength.

4. Click Run I/O Assignment Analysis in the Tasks pane to validate assignments and generate a synthesized design netlist. Correct any problems reported.

5. Click Processing ➤ Start Compilation. During compilation, the Intel Quartus Prime software runs I/O assignment analysis.

3.1.2. Integrating PCB Design Tools

You can integrate PCB design tools into your work flow to map pin assignments to symbols in your system circuit schematics and board layout.

The Intel Quartus Prime software integrates with board layout tools by allowing import and export of pin assignment information in Intel Quartus Prime Settings Files (.qsf) or Pin-Out Files (.pin).
Table 22. Integrating PCB Design Tools

<table>
<thead>
<tr>
<th>PCB Tool Integration</th>
<th>Supported PCB Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define and validate I/O assignments in the Pin Planner, and then export the assignments to the PCB tool for validation</td>
<td>Cadence Allegro</td>
</tr>
<tr>
<td>Define I/O assignments in your PCB tool, and then import the assignments into the Pin Planner for validation</td>
<td>Cadence Allegro</td>
</tr>
</tbody>
</table>

Figure 49. PCB Tool Integration

Related Information

Cadence PCB Design Tools Support

3.1.3. Intel Device Terms

The following terms describe Intel device and I/O structures:

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Package</td>
<td>Ceramic or plastic heat sink surface mounted with FPGA die and I/O pins or solder balls. In a wire bond BGA example, copper wires connect the bond pads to the solder balls of the package. Click View > Show > Package Top or View > Show > Package Bottom in Pin Planner.</td>
<td></td>
</tr>
<tr>
<td>I/O Bank</td>
<td>I/O pins are grouped in I/O banks for assignment of I/O standards. Each numbered bank has its own voltage source pins, called VCCIO pins, for high I/O performance. The specified VCCIO pin voltage is between 1.5 V and 3.3 V. Each bank supports multiple pins with different I/O standards. All pins in a bank must use the same VCCIO signal. Click View > Show > I/O Banks in Pin Planner.</td>
<td></td>
</tr>
<tr>
<td>I/O Pin</td>
<td>A wire lead or small solder ball on the package bottom or periphery. Each pin has an alphanumeric row and column number. I, O, Q, S, X, and Z are never used. The alphabet is repeated and prefixed with the letter A when exceeded. All I/O pins display by default.</td>
<td></td>
</tr>
<tr>
<td>Pad</td>
<td>I/O pins are connected to pads located on the perimeter of the top initial layer of the silicon die. Each pad is numbered with an ID starting at 0, and increments by one in a counterclockwise direction around the device. Click View > Pad View in Pin Planner.</td>
<td></td>
</tr>
<tr>
<td>VREF Pin Group</td>
<td>A group of pins including one dedicated VREF pin required by voltage-referenced I/O standards. A VREF group contains a smaller number of pins than an I/O bank. This maintains the signal integrity of the VREF pin. One or more VREF groups exist in an I/O bank. The pins in a VREF group share the same VCCIO and VREF voltages. Click View > Show > Show VREF Groups in Pin Planner.</td>
<td></td>
</tr>
</tbody>
</table>

3.2. Assigning I/O Pins

Use the Pin Planner to visualize, modify, and validate I/O assignments in a graphical representation of the target device. You can increase the accuracy of I/O assignment analysis by reserving specific device pins to accommodate undefined but expected I/O.
To assign I/O pins in the Pin Planner, follow these steps:

1. Open an Intel Quartus Prime project, and then click Assignments ➤ Pin Planner.
2. Click Processing ➤ Start Analysis & Elaboration to elaborate the design and display All Pins in the device view.
3. To locate or highlight pins for assignment, click Pin Finder or a pin type under Highlight Pins in the Tasks pane.
4. (Optional) To define a custom group of nodes for assignment, select one or more nodes in the Groups or All Pins list, and click Create Group.
5. Enter assignments of logic, I/O standards, interface IP, and properties for device I/O pins in the All Pins spreadsheet, or by dragging into the package view.
6. To assign properties to differential pin pairs, click Show Differential Pin Pair Connections. A red connection line appears between positive (p) and negative (n) differential pins.
7. (Optional) To create board trace model assignments:
 a. Right-click an output or bidirectional pin, and click Board Trace Model. For differential I/O standards, the board trace model uses a differential pin pair with two symmetrical board trace models.
 b. Specify board trace parameters on the positive end of the differential pin pair. The assignment applies to the corresponding value on the negative end of the differential pin pair.
8. To run a full I/O assignment analysis, click Run I/O Assignment Analysis. The Fitter reports analysis results. Only reserved pins are analyzed prior to design synthesis.

3.2.1. Assigning to Exclusive Pin Groups

You can designate groups of pins for exclusive assignment. When you assign pins to an Exclusive I/O Group, the Fitter does not place the signals in the same I/O bank with any other exclusive I/O group. For example, if you have a set of signals assigned exclusively to group_a, and another set of signals assigned to group_b, the Fitter ensures placement of each group in different I/O banks.

3.2.2. Assigning Slew Rate and Drive Strength

You can designate the device pin slew rate and drive strength. These properties affect the pin’s outgoing signal integrity. Use either the Slew Rate or Slow Slew Rate assignment to adjust the drive strength of a pin with the Current Strength assignment.

Note: The slew rate and drive strength apply during I/O assignment analysis.

3.2.3. Assigning Differential Pins

When you assign a differential I/O standard to a single-ended top-level pin in your design, the Pin Planner automatically recognizes the negative pin as part of the differential pin pair assignment and creates the negative pin for you. The Intel Quartus Prime software writes the location assignment for the negative pin to the .qsf; however, the I/O standard assignment is not added to the .qsf for the negative pin of the differential pair.
The following example shows a design with `lvds_in` top-level pin, to which you assign a differential I/O standard. The Pin Planner automatically creates the differential pin, `lvds_in(n)` to complete the differential pin pair.

Note: If you have a single-ended clock that feeds a PLL, assign the pin only to the positive clock pin of a differential pair in the target device. Single-ended pins that feed a PLL and are assigned to the negative clock pin device cause the design to not fit.

Figure 50. Creating a Differential Pin Pair in the Pin Planner

If your design contains a large bus that exceeds the pins available in a particular I/O bank, you can use edge location assignments to place the bus. Edge location assignments improve the circuit board routing ability of large buses, because they are close together near an edge. The following figure shows Intel device package edges.

Figure 51. Die View and Package View of the Four Edges on an Intel Device

When you assign differential pin pairs in **Package View**, a red connection line displays between the pair of differential pins. The Package View labels the positive and negative pins with the letters p and n, respectively.
3.2.3.1. Overriding I/O Placement Rules on Differential Pins

I/O placement rules ensure that noisy signals do not corrupt neighboring signals. Each device family has predefined I/O placement rules.

I/O placement rules define, for example, the allowed placement of single-ended I/O with respect to differential pins, or how many output and bidirectional pins you can place within a VREF group when using voltage referenced input standards.

Use the `IO_MAXIMUM_TOGGLE_RATE` assignment to override I/O placement rules on pins, such as system reset pins that do not switch during normal design activity. Setting a value of 0 MHz for this assignment causes the Fitter to recognize the pin at a DC state throughout device operation. The Fitter excludes the assigned pin from placement rule analysis. Do not assign an `IO_MAXIMUM.Toggle_RATE` of 0 MHz to any actively switching pin, or your design may not function as you intend.
3.2.4. Entering Pin Assignments with Tcl Commands

You can apply pin assignments with Tcl scripts, by either entering individual Tcl commands in the Tcl Console, or creating a `.tcl` script and then typing the following in the command line:

Example 6. Applying Tcl Script Assignments

```
quartus_sh -t <my_tcl_script>.tcl
```

Example 7. Scripted Pin Assignment

The following example uses `set_location_assignment` and `set_instance_assignment` Tcl commands to assign a pin to a specific location, I/O standard, and drive strength.

```
set_location_assignment PIN M20 -to address[10]
set_instance_assignment -name IO_STANDARD "2.5 V" -to address[10]
set_instance_assignment -name CURRENT_STRENGTH_NEW "MAXIMUM CURRENT" -to address[10]
```

Related Information

Tcl Scripting

In *Intel Quartus Prime Pro Edition User Guide: Scripting*

3.2.5. Entering Pin Assignments in HDL Code

You can use synthesis attributes or low-level I/O primitives to embed I/O pin assignments directly in your HDL code. When you analyze and synthesize the HDL code, the information is converted into the appropriate I/O pin assignments. You can use either of the following methods to specify pin-related assignments with HDL code:

- Assigning synthesis attributes for signal names that are top-level pins
- Using low-level I/O primitives, such as ALT_BUF_IN, to specify input, output, and differential buffers, and for setting parameters or attributes

3.2.5.1. Using Low-Level I/O Primitives

You can alternatively enter I/O pin assignments using low-level I/O primitives. You can assign pin locations, I/O standards, drive strengths, slew rates, and on-chip termination (OCT) value assignments. You can also use low-level differential I/O primitives to define both positive and negative pins of a differential pair in the HDL code for your design.

Primitive-based assignments do not appear in the Pin Planner until after you perform a full compilation and back-annotate pin assignments (*Assignments > Back Annotate Assignments*).

Related Information

Designing with Low Level Primitives User Guide
3.3. Importing and Exporting I/O Pin Assignments

The Intel Quartus Prime software supports transfer of I/O pin assignments across projects, or for analysis in third-party PCB tools. You can import or export I/O pin assignments in the following ways:

<table>
<thead>
<tr>
<th>Table 23. Importing and Exporting I/O Pin Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario</td>
</tr>
<tr>
<td>• From your PCB design tool or spreadsheet into Pin Planner during early pin planning or after optimization in PCB tool</td>
</tr>
<tr>
<td>• From another Intel Quartus Prime project with common constraints</td>
</tr>
<tr>
<td>Command</td>
</tr>
<tr>
<td>Assignments ➤ Import Assignments</td>
</tr>
<tr>
<td>Export Assignments ➤ Export Assignments</td>
</tr>
<tr>
<td>File formats</td>
</tr>
<tr>
<td>.qsf, .esf, .acf, .csv, .txt, .sdc</td>
</tr>
<tr>
<td>.pin, .csv, .tcl, .qsf</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

Exported .csv files retain column and row order and format. Do not modify the row of column headings if importing the .csv file.

3.3.1. Importing and Exporting for PCB Tools

The Pin Planner supports import and export of assignments with PCB tools. You can export valid assignments as a .pin file for analysis in other supported PCB tools. You can also import optimized assignment from supported PCB tools. The .pin file contains pin name, number, and detailed properties.

<table>
<thead>
<tr>
<th>Table 24. Contents of .pin File</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Column Name</td>
</tr>
<tr>
<td>Pin Name/Usage</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Dir</td>
</tr>
<tr>
<td>I/O Standard</td>
</tr>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>I/O Bank</td>
</tr>
<tr>
<td>User Assignment</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>The name of the design pin, or whether the pin is GND or VCC pin</td>
</tr>
<tr>
<td>The pin number of the location on the device package</td>
</tr>
<tr>
<td>The direction of the pin</td>
</tr>
<tr>
<td>The name of the I/O standard to which the pin is configured</td>
</tr>
<tr>
<td>The voltage level that is required to be connected to the pin</td>
</tr>
<tr>
<td>The I/O bank to which the pin belongs</td>
</tr>
<tr>
<td>Y or N indicating if the location assignment for the design pin was user assigned (Y) or assigned by the Fitter (N)</td>
</tr>
</tbody>
</table>

Related Information

PCB Design Tools Support

3.3.2. Migrating Assignments to Another Target Device

Click *View ➤ Pin Migration Window* to verify whether pin assignments are compatible with migration to a different Intel device.
You can migrate compatible pin assignments from one target device to another. You can migrate to a different density and the same device package. You can also migrate between device packages with different densities and pin counts.

The Intel Quartus Prime software ignores invalid assignments and generates an error message during compilation. After evaluating migration compatibility, modify any incompatible assignments, and then click **Export** to export the assignments to another project.

Figure 53. Device Migration Compatibility (AC24 does not exist in migration device)

The migration result for the pin function of highlighted PIN_AC23 is not an NC but a voltage reference VREFB1N2 even though the pin is an NC in the migration device. VREF standards have a higher priority than an NC, thus the migration result displays the voltage reference. Even if you do not use that pin for a port connection in the design, you must use the VREF standard for I/O standards that require it on the actual board for the migration device.

If one of the migration devices has pins intended for connection to VCC or GND and these same pins are I/O pins on a different device in the migration path, the Intel Quartus Prime software ensures these pins are not used for I/O. Ensure that these pins are connected to the correct PCB plane.

When migrating between two devices in the same package, pins that are not connected to the smaller die may be intended to connect to VCC or GND on the larger die. To facilitate migration, you can connect these pins to VCC or GND in the original design because the pins are not physically connected to the smaller die.

Related Information

AN90: SameFrame PinOut Design for FineLine BGA Packages
3.4. Validating Pin Assignments

The Intel Quartus Prime software validates I/O pin assignments against predefined I/O rules for your target device. You can use the following tools to validate your I/O pin assignments throughout the pin planning process:

Table 25. I/O Validation Tools

<table>
<thead>
<tr>
<th>I/O Validation Tool</th>
<th>Description</th>
<th>Click to Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced I/O Timing</td>
<td>Fully validates I/O assignments against all I/O and timing checks during compilation</td>
<td>Processing ➤ Start Compilation</td>
</tr>
</tbody>
</table>

3.4.1. I/O Assignment Validation Rules

I/O Assignment Analysis validates your assignments against the following rules:

Table 26. Examples of I/O Rule Checks

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
<th>HDL Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O bank capacity</td>
<td>Checks the number of pins assigned to an I/O bank against the number of pins allowed in the I/O bank.</td>
<td>No</td>
</tr>
<tr>
<td>I/O bank VCCIO voltage compatibility</td>
<td>Checks that no more than one VCCIO is required for the pins assigned to the I/O bank.</td>
<td>No</td>
</tr>
<tr>
<td>I/O bank VREF voltage compatibility</td>
<td>Checks that no more than one VREF is required for the pins assigned to the I/O bank.</td>
<td>No</td>
</tr>
<tr>
<td>I/O standard and location conflicts</td>
<td>Checks whether the pin location supports the assigned I/O standard.</td>
<td>No</td>
</tr>
<tr>
<td>I/O standard and signal direction conflicts</td>
<td>Checks whether the pin location supports the assigned I/O standard and direction. For example, certain I/O standards on a particular pin location can only support output pins.</td>
<td>No</td>
</tr>
<tr>
<td>Differential I/O standards cannot have open drain turned on</td>
<td>Checks that open drain is turned off for all pins with a differential I/O standard.</td>
<td>No</td>
</tr>
<tr>
<td>I/O standard and drive strength conflicts</td>
<td>Checks whether the drive strength assignments are within the specifications of the I/O standard.</td>
<td>No</td>
</tr>
<tr>
<td>Drive strength and location conflicts</td>
<td>Checks whether the pin location supports the assigned drive strength.</td>
<td>No</td>
</tr>
<tr>
<td>BUSHOLD and location conflicts</td>
<td>Checks whether the pin location supports BUSHOLD. For example, dedicated clock pins do not support BUSHOLD.</td>
<td>No</td>
</tr>
<tr>
<td>WEAK_PULLUP and location conflicts</td>
<td>Checks whether the pin location supports WEAK_PULLUP (for example, dedicated clock pins do not support WEAK_PULLUP).</td>
<td>No</td>
</tr>
<tr>
<td>Electromigration check</td>
<td>Checks whether combined drive strength of consecutive pads exceeds a certain limit. For example, the total current drive for 10 consecutive pads on a Stratix II device cannot exceed 200 mA.</td>
<td>No</td>
</tr>
<tr>
<td>PCI IOS clamp diode, location, and I/O standard conflicts</td>
<td>Checks whether the pin location along with the I/O standard assigned supports PCI IOS clamp diode.</td>
<td>No</td>
</tr>
<tr>
<td>SERDES and I/O pin location compatibility check</td>
<td>Checks that all pins connected to a SERDES in your design are assigned to dedicated SERDES pin locations.</td>
<td>Yes</td>
</tr>
<tr>
<td>PLL and I/O pin location compatibility check</td>
<td>Checks whether pins connected to a PLL are assigned to the dedicated PLL pin locations.</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 27. Signal Switching Noise Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
<th>HDL Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O bank cannot have single-ended I/O when DPA exists</td>
<td>Checks that no single-ended I/O pin exists in the same I/O bank as a DPA.</td>
<td>No</td>
</tr>
<tr>
<td>A PLL I/O bank does not support both a single-ended I/O and a differential signal simultaneously</td>
<td>Checks that there are no single-ended I/O pins present in the PLL I/O Bank when a differential signal exists.</td>
<td>No</td>
</tr>
<tr>
<td>Single-ended output is required to be a certain distance away from a differential I/O pin</td>
<td>Checks whether single-ended output pins are a certain distance away from a differential I/O pin.</td>
<td>No</td>
</tr>
<tr>
<td>Single-ended output must be a certain distance away from a VREF pad</td>
<td>Checks whether single-ended output pins are a certain distance away from a VREF pad.</td>
<td>No</td>
</tr>
<tr>
<td>Single-ended input is required to be a certain distance away from a differential I/O pin</td>
<td>Checks whether single-ended input pins are a certain distance away from a differential I/O pin.</td>
<td>No</td>
</tr>
<tr>
<td>Too many outputs or bidirectional pins in a VREFGROUP when a VREF is used</td>
<td>Checks that there are no more than a certain number of outputs or bidirectional pins in a VREFGROUP when a VREF is used.</td>
<td>No</td>
</tr>
<tr>
<td>Too many outputs in a VREFGROUP</td>
<td>Checks whether too many outputs are in a VREFGROUP.</td>
<td>No</td>
</tr>
</tbody>
</table>

3.4.2. I/O Assignment Analysis

I/O assignment analysis validates I/O assignments against the complete set of I/O system and board layout rules. Full I/O assignment analysis validates blocks that directly feed or are fed by resources such as a PLL, LVDS, or gigabit transceiver blocks. In addition, the checker validates the legality of proper VREF pin use, pin locations, and acceptable mixed I/O standards.

Run I/O assignment analysis during early pin planning to validate initial reserved pin assignments before compilation. Once you define design files, run I/O assignment analysis to perform more thorough legality checks with respect to the synthesized netlist. Run I/O assignment analysis whenever you modify I/O assignments.

The Fitter assigns pins to accommodate your constraints. For example, if you assign an edge location to a group of LVDS pins, the Fitter assigns pin locations for each LVDS pin in the specified edge location and then performs legality checks. To display the Fitter-placed pins, click Show Fitter Placements in the Pin Planner. To accept these suggested pin locations, you must back-annotate your pin assignments.

View the I/O Assignment Warnings report to view and resolve all assignment warnings. For example, a warning that some design pins have undefined drive strength or slew rate. The Fitter recognizes undefined, single-ended output and bidirectional pins as non-calibrated OCT. To resolve the warning, assign the Current Strength, Slew Rate or Slow Slew Rate for the reported pin. Alternatively, can assign the Termination to the pin. You cannot assign drive strength or slew rate settings when a pin has an OCT assignment.
3.4.2.1. Early I/O Assignment Analysis Without Design Files

You can perform basic I/O legality checks before defining HDL design files. This technique produces a preliminary board layout. For example, you can specify a target device and enter pin assignments that correspond to PCB characteristics. You can reserve and assign I/O standards to each pin, and then run I/O assignment analysis to ensure that there are no I/O standard conflicts in each I/O bank.

Figure 54. Assigning and Analyzing Pin-Outs without Design Files

You must reserve all pins you intend to use as I/O pins, so that the Fitter can determine each pin type. After performing I/O assignment analysis, correct any errors reported by the Fitter and rerun I/O assignment analysis until all errors are corrected. A complete I/O assignment analysis requires all design files.

3.4.2.2. I/O Assignment Analysis With Design Files

I/O assignment analysis allows you to perform full I/O legality checks after fully defining HDL design files. When you run I/O assignment analysis on a complete design, the tool verifies all I/O pin assignments against all I/O rules. When you run I/O assignment analysis on a partial design, the tool checks legality only for defined portions of the design. The following figure shows the work flow for analyzing pin-outs with design files.
Figure 55. I/O Assignment Analysis Flow

Even if I/O assignment analysis passes on incomplete design files, you may still encounter errors during full compilation. For example, you can assign a clock to a user I/O pin instead of assigning to a dedicated clock pin, or design the clock to drive a PLL that you have not yet instantiated in the design. This issues occur because I/O assignment analysis does not account for the logic that the pin drives and does not verify that only dedicated clock inputs can drive the a PLL clock port.

To obtain better coverage, analyze as much of the design as possible over time, especially logic that connects to pins. For example, if your design includes PLLs or LVDS blocks, define these files prior to full analysis. After performing I/O assignment analysis, correct any errors reported by the Fitter and rerun I/O assignment analysis until all errors are corrected.

The following figure shows the compilation time benefit of performing I/O assignment analysis before running a full compilation.
3.4.2.3. Overriding Default I/O Pin Analysis

You can override the default I/O analysis of pins to accommodate I/O rule exceptions, such as for analyzing VREF or inactive pins.

Each device contains VREF pins, each supporting one or more I/O pins. A VREF pin and its I/O pins comprise a VREF bank. The VREF pins are typically assigned inputs with VREF I/O standards, such as HSTL- and SSTL-type I/O standards. Conversely, VREF outputs do not require the VREF pin. When a voltage-referenced input is present in a VREF bank, only a certain number of outputs can be present in that VREF bank. I/O assignment analysis treats bidirectional signals controlled by different output enables as independent output enables.

To assign the **Output Enable Group** option to bidirectional signals to analyze the signals as a single output enable group, follow these steps:

1. To access this assignment in the Pin Planner, right-click the **All pins** list and click **Customize Columns**.
2. Under **Available columns**, add **Output Enable Group** to **Show these columns in this order**. The column appears in the **All Pins** list.
3. Enter the same integer value for the **Output Enable Group** assignment for all sets of signals that are driving in the same direction.

Related Information

Using the Timing Analyzer

3.4.3. Understanding I/O Analysis Reports

The detailed I/O assignment analysis reports include the affected pin name and a problem description. The Fitter section of the Compilation report contains information generated during I/O assignment analysis, including the following reports:

- I/O Assignment Warnings—lists warnings generated for each pin
- Resource Section—quantifies use of various pin types and I/O banks
- I/O Rules Section—lists summary, details, and matrix information about the I/O rules tested

The **Status** column indicates whether rules passed, failed, or were not checked. A severity rating indicates the rule’s importance for effective analysis. “Inapplicable” rules do not apply to the target device family.

Figure 57. I/O Rules Matrix

3.5. Verifying I/O Timing

You must verify board-level signal integrity and I/O timing when assigning I/O pins. High-speed interface operation requires a quality signal and low propagation delay at the far end of the board route. Click **Tools ➤ Timing Analyzer** to confirm timing after making I/O pin assignments.

For example, if you change the slew rates or drive strengths of some I/O pins with ECOs, you can verify timing without recompiling the design. You must understand I/O timing and what factors affect I/O timing paths in your design. The accuracy of the output load specification of the output and bidirectional pins affects the I/O timing results.
The Intel Quartus Prime software supports three different methods of I/O timing analysis:

<table>
<thead>
<tr>
<th>I/O Timing Analysis</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced I/O timing analysis</td>
<td>Analyze I/O timing with your board trace model to report accurate, "board-aware" simulation models. Configures a complete board trace model for each I/O standard or pin. Timing Analyzer applies simulation results of the I/O buffer, package, and board trace model to generate accurate I/O delays and system level signal information. Use this information to improve timing and signal integrity.</td>
</tr>
<tr>
<td>I/O timing analysis</td>
<td>Analyze I/O timing with default or specified capacitive load without signal integrity analysis. Timing Analyzer reports tCO to an I/O pin using a default or user-specified value for a capacitive load.</td>
</tr>
<tr>
<td>Full board routing simulation</td>
<td>Use Intel-provided or Intel Quartus Prime software-generated IBIS or HSPICE I/O models for simulation in Mentor Graphics* HyperLynx* and Synopsys HSPICE.</td>
</tr>
</tbody>
</table>

For more information about advanced I/O timing support, refer to the appropriate device handbook for your target device. For more information about board-level signal integrity and tips on how to improve signal integrity in your high-speed designs, refer to the Signal Integrity and Power Integrity – Support Center website.

For information about creating IBIS and HSPICE models with the Intel Quartus Prime software and integrating those models into HyperLynx and HSPICE simulations, refer to the Signal Integrity Analysis with Third Party Tools chapter.

Related Information

Signal Integrity and Power Integrity – Support Center

3.5.1. Running Advanced I/O Timing

Advanced I/O timing analysis uses your board trace model and termination network specification to report accurate output buffer-to-pin timing estimates, FPGA pin and board trace signal integrity and delay values. Advanced I/O timing runs automatically for supported devices during compilation.

3.5.1.1. Board Trace Models

The Intel Quartus Prime software provides board trace model templates for various I/O standards.

The following figure shows the template for a **2.5 V** I/O standard. This model consists of near-end and far-end board component parameters.

Near-end board trace modeling includes the elements which are close to the device. Far-end modeling includes the elements which are at the receiver end of the link, closer to the receiving device. Board trace model topology is conceptual and does not necessarily match the actual board trace for every component. For example, near-end model parameters can represent device-end discrete termination and breakout traces. Far-end modeling can represent the bulk of the board trace to discrete external memory components, and the far end termination network. You can analyze the same circuit with near-end modeling of the entire board, including memory component termination, and far-end modeling of the actual memory component.
The following figure shows the template for the LVDS I/O standard. The far-end capacitance (Cf) represents the external-device or multiple-device capacitive load. If you have multiple devices on the far-end, you must find the equivalent capacitance at the far-end, taking into account all receiver capacitances. The far-end capacitance can be the sum of all the receiver capacitances.

The Intel Quartus Prime software models of transmission lines do not consider transmission-line resistance (lossless models). You only need to specify distributed inductance (L) and capacitance (C) values on a per-inch basis, which you can obtain from the PCB vendor or manufacturer, the CAD Design tool, or a signal integrity tool, such as the Mentor Graphics HyperLynx software.
3.5.1.2. Defining the Board Trace Model

The board trace model describes a board trace and termination network as a set of capacitive, resistive, and inductive parameters.

Advanced I/O Timing uses the model to simulate the output signal from the output buffer to the far end of the board trace. You can define the capacitive load, any termination components, and trace impedances in the board routing for any output pin or bidirectional pin in output mode. You can configure an overall board trace model for each I/O standard or for specific pins. Define an overall board trace model for each I/O standard in your design. Use that model for all pins that use the I/O standard. You can customize the model for specific pins using the Board Trace Model window in the Pin Planner.

1. Click Assignments ➤ Device ➤ Device and Pin Options.
2. Click Board Trace Model and define board trace model values for each I/O standard.
3. Click I/O Timing and define default I/O timing options at board trace near and far ends.
4. Click Assignments ➤ Pin Planner and assign board trace model values to individual pins.

Example 8. Specifying Board Trace Model

```vhdl
## setting the near end series resistance model of sel_p output pin to 25 ohms
set_instance_assignment -name BOARD_MODEL_NEAR_SERIES_R 25 -to sel_p
## Setting the far end capacitance model for sel_p output signal to 6 picofarads
set_instance_assignment -name BOARD_MODEL_FAR_C 6P -to sel_p
```
3.5.1.3. Modifying the Board Trace Model

To modify the board trace model, click View ➤ Board Trace Model in the Pin Planner.

You can modify any of the board trace model parameters within a graphical representation of the board trace model.

The Board Trace Model window displays the routing and components for positive and negative signals in a differential signal pair. Only modify the positive signal of the pair, as the setting automatically applies to the negative signal. Use standard unit prefixes such as \(p \), \(n \), and \(k \) to represent pico, nano, and kilo, respectively. Use the short or open value to designate a short or open circuit for a parallel component.

3.5.1.4. Specifying Near-End vs Far-End I/O Timing Analysis

You can select a near-end or far-end point for I/O timing analysis. Near-end timing analysis extends to the device pin. You can apply the set_output_delay constraint during near-end analysis to account for the delay across the board.

With far-end I/O timing analysis, the advanced I/O timing analysis extends to the external device input, at the far-end of the board trace. Whether you choose a near-end or far-end timing endpoint, the board trace models are taken into account during timing analysis.

3.5.1.5. Advanced I/O Timing Analysis Reports

The following reports show advanced I/O timing analysis information:

<table>
<thead>
<tr>
<th>I/O Timing Report</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing Analyzer Report</td>
<td>Reports signal integrity and board delay data.</td>
</tr>
<tr>
<td>Board Trace Model Assignments report</td>
<td>Summarizes the board trace model component settings for each output and bidirectional signal.</td>
</tr>
<tr>
<td>Signal Integrity Metrics report</td>
<td>Contains all the signal integrity metrics calculated during advanced I/O timing analysis based on the board trace model settings for each output or bidirectional pin. Includes measurements at both the FPGA pin and at the far-end load of board delay, steady state voltages, and rise and fall times.</td>
</tr>
</tbody>
</table>

Note: By default, the Timing Analyzer generates the Slow-Corner Signal Integrity Metrics report. To generate a Fast-Corner Signal Integrity Metrics report you must change the delay model by clicking Tools ➤ Timing Analyzer.

Related Information

Using the Timing Analyzer

In Intel Quartus Prime Pro Edition User Guide: Timing Analyzer

3.5.2. Adjusting I/O Timing and Power with Capacitive Loading

When calculating \(t_{CO} \) and power for output and bidirectional pins, the Timing Analyzer and the Power Analyzer use a bulk capacitive load. You can adjust the value of the capacitive load per I/O standard to obtain more precise \(t_{CO} \) and power measurements, reflecting the behavior of the output or bidirectional net on your PCB. The Intel Quartus Prime software ignores capacitive load settings on input pins. You can adjust the capacitive load settings per I/O standard, in picofarads (pF), for your entire
3.6. Viewing Routing and Timing Delays

Right-click any node and click **Locate > Locate in Chip Planner** to visualize and adjust I/O timing delays and routing between user I/O pads and VCC, GND, and VREF pads. The Chip Planner graphically displays logic placement, Logic Lock regions, relative resource usage, detailed routing information, fan-in and fan-out, register paths, and high-speed transceiver channels. You can view physical timing estimates, routing congestion, and clock regions. Use the Chip Planner to change connections between resources and make post-compilation changes to logic cell and I/O atom placement. When you select items in the Pin Planner, the corresponding item is highlighted in Chip Planner.

3.7. Scripting API

The Intel Quartus Prime software allows you to access I/O management functions through Tcl commands, rather than with the GUI. For detailed information about scripting command options and Tcl API packages, type the following at a system command prompt to view the Tcl API Help browser:

```
quartus_sh --qhelp
```

Related Information

- **Tcl Scripting**

 In *Intel Quartus Prime Pro Edition User Guide: Scripting*
- **Command Line Scripting**

 In *Intel Quartus Prime Pro Edition User Guide: Scripting*

3.7.1. Generate Mapped Netlist

Enter the following in the Tcl console or in a Tcl script:

```
execute_module -tool map
```

The `execute_module` command is in the `flow` package.

Type the following at a system command prompt:

```
quartus_syn <project name>
```

3.7.2. Reserve Pins

Use the following Tcl command to reserve a pin:

```
set_instance_assignment -name RESERVE_PIN <value> -to <signal name>
```
Use one of the following valid reserved pin values:

- "AS BIDIRECTIONAL"
- "AS INPUT TRI STATED"
- "AS OUTPUT DRIVING AN UNSPECIFIED SIGNAL"
- "AS OUTPUT DRIVING GROUND"
- "AS SIGNALPROBE OUTPUT"

Note: You must include the quotation marks when specifying the reserved pin value.

3.7.3. Set Location

Use the following Tcl command to assign a signal to a pin or device location:

```
set_location_assignment <location> -to <signal name>
```

Valid locations are pin locations, I/O bank locations, or edge locations. Pin locations include pin names, such as PIN_A3. I/O bank locations include IOBANK_1 up to IOBANK_n, where n is the number of I/O banks in the device.

Use one of the following valid edge location values:

- EDGE_BOTTOM
- EDGE_LEFT
- EDGE_TOP
- EDGE_RIGHT

3.7.4. Exclusive I/O Group

The following Tcl command creates an exclusive I/O group assignment:

```
set_instance_assignment -name "EXCLUSIVE_IO_GROUP" -to pin
```

3.7.5. Slew Rate and Current Strength

Use the following Tcl commands to create a slew rate and drive strength assignments:

```
set_instance_assignment -name CURRENT_STRENGTH_NEW 8MA -to e[0]
set_instance_assignment -name SLEW_RATE 2 -to e[0]
```

Related Information

Package Information Datasheet for Mature Altera Devices
3.8. Managing Device I/O Pins Revision History

The following table shows the revision history for this chapter:

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Intel Quartus Prime Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020.11.04</td>
<td>19.3</td>
<td>Removed references to obsolete FPGA Xchange file (.fx) support from “Integrating PCB Design Tools” and “Importing and Exporting I/O Pin Assignments” topics.</td>
</tr>
<tr>
<td>2018.05.07</td>
<td>18.0</td>
<td>• First release as part of the stand-alone Design Constraints User Guide</td>
</tr>
</tbody>
</table>
| 2017.11.06 | 17.1 | • Revised topic: I/O Planning Overview.
 • Revised topic: Basic I/O Planning Flow with the Pin Planner and renamed to Basic I/O Planning Flow with the Pin Planner. |
| 2017.05.08 | 17.0 | • Renamed command: Run I/O Assignment Analysis to Start Fitter (Plan). |
| 2016.10.31 | 16.1 | • Implemented Intel rebranding. |
| 2015.11.02 | 15.1 | • Removed early pin planning and Live I/O Check support from Quartus Prime Pro Edition handbook
 • Changed instances of Quartus II to Quartus Prime. |
| 2014.12.15 | 14.1 | • Updated Live I/O check device support to include only limited device families. |
| 2014.08.30 | 14.0a10 | • Added link to information about special pin assignment features for Arria 10 SoC devices. |
| 2014.06.30 | 14.0 | • Replaced MegaWizard Plug-In Manager information with IP Catalog. |
| November 2013 | 13.1 | • Reorganization and conversion to DITA. |
| May 2013 | 13.0 | • Added information about overriding I/O placement rules. |
| November 2012 | 12.1 | • Updated Pin Planner description for new task and report windows.
 • Removed survey link. |
| June 2012 | 12.0.0 | • Minor updates and corrections.
 • Updated the document template. |
| November 2011 | 11.1 | • Template update |
| December 2010 | 10.0 | • Reorganized and edited the chapter
 • Added links to Help for procedural information previously included in the chapter
 • Added information on rules marked Inapplicable in the I/O Rules Matrix Report
 • Added information on assigning slew rate and drive strength settings to pins to fix I/O assignment warnings |
| July 2010 | 10.0 | • Reorganized entire chapter to include links to Help for procedural information previously included in the chapter
 • Added documentation on near-end and far-end advanced I/O timing |
| November 2009 | 9.1 | • Updated “Pad View Window” on page 5–20
 • Added new figures:
 • Figure 5–15
 • Figure 5–16
 • Added new section “Viewing Simultaneous Switching Noise (SSN) Results” on page 5–17
 • Added new section “Creating Exclusive I/O Group Assignments” on page 5–18 |
| March 2009 | 9.0 | • Updated “Pad View Window” on page 5–20
 • Added new figures:
 • Figure 5–15
 • Figure 5–16
 • Added new section “Viewing Simultaneous Switching Noise (SSN) Results” on page 5–17
 • Added new section “Creating Exclusive I/O Group Assignments” on page 5–18 |

If a software version is not listed, the user guide for the previous IP core version applies.

<table>
<thead>
<tr>
<th>Intel Quartus Prime Version</th>
<th>User Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3</td>
<td>Intel Quartus Prime Pro Edition User Guide: Design Constraints</td>
</tr>
</tbody>
</table>
A. Intel Quartus Prime Pro Edition User Guides

Refer to the following user guides for comprehensive information on all phases of the Intel Quartus Prime Pro Edition FPGA design flow.

Related Information

- **Intel Quartus Prime Pro Edition User Guide: Getting Started**
 Introduces the basic features, files, and design flow of the Intel Quartus Prime Pro Edition software, including managing Intel Quartus Prime Pro Edition projects and IP, initial design planning considerations, and project migration from previous software versions.

 Describes creating and optimizing systems using Platform Designer, a system integration tool that simplifies integrating customized IP cores in your project. Platform Designer automatically generates interconnect logic to connect intellectual property (IP) functions and subsystems.

 Describes best design practices for designing FPGAs with the Intel Quartus Prime Pro Edition software. HDL coding styles and synchronous design practices can significantly impact design performance. Following recommended HDL coding styles ensures that Intel Quartus Prime Pro Edition synthesis optimally implements your design in hardware.

- **Intel Quartus Prime Pro Edition User Guide: Design Compilation**
 Describes setup, running, and optimization for all stages of the Intel Quartus Prime Pro Edition Compiler. The Compiler synthesizes, places, and routes your design before generating a device programming file.

 Describes Intel Quartus Prime Pro Edition settings, tools, and techniques that you can use to achieve the highest design performance in Intel FPGAs. Techniques include optimizing the design netlist, addressing critical chains that limit retiming and timing closure, optimizing device resource usage, device floorplanning, and implementing engineering change orders (ECOs).

 Describes operation of the Intel Quartus Prime Pro Edition Programmer, which allows you to configure Intel FPGA devices, and program CPLD and configuration devices, via connection with an Intel FPGA download cable.

- **Intel Quartus Prime Pro Edition User Guide: Block-Based Design**
 Describes block-based design flows, also known as modular or hierarchical design flows. These advanced flows enable preservation of design blocks (or logic that comprises a hierarchical design instance) within a project, and reuse of design blocks in other projects.
• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration
 Describes Partial Reconfiguration, an advanced design flow that allows you to reconfigure a portion of the FPGA dynamically, while the remaining FPGA design continues to function. Define multiple personas for a particular design region, without impacting operation in other areas.

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation
 Describes RTL- and gate-level design simulation support for third-party simulation tools by Aldec*, Cadence*, Siemens EDA, and Synopsys that allow you to verify design behavior before device programming. Includes simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
 Describes support for optional synthesis of your design in third-party synthesis tools by Siemens EDA, and Synopsys. Includes design flow steps, generated file descriptions, and synthesis guidelines.

• Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence Checking Tools
 Describes support for optional logic equivalence checking (LEC) of your design in third-party LEC tools by OneSpin*.

• Intel Quartus Prime Pro Edition User Guide: Debug Tools
 Describes a portfolio of Intel Quartus Prime Pro Edition in-system design debugging tools for real-time verification of your design. These tools provide visibility by routing (or “tapping”) signals in your design to debugging logic. These tools include System Console, Signal Tap logic analyzer, system debugging toolkits, In-System Memory Content Editor, and In-System Sources and Probes Editor.

 Explains basic static timing analysis principals and use of the Intel Quartus Prime Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool that validates the timing performance of all logic in your design using an industry-standard constraint, analysis, and reporting methodology.

 Describes the Intel Quartus Prime Pro Edition Power Analysis tools that allow accurate estimation of device power consumption. Estimate the power consumption of a device to develop power budgets and design power supplies, voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Pro Edition User Guide: Design Constraints
 Describes timing and logic constraints that influence how the Compiler implements your design, such as pin assignments, device options, logic options, and timing constraints. Use the Interface Planner to prototype interface implementations, plan clocks, and quickly define a legal device floorplan. Use the Pin Planner to visualize, modify, and validate all I/O assignments in a graphical representation of the target device.

 Describes support for optional third-party PCB design tools by Siemens EDA and Cadence*. Also includes information about signal integrity analysis and simulations with HSPICE and IBIS Models.

• Intel Quartus Prime Pro Edition User Guide: Scripting
 Describes use of Tcl and command line scripts to control the Intel Quartus Prime Pro Edition software and to perform a wide range of functions, such as managing projects, specifying constraints, running compilation or timing analysis, or generating reports.