Intel® Stratix® 10 Configuration via Protocol (CvP) Implementation User Guide

Updated for Intel® Quartus® Prime Design Suite: 18.0
Contents

1. Overview .. 4
 1.1. Benefits of Using CvP .. 4
 1.2. CvP System .. 4
 1.3. CvP Modes ... 5

2. CvP Description .. 7
 2.1. Configuration Images ... 7
 2.2. CvP Modes ... 7
 2.2.1. CvP Initialization Mode ... 7
 2.2.2. CvP Update Mode .. 7
 2.3. Compression and Encryption Features .. 8
 Data Compression ... 8
 Data Authentication and Encryption ... 8
 2.4. Core Image Update .. 8
 2.5. Pin Description .. 9

3. CvP Topologies .. 12
 3.1. Single Endpoint ... 12
 3.2. Multiple Endpoints .. 12

4. Design Considerations .. 14
 4.1. Designing CvP for an Open System ... 14
 4.1.1. FPGA Power Supplies Ramp Time Requirement ... 14
 4.1.2. PCIe Wake-Up Time Requirement .. 15
 4.2. Designing CvP for a Closed System .. 16

5. CvP Driver and Registers ... 17
 5.1. CvP Driver Support .. 17
 5.2. CvP Driver Flow ... 17
 5.3. VSEC Registers for CvP ... 18
 5.3.1. Vendor Specific Capability Header Register .. 19
 5.3.2. Vendor Specific Header Register .. 19
 5.3.3. Intel Marker Register .. 19
 5.3.4. User Configurable Device/Board ID Register .. 20
 5.3.5. CvP Status Register .. 20
 5.3.6. CvP Mode Control Register .. 20
 5.3.7. CvP Data Registers ... 21
 5.3.8. CvP Programming Control Register ... 21
 5.3.9. CvP Credit Register .. 22

6. Understanding the Design Steps for CvP Initialization and Update Mode in Intel Stratix 10 ... 23
 6.1. Implementation of CvP Initialization Mode ... 23
 6.1.2. Setting up the CvP Parameters in Device and Pin Options 26
 6.1.3. Compiling the Design ... 27
 6.1.4. Converting the SOF File .. 27
 6.1.5. Bringing up the Hardware ... 29
6.2. Implementation of CvP Update Mode... 31

1. Overview

Configuration via Protocol (CvP) is a configuration scheme supported in Arria® V, Cyclone® V, Stratix® V, Intel® Arria 10, Intel Stratix 10, and Intel Cyclone 10 GX device families. The CvP configuration scheme creates separate images for the periphery and core logic. You can store the periphery image in a local configuration device and the core image in host memory, reducing system costs and increasing the security for the proprietary core image. CvP configures the Intel FPGA fabric through the PCI Express* (PCIe*) link, and is available for Endpoint variants only.

Related Information

- Arria 10 CvP Initialization and Partial Reconfiguration over PCI Express User Guide
 Provides more information about the CvP implementation in Arria 10 devices.
 Provides more information about the CvP implementation in V-series FPGA devices.

1.1. Benefits of Using CvP

The CvP configuration scheme has the following advantages:

- Reduces system costs by reducing the size of the local flash device that stores the configuration data. The smallest EPCQ-L device is large enough for all Intel Stratix 10 periphery images.
- Allows update of the FPGA without reprogramming the flash.
- Enables dynamic core updates without requiring a system power down. CvP allows you to update the FPGA fabric through the PCIe link without a host reboot or FPGA full chip reinitialization.
- Provides a simpler software model for configuration. A smart host can use the PCIe protocol and the application topology to initialize and update the FPGA fabric.
- Allows quick update of your design for changing application loads.

1.2. CvP System

A CvP system typically consists of an FPGA, a PCIe host, and a configuration device.
1. The FPGA connects to the configuration device using the Active Serial x4 (fast mode) configuration scheme.
2. CvP and other applications use the PCIe Hard IP block (bottom left).
 - Many Intel Stratix 10 FPGAs include more than one Hard IP block for PCI Express. The CvP configuration scheme can only utilize the bottom left PCIe Hard IP block on each device. You must configure this as an Endpoint.
3. You can use other PCIe Hard IP blocks for PCIe applications and cannot use the blocks for CvP.

1.3. CvP Modes

The CvP configuration scheme supports the following modes:
- CvP Initialization mode
- CvP Update mode

CvP Initialization Mode

This mode configures the CvP PCIe core and any PCIe cores (peripheral image) of the FPGA through the PCIe link upon system power up.

Benefits of using CvP Initialization mode include:
- Satisfying the PCIe wake-up time requirement
- Saving cost by storing the core image in the host memory
CvP Update Mode

In the CvP update mode, you configure the FPGA with the full configuration image (both periphery and core) after the initial system power up through conventional configuration scheme or CvP initialization. The subsequent core image updates use the PCIe link (the periphery must not change during CvP update).

The CvP update mode uses the same process as root partition reuse in block-based design, which allows you to reuse the device periphery.

Choose this mode if you want to update the core image for any of the following reasons:

- To change core algorithms
- To perform standard updates as part of a release process
- To customize core processing for different components that are part of a complex system

Note: The CvP update mode is available after the FPGA enters user mode. In user mode, the PCIe link is available for normal PCIe applications as well as to perform an FPGA core image update.

Table 1. CvP Support for Intel Stratix 10 Device Family

<table>
<thead>
<tr>
<th>PCIe Version</th>
<th>Supported CvP Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen 1 / Gen 2 / Gen 3</td>
<td>CvP Initialization, CvP Update</td>
</tr>
</tbody>
</table>

Related Information
Reusing Root Partitions
2. CvP Description

2.1. Configuration Images

In CvP, you partition your design into two images: periphery image and core image.

You use the Intel Quartus® Prime Pro Edition software to generate the images:

- Periphery image (*.periph.jic) — contains all of the periphery. The entire periphery image is static and cannot be reconfigured.
- Core image (*.core.rbf) — contains all of the core components of the design.

2.2. CvP Modes

2.2.1. CvP Initialization Mode

In this mode, an external configuration device stores the periphery image and it loads into the FPGA through the Active Serial x4 (Fast mode) configuration scheme. The host memory stores the core image and it loads into the FPGA through the PCIe link.

After the periphery image configuration is complete, the CONF_DONE signal goes high and the FPGA starts PCIe link training. When PCIe link training is complete, the PCIe link transitions to L0 state and then through PCIe enumeration. The PCIe host then initiates the core image configuration through the PCIe link. The PCIe REFCLK needs to be running for the link to be trained.

After the core image configuration is complete, the CvP_CONF_DONE pin (if enabled) goes high, indicating the FPGA is fully configured.

After the FPGA is fully configured, the FPGA enters user mode. If the INIT_DONE signal is enabled, the INIT_DONE signal goes high after initialization is complete and the FPGA has entered user mode.

In user mode, the PCIe links are available for normal PCIe applications.

2.2.2. CvP Update Mode

CvP update mode is a reconfiguration scheme that allows an FPGA device to deliver an update bitstream to a target device after the device enters user mode. In this mode, the FPGA device initializes by loading the full configuration image from the external local configuration device to the FPGA or after CvP initialization.

You can perform CvP update on a device that you originally configure for CvP initialization or any other configuration scheme. CvP initialization does not require to perform CvP update.
In user mode, the PCIe links are available for normal PCIe applications. You can use the PCIe link to perform an FPGA core image update. To perform the FPGA core image update, you can create one or more FPGA core images in the Intel Quartus Prime Pro Edition software that have identical connections to the periphery image.

2.3. Compression and Encryption Features

Data Compression

The Intel Quartus Prime Pro Edition software compresses all Intel Stratix 10 bitstreams to reduce the storage requirement and increase bitstream processing speed. The periphery and core images are both compressed.

Data Authentication and Encryption

Secure Device Manager (SDM) supports various enhanced security features which are also supported in CvP. You can choose to encrypt the core and peripheral images. To configure authentication, you must reprogram the FPGA with an authentication key. You cannot configure the FPGA with an image unless it matches the authentication key. After enabling authentication you may choose to enable encryption.

You must use the same authentication and encryption keys for the periphery and core image.

2.4. Core Image Update

After the FPGA enters user mode, the PCIe host can trigger an FPGA core image update through the PCIe link. Both CvP Initialization mode and CvP update mode support core image updates.

You must choose the same authentication and encryption settings for core images during core image update that you choose for initial configuration.
Figure 2. Periphery and Core Image Storage Arrangement for CvP Core Image Update

The periphery image remains the same for different core image updates. If you change the periphery image, you must reprogram the local configuration device with the new periphery image.

You can use CvP revision design flow to create multiple reconfigurable core images that connect to the same periphery image.

Related Information

Reusing Root Partitions

2.5. Pin Description

The following table lists the CvP pin descriptions and connection guidelines:

<table>
<thead>
<tr>
<th>Table 2.</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin Name</td>
<td>Pin Type</td>
<td>Pin Description</td>
<td>Pin Connection</td>
</tr>
<tr>
<td>CvP_CONFDONE</td>
<td>Output</td>
<td>The CvP_CONFDONE pin is driven low during configuration. When configuration via PCIe is complete, this signal is actively driven high. During FPGA configuration in CvP initialization and update mode, you may observe this pin after the CONF_DONE pin goes high to determine if the FPGA is successfully configured.</td>
<td>If this pin is set as dedicated output, the VCCIO_SDM power supply must meet the input voltage specification of the receiving side. You can assign SDM_100, SDM_1010, SDM_1011, SDM_1012, SDM_1013, SDM_1014, SDM_1015 or SDM_1016 as CvP_CONFDONE in Intel Quartus Prime Pro Edition software.</td>
</tr>
<tr>
<td>INIT_DONE</td>
<td>Output</td>
<td>The INIT_DONE pin goes high indicating the device has entered user mode upon completion of configuration.</td>
<td>Intel recommends using SDM_100 pin for implementing the INIT_DONE function, provided that this function is enabled in the Intel Quartus Prime Pro Edition software.</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Type</th>
<th>Pin Description</th>
<th>Pin Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONF_DONE</td>
<td>Output</td>
<td>For normal configuration mode, the CONF_DONE pin drives low before and during configuration. After all configuration data is received without error and the initialization cycle starts, CONF_DONE is driven high. In CvP initialization mode, CONF_DONE goes high after the periphery is configured.</td>
<td>Intel recommends using SDM_IO16 pin implementing the CONF_DONE function, provided that this function is enabled in the Intel Quartus Prime Pro Edition software.</td>
</tr>
<tr>
<td>nPERST{L,R} [0:2]</td>
<td>Input</td>
<td>Dual-purpose fundamental reset pin is only available when you use PCI Express hard IP. When the PCIe hard IP on a side (left or right) is enabled, then nPERST pins on that side cannot be used as general-purpose I/Os (GPIOs). In this case, connect the nPERST pin to the system PCIe nPERST signal to ensure that both ends of the link start link-training at the same time. The nPERST pins on a side are available as GPIOs only when the PCIe hard IP on that side is not enabled. When this pin is low, the transceivers are in reset. When this pin is high, the transceivers are out of reset. When you do not use this pin as the fundamental reset, you can use this pin as a user I/O pin.</td>
<td>Connect this pin as defined in the Intel Quartus Prime Pro Edition software. For more details, refer to Intel Stratix 10 Avalon®-MM/ST Interface for PCIe Solutions User Guide. This pin is powered by the VCCIO3V supply. When you connect a 3.0-V supply to VCCIO3V, you must use a diode to clamp the 3.3V LVTTL PCIe input signal to the VCCIO3V power of the device. When VCCIO3V is connected to any voltage other than 3.0V, you must use a level translator to shift down the voltage from 3.3V LVTTL to the corresponding voltage level powering the VCCIO3V pin. Only one nPERST pin is used per PCIe hard IP. The Intel Stratix 10 device components may have all six pins listed even when the specific component might only have 1 or 2 PCIe hard IPs: • nPERST0 = Bottom Left PCIe hard IP & CvP • nPERST1 = Middle Left PCIe hard IP (When available) • nPERST2 Top Left PCIe hard IP (When available) • nPERST0 = Bottom Right PCIe hard IP (When available) • nPERST1 = Middle Right PCIe hard IP (When available) • nPERST2 = Top Right PCIe hard IP (When available) Note: For maximum compatibility, always use the bottom left PCIe Hard IP first, as this is the only location that supports Configuration via Protocol (CvP) using the PCIe link.</td>
</tr>
</tbody>
</table>
2. CvP Description

Related Information

- Intel Stratix 10 Avalon-MM Interface for PCI Express Solutions User Guide
- Intel Stratix 10 GX, MX, TX, and SX Device Family Pin Connection Guidelines
3. CvP Topologies

CvP supports two types of topologies that allow you to configure single or multiple FPGAs.

3.1. Single Endpoint

Use the single endpoint topology to configure a single FPGA. In this topology, the PCIe link connects one PCIe endpoint in the FPGA device to one PCIe root port in the host.

Figure 3. Single Endpoint Topology

3.2. Multiple Endpoints

Use the multiple endpoints topology to configure multiple FPGAs through a PCIe switch. This topology provides you with the flexibility to select the device to configure or update through the PCIe link. You can connect any number of FPGAs to the host in this topology.
The PCIe switch controls the core image configuration through the PCIe link to the targeted PCIe endpoint in the FPGA. You must ensure that the root port can respond to the PCIe switch and direct the configuration transaction to the designated endpoint based on the bus/device/function address of the endpoint specified by the PCIe switch.

Figure 4. Multiple Endpoints Topology
4. Design Considerations

4.1. Designing CvP for an Open System

Follow these guidelines when designing an open CvP system where you do not have complete control of both ends of the PCIe link.

4.1.1. FPGA Power Supplies Ramp Time Requirement

For an open system, you must ensure that your design adheres to the FPGA power supplies ramp-up time requirement.

The power-on reset (POR) circuitry keeps the FPGA in the reset state until the power supply outputs are in the recommended operating range. A POR event occurs from when you power up the FPGA until the power supplies reach the recommended operating range within the maximum power supply ramp time, t_{RAMP}. If t_{RAMP} is not met, the device I/O pins and programming registers remain tri-stated, during which device configuration could fail.

To meet the PCIe link up time for CvP, the total t_{RAMP} must be less than 10 ms, from the first power supply ramp-up to the last power supply ramp-up. You select ASx4 fast mode for MSEL settings to make sure the shortest POR delay.

Figure 5. Power Supplies Ramp-Up Time and POR

![Power Supplies Ramp-Up Time and POR](image_url)
4.1.2. PCIe Wake-Up Time Requirement

For an open system, you must ensure that the PCIe link meets the PCIe wake-up time requirement as defined in the *PCI Express CARD Electromechanical Specification*. The transition from power-on to the link active (L0) state for the PCIe wake-up timing specification must be within 200 ms. The timing from FPGA power-up until the Hard IP for PCI Express IP Core in the FPGA is ready for link training must be within 120 ms.

Related Information

PCI Express Card Electromechanical 3.0 Specification

4.1.2.1. For CvP Initialization Mode

For CvP Initialization mode, the Hard IP for PCI Express IP core meets the 120 ms requirement because the periphery image configuration time is significantly less than the full FPGA configuration time. You should use the Active Serial x4 (fast mode) configuration scheme for the periphery image configuration.

To ensure successful configuration, all POR-monitored power supplies must ramp up monotonically to the operating range within the 10 ms ramp-up time. The PERST# signal indicates when the FPGA power supplies are within their specified voltage tolerances and the REFCLK is stable\(^{(1)}\). The embedded hard reset controller triggers after the internal status signal indicates that the periphery image has been loaded. This reset does not trigger off of PERST#. For CvP Initialization mode, the PCIe link supports the FPGA core image configuration and subsequent PCIe applications in user mode.

Note: For Gen 2/Gen 3 capable Endpoints, after loading the core SRAM Object File (*core.rbf*), Intel recommends to verify that the link has been trained to the expected Gen 2/Gen3 rate. If the link is not operating at Gen 2/Gen3, software can trigger the Endpoint to retrain.

Figure 6. PCIe Timing Sequence in CvP Initialization Mode

\(^{(1)}\) REFCLK must be stable 80 ms after the power supplies are stable in order to achieve the 145 ms link training complete time
Table 3. Power-Up Sequence Timing in CvP Initialization Mode

<table>
<thead>
<tr>
<th>Timing Sequence</th>
<th>Timing Range (ms)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2-6.5</td>
<td>FPGA POR delay time (AS Fast Mode)</td>
</tr>
<tr>
<td>b</td>
<td>80</td>
<td>Maximum time from the FPGA power up to the end of periphery configuration in CvP initialization mode (before transceiver calibration)</td>
</tr>
<tr>
<td>c</td>
<td>20</td>
<td>Minimum calibration time before PERST# is deasserted</td>
</tr>
<tr>
<td>d</td>
<td>60</td>
<td>Minimum transceiver calibration window</td>
</tr>
<tr>
<td>e</td>
<td>80</td>
<td>Typical transceiver calibration window</td>
</tr>
<tr>
<td>f</td>
<td>100</td>
<td>Minimum PERST# signal active from the host</td>
</tr>
<tr>
<td>g</td>
<td>120</td>
<td>Maximum time from the FPGA power up to the end of periphery configuration in CvP initialization mode (include transceiver calibration)</td>
</tr>
<tr>
<td>h</td>
<td>20</td>
<td>Maximum PERST# signal inactive time from the host before the PCIe link enters training state</td>
</tr>
<tr>
<td>i</td>
<td>100</td>
<td>Maximum time PCIe device must enter L0 after PERST# is asserted</td>
</tr>
<tr>
<td>j</td>
<td>10</td>
<td>Maximum ramp-up time requirement for all POR-monitored power supplies in the FPGA to reach their respective operating range</td>
</tr>
</tbody>
</table>

4.1.2.2. For CvP Update Mode

Before you perform CvP update mode, the device must be in user mode either through CvP initialization or full image configuration (Active Serial x4 fast mode).

Note: For Gen 2/Gen 3 capable Endpoints, in user mode, Intel recommends to verify that the link has been trained to the expected Gen 2/Gen 3 rate. If the link is not operating at Gen 2/Gen3, software can trigger the Endpoint to retrain.

4.2. Designing CvP for a Closed System

While designing CvP for a closed system where you control both ends of the PCIe link, estimate the periphery configuration time for CvP Initialization mode or full FPGA configuration time for CvP update mode. You must ensure that the estimated configuration time is within the time allowed by the PCIe host.
5. CvP Driver and Registers

5.1. CvP Driver Support

You can develop your own custom CvP driver for Linux using the sample Linux driver source code provided by Intel.

Note: The Linux driver provided by Intel is not a production driver. You must adapt this driver to your design's strategy.

Related Information
Download the OpenSource Linux CvP Driver

5.2. CvP Driver Flow

The CvP driver flow assumes that the FPGA is powered up and the SDM control block has already configured the FPGA with the periphery image, which is indicated by the CVP_EN bit in the CvP status register.
5.3. **VSEC Registers for CvP**

The Vendor Specific Extended Capability (VSEC) registers occupy byte offsets 0xB80 to 0xBC0 in the PCIe Configuration Space. The PCIe host uses these registers to communicate with the FPGA control block. The following table shows the VSEC register map. Subsequent tables provide the fields and descriptions of each register.
Table 4. VSEC Registers for CvP

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Register Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB80</td>
<td>Vendor Specific Capability Header</td>
</tr>
<tr>
<td>0xB84</td>
<td>Vendor Specific Header</td>
</tr>
<tr>
<td>0xB88</td>
<td>Intel Marker</td>
</tr>
<tr>
<td>0xB8C:0xB98</td>
<td>Reserved</td>
</tr>
<tr>
<td>0xB9C</td>
<td>User Configurable Device/Board ID</td>
</tr>
<tr>
<td>0xB9E</td>
<td>CvP Status</td>
</tr>
<tr>
<td>0xBA0</td>
<td>CvP Mode Control</td>
</tr>
<tr>
<td>0xBA4</td>
<td>CvP Data 2</td>
</tr>
<tr>
<td>0xBA8</td>
<td>CvP Data</td>
</tr>
<tr>
<td>0xBAC</td>
<td>CvP Programming Control</td>
</tr>
<tr>
<td>0xBB0:0xBC4</td>
<td>Reserved</td>
</tr>
<tr>
<td>0xBC8</td>
<td>CvP Credit Register</td>
</tr>
</tbody>
</table>

5.3.1. Vendor Specific Capability Header Register

Table 5. Vendor Specific Capability Header Register (Byte Offset: 0xB80)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Reset Value</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[15:0]</td>
<td>PCI Express Extended Capability ID</td>
<td>0x000B</td>
<td>RO</td>
<td>PCIe specification defined value for VSEC Capability ID.</td>
</tr>
<tr>
<td>[19:16]</td>
<td>Version</td>
<td>0x1</td>
<td>RO</td>
<td>PCIe specification defined value for VSEC version.</td>
</tr>
<tr>
<td>[31:20]</td>
<td>Next Capability Offset</td>
<td>Variable</td>
<td>RO</td>
<td>Starting address of the next Capability Structure implemented, if any.</td>
</tr>
</tbody>
</table>

5.3.2. Vendor Specific Header Register

Table 6. Vendor Specific Header Register (Byte Offset: 0xB84)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Reset Value</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[15:0]</td>
<td>VSEC ID</td>
<td>0x1172</td>
<td>RO</td>
<td>A user configurable VSEC ID.</td>
</tr>
<tr>
<td>[19:16]</td>
<td>VSEC Revision</td>
<td>0</td>
<td>RO</td>
<td>A user configurable VSEC revision.</td>
</tr>
<tr>
<td>[31:20]</td>
<td>VSEC Length</td>
<td>0x05C</td>
<td>RO</td>
<td>Total length of this structure in bytes.</td>
</tr>
</tbody>
</table>

5.3.3. Intel Marker Register

Table 7. Intel Marker Register (Byte Offset: 0xB88)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Reset Value</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:0]</td>
<td>Intel Marker</td>
<td>0x41721172</td>
<td>RO</td>
<td>An additional marker. If you use the Intel Quartus Prime Pro Edition Programmer to configure the device with CvP, this marker provides a value that the programming software reads to ensure that it is operating with the correct VSEC.</td>
</tr>
</tbody>
</table>
5.3.4. User Configurable Device/Board ID Register

Table 8. User Configurable Device/Board ID Register (Byte Offset: 0xB9C)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Reset Value</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[15:0]</td>
<td>User Configurable Device/Board ID</td>
<td>0x00</td>
<td>RO</td>
<td>Helps user to select the correct programming file.</td>
</tr>
</tbody>
</table>

5.3.5. CvP Status Register

Table 9. CvP Status Register (Byte Offset: 0xB9E)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Reset Value</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10]</td>
<td>CVP_CONFIG_SUCCESS</td>
<td>Variable</td>
<td>RO</td>
<td>Status bit set by the SDM to indicate that the core image configuration was successful.</td>
</tr>
<tr>
<td>[8]</td>
<td>PLD_CLK_IN_USE</td>
<td>Variable</td>
<td>RO</td>
<td>From clock switch module to fabric. You can use this bit for debug.</td>
</tr>
<tr>
<td>[7]</td>
<td>CVP_CONFIG_DONE</td>
<td>Variable</td>
<td>RO</td>
<td>Indicates that the SDM has completed the device configuration via CvP and there were no errors.</td>
</tr>
<tr>
<td>[5]</td>
<td>USERMODE</td>
<td>Variable</td>
<td>RO</td>
<td>Indicates if the configurable FPGA fabric is in user mode.</td>
</tr>
<tr>
<td>[4]</td>
<td>CVP_EN</td>
<td>Variable</td>
<td>RO</td>
<td>Indicates if the SDM has enabled CvP mode.</td>
</tr>
<tr>
<td>[3]</td>
<td>CVP_CONFIG_ERROR</td>
<td>Variable</td>
<td>RO</td>
<td>Reflects the value of this signal from the SDM, checked by software to determine if there was an error during configuration.</td>
</tr>
<tr>
<td>[2]</td>
<td>CVP_CONFIG_READY</td>
<td>0x0</td>
<td>RO</td>
<td>Reflects the value of this signal from the SDM, checked by software during programming algorithm.</td>
</tr>
<tr>
<td>[1:0]</td>
<td>—</td>
<td>Variable</td>
<td>RO</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

5.3.6. CvP Mode Control Register

Table 10. CvP Mode Control Register (Byte Offset: 0xBA0)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Reset Value</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:2]</td>
<td>—</td>
<td>0x0000</td>
<td>RO</td>
<td>Reserved.</td>
</tr>
<tr>
<td>[1]</td>
<td>PLD_DISABLE</td>
<td>1'b0</td>
<td>RW/RO</td>
<td>Enables/disables the PLD interface. This allows Host driver to switch the PLD interface out before USER MODE deasserts, and to switch the PLD interface back in only after USER MODE has been asserted. This helps to prevent any glitches or race conditions during the USER MODE switching.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1: Disable the application layer interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 0: Enable the application layer interface.</td>
</tr>
</tbody>
</table>

continued...
5. CvP Driver and Registers

5.3.7. CvP Data Registers

Table 11. CvP Data Register (Byte Offsets: 0xBA4 - 0xBA8)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Reset Value</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:0]</td>
<td>CVP_DATA2</td>
<td>0x00000000</td>
<td>RW</td>
<td>Contains the upper 32 bits of a 64-bit configuration data. Software must ensure that all Bytes in both dwords are enabled. Use of 64-bit configuration data is optional.</td>
</tr>
<tr>
<td>[31:0]</td>
<td>CVP_DATA</td>
<td>0x00000000</td>
<td>RW</td>
<td>Write the configuration data to this register. The data is transferred to the SDM to configure the device. Software must ensure that all bytes in the memory write dword are enabled. You can access this register using configuration writes. Alternatively, when in CvP mode, this register can also be written by a memory write to any address defined by a memory space BAR for this device. Using memory writes are higher throughput than configuration writes.</td>
</tr>
</tbody>
</table>

5.3.8. CvP Programming Control Register

Table 12. CvP Programming Control Register (Byte Offset: 0x22C)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Reset Value</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:2]</td>
<td></td>
<td>0x0000</td>
<td>RO</td>
<td>Reserved.</td>
</tr>
<tr>
<td>[1]</td>
<td>START_XFER</td>
<td>1'b0</td>
<td>RW</td>
<td>Sets the CvP output to the FPGA control block indicating the start of a transfer.</td>
</tr>
<tr>
<td>[0]</td>
<td>CVP_CONFIG</td>
<td>1'b0</td>
<td>RW</td>
<td>When set to 1, the FPGA control block begins a transfer via CvP.</td>
</tr>
</tbody>
</table>
5.3.9. CvP Credit Register

The credit registers slow down the transmission of the CvP data when there is no buffer space available within the configuration system. The total credits register increments each time an additional 4k buffer is available.

Table 13. CvP Credits Register (Byte Offset: 0xBC8)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Reset Value</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:16]</td>
<td>0x00</td>
<td>RO</td>
<td>Reserved.</td>
</tr>
<tr>
<td>[15:8]</td>
<td>0x00</td>
<td>RO</td>
<td>Least significant 8 bits of the total number of 4k credits granted.</td>
</tr>
<tr>
<td>[7:0]</td>
<td>0x00</td>
<td>RO</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>
6. Understanding the Design Steps for CvP Initialization and Update Mode in Intel Stratix 10

6.1. Implementation of CvP Initialization Mode

CvP Initialization mode divides the design into periphery and core images. The periphery image is stored in a local flash device on the PCB. The core image is stored in host memory. You must download the core image to the FPGA using the PCI Express link.

You must specify CvP Initialization mode in the Intel Quartus Prime Pro Edition software by selecting the CvP Settings Initialization and Update and you must also instantiate the Avalon-ST Intel Stratix 10 Hard IP for PCI Express. CvP Initialization simplifies any required core image upgrade.

(2) CvP also supports Avalon-MM.
The CvP Initialization demonstration (based on the Intel Stratix 10 FPGA Development Kit) walkthrough includes the following steps:

- **Generating the Synthesis HDL files for Avalon-ST Intel Stratix 10 Hard IP for PCI Express** on page 25
- **Setting up the CvP Parameters in Device and Pin Options** on page 26
- **Compiling the Design** on page 27
- **Converting the SOF File** on page 27
- **Bringing up the Hardware** on page 29
6.1.1. Generating the Synthesis HDL files for Avalon-ST Intel Stratix 10 Hard IP for PCI Express

Follow these steps to generate the synthesis HDL files with CvP enabled:

1. Open the Intel Quartus Prime Pro Edition software.
2. On the Tools menu, click Platform Designer. The Open System window appears.
3. For System, click + and specify a File Name to create a new platform designer system. Click Create.
4. On the System Contents tab, delete the clock_in and reset_in components that appear by default.
5. In the IP Catalog locate and double-click Avalon-ST Intel Stratix 10 Hard IP for PCI Express. The new window appears.
6. On the IP Settings tab, specify the parameters and options for your design variation.
7. On the Example Designs tab, select the Simulation option to generate the testbench, and select the Synthesis option to generate the hardware design example.
8. For Generated file format, only Verilog is available.
9. For Target Development Kit, select the board of your choice.
10. Click the Generate Example Design button. The Select Example Design Directory dialog box appears. Click OK. The software generates Intel Quartus Prime project files for PCI Express reference design. Click Close when generation completes. An example design pcie_s10_hip_ast_0_example_design is created in your project directory.
11. Click Finish. Close your current project and open the generated PCI Express example design (pcie_example_design.gpf).
12. Complete your CvP design by adding any desired top-level design and any other required modules. Pin assignments already being assigned properly based on the target development kit that user specified earlier.

Alternatively, you can download the complete Intel Stratix 10 CvP Initialization reference design from the link below.

Related Information

- Intel Stratix 10 Avalon-MM Interface for PCI Express Solutions User Guide
- CvP Reference Design Example
- Download the OpenSource Linux CvP Driver
6.1.2. Setting up the CvP Parameters in Device and Pin Options

Follow these steps to specify CvP parameters:

1. On the Intel Quartus Prime Assignment menu, select Device, and then click Device and Pin Options.
2. Under Category, select Configuration and then enable the following options:
 a. For Configuration scheme, select Active Serial x4 (can use Configuration Device).
 b. For Use configuration device, select EPCQL1024.
 c. For Configuration pin, click Configuration Pin Options and then turn on USE_CONF_DONE output and USE_CVP_CONFDONE output. Click OK.

 Figure 9. CvP Parameters in Configuration Tab

3. Under Category, select CvP Settings to specify CvP settings. For Configuration via Protocol, select Initialization and update option. Click OK.
Figure 10. CvP Parameters in CvP Settings Tab

4. Click **OK**.

6.1.3. Compiling the Design

To compile the design, on the **Processing** menu, select **Start Compilation** to create the **.sof** file.

6.1.4. Converting the SOF File

Follow these steps to convert your **.sof** file into separate images for the periphery and core logic.

1. After the **.sof** file is generated, under **File** menu, select **Convert Programming Files**. The new window appears.
2. Under **Output programming file** section, specify the following parameters:

<table>
<thead>
<tr>
<th>Table 14. Parameters: Output Programming File Tab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Programming file type</td>
</tr>
<tr>
<td>Configuration device</td>
</tr>
<tr>
<td>Mode</td>
</tr>
</tbody>
</table>

(continued...)
Parameter	Value
File name | cvp_init.jic
Create Memory Map File (Generate output_file.map) | Turn this option on.
Create CvP files (Generate cvp_init.periph.jic and cvp_init.core.rbf) | Turn this option on. This option is only available when you specify the SOF Data file under Input files to convert.

Note: Make sure to turn on the Create CvP files option. If you do not select this option, the Intel Quartus Prime software does not create separate files for the periphery and core images.

3. Under **Input files to convert**, specify the following parameters:

Table 15. Parameters: Input Files to Convert Tab

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Loader</td>
<td>First click on Flash Loader. Click Add Device, under Device family, select Stratix 10 and then for Device name select 1SG280LU3F50S1. Click OK.</td>
</tr>
<tr>
<td>SOF Data</td>
<td>First click SOF Data. Click Add File and then select *.sof.</td>
</tr>
</tbody>
</table>

Figure 11. Illustrating the above Specified Options in the Convert Programming File GUI

4. Click **Generate** to create *.periph.jic and *.core.rbf files.
6.1.5. Bringing up the Hardware

Before testing the design in hardware, you must install the CvP driver in your DUT system. You can also install RW Utilities or other system verification tools to monitor the link status of the Endpoint and to observe traffic on the link. You can download these utilities for free from many web sites.

Note: You can develop your own custom CvP driver for Linux using the sample Linux driver source code provided by Intel.

The test setup includes the following components:
1. Intel Stratix 10 FPGA Development Kit
2. Intel FPGA Download Cable
3. A DUT PC with PCI Express slot to plug in the FPGA Development Kit
4. A PC running the Intel Quartus Prime software to program the periphery image, .sof or .pof file.

Related Information
Intel Stratix 10 FPGA Development Kit User Guide

6.1.5.1. Installing Open Source CvP Driver in Linux Systems

1. Download the open source Linux CvP driver from the CvP Driver.
2. Navigate to the driver directory.
3. Unzip the drive by typing the following command:
   ```bash
   tar -zxvf <driver>.gz
   ```
4. Run the installation by typing the following command:
   ```bash
   sudo make
   sudo make install
   ```
5. Once the installation completed successfully, it generates the `altera_cvp` file under directory `/dev/altera_cvp`.

6.1.5.2. Modifying MSEL/DIP switch on Intel Stratix 10 FPGA Development Kit

The MSEL/DIP switch labeled SW1 at the front part of the Intel Stratix 10 FPGA Development Kit. Select Active Serial x4 (Fast mode) for CvP operation.

Table 16. MSEL Pin Settings for Each Configuration Scheme of Intel Stratix 10 Devices

<table>
<thead>
<tr>
<th>Configuration Scheme</th>
<th>MSEL[2:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS (Fast mode - for CvP)(^{(3)})</td>
<td>001</td>
</tr>
</tbody>
</table>

\(^{(3)}\) To support AS fast mode, the `V_{CCIO,SDM}` of Intel Stratix 10 device must be fully ramped-up within 10ms to the recommended operating conditions. The delay between the device exiting POR and the SDM Boot-up is shorter for the fast mode compared to the normal mode. Therefore, AS fast mode is the recommended configuration scheme for CvP because the device can conform to the PCIe 100ms power-up-to-active time requirement.
6.1.5.3. Programming CvP Images

You must program the periphery image (.periph.jic) into your AS configuration device and then download the core image (.core.rbf) using the PCIe Link. You can use Active Serial x4 (Fast mode) to load .periph.jic into your selected CvP initialization enabled Intel Stratix 10 device.

After loading the periphery image, the Intel Stratix 10 is triggered to reconfigure from AS to load it. The link should reach the expected data rate and link width. You can confirm the PCIe link status using the RW Utilities. Follow these steps to program and test the CvP functionality:

1. Plug the Intel Stratix 10 FPGA Development Kit into the PCI Express slot of the DUT PC and power it ON. It is recommended to use the ATX power supply that the development kit includes.

2. Open the Intel Quartus Prime Tools menu and select Programmer.

3. Click Auto Detect to verify that the Intel FPGA Download Cable recognizes the Intel Stratix 10 FPGA.

4. Follow these steps to program the periphery image:
 a. Select Stratix 10 device, and then right click None under File column and select Change File.
 b. Navigate to .periph.jic file and click Open.
 c. Under Program/Configure column, select the respective devices. For example, 1SG280LU3S1 and EPCQL1024.
 d. Click Start to program the periphery image into EPCQL1024 flash.

5. After the .periph.jic is programmed, the FPGA must be powered cycle to allow the new peripheral image to load from the on-board flash into the FPGA. To force the DUT PC to re-enumerate the link with the new image, power cycle the DUT PC and the Intel Stratix 10 FPGA Development Kit.
6. You can use RW Utilities or another system software driver to verify the link status. You can also confirm expected link speed and width.

7. Follow these steps to program the core image:
 a. Copy the `.core.rbf` file to your working directory.
 b. Open a console in Linux. Change the directory to the same mentioned above where the file is copied.
 c. Program the core image by typing the following command: `cp *.core.rbf /dev/altera_cvp`

8. You can see your core image running on the Intel Stratix 10 FPGA Development Kit. Alternatively, print out the kernel message using the `dmesg` to ensure the CvP is completed successfully.

6.2. Implementation of CvP Update Mode

For more information or questions about the availability of the CvP update flow, please contact mySupport.
A. Document Revision History for Intel Stratix 10 Configuration via Protocol Implementation User Guide

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Intel Quartus Prime Version</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2018.06.18 | 18.0 | • Corrected the periphery image and core image definitions in Configuration Images section.
• Added Figure: PCIe Timing Sequence in CvP Initialization Mode diagram and Table: Power-up Sequence Timing in CvP Initialization Mode information for CvP initialization.
• Modified Figure: Single Endpoint Topology and Figure: Multiple Endpoint Topology in CvP Topologies chapter.
• Added a note to clarify the Linux driver support provided by Intel.
• Updated the Figure: CvP Driver Flow.
• Corrected the VSEC registers for CvP in VSEC Registers for CvP section.
• Minor updates in Implementation of CvP Initialization Mode section. |

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2017</td>
<td>2017.12.18</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>