Contents

1. Introduction... 3
 1.1. How to Use this Guide..4
2. AFU Design... 5
 2.1. HSSI Device Interface.. 5
 2.1.1. HSSI Clocks..6
 2.1.2. HSSI Unified Data Interface...7
 2.1.3. HSSI PHY Control and Status...9
 2.1.4. HSSI PR Management..10
 2.1.5. HSSI Reset Control and Status..10
 2.1.6. Initialization..11
 2.2. Connecting the MAC to the HSSI PHY...11
 2.2.1. 4x10GBASE-SR Mode...12
 2.2.2. 40GBASE-SR4 Mode...15
 2.3. Verifying Network Port Function...18
3. OPAE Support... 19
 3.1. OPAE Driver HSSI sysfs Files..19
 3.1.1. The board_id sysfs..19
 3.1.2. The eeprom sysfs...19
 3.1.3. The config sysfs...20
 3.1.4. The equalizer_tune sysfs...20
 3.2. Managing the Network Port...25
 3.2.1. Configuring the Network Port..25
 3.2.2. Reading the Base MAC Address from the Intel PAC with Intel Arria 10 GX
 FPGA..25
 3.2.3. Modifying HSSI PHY Transceiver PMA Settings.................................25
4. HSSI User Guide for Intel PAC with Intel Arria 10 GX FPGA Revision History.........28
1. Introduction

The Intel® Programmable Acceleration Card with Intel Arria® 10 GX FPGA features a QSFP+ network port that can be configured for either 4x10GBASE-SR or 40GBASE-SR4 operation. This guide documents how to design for the network port feature in an accelerator functional unit (AFU) design and how to provision it from the host using the Open Programmable Acceleration Engine (OPAE) driver and tools. The following figure overviews the Intel PAC with Intel Arria 10 GX FPGA OPAE hardware platform.

Figure 1. Overview of the Intel PAC with Intel Arria 10 GX FPGA

Host/client-side network packet data passes through the Core Cache Interface (CCI-P) to MAC/PHY IP implemented in the AFU, which interfaces to the high speed serial interface (HSSI) PHY in the FPGA interface manager (FIM) through the hssi device interface. The host configures the HSSI PHY and retrieves MAC address information using the OPAE kernel driver. The OPAE kernel driver communicates with the HSSI Controller in the FIM through the FPGA management engine (FME) mailbox, to initiate configuration and requests for information (including the MAC address).

For detailed information about the FME, refer to the Intel Acceleration Stack Quick Start Guide for Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA.
1.1. How to Use this Guide

There are two major components to enable using the network port feature on the Intel PAC with Intel Arria 10 GX FPGA. First, the host must configure the HSSI PHY in the hardware platform’s FIM for one of the supported modes (4x10GBASE-SR or 40GBASE-SR4). Secondly, the host must load an accelerator function (AF) that supports the network port feature.

The **AFU Design** section covers the requirements in the AFU design to enable the network port feature. The section describes the network MAC and PHY components that must be implemented in the AFU design and how to connect them to the HSSI PHY in the FIM through the `hssi` device interface. This section also gives some guidance on verifying your AFU implementation for network port connectivity in hardware.

The **OPAE Support** section covers using the OPAE driver and tools to provision the network port feature from the host, including configuring the HSSI PHY for the desired mode of operation, loading a network-enabled AF, and retrieving information from the Intel PAC with Intel Arria 10 GX FPGA such as MAC address.

Related Information
- AFU Design on page 5
- OPAE Support on page 19
2. AFU Design

To enable the network port feature on the Intel PAC with Intel Arria 10 GX FPGA, the AFU must implement the MAC and PHY IP blocks shown in the following table:

<table>
<thead>
<tr>
<th>Network Port Mode</th>
<th>Required IP Blocks in the AFU</th>
<th>HSSI PHY Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x10GBASE-SR</td>
<td>One 10GbE MAC per channel supported by the AFU (up to 4)</td>
<td>4x10GBASE-SR PCS/PMA</td>
</tr>
<tr>
<td>40GBASE-SR4</td>
<td>One 40GbE MAC</td>
<td>40GBASE-SR4 PMA-only</td>
</tr>
<tr>
<td></td>
<td>One 40GbE Physical Coding Sublayer (PCS) PHY</td>
<td></td>
</tr>
</tbody>
</table>

In addition to the above network IP blocks, the AFU must also implement the following supporting infrastructure:

- Client-side data interfaces and DMA required to move data between host or local memory, AFU workload streams, and the network port
- MMIO access through the cci-p device interface for host access to MAC/PHY control and status registers (CSRs), network statistics, and similar information

The FIM provides clock resources for client and PHY interfaces through the cci-p and hssi device interfaces.

The remainder of this section describes the hssi device interface and how to connect MAC and PHY IP implemented in the AFU to the HSSI PHY using the hssi interface.

2.1. HSSI Device Interface

AFUs interface with the network port on the Intel PAC with Intel Arria 10 GX FPGA using the hssi:raw_pr device interface, which is shown in the below high level interface block diagram.
A unified data interface connects the network port to the MAC/PHY IP. This can be Intel FPGA IP, third-party IP, or your own proprietary IP. The unified data interface consists of a fixed set of physical ports that are mapped to specific signaling functions based on the configured HSSI PHY mode. The hssi:raw_pr interface also provides clocks for synchronization and signaling support for HSSI PHY management.

The AFU must implement reset logic for the HSSI PHY using the reset control and status signaling provided by the hssi:raw_pr interface. See the HSSI Reset Control and Status section for more information.

The pr_hssi_if.vh SystemVerilog* header defines the hssi:raw_pr interface and is located in the Intel PAC with Intel Arria 10 GX FPGA hardware platform database library within the OPAE SDK:

```
$OPAE_PLATFORM_ROOT/hw/lib/build/platform/pr_hssi_if.vh
```

The sections that follow detail the ports included in the hssi:raw_pr interface.

Related Information

HSSI Reset Control and Status on page 10

2.1.1. HSSI Clocks

The clocks of the hssi interface synchronize the unified data interface between the MAC/PHY IP and the HSSI PHY.
Table 2. HSSI Clocks

Signal directions listed for hssi ports are from the perspective of the FIM.

<table>
<thead>
<tr>
<th>hssi Port Name</th>
<th>Width</th>
<th>Direction</th>
<th>4x10GBASE-R Mode Description</th>
<th>40GBASE-SR4 Mode Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f2a_tx_clk</td>
<td>1</td>
<td>Output</td>
<td>A 156.25MHz clock derived from the HSSI PHY’s clock generation block (CGB) tx_pma_div_clkout clock output. All transmit data and control from the MAC to the HSSI PHY is synchronous to f2a_tx_clk.</td>
<td>A 312.5MHz clock derived from the HSSI PHY’s CGB tx_pma_div_clkout clock output. All transmit data and control from the MAC/PHY to the HSSI PHY is synchronous to f2a_tx_clk.</td>
</tr>
<tr>
<td>f2a_tx_clkx2</td>
<td>1</td>
<td>Output</td>
<td>A 312.5MHz clock derived from the HSSI PHY’s CGB tx_pma_div_clkout clock output and phase-aligned with f2a_tx_clk.</td>
<td>A 312.5MHz clock derived from the HSSI PHY’s CGB tx_pma_div_clkout clock output and phase-aligned with f2a_tx_clk.</td>
</tr>
<tr>
<td>f2a_tx_locked</td>
<td>1</td>
<td>Output</td>
<td>Locked status for f2a_tx_clk and f2a_tx_clkx2.</td>
<td>Locked status for f2a_tx_clk and f2a_tx_clkx2.</td>
</tr>
<tr>
<td>f2a_rx_clk_ln0</td>
<td>1</td>
<td>Output</td>
<td>A 156.25MHz clock derived from the HSSI PHY’s transmitter and receive CDR PLL clock input reference. All receive data and control from the HSSI PHY to the MAC is synchronous to f2a_rx_clk_ln0.</td>
<td>A 312.5MHz clock derived from the HSSI PHY’s receive CDR in lane 0. All receive data and control from the HSSI PHY to the MAC/PHY is synchronous to f2a_rx_clk_ln0.</td>
</tr>
<tr>
<td>f2a_rx_clkx2_ln0</td>
<td>1</td>
<td>Output</td>
<td>A 312.5MHz clock derived from the HSSI PHY’s transmitter and receive CDR PLL clock input reference and phase-aligned with f2a_rx_clk_ln0.</td>
<td>A 312.5MHz clock derived from the HSSI PHY’s receive CDR in lane 0 and phase-aligned with f2a_rx_clk_ln0.</td>
</tr>
<tr>
<td>f2a_rx_locked_ln0</td>
<td>1</td>
<td>Output</td>
<td>Locked status for f2a_rx_clk_ln0 and f2a_rx_clkx2_ln0.</td>
<td>Locked status for f2a_rx_clk_ln0 and f2a_rx_clkx2_ln0.</td>
</tr>
<tr>
<td>f2a_rx_clk_ln4</td>
<td>1</td>
<td>Output</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>f2a_rx_locked_ln4</td>
<td>1</td>
<td>Output</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

2.1.2. HSSI Unified Data Interface

The HSSI unified data interface conforms to the Arria 10 FPGA Transceiver Native PHY IP with enhanced PCS. It consists of generic parallel data and encoding control interfaces for transmit and receive that are mapped to specific signaling behavior based on the configured HSSI PHY mode. The unified data interface also includes flow control ports to manage passing data to and from the HSSI PHY.

The below table provides a cross reference from the hssi:raw_pr unified data interface signals to the Arria 10 FPGA Transceiver Native PHY IP with enhanced PCS signal set. For detailed information on these signals, see the Intel Arria 10 Transceiver PHY User Guide as referenced in the below table.
Table 3. **HSSI Unified Data Interface**

<table>
<thead>
<tr>
<th>HSSI Port Name</th>
<th>Width</th>
<th>Direction</th>
<th>Clock Domain</th>
<th>Native PHY IP Port Name</th>
<th>Reference in Intel Arria 10 Transceiver PHY User Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit and Receive Data and Encoding Control Ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a2f_tx_parallel_data</td>
<td>(4*128)</td>
<td>Input</td>
<td>f2a_tx_clk</td>
<td>tx_parallel_data</td>
<td>Table "Enhanced TX PCS: Parallel Data, Control, and Clocks" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>a2f_tx_control</td>
<td>(4*18)</td>
<td>Input</td>
<td>f2a_tx_clk</td>
<td>tx_control</td>
<td>Table "Enhanced TX PCS: Parallel Data, Control, and Clocks" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>f2a_rx_parallel_data</td>
<td>(4*128)</td>
<td>Output</td>
<td>f2a_rx_clk Ln0</td>
<td>rx_parallel_data</td>
<td>Table "Enhanced RX PCS: Parallel Data, Control, and Clocks" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>f2a_rx_control</td>
<td>(4*20)</td>
<td>Output</td>
<td>f2a_rx_clk Ln0</td>
<td>rx_control</td>
<td>Table "Enhanced RX PCS: Parallel Data, Control, and Clocks" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>Flow Control Ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f2a_tx_enh_fifo_full</td>
<td>4</td>
<td>Output</td>
<td>f2a_tx_clk</td>
<td>tx_enh_fifo_full</td>
<td>Table "Enhanced PCS TX FIFO" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>f2a_tx_enh_fifo_pfull</td>
<td>4</td>
<td>Output</td>
<td>f2a_tx_clk</td>
<td>tx_enh_fifo_pfull</td>
<td>Table "Enhanced PCS TX FIFO" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>f2a_tx_enh_fifo_empty</td>
<td>4</td>
<td>Output</td>
<td>f2a_tx_clk</td>
<td>tx_enh_fifo_empty</td>
<td>Table "Enhanced PCS TX FIFO" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>f2a_tx_enh_fifo_pempty</td>
<td>4</td>
<td>Output</td>
<td>f2a_tx_clk</td>
<td>tx_enh_fifo_pempty</td>
<td>Table "Enhanced PCS TX FIFO" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>a2f_tx_enh_data_valid</td>
<td>4</td>
<td>Input</td>
<td>f2a_tx_clk</td>
<td>tx_enh_data_valid</td>
<td>Table "Enhanced PCS TX FIFO" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>f2a_rx_enh_fifo_full</td>
<td>4</td>
<td>Output</td>
<td>f2a_rx_clk Ln0</td>
<td>rx_enh_fifo_full</td>
<td>Table "Enhanced PCS RX FIFO" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>f2a_rx_enh_fifo_pfull</td>
<td>4</td>
<td>Output</td>
<td>f2a_rx_clk Ln0</td>
<td>rx_enh_fifo_pfull</td>
<td>Table "Enhanced PCS RX FIFO" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>f2a_rx_enh_fifo_empty</td>
<td>4</td>
<td>Output</td>
<td>f2a_rx_clk Ln0</td>
<td>rx_enh_fifo_empty</td>
<td>Table "Enhanced PCS RX FIFO" in Enhanced PCS Ports</td>
</tr>
</tbody>
</table>
2.1.3. HSSI PHY Control and Status

This set of ports on the hssi interface provide for HSSI PHY receive Physical Medium Attachment (PMA) clock data recovery (CDR) lock sequencing control, PCS status, and transceiver loopback control. The signaling behavior conforms to the Arria 10 FPGA Transceiver Native PHY IP with enhanced PCS. The below table cross references the hssi port names to the Native PHY IP port names.

Table 4. HSSI PHY Control and Status Ports

For detailed information on these signals, see the Intel Arria 10 Transceiver PHY User Guide as referenced in the below table.

<table>
<thead>
<tr>
<th>hssi Port Name</th>
<th>Width</th>
<th>Direction</th>
<th>Clock Domain</th>
<th>Native PHY IP Port Name</th>
<th>Reference in Intel Arria 10 Transceiver PHY User Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>f2a_rx_enh_fifo_pempty</td>
<td>4</td>
<td>Output</td>
<td>f2a_rx_clk_ln0</td>
<td>rx_enh_fifo_pempty</td>
<td>Table "Enhanced PCS RX FIFO" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>f2a_rx_enh_data_valid</td>
<td>4</td>
<td>Output</td>
<td>f2a_rx_clk_ln0</td>
<td>rx_enh_data_valid</td>
<td>Table "Enhanced PCS RX FIFO" in Enhanced PCS Ports</td>
</tr>
<tr>
<td>a2f_rx_enh_fifo_rd_en</td>
<td>4</td>
<td>Input</td>
<td>f2a_rx_clk_ln0</td>
<td>rx_enh_fifo_rd_en</td>
<td>Table "Enhanced PCS RX FIFO" in Enhanced PCS Ports</td>
</tr>
</tbody>
</table>

Related Information

Intel Arria 10 Transceiver PHY User Guide
2.1.4. HSSI PR Management

The f2a_prmgmt_ctrl_clk port is a 100MHz free running clock source. The MAC/PHY IP and related AFU logic can use this clock for lower speed logic. The f2a_prmgmt_ram_ena port is used as a reset source from the HSSI PHY to PCS PHY IP in the AFU.

The remaining ports on the PR management bus are for internal use in Intel AFU example designs.

<table>
<thead>
<tr>
<th>hssi Port Name</th>
<th>Width</th>
<th>Direction</th>
<th>Clock Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f2a_prmgmt_ctrl_clk</td>
<td>1</td>
<td>Output</td>
<td>f2a_prmgmt_ctrl_clk</td>
<td>Optional low-speed clock source</td>
</tr>
<tr>
<td>a2f_prmgmt_fatal_err</td>
<td>1</td>
<td>Input</td>
<td>f2a_prmgmt_ctrl_clk</td>
<td>Leave outputs disconnected and drive inputs low.</td>
</tr>
<tr>
<td>a2f_prmgmt_dout</td>
<td>32</td>
<td>Input</td>
<td>f2a_prmgmt_ctrl_clk</td>
<td></td>
</tr>
<tr>
<td>f2a_prmgmt_cmd</td>
<td>16</td>
<td>Output</td>
<td>f2a_prmgmt_ctrl_clk</td>
<td></td>
</tr>
<tr>
<td>f2a_prmgmt_addr</td>
<td>16</td>
<td>Output</td>
<td>f2a_prmgmt_ctrl_clk</td>
<td></td>
</tr>
<tr>
<td>f2a_prmgmt_din</td>
<td>32</td>
<td>Output</td>
<td>f2a_prmgmt_ctrl_clk</td>
<td></td>
</tr>
<tr>
<td>f2a_prmgmt_freeze</td>
<td>1</td>
<td>Output</td>
<td>f2a_prmgmt_ctrl_clk</td>
<td></td>
</tr>
<tr>
<td>f2a_prmgmt_arst</td>
<td>1</td>
<td>Output</td>
<td>Async</td>
<td></td>
</tr>
<tr>
<td>f2a_prmgmt_ram_ena</td>
<td>1</td>
<td>Output</td>
<td>Async</td>
<td>MAC layer reset from HSSI PHY</td>
</tr>
</tbody>
</table>

2.1.5. HSSI Reset Control and Status

The Reset Control and Status ports conform to the Native PHY IP with enhanced PCS defined signal behavior. The below table cross references the hssi port names to the Native PHY IP port names.

Table 6. HSSI Reset Control and Status Port Characteristics

For detailed information on these signals, see the Intel Arria 10 Transceiver PHY User Guide as referenced in the below table.

<table>
<thead>
<tr>
<th>hssi Port Name</th>
<th>Width</th>
<th>Direction</th>
<th>Clock Domain</th>
<th>Native PHY IP Port Name</th>
<th>Reference in Intel Arria 10 Transceiver PHY User Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2f_tx_analogreset</td>
<td>4</td>
<td>Input</td>
<td>Async</td>
<td>tx_analogreset</td>
<td>• Table “Reset Ports” in PMA Ports</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Resetting Transceiver Channels</td>
</tr>
<tr>
<td>a2f_tx_digitalreset</td>
<td>4</td>
<td>Input</td>
<td>Async</td>
<td>tx_digitalreset</td>
<td>• Table “Reset Ports” in PMA Ports</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Resetting Transceiver Channels</td>
</tr>
<tr>
<td>a2f_rx_analogreset</td>
<td>4</td>
<td>Input</td>
<td>Async</td>
<td>rx_analogreset</td>
<td>• Table “Reset Ports” in PMA Ports</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Resetting Transceiver Channels</td>
</tr>
</tbody>
</table>

continued...
Related Information

Intel Arria 10 Transceiver PHY User Guide

2.1.6. Initialization

The initialization handshake controls can optionally be used to sequence readiness between the MAC/PHY IP in the AFU and HSSI PHY mode completion.

Table 7. Initialization Handshake Control Ports

<table>
<thead>
<tr>
<th>hssi Port Name</th>
<th>Width</th>
<th>Direction</th>
<th>Clock Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2f_init_start</td>
<td>1</td>
<td>Input</td>
<td>Async</td>
<td>Signal to indicate AFU ready (optional)</td>
</tr>
<tr>
<td>f2a_init_done</td>
<td>1</td>
<td>Output</td>
<td>Async</td>
<td>Signal to indicate HSSI PHY initialization to chosen mode complete (optional)</td>
</tr>
</tbody>
</table>

Reference in Intel Arria 10 Transceiver PHY User Guide

- Table "Reset Ports" in PMA Ports
- Resetting Transceiver Channels

2.2. Connecting the MAC to the HSSI PHY

The OPAE SDK includes the following two sample AFUs that show how to connect MAC and PHY IP to the hssi interface:

Table 8. Sample AFUs and Documentation

<table>
<thead>
<tr>
<th>Network Port Mode</th>
<th>Documentation</th>
<th>Sample AFU Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x10GBase-SR</td>
<td>10Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide</td>
<td>$OPAE_PLATFORM_ROOT/hw/samples/eth_e2e_e10</td>
</tr>
<tr>
<td>40GBase-SR4</td>
<td>40Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide</td>
<td>$OPAE_PLATFORM_ROOT/hw/samples/eth_e2e_e40</td>
</tr>
</tbody>
</table>

Use the information in this section together with the sample AFUs for guidance on connecting MAC and PHY IP to the hssi interface.
The sections that follow contain connection diagrams that utilize pseudo RTL code to define connectivity on buses using Verilog*-2001 indexed part selects.

For example:

```verilog
logic port_name[15:0]; //All hssi port vectors are little endian.
assign port_name[8 +:8] = {8{1'b0}};
```

assigns all zeros to the upper eight bits ([15:8]) of the 16-bit vector, `port_name`.

Related Information
- 10Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide
- 40Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide

2.2.1. 4x10GBASE-SR Mode

In 4x10GBASE-SR mode, the interface between the MAC and HSSI PHY maps to XGMII. The figure below and sections that follow describe how to connect 10GbE MAC IP to the HSSI PHY over the `hssi` interface.
2.2.1.1. Clocks in 4x10GBASE-SR Mode

The hssi interface provides a set of clocks and locked status flags to support the 10GbE MAC IP. The interface provides clock sources of 156.25MHz and 312.5MHz for both transmit and receive datapaths. The XGMII interface between the MAC and HSSI PHY is synchronous to f2a_tx_clk and f2a_rx_clk_ln0 for transmit and receive, respectively. The 312.5MHz clock sources and locked status outputs from the fPLLs in the HSSI PHY can be used by the MAC and related AFU logic as needed.
2.2.1.2. Unified Data Interface in 4x10GBASE-SR Mode

Each 10GbE channel’s XGMII data interface is striped across 128-bit segments of the unified data interface transmit and receive data ports. The 64-bit XGMII data is mapped to the lower 64 bits of the 128-bit segment. The upper 64 bits of the transmit datapath segment should be statically driven low. The upper 64 bits of the receive datapath segment should be left unconnected.

Each 10GbE channel’s XGMII data control interface is striped across 18-bit segments of the unified data interface’s transmit and receive data control ports. The eight bits of control are mapped to the lower eight bits of the 18-bit segment. The control bit for the least significant XGMII data byte lane (e.g., xgmii_tx_data_out[7:0]) maps to the least significant bit of the unified data interface’s control port (e.g., a2f_tx_parallel_control[0] corresponds to xgmii_tx_control_out[0]) with each successive control bit mapping similarly to the same bit index of the unified data interface control port. The upper 10 bits of the transmit data control segment should be statically driven low. The upper 10 bits of the receive data control segment should be left unconnected.

The HSSI PHY FIFO flow control ports are not utilized in 4x10GBASE-SR mode. Statically drive the a2f_tx_enh_data_valid and a2f_rx_enh_fifo_rd_en ports high.

2.2.1.3. PHY Control and Status in 4x10GBASE-SR Mode

Statically drive a2f_rx_set_locktoref and a2f_rx_set_locktodata low to place the HSSI PHY receive PMA CDRs in auto-lock mode. The status outputs on these ports are available to the MAC and related AFU logic for optional use.

2.2.1.4. PR Management in 4x10GBASE-SR Mode

The f2a_prmgmt_ctrl_clk clock output is a 100MHz free running clock source that the MAC and related AFU logic can optionally use for miscellaneous lower speed logic. The MAC and related AFU logic can optionally use the f2a_prmgmt_ram_ena output as a reset.

The remaining ports on the PR management bus are for internal use in Intel AFU example designs. Statically drive a2f_prmgmt_fatal_err and a2f_prmgmt_dout low. In a multi-channel implementation, drive from a centralized point in the AFU implementation’s top-level logic.

2.2.1.5. Reset Control and Status in 4x10GBASE-SR Mode

See the Resetting Transceiver Channels chapter in the Intel Arria 10 Transceiver PHY User Guide for details on using either the Intel Transceiver PHY Reset Controller IP included in Quartus Prime Pro or your own custom reset controller to properly sequence the resets for the serial transceiver blocks in the HSSI PHY. The Connection to HSSI PHY in 4x10GBASE-SR Mode figure in 4x10GBASE-SR Mode shows the use of a separate reset controller per channel, but you could also implement a single centralized reset controller for all channel transceivers. The Intel Transceiver PHY Reset Controller IP can be configured for single or multi-channel use cases.

Related Information

- 4x10GBASE-SR Mode on page 12
 Figure: "Connection to HSSI PHY in 4x10GBASE-SR Mode"
The Resetting Transceiver Channels chapter of the Intel Arria 10 Transceiver PHY User Guide

2.2.1.6. Initialization in 4x10GBASE-SR Mode

The MAC and related AFU logic can optionally use the handshake initialization signaling between the AFU and HSSI PHY. If you do not use the initialization handshake control, statically drive a2f_init_start high.

2.2.1.7. Unused 10GbE Channels

The 4x10GBASE-SR HSSI PHY mode supports one to four 10GbE channels. AFUs that implement less than four channels should terminate the unused channels by statically driving the hssi input ports listed in the below table to the levels shown.

<table>
<thead>
<tr>
<th>hssi Port Name on Unused Channel “n” (n = 0,1,2,3)</th>
<th>Port Termination Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2f_tx_analogreset[n]</td>
<td>1'b1</td>
</tr>
<tr>
<td>a2f_tx_digitalreset[n]</td>
<td>1'b1</td>
</tr>
<tr>
<td>a2f_rx_analogreset[n]</td>
<td>1'b1</td>
</tr>
<tr>
<td>a2f_rx_digitalreset[n]</td>
<td>1'b1</td>
</tr>
<tr>
<td>a2f_rx_seriallpbken[n]</td>
<td>1'b1</td>
</tr>
<tr>
<td>a2f_rx_set_locktodata[n]</td>
<td>1'b0</td>
</tr>
<tr>
<td>a2f_rx_set_locktoref[n]</td>
<td>1'b0</td>
</tr>
<tr>
<td>a2f_tx_enh_data_valid[n]</td>
<td>1'b0</td>
</tr>
<tr>
<td>a2f_rx_enh_fifo_rd_en[n]</td>
<td>1'b0</td>
</tr>
<tr>
<td>a2f_tx_parallel_data[(n*128) +:128]</td>
<td>{128{1'b0}}</td>
</tr>
<tr>
<td>a2f_tx_control[(n*18) +:18]</td>
<td>{18{1'b0}}</td>
</tr>
</tbody>
</table>

2.2.2. 40GBASE-SR4 Mode

In 40GBASE-SR4 mode, the AFU must implement a 40GbE PCS layer between the 40GbE MAC and HSSI PHY configured for 40GBASE-SR4 PMA-only mode. The interface between the 40GbE PCS implemented in the AFU and the HSSI PMA PHY is a 40-bit transmit and receive interface with flow control. The figure below and sections that follow describe how to connect 40GbE MAC/PCS-PHY IP to the HSSI PMA PHY over the hssi interface.
2.2.2.1. Clocks in 40GBASE-SR4 Mode

The hssi interface provides a set of clocks and locked status flags to support 40GbE MAC/PCS IP. The interface provides 312.5MHz clock sources for both transmit and receive datapaths. The 40-bit interface between the MAC PHY and HSSI PHY is synchronous to f2a_tx_clk and f2a_rx_clk for transmit and receive, respectively. The locked status outputs from the fPLLs in the HSSI PHY can be used by
the MAC and related AFU logic as needed. The additional set of 312.5MHz clock sources (e.g., f2a_tx_clkx2, f2a_rx_clkx2_ln0) are phase-aligned replications and would typically not be needed by the MAC/PHY and related AFU logic.

2.2.2.2. Unified Data Interface in 40GBASE-SR4 Mode

Each lane of the 40GbE PCS PHY data interface is striped across 128-bit segments of the unified data interface transmit and receive data ports. Each 40-bit PCS PHY data lane is mapped to the lower 40 bits of the 128-bit segment. The upper 88 bits of the transmit datapath segment should be statically driven low. The upper 88 bits of the receive datapath segment should be left unconnected.

The unified data interface’s transmit and receive control ports are not utilized in 40GBASE-SR4 mode. Statically drive the a2f_tx_control port low and leave f2a_rx_control unconnected.

Flow control is utilized in 40GBASE-SR4 mode between the 40GbE PCS and HSSI PHY PMA layers. See the HSSI Unified Data Interface section for details about the flow control signaling.

Related Information
HSSI Unified Data Interface on page 7

2.2.2.3. PHY Control and Status in 40GBASE-SR4 Mode

Actively drive a2f_rx_set_locktoref and a2f_rx_set_locktodata and monitor f2a_rx_is_lockedtoref to control the HSSI PHY receive PMA CDRs lock sequence according to the HSSI Unified Data Interface section. The f2a_rx_enh_blk_lock and f2a_rx_enh_highber ports are not utilized in 40GBASE-SR4 mode – leave disconnected.

Related Information
HSSI Unified Data Interface on page 7

2.2.2.4. PR Management in 40GBASE-SR4 Mode

The f2a_prmgmt_ctrl_clk clock output is a 100MHz free running clock source that the MAC/PHY and related AFU logic can optionally use for miscellaneous lower speed logic. The 40GbE PCS layer should use the f2a_prmgmt_ram_ena output as a reset source.

The remaining ports on the PR management bus are for internal use in Intel AFU example designs. Statically drive a2f_prmgmt_fatal_err and a2f_prmgmt_dout low.

2.2.2.5. Reset Control and Status in 40GBASE-SR4 Mode

See the Resetting Transceiver Channels chapter in the Intel Arria 10 Transceiver PHY User Guide for details on using either the Intel Transceiver PHY Reset Controller IP included in Quartus Prime Pro or your own custom reset controller to properly sequence the resets for the serial transceiver blocks in the HSSI PHY. The above figure shows the use of a single controller for all transceiver lanes. The Intel Transceiver PHY Reset Controller IP can be configured for single or multi-lane use cases.
2.2.2.6. Initialization in 40GBASE-SR4 Mode

The MAC/PCS and related AFU logic can optionally use the handshake initialization signaling between the AFU and HSSI PHY. If you do not use the initialization handshake control, statically drive \texttt{a2f_init_start} high.

2.3. Verifying Network Port Function

OPAE SDK version 1.1 does not support verifying network port functionality with the AFU Simulation Environment (ASE).

Intel recommends that you develop a standalone test harness to verify MAC-to-network port functionality with any of the following:

- Intel FPGA MACPHY IP
- Third-party IP
- Your proprietary IP

You can use the 10GbE or 40GbE sample AFU design as a starting point for your test harness.

The sample AFU designs use packet generation and monitoring blocks implemented in the AFU to facilitate loopback testing on the network port. The samples also include an OPAE test application with APIs to control testing and readback results on the host.

The following documents provide guidance on using the sample AFU designs as a template for standalone network port testing with your MACPHY connection to the hssi interface:

- 40Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide
- 10Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide

The user guides provide links to example AFU source code in the OPAE SDK.

Related Information

- 10Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide
- 40Gbps Ethernet Accelerator Functional Unit (AFU) Design Example User Guide
3. OPAE Support

The OPAE SDK includes the following support for the Intel PAC with Intel Arria 10 GX FPGA network port feature:

- OPAE kernel driver sysfs files enable configuration of the network port feature and access to related information on the Intel PAC with Intel Arria 10 GX FPGA from the host.
 - 128-bit UUID for the Intel PAC with Intel Arria 10 GX FPGA
 - Base MAC address
 - HSSI PHY mode configuration
 - HSSI PHY PMA analog settings
- Sample AFU designs for 10GbE and 40GbE

3.1. OPAE Driver HSSI sysfs Files

OPAE supports HSSI management on the host through driver sysfs files associated with the FME of each enumerated Intel PAC with Intel Arria 10 GX FPGA in the system under the following sysfs hierarchy:

```
/sys/class/fpga/intel-fpga-dev.<i>/intel-fpga-fme.<j>/intel-pac-hssi.<m>.auto/
hssi_mgmt/
```

- Index i in `intel-fpga-dev.<i>` consecutively numbers all the enumerated FPGA container devices. In the Intel PAC with Intel Arria 10 GX FPGA hardware platform, each FPGA container device corresponds to a Intel PAC with Intel Arria 10 GX FPGA installed in the system.
- Index j in `intel-fpga-fme.<j>` consecutively numbers all the enumerated FMEs in the system.
- Index m in `intel-pac-hssi.<m>.auto` consecutively numbers all the enumerated HSSI controllers in the system.

3.1.1. The board_id sysfs

```
.../hssi_mgmt/board_id
```

The board_id sysfs is read-only and contains a 128-bit UUID associated with the Intel PAC with Intel Arria 10 GX FPGA. This is a board-level UUID, independent of any loaded AF UUID. The format of this file is the 128-bit UUID in binary.

3.1.2. The eeprom sysfs

```
.../hssi_mgmt/eeprom
```

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.
The eeprom sysfs is read-only and contains ASCII-encoded fields delimited by LF (line feed, new line) characters as shown in the following table:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Format (ASCII)</th>
</tr>
</thead>
</table>
| Base MAC Address | MAC=<hh>:<hh>:<hh>:<hh>:<hh>:<hh>
| Board Serial Number | SN=<dddddd>
| Board Information | PC=A10S4A-0U-B115X2E2Q-22-H501U0R-6
| Board Revision | REV=<d>.<d>.<d>.<d>.<d>

- Values enclosed in angle brackets (>) are unique values per Intel PAC with Intel Arria 10 GX FPGA.
- A value of h enclosed in angle brackets indicates a unique hexadecimal digit
- A value of d indicates a unique decimal digit.

3.1.3. The config sysfs

`.../hssi_mgmt/config`

The config sysfs is write-only from a privileged process (root access). Write the appropriate string value to the config sysfs to configure the HSSI PHY mode as shown in the following table.

<table>
<thead>
<tr>
<th>HSSI PHY Mode</th>
<th>config sysfs Write String Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x10GBASE-SR</td>
<td>"10"</td>
</tr>
<tr>
<td>40GBASE-SR4</td>
<td>"40"</td>
</tr>
</tbody>
</table>

3.1.4. The equalizer_tune sysfs

`.../hssi_mgmt/equalizer_tune`

The equalizer_tune sysfs is readable by all and writable from a privileged process (root access). It is formatted as a list of ASCII-encoded fields delimited by LF (line feed, new line) characters. Each field in the list contains a specific transceiver analog PMA setting for a specific HSSI PHY transceiver lane. There are four lanes, and each lane has a set of eight analog PMA settings. The format for each field in the list is as follows:

```
<hssi-phy-transceiver-lane-index>:<analog-pma-setting-index>=<analog-pma-setting>
```

The hssi-phy-transceiver-lane-index subfield specifies the HSSI PHY transceiver lane number as shown in the table below.
Table 12. HSSI PHY Transceiver Lane Index Subfield

<table>
<thead>
<tr>
<th>Supported Range of ASCII-Encoded String Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"0"</td>
<td>HSSI PHY transceiver lane 0</td>
</tr>
<tr>
<td>"1"</td>
<td>HSSI PHY transceiver lane 1</td>
</tr>
<tr>
<td>"2"</td>
<td>HSSI PHY transceiver lane 2</td>
</tr>
<tr>
<td>"3"</td>
<td>HSSI PHY transceiver lane 3</td>
</tr>
</tbody>
</table>

The analog-pma-setting-index subfield specifies a transceiver analog PMA setting, or group of settings, for the HSSI PHY lane indicated by the hssi-phy-transceiver-lane-index subfield as shown in the table below.

Table 13. HSSI PHY Transceiver Analog PMA Setting Index Subfield

<table>
<thead>
<tr>
<th>Supported Range of ASCII-Encoded String Values</th>
<th>Description</th>
<th>Reference in Intel Arria 10 Transceiver PHY User Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>"0"</td>
<td>Receiver High Gain Mode Equalizer AC Gain Control (CTLE AC GAIN)</td>
<td>Table "Available Options" in XCVR_A10_RX_ADP_CPLE_ACGAIN_4S</td>
</tr>
<tr>
<td>"1"</td>
<td>Receiver Variable Gain Amplifier Voltage Swing Select (VGA)</td>
<td>Table "Available Options" in XCVR_A10_RX_ADP_VGA_SEL</td>
</tr>
<tr>
<td>"2"</td>
<td>Receiver High Gain Mode Equalizer DC Gain Control (CTLE DCGAIN)</td>
<td>Table "Available Options" in XCVR_A10_RX_EQ_DC_GAIN_TRIM</td>
</tr>
<tr>
<td>"3"</td>
<td>Transmitter Pre-Emphasis First Post-Tap Magnitude</td>
<td>Table "Available Options" in XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP</td>
</tr>
<tr>
<td>"4"</td>
<td>Transmitter Pre-Emphasis Second Post-Tap Magnitude</td>
<td>Table "Available Options" in XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP</td>
</tr>
<tr>
<td>"5"</td>
<td>Transmitter Pre-Emphasis First Pre-Tap Magnitude</td>
<td>Table "Available Options" in XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T</td>
</tr>
<tr>
<td>"6"</td>
<td>Transmitter Pre-Emphasis Second Pre-Tap Magnitude</td>
<td>Table "Available Options" in XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T</td>
</tr>
<tr>
<td>"7"</td>
<td>Transmitter Output Swing Level</td>
<td>Table "Available Options" in XCVR_A10_TX_VOD_OUTPUT_SWING_CTRL</td>
</tr>
</tbody>
</table>

The ASCII-encoded string value specified by the analog-pma-setting subfield corresponds to the encoded value for the HSSI PHY transceiver analog PMA setting on the lane indicated by the hssi-phy-transceiver-lane-index:analog-pma-setting-index subfields.

The equalizer_tune sysfs reads and configures analog PMA setting value encodings for the analog-pma-setting subfield. For descriptions of those setting value encodings, refer to the Encodings sections that follow.

Related Information

- Receiver CTLE AC Gain sysfs Encodings on page 22
- Receiver VGA sysfs Encodings on page 22
3.1.4.1. Receiver CTLE AC Gain sysfs Encodings

\begin{verbatim}
analog-pma-setting-index = "0"
\end{verbatim}

HSSI PHY receiver CTLE AC Gain is specified using the \texttt{XCVR_A10_RX_ADP_CTLE_ACGAIN_4S} parameter. The following table shows the supported range of values for receiver CTLE AC Gain with the corresponding sysfs \texttt{analog-pma-setting} hex string value.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\texttt{XCVR_A10_RX_ADP_CTLE_ACGAIN_4S} & \texttt{analog-pma-setting} \\
\hline
\texttt{RADP_CTLE_ACGAIN_4S_<0 to 28>} & Range of string values from "0" to "1c" (default = "0") \\
\hline
\end{tabular}
\caption{Receiver CTLE AC Gain sysfs Value Encodings}
\end{table}

Related Information
The equalizer_tune sysfs on page 20

3.1.4.2. Receiver VGA sysfs Encodings

\begin{verbatim}
analog-pma-setting-index = "1"
\end{verbatim}

HSSI PHY receiver Voltage Gain Amplifier (VGA) voltage swing select is specified using the \texttt{XCVR_A10_RX_ADP_VGA_SEL} parameter. The following table shows the supported range of values for receiver VGA voltage swing with the corresponding sysfs \texttt{analog-pma-setting} hex string value.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\texttt{XCVR_A10_RX_ADP_VGA_SEL} & \texttt{analog-pma-setting} \\
\hline
\texttt{RADP_VGA_SEL_<0 to 7>} & Range of string values from "0" to "7" (default = "4") \\
\hline
\end{tabular}
\caption{Receiver VGA sysfs Value Encodings}
\end{table}

Related Information
The equalizer_tune sysfs on page 20

3.1.4.3. Receiver CTLE DC Gain sysfs Encodings

\begin{verbatim}
analog-pma-setting-index = "2"
\end{verbatim}

HSSI PHY receiver CTLE DC Gain is specified using the \texttt{XCVR_A10_RX_EQ_DC_GAIN_TRIM} parameter. The following table shows the supported range of values for receiver CTLE DC Gain with the corresponding sysfs \texttt{analog-pma-setting} hex string value.
Table 16. Receiver CTLE DC Gain sysfs Value Encodings

<table>
<thead>
<tr>
<th>XCVR_A10_RX_EQ_DC_GAIN_TRIM</th>
<th>analog-pma-setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO_DC_GAIN</td>
<td>"0"</td>
</tr>
<tr>
<td>STG1_GAIN7</td>
<td>"7" (default)</td>
</tr>
</tbody>
</table>

Related Information
The equalizer_tune sysfs on page 20

3.1.4.4. Transmitter Pre-Emphasis First Post Tap Encodings

analog-pma-setting-index = "3"

HSSI PHY transmitter pre-emphasis first post tap is specified using a combination of two parameters:
- XCVR_A10_TX_PRE_EMP_SIGN_1ST_POST_TAP – specifies positive or negative pre-emphasis polarity.
- XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP – specifies pre-emphasis magnitude.

The following table shows the supported range of values for transmitter pre-emphasis first post tap with the corresponding sysfs analog-pma-setting hex string value.

Table 17. Transmitter Pre-Emphasis First Post Tap sysfs Value Encodings

<table>
<thead>
<tr>
<th>XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP</th>
<th>analog-pma-setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of decimal values from 0 to 25</td>
<td>Range of string values from "0" to "19" (default = "0")</td>
</tr>
<tr>
<td>XCVR_A10_TX_PRE_EMP_SIGN_1ST_POST_TAP = FIR_POST_1T_POS</td>
<td></td>
</tr>
<tr>
<td>Range of decimal values from 0 to 25</td>
<td>Range of string values from "40" to "59"</td>
</tr>
<tr>
<td>XCVR_A10_TX_PRE_EMP_SIGN_1ST_POST_TAP = FIR_POST_1T_NEG</td>
<td></td>
</tr>
</tbody>
</table>

Related Information
The equalizer_tune sysfs on page 20

3.1.4.5. Transmitter Pre-Emphasis Second Post Tap Encodings

analog-pma-setting-index = "4"

HSSI PHY transmitter pre-emphasis second post tap is specified using a combination of two parameters:
- XCVR_A10_TX_PRE_EMP_SIGN_2ND_POST_TAP – specifies positive or negative pre-emphasis polarity.
- XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP – specifies pre-emphasis magnitude.

The following table shows the supported range of values for transmitter pre-emphasis second post tap with the corresponding sysfs analog-pma-setting hex string value.
Table 18. Transmitter Pre-Emphasis Second Post Tap sysfs Value Encodings

<table>
<thead>
<tr>
<th>XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP</th>
<th>analog-pma-setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of decimal values from 0 to 12</td>
<td>Range of string values from "0" to "c"</td>
</tr>
<tr>
<td>XCVR_A10_TX_PRE_EMP_SIGN_2ND_POST_TAP = FIR_POST_2T_POS</td>
<td>Range of string values from "20" to "2c" (default = "20")</td>
</tr>
</tbody>
</table>

Related Information
The equalizer_tune sysfs on page 20

3.1.4.6. Transmitter Pre-Emphasis First Pre Tap Encodings

| analog-pma-setting-index = "5" |

HSSI PHY transmitter pre-emphasis first pre tap is specified using a combination of two parameters:

- XCVR_A10_TX_PRE_EMP_SIGN_PRE_TAP_1T – specifies positive or negative pre-emphasis polarity.
- XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T – specifies pre-emphasis magnitude.

The following table shows the supported range of values for transmitter pre-emphasis first pre tap with the corresponding sysfs analog-pma-setting hex string value.

Table 19. Transmitter Pre-Emphasis First Pre Tap sysfs Value Encodings

<table>
<thead>
<tr>
<th>XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T</th>
<th>analog-pma-setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of decimal values from 0 to 16</td>
<td>Range of string values from "0" to "10"</td>
</tr>
<tr>
<td>XCVR_A10_TX_PRE_EMP_SIGN_PRE_TAP_1T = FIR_PRE_1T_POS</td>
<td>Range of string values from "20" to "30" (default = "20")</td>
</tr>
</tbody>
</table>

Related Information
The equalizer_tune sysfs on page 20

3.1.4.7. Transmitter Pre-Emphasis Second Pre Tap Encodings

| analog-pma-setting-index = "6" |

HSSI PHY transmitter pre-emphasis second pre tap is specified using a combination of two parameters:

- XCVR_A10_TX_PRE_EMP_SIGN_PRE_TAP_2T – specifies positive or negative pre-emphasis polarity.
- XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T – specifies pre-emphasis magnitude.

The following table shows the supported range of values for transmitter pre-emphasis second pre tap with the corresponding sysfs analog-pma-setting hex string value.
3.1.4.8. Transmitter VOD Encodings

HSSI PHY transmitter VOD is specified using the `XCVR_A10_TX_VOD_OUTPUT_SWING_CTRL` parameter. The following table shows the supported range of values for transmitter VOD with the corresponding sysfs `analog-pma-setting` hex string value.

Table 21. Transmitter VOD Encodings

<table>
<thead>
<tr>
<th><code>XCVR_A10_TX_VOD_OUTPUT_SWING_CTRL</code></th>
<th><code>analog-pma-setting</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of decimal values from 0 to 31</td>
<td>Range of string values from "0" to "1f" (default = "1d")</td>
</tr>
</tbody>
</table>

Related Information
The `equalizer_tune sysfs` on page 20

3.2. Managing the Network Port

Manage the network port from the host using the OPAE driver sysfs files. The sections that follow cover some management use cases. You must read *Configuring the Network Port* before using the feature from any host application.

The examples illustrate managing the network port through the driver sysfs files from a shell terminal window using Linux commands and OPAE tools. From a host application, use calls to `open()`, `read()`, `write()` and `close()` from the `stdio` library on the sysfs files and parse the strings according to the format documented in the preceding sections.

Related Information
Configuring the Network Port on page 25

3.2.1. Configuring the Network Port

To enable the network port, you must configure the HSSI PHY mode and load a network port-enabled AF from the host. The following procedure shows the programming method for 4x10GBASE-SR operation from a shell terminal window using Linux commands and OPAE tools for a single Intel PAC with Intel Arria 10 GX FPGA installed in the system.

```
$ sudo sh -c "echo 10 > \\
    /sys/class/fpga/intel-fpga-dev.<i>/intel-fpga-fme.<j>/intel-pac-hssi.<m>.auto/hssi_mgmt/config"
```

2. Load an AF that supports the configured HSSI PHY mode.

```
$ sudo fpgaconfig \\
$OPAE_PLATFORM_ROOT/hw/samples/eth_e2e_e10/bin/eth_e2e_e10.gbs
```

After performing the above steps, the network port on the Intel PAC with Intel Arria 10 GX FPGA is ready for OPAE applications compatible with the loaded AF.

3.2.2. Reading the Base MAC Address from the Intel PAC with Intel Arria 10 GX FPGA

Each Intel PAC with Intel Arria 10 GX FPGA reserves four consecutive MAC addresses. The Intel PAC with Intel Arria 10 GX FPGA stores a single, universally unique base MAC address. For 4x10BASE-SR mode, the Intel PAC with Intel Arria 10 GX FPGA reserves the next three consecutive addresses.

Read the kernel driver `eeprom` sysfs file to retrieve the base MAC address as follows:

```
$ hexdump -C \\
    /sys/class/fpga/intel-fpga-dev.<i>/intel-fpga-fme.<j>/intel-pac-hssi.<m>.auto/hssi_mgmt/eeprom
```

The fields are delimited by LF (new line) characters. The base MAC address is located in the first field.

3.2.3. Modifying HSSI PHY Transceiver PMA Settings

You can retrieve the current set of HSSI PHY transceiver analog PMA settings and modify individual settings per transceiver lane using the `equalizer_tune` sysfs file.

The following command dumps the current settings to stdout:

```
$ cat /sys/class/fpga/intel-fpga-dev.<i>/intel-fpga-fme.<j>/intel-pac-hssi.<m>.auto/hssi_mgmt/equalizer_tune
```

See *The equalizer_tune sysfs* for details on the format of this sysfs file’s contents.

To modify an analog PMA setting for a transceiver lane, write a single field at a time to the `equalizer_tune` sysfs file. For example, to set the transmitter pre-emphasis second pre-tap magnitude to 4 for transceiver lane 2, write the following string value:

```
"2:6=4"
```

Here is an example of doing this from a shell terminal window:

```
$ sudo sh -c "echo 2:6=4 > \\
    /sys/class/fpga/intel-fpga-dev.<i>/intel-fpga-fme.<j>/intel-pac-hssi.<m>.auto/hssi_mgmt/equalizer_tune"
```

Do this separately for each lane or PMA setting value you want to modify.
3. OPAE Support

3.2.3.1. HSSI PHY Analog PMA Presets

The HSSI PHY's analog PMA settings must be configured for the specific QSFP+ interconnect media used to connect the Intel PAC with Intel Arria 10 GX FPGA to the network. See the Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA Datasheet for the procedure for applying analog PMA presets for the supported interconnect media.

Related Information
Intel® Programmable Acceleration Card (PAC) with Intel® Arria® 10 GX FPGA Datasheet
4. HSSI User Guide for Intel PAC with Intel Arria 10 GX FPGA Revision History

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018.08.06</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>