
























Generating IP Cores
You can quickly configure a custom IP variation in the parameter editor. Use the following steps to
specify IP core options and parameters in the parameter editor.

Figure 2-2: IP Parameter Editor

View IP port
and parameter 
details

Apply preset parameters for
specific applications

Specify your IP variation name
and target device

1. In the IP Catalog (Tools > IP Catalog), locate and double-click the name of the IP core to customize.
The parameter editor appears.

2. Specify a top-level name for your custom IP variation. The parameter editor saves the IP variation
settings in a file named <your_ip>.qsys. Click OK. Do not include spaces in IP variation names or
paths.

3. Specify the parameters and options for your IP variation in the parameter editor, including one or
more of the following. Refer to your IP core user guide for information about specific IP core
parameters.

2-4 Generating IP Cores
UG-BCH

2015.10.01

Altera Corporation BCH IP Core Getting Started

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Getting%20Started%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


• Optionally select preset parameter values if provided for your IP core. Presets specify initial
parameter values for specific applications.

• Specify parameters defining the IP core functionality, port configurations, and device-specific
features.

• Specify options for processing the IP core files in other EDA tools.
4. Click Generate HDL. The Generation dialog box appears.
5. Specify output file generation options, and then click Generate. The IP variation files generate

according to your specifications.
6. To generate a simulation testbench, click Generate > Generate Testbench System.
7. To generate an HDL instantiation template that you can copy and paste into your text editor, click

Generate > HDL Example.
8. Click Finish. Click Yes if prompted to add files representing the IP variation to your project.

Optionally turn on the option to Automatically add Quartus Prime IP Files to All Projects. Click
Project > Add/Remove Files in Project to add IP files at any time.

Figure 2-3: Adding IP Files to Project

Adds IP

Auto adds
IP without
prompt

For Arria 10 devices and newer, the generated .qsys file must be added to your project to represent IP
and Qsys systems. For devices released prior to Arria 10 devices, the generated .qip and .sip files must
be added to your project for IP and Qsys systems.

The generated .qsys file must be added to your project to represent IP and Qsys systems.
9. After generating and instantiating your IP variation, make appropriate pin assignments to connect

ports.

Related Information

• IP User Guide Documentation
• Altera IP Release Notes

Files Generated for Altera IP Cores and Qsys Systems
The software generates the following output file structure for IP cores and Qsys systems. For Arria 10
devices and newer, the generated .qsys file must be added to your project to represent IP and Qsys
systems. For devices released prior to Arria 10 devices, the generated .qip and .sip files must be added to
your project to represent IP and Qsys systems. The software generates the following output file structure
for IP cores and Qsys systems. The generated .qsys file must be added to your project to represent IP and
Qsys systems.

UG-BCH
2015.10.01 Files Generated for Altera IP Cores and Qsys Systems 2-5

BCH IP Core Getting Started Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/rn/rn_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Getting%20Started%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Figure 2-4: Files generated for IP cores and Qsys Systems

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip  - Lists files for IP core synthesis

<your_ip>.debuginfo  - Post-generation debug data 

synth - IP synthesis files

<IP Submodule> - IP Submodule Library 

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.qip or .qsys - System or IP integration file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file 

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation startup scripts 1

 1

<your_ip>.html - Memory map data

<your_ip>.sopcinfo - Software tool-chain integration file

<your_ip>.cmp  - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>.sip - NativeLink simulation integration file

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system 

<your_testbench>_tb.qsys - testbench system file

<your_ip>_tb - IP testbench files

<your_testbench>_tb.csv or .spd - testbench file

sim - IP testbench simulation files

 1. If supported and enabled for your IP core variation.

2-6 Files Generated for Altera IP Cores and Qsys Systems
UG-BCH

2015.10.01

Altera Corporation BCH IP Core Getting Started

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Getting%20Started%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Table 2-1: IP Core and Qsys Simulation Generated Files

File Name Description

<my_ip>.qsys The Qsys system or top-level IP variation file. <my_ip> is the name
that you give your IP variation. You must add the .qsys file to your
Quartus project to enable NativeLink for Arria 10 and Stratix 10
device families.

The Qsys system or top-level IP variation file. <my_ip> is the name
that you give your IP variation.

<system>.sopcinfo Describes the connections and IP component parameterizations in
your Qsys system. You can parse its contents to get requirements
when you develop software drivers for IP components.

Downstream tools such as the Nios II tool chain use this file.
The .sopcinfo file and the system.h file generated for the Nios II tool
chain include address map information for each slave relative to each
master that accesses the slave. Different masters may have a different
address map to access a particular slave component.

<my_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that
contains local generic and port definitions that you can use in VHDL
design files.

<my_ip>.html A report that contains connection information, a memory map
showing the address of each slave with respect to each master to
which it is connected, and parameter assignments.

<my_ip>_generation.rpt IP or Qsys generation log file. A summary of the messages during IP
generation.

<my_ip>.debuginfo Contains post-generation information. Used to pass System Console
and Bus Analyzer Toolkit information about the Qsys interconnect.
The Bus Analysis Toolkit uses this file to identify debug components
in the Qsys interconnect.

<my_ip>.qip Contains all the required information about the IP component to
integrate and compile the IP component in the software.

<my_ip>.csv Contains information about the upgrade status of the IP component.

<my_ip>.bsf A Block Symbol File (.bsf) representation of the IP variation for use
in Block Diagram Files (.bdf).

<my_ip>.spd Required input file for ip-make-simscript to generate simulation
scripts for supported simulators. The .spd file contains a list of files
generated for simulation, along with information about memories
that you can initialize.

<my_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for
IP components created for use with the Pin Planner.

UG-BCH
2015.10.01 Files Generated for Altera IP Cores and Qsys Systems 2-7

BCH IP Core Getting Started Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Getting%20Started%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


File Name Description

<my_ip>_bb.v You can use the Verilog black-box (_bb.v) file as an empty module
declaration for use as a black box.

<my_ip>.sip Contains information required for NativeLink simulation of IP
components. You must add the .sip file to your Quartus project to
enable NativeLink for Arria II, Arria V, Cyclone IV, Cyclone V, MAX
10, MAX II, MAX V, Stratix IV, and Stratix V devices.

<my_ip>_inst.v or _inst.vhd HDL example instantiation template. You can copy and paste the
contents of this file into your HDL file to instantiate the IP variation.

<my_ip>.regmap If the IP contains register information, the .regmap file generates.
The .regmap file describes the register map information of master
and slave interfaces. This file complements the .sopcinfo file by
providing more detailed register information about the system. This
enables register display views and user customizable statistics in
System Console.

<my_ip>.svd Allows HPS System Debug tools to view the register maps of
peripherals connected to HPS within a Qsys system.

During synthesis, the .svd files for slave interfaces visible to System
Console masters are stored in the .sof file in the debug section.
System Console reads this section, which Qsys can query for register
map information. For system slaves, Qsys can access the registers by
name.

<my_ip>.v

or

<my_ip>.vhd

HDL files that instantiate each submodule or child IP core for
synthesis or simulation.

mentor/ Contains a ModelSim® script msim_setup.tcl to set up and run a
simulation.

aldec/ Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS®

simulation.

Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to
set up and run a VCS MX® simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up
and run an NCSIM simulation.

/submodules Contains HDL files for the IP core submodule.
<IP submodule>/ For each generated IP submodule directory, Qsys generates /synth

and /sim sub-directories.

2-8 Files Generated for Altera IP Cores and Qsys Systems
UG-BCH

2015.10.01

Altera Corporation BCH IP Core Getting Started

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Getting%20Started%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Simulating Altera IP Cores in other EDA Tools
The software supports RTL and gate-level design simulation of Altera IP cores in supported EDA
simulators. Simulation involves setting up your simulator working environment, compiling simulation
model libraries, and running your simulation.

You can use the functional simulation model and the testbench or example design generated with your IP
core for simulation. The functional simulation model and testbench files are generated in a project
subdirectory. This directory may also include scripts to compile and run the testbench. For a complete list
of models or libraries required to simulate your IP core, refer to the scripts generated with the testbench.

You can use the NativeLink feature to automatically generate top-level simulation scripts. NativeLink
launches your preferred simulator from within the software. You can use the ip-setup-simulation
utility to generate a unified, version-agnostic IP simulation script for all Altera IP cores in your design.
You can incorporate the IP simulation scripts into your top-level script.

You can use the ip-setup-simulation utility to generate a unified, version-agnostic IP simulation script
for all Altera IP cores in your design. You can incorporate the IP simulation scripts into your top-level
script.

Figure 2-5: Simulation in Design Flow

Post-fit timing 
 simulation netlist 

Post-fit timing 
 simulation (3)

Post-fit functional  
simulation netlist

Post-fit functional 
simulation 

Analysis & Synthesis

Fitter
(place-and-route)

TimeQuest Timing Analyzer

Device Programmer

Quartus Prime 
Design Flow Gate-Level Simulation

Post-synthesis  
functional 

simulation 

Post-synthesis functional 
 simulation netlist

(Optional) Post-fit 
 timing simulation

RTL Simulation

Design Entry
(HDL, Qsys, DSP Builder)

Altera Simulation 
Models

EDA 
 Netlist 
 Writer

Note: Post-fit timing simulation is supported only for Stratix IV and Cyclone IV devices in the current
version of the software. The Pro Edition software does not support NativeLink RTL simulation.
Altera IP supports a variety of simulation models, including simulation-specific IP functional

UG-BCH
2015.10.01 Simulating Altera IP Cores in other EDA Tools 2-9

BCH IP Core Getting Started Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Getting%20Started%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


simulation models and encrypted RTL models, and plain text RTL models. These are all cycle-
accurate models. The models support fast functional simulation of your IP core instance using
industry-standard VHDL or Verilog HDL simulators. For some cores, only the plain text RTL
model is generated, and you can simulate that model. Use the simulation models only for
simulation and not for synthesis or any other purposes. Using these models for synthesis creates a
nonfunctional design.

Note: Altera IP supports a variety of simulation models, including simulation-specific IP functional
simulation models and encrypted RTL models, and plain text RTL models. These are all cycle-
accurate models. The models support fast functional simulation of your IP core instance using
industry-standard VHDL or Verilog HDL simulators. For some cores, only the plain text RTL
model is generated, and you can simulate that model. Use the simulation models only for
simulation and not for synthesis or any other purposes. Using these models for synthesis creates a
nonfunctional design.

Related Information
Simulating Altera Designs

DSP Builder Design Flow
DSP Builder shortens digital signal processing (DSP) design cycles by helping you create the hardware
representation of a DSP design in an algorithm-friendly development environment.

This IP core supports DSP Builder. Use the DSP Builder flow if you want to create a DSP Builder model
that includes an IP core variation; use IP Catalog if you want to create an IP core variation that you can
instantiate manually in your design.

Related Information
Using MegaCore Functions chapter in the DSP Builder Handbook.

2-10 DSP Builder Design Flow
UG-BCH

2015.10.01

Altera Corporation BCH IP Core Getting Started

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383407761/en-us
http://www.altera.com/literature/hb/dspb/hb_dspb_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Getting%20Started%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


BCH IP Core Functional Description 3
2015.10.01

UG-BCH Subscribe Send Feedback

This topic describes the IP core’s architecture, interfaces, and signals.

You can parameterize the BCH IP core as an encoder or a decoder. The encoder receives data packets and
generates the check symbols; the decoder detects and corrects errors.

BCH IP Core Encoder
The BCH encoder has a parallel architecture with an input and output of d data bits. When the encoder
receives data symbols, it generates check symbols for a given codeword and sends the input codeword
with the check symbols to the output interface. The encoder uses backpressure on the upstream
component when it generates the check symbols.

Figure 3-1: Encoder Timing

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 236 237 238 239  1  2  3  4

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 234 235 236 237 238 239  1 114 61 30 244 75  1  2

clk
reset
load

sop_in
eop_in

data_in[7:0]
load

valid_out
sop_out
eop_out

data_out[7:0]
ready

The ready signal indicates that the encoder can accept incoming stream. On the clk rising edge, if the
encoder ready signal is high, send input data stream via data_in port and assert load high to indicate
valid input data. Assume the full message word needs X clock signals. When this input process reaches
X-1 clock cycles, the encoder ready signal goes low. At the next clk rising edge, the encoder accepts the
input from data_in port, and the encoder receives the full message word. Before the ready signal returns
to high again, the encoder does not accept new input data. When valid_out signal is asserted high, output
encoded codeword is valid at the data_out port. At the first clock cycle where the output data is valid,
sop_out is asserted high for only one cycle, indicating the start of packet. The IP core has forward and

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-BCH
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-BCH%202015.10.01)%20BCH%20IP%20Core%20Functional%20Description&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


back pressure, which you can control with the ready and sink_ready signal. Assert the sop_in and
eop_in signals correctly at the clock cycle, i.e. the first and last clock cycle of the input codeword.

Shortened Codewords

The BCH IP core supports shortened codewords. A shortened codeword contains fewer symbols than the
maximum value of N, which is 2M –1, where N is the total number of symbols per codeword and M is the
number of bits per symbol. A shortened codeword is mathematically equivalent to a maximum-length
code with the extra data symbols at the start of the codeword set to 0. For example, (220,136) is a
shortened codeword of (255,171). Both of these codewords use the same number of check symbols, 11. To
use shortened codewords with the decoder, use the parameter editor to set the codeword length to the
correct value.

BCH IP Core Decoder
When the decoder receives the encoded codeword, it uses the check symbols to detect errors and correct
them.

The received encoded codeword may differ from the original codeword due to the noise in the channel.
The decoder detects errors using several polynomials to locate the error location and the error value.
When the decoder obtains the error location and value, the decoder corrects the errors in a codeword, and
sends the codeword to the output.

If e<=t, the IP core can correct errors; if e > t, you see unpredictable results.
Figure 3-2: Decoder Timing

clk
reset
load

sop_in
eop_in

data_in[7:0]
load

valid_out
sop_out
eop_out

data_out[7:0]
ready

number_errors

 0  1  2  3  4  5  6 105 216 193 137 138 139 140 141 245 246 247 248 249 250 251 252 253 254 245 246 247 248 249 250 251 252

0 X 1  2  3  4  5  6 105 216 193 137 138 139 140 1411

The codeword starts when you assert the in_valid signal and the in_startofpacket signal.The decoder
accepts the data at in_data as valid data. The codeword ends when you assert the in_endofpacket signal.
For a 1-channel codeword, assert the in_startofpacket and in_endofpacket signals for one clock cycle.
When the decoder deasserts the in_ready signal, the decoder cannot process any more data until it
asserts the in_ready signal again.

At the output, the operation is identical. When the decoder asserts the out_valid signal and the
out_startofpacket signal, the decoder provides valid data on out_data. The decoder asserts the
out_startofpacket signal and the out_endofpacket signal to indicate the start and end of a codeword.
The decoder automatically detects and corrects errors in a codeword and asserts the out_error signal

3-2 BCH IP Core Decoder
UG-BCH

2015.10.01

Altera Corporation BCH IP Core Functional Description

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Functional%20Description%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


when it encounters a non-correctable codeword. The decoder outputs the full codeword including the
check symbols, which you should remove.

The ready signal indicates that the decoder can accept an incoming stream. On clk rising edge, if the
encoder ready signal is high, send input data stream via data_in and assert load high to indicate valid
input data. When valid_out is asserted high, the output decoded word is valid at the data_out port. The
number_errors shows the number of errors the IP core detects. At the first clock cycle where the output
data is valid, sop_out is asserted high for only one cycle, indicating the start of output packet. The IP core
has forward and back pressure, which you controll with the ready signal and sink_ready signal. Assert
the sop_in and eop_in signals correctly at the clock cycle, i.e. the first and last clock cycle of the input
codeword.

BCH IP Core Parameters

Table 3-1: Parameters

Parameter Legal Values Default Value Description

BCH module Encoder or Decoder Encoder Specify an encoder or a decoder.
Number of bits per
symbol (m)

3 to 14 (encoder or 6
to 14 (decoder)

14 Specify the number of bits per symbol.

Codeword length
(n)

parity_bits+1 : 2m-1 8,784 Specify the codeword length. The decoder
accept a new symbol every clock cycle if
6.5R < N. If N>=6.5R+1, the decoder
shows continuous behavior.

Error correction
capacity (t)

Range derived from m.
For the decoder, the
wizard caps the range
between 8 and 128.

40 Specify the number of bits to be corrected.

Parity bits – 560 Shows the number of parity bits in the
codeword. The wizard derives this
parameter from t.

Message length (k) – 8,224 Shows the number of message bits in the
codeword. The wizard derives this
parameter from t and n.

Primitive
polynomial

– 17,475 Shows the primitive polynomial. derived
from the choice of m.

Parallel input data
width

Encoder: 1 to
min(parity_bits, k-1).
Decoder:

• d < floor(n*3/14)
• d < floor(n/

floor[2*log2(2*t)])

20 The number of bits to input every clock
cycle.

UG-BCH
2015.10.01 BCH IP Core Parameters 3-3

BCH IP Core Functional Description Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Functional%20Description%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


BCH IP Core Interfaces and Signals

Table 3-2: Clock and Reset Signals

Name Avalon-ST Type Direction Description

clk clk Input The main system clock. The whole IP core operates
on the rising edge of clk .

reset reset_n Input An active low signal that resets the entire system
when asserted. You can assert this signal asynchro‐
nously. However, you must deassert it synchronous
to the clk_clk signal. When the IP core recovers
from reset, ensure that the data it receives is a
complete packet.

Table 3-3: Avalon-ST Input and Output Interface Signals

Name Avalon-ST Type Direction Description

ready ready Output Data transfer ready signal to indicate that the sink is
ready to accept data. The sink interface drives the
ready signal to control the flow of data across the
interface. The sink interface captures the data
interface signals on the current clk rising edge.

data_in[] data Input Data input for each codeword, symbol by symbol.
Valid only when you assert the in_valid signal.

data_out data Output Contains decoded output when the IP core asserts
the out_valid signal. The corrected symbols are in
the same order that they are entered.

eop_in eop Input End of packet (codeword) signal.
eop_out eop Output End of packet (codeword) signal. This signal

indicates the packet boundaries on the data_in[]
bus. When the IP core drives this signal high, it
indicates that the end of packet is present on the
data_in[] bus. The IP core asserts this signal on
the last transfer of every packet.

in_error error Input Error signal. Specifies if the input data symbol is an
error and whether the decoder can consider it as an
erasure. Erasures-supporting decoders only.

3-4 BCH IP Core Interfaces and Signals
UG-BCH

2015.10.01

Altera Corporation BCH IP Core Functional Description

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Functional%20Description%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Name Avalon-ST Type Direction Description

load valid Input Data valid signal to indicate the validity of the data
signals. When you assert the in_valid signal, the
Avalon-ST data interface signals are valid. When
you deassert the in_valid signal, the Avalon-ST
data interface signals are invalid and must be
disregarded. You can assert the in_valid signal
whenever data is available. However, the sink only
captures the data from the source when the IP core
asserts the in_ready signal.

number_of_

errors

error Output Indicates the number of errors (decoder only).
Valid when the IP core asserts eop_out .

sop_in sop Input Start of packet (codeword) signal.
sop_out sop Output Start of packet (codeword) signal. This signal

indicates the codeword boundaries on the data_
in[] bus. When the IP core drives this signal high,
it indicates that the start of packet is present on the
data_in[] bus. The IP core asserts this signal on
the first transfer of every codeword.

sink_ready ready Input Data transfer ready signal to indicate that the
downstream module is ready to accept data. The
source provides new data (if available) when you
assert the sink_ready signal and stops providing
new data when you deassert the sink_ready signal.
If the source is unable to provide new data, it
deasserts valid_out for one or more clock cycles
until it is prepared to drive valid data interface
signals.

valid_out valid Output Data valid signal. The IP core asserts the valid_out
signal high, whenever a valid output is on data_
out ; the IP core deasserts the signal when there is
no valid output on data_out .

For IP cores generated within Qsys, all signals are in an Avalon-ST interface. For encoders:

• Input port:0 to datawidthdata_in
• Output port:0 to datawidthdata_out

For decoders:

• Input port:0 to datawidthdata_in
• Output port:0 to datawidth+number_errors | data_out

Avalon-ST Interfaces in DSP IP Cores
Avalon-ST interfaces define a standard, flexible, and modular protocol for data transfers from a source
interface to a sink interface.

The input interface is an Avalon-ST sink and the output interface is an Avalon-ST source. The Avalon-ST
interface supports packet transfers with packets interleaved across multiple channels.

UG-BCH
2015.10.01 Avalon-ST Interfaces in DSP IP Cores 3-5

BCH IP Core Functional Description Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Functional%20Description%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Avalon-ST interface signals can describe traditional streaming interfaces supporting a single stream of
data without knowledge of channels or packet boundaries. Such interfaces typically contain data, ready,
and valid signals. Avalon-ST interfaces can also support more complex protocols for burst and packet
transfers with packets interleaved across multiple channels. The Avalon-ST interface inherently synchro‐
nizes multichannel designs, which allows you to achieve efficient, time-multiplexed implementations
without having to implement complex control logic.

Avalon-ST interfaces support backpressure, which is a flow control mechanism where a sink can signal to
a source to stop sending data. The sink typically uses backpressure to stop the flow of data when its FIFO
buffers are full or when it has congestion on its output.

Related Information

• Avalon Interface Specifications

3-6 Avalon-ST Interfaces in DSP IP Cores
UG-BCH

2015.10.01

Altera Corporation BCH IP Core Functional Description

Send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20BCH%20IP%20Core%20Functional%20Description%20(UG-BCH%202015.10.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.


Document Revision History 4
2015.10.01

UG-BCH Subscribe Send Feedback

BCH IP Core User Guide revision history.

Date Version Changes

2015.10.01 15.1 Added product ID and ordering
code.

2015.05.01 15.0 Initial release

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-BCH
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(UG-BCH%202015.10.01)%20Document%20Revision%20History&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

