Enpirion EP5357xUI DC/DC Converter Module Evaluation Board

Introduction

Thank you for choosing Altera® Enpirion power products!

This application note describes how to test the EP5357xUI (EP5357LUI, EP5357HUI) converters using the Altera Enpirion 2.5mmx2.25mm Module EVAL BOARD shown in Fig. 1. In addition to this document you will also need the device datasheet for a thorough evaluation of the power converter module.

The EP5357xUI converters are part of a new class of DC/DC converter products, a complete power system on silicon:

- These devices are complete modules including magnetics, and require only ceramic input and output capacitors.
- The evaluation board is designed to offer a wide range of engineering evaluation capabilities. This includes the base configuration of an 0603 input capacitor and an 0805 output capacitor.
- Pads are available to add one additional input capacitor and two additional output capacitors for evaluation of performance over a wide range of input/output capacitor combinations.
- Pads are available to populate an external resistor divider to enable output voltage programming of values not available using the VID. The pads are labeled R1 and R2. Pads are also available for placing an optional feed-forward capacitor (labeled C9) across resistor R1.

NOTE: The External voltage divider option is available only with EP5357LUI.

- Jumpers are provided for easy programming of the following signals:
 - Light load mode (LLM)
 - Enable
 - VS0-VS2 output voltage selection pins
- Test points are provided as well as clip leads for input and output connections
- The board comes with input decoupling, and input reverse polarity protection to safeguard the device from common setup mishaps.
Quick Start Guide

STEP 1: Before applying power to the board, set the “ENABLE” jumper to the Disable Position. Set VS0, VS1 and VS2 pins for the desired output setting. A voltage greater than 1.4V at LLM pin, will enable LLM, while a voltage less than 0.4V will disable it.

CAUTION: the signal pins LLM, ENA, VS0, VS1 and VS2 must be connected to a logic “high”, jumper to the left, or a logic “low”, jumper to the right. It may not be left floating as the pin state would then be in an indeterminate state.

STEP 2: Connect a power supply to the input test points, TP8 (VIN) and TP5 (GND) as indicated in Figure 1. The same test points can also be used to measure the input voltage.

CAUTION: be mindful of the polarity and the voltage magnitude. If VIN is greater than 6V, the board may get damaged. If the input voltage polarity is wrong, diode D1 will conduct, and draw excessive input current.

STEP 3: Set the output voltage select pins for the desired output voltage. Refer to Tables 1 and 2 to determine the setting.

CAUTION: the external resistor divider is not populated in the standard board configuration. Choosing the “EXT” option for the EP5357LUUI without the external resistors R1 and R2 will result in unpredictable behavior.

STEP 4: Connect the load to the output connectors TP7 (VOUT) and TP6 (GND), as indicated in Figure 1. The same test points are also used to measure the DC output voltage.

STEP 5: Connect the LLM (Light Load Mode) jumper as needed. A voltage greater than 1.4V will enable LLM, and less than 0.4V will disable LLM.

STEP 6: Move the ENABLE jumper to the enabled position, and power up the board. The EP5357xUI should now be operational.
Figure 1. Evaluation Board Layout.
Output Voltage Select

The EP5357xUI utilizes a 3 pin output voltage select scheme. The output voltage is programmed by setting the VSx jumpers to either a logic “1” or a logic “0” as described in the Quick Start section.

Tables 1 and 2 show the logic table for V_{OUT} selection. There are seven preset output voltage levels and an externally programmable option for the EP5357LUI. The EP5357HUI has eight preset output voltage levels and no external programming capability.

Table 1: EP5357LUI Output Voltage Select Logic Table

<table>
<thead>
<tr>
<th>VS2</th>
<th>VS1</th>
<th>VS0</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.50</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.45</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.20</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.15</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.05</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>EXT</td>
</tr>
</tbody>
</table>

Table 2: EP5357HUI Output Voltage Select Logic Table

<table>
<thead>
<tr>
<th>VS2</th>
<th>VS1</th>
<th>VS0</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Test Recommendations

To guarantee measurement accuracy, the following precautions should be observed:

1. Make all input and output voltage measurements at the board using the test points provided. This will eliminate voltage drop across the line and load cables that can produce inaccurate measurements – especially efficiency.
2. Measure input and output current with series ammeters or accurate shunt resistors. This is especially important when measuring efficiency.
3. Use a balanced impedance probe tip as shown in Figure 2, and through-hole test point pair TP2 to measure the output voltage ripple to avoid noise coupling into the probe ground lead and for load transient response measurements.

Figure 2: Balanced-impedance oscilloscope probe. Wrap bare wire around the ground shaft and bring the wire close to the probe tip. This minimizes probe loop inductance and stray noise pickup by the probe.

Using The External Voltage Divider

The EP5357xUI evaluation board is designed to provide a great deal of flexibility in evaluating the performance of the Altera Enpirion DC/DC module.

Pre-tinned pads are provided to place 0805 sized 1% resistors on the board to implement an external resistor divider for the EP5357LUI to choose an output voltage other than one of the seven pre-set voltages available on the VID. See Figure 3 for the basic circuit.
Figure 3. External divider schematic for the EP5357LUI.

The output voltage is selected by the following formula:

\[V_{\text{OUT}} = 0.6V \left(1 + \frac{R_1}{R_2}\right) \]

R1 must be chosen as 237kΩ to maintain control loop stability. Then R2 is given as:

\[R_2 = \frac{142.2 \times 10^3}{V_{\text{OUT}} - 0.6} \Omega \]

The external voltage divider option is chosen by setting the jumpers VS0 – VS2 to a logic “high”. Light-load mode (LLM) is not operational when using external resistor dividers.

Note: The \(V_{\text{SENSE}} \) pin should be tied to the Output pin even in external feedback mode to access the internal phase lead capacitor that is situated between the \(V_{\text{SENSE}} \) and \(V_{\text{FB}} \) pads. This phase lead capacitor is integral to the loop compensation and the power supply stability.
Dynamically Adjustable Output

The EP5357xUI is designed to allow for dynamic switching between the predefined voltage levels by toggling the VID pins. The inter-voltage slew rate is optimized to prevent excess undershoot or overshoot as the output voltage levels transition. The slew rate is defined in the datasheet.

This feature can be tested by connecting the VSx jumper center pins to logic driver to toggle between the various \(V_{OUT} \) states.

Note: Dynamic switching between a predefined output and an externally programmed output is not allowed. This could result excess current flow and damage the device.

Input and Output Capacitors

Input Filter Capacitor

For \(I_{LOAD} \leq 500\text{mA} \), \(C_{IN} = 2.2\mu\text{F} \)

For \(I_{LOAD} > 500\text{mA} \), \(C_{IN} = 4.7\mu\text{F} \).

0402 capacitor case size is acceptable.

The input capacitor must use a X5R or X7R or equivalent dielectric formulation. Y5V or equivalent dielectric formulations lose capacitance with frequency, bias, and with temperature, and are not suitable for switch-mode DC-DC converter input filter applications.

Output Filter Capacitor

For \(V_{IN} \leq 4.3\text{V} \), \(C_{OUT_MIN} = 10\mu\text{F} \) 0603 MLCC.

For \(V_{IN} > 4.3\text{V} \), \(C_{OUT_MIN} = 10\mu\text{F} \) 0805 MLCC.

Ripple performance can be improved by using 2x10\(\mu \text{F} \) 0603 MLCC capacitors (for any allowed \(V_{IN} \)).

The maximum output filter capacitance next to the output pins of the device is 60\(\mu \text{F} \) low ESR MLCC capacitance. \(V_{OUT} \) has to be sensed at the last output filter capacitor next to the EP5357xUI.
Additional bulk capacitance for decoupling and bypass can be placed at the load as long as there is sufficient separation between the V_{OUT} Sense point and the bulk capacitance.

Excess total capacitance on the output (Output Filter + Bulk) can cause an overcurrent condition at startup. Please refer to product datasheet for details on maximum bulk capacitance.

The output capacitor must use a X5R or X7R or equivalent dielectric formulation. Y5V or equivalent dielectric formulations lose capacitance with frequency, bias, and temperature and are not suitable for switch-mode DC-DC converter output filter applications.

Board, BOM, Schematic

![Figure 4. Photo of EVB.](image)

Table 3. EVB Bill of Materials.

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Qty</th>
<th>Ref Des</th>
<th>Item Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7UF 10V X5R 0603 CAPACITOR CERAMIC</td>
<td>1</td>
<td>C2</td>
<td>Capacitor</td>
<td>Input Capacitor</td>
</tr>
<tr>
<td>CAP, 10UF 0805 X7R 10% 10V CERAMIC</td>
<td>2</td>
<td>C3</td>
<td>Capacitor</td>
<td>Output Capacitor</td>
</tr>
<tr>
<td>EP5357xUI2.5MM X 225MM</td>
<td>1</td>
<td>U1</td>
<td>Device-GTP</td>
<td>Enpirion EP5357xUI</td>
</tr>
<tr>
<td>CAP 47UF 16V ELECT IC SMD</td>
<td>1</td>
<td>C8</td>
<td>Capacitor</td>
<td>Board Input Decoupling Capacitor</td>
</tr>
<tr>
<td>52A DIODE</td>
<td>1</td>
<td>D1</td>
<td>Diode</td>
<td>Reverse Polarity Protection</td>
</tr>
<tr>
<td>CAP, 10UF 0805 X7R 10% 10V CERAMIC</td>
<td>1</td>
<td>C10</td>
<td>Capacitor</td>
<td>Connector Decoupling</td>
</tr>
<tr>
<td>MULTILAYER SMD FERRITE BEAD 4000MA 0805</td>
<td>1</td>
<td>FB1</td>
<td>Ferrite Bead</td>
<td>Connector Decoupling</td>
</tr>
<tr>
<td>CONNECTOR, CUSTOM, VERTICAL HEADER, SMT</td>
<td>1</td>
<td>J1</td>
<td>Connector/Contact</td>
<td>Jumper/Connector Array</td>
</tr>
<tr>
<td>COMPONENT NOT USED ** DO NOT INSTALL **</td>
<td>8</td>
<td>C1,C4,C5,C9,R1,R2,R3,U2</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>TEST POINT SURFACE MOUNT</td>
<td>4</td>
<td>TP5,TP6,TP7,TP8</td>
<td>Connector/Contact</td>
<td>Test Point</td>
</tr>
<tr>
<td>RESISTOR ZERO OHM 1/10W 5% 0402 SMD</td>
<td>1</td>
<td>R4</td>
<td>Resistor</td>
<td>Zero Ohm Jumper</td>
</tr>
</tbody>
</table>

Www.altera.com/enpirion

Page 8 of 11
Figure 4: 2.5mm x 2.25mm Module Evaluation Board Schematic
Contact Information

Altera Corporation
101 Innovation Drive
San Jose, CA 95134
Phone: 408-544-7000
http://www.altera.com