Chapter 1. Standard Blockset

Revision History ... 1–1
Errata ... 1–1
 Reset Signal Inverted if _n Appended to Signal Name ... 1–2
 DSP Block Naming Issue in Software Version 8.1 ... 1–2
 Incorrect Pin Assignments Test2S60Board.mdl Design Example 1–3
 MATLAB Runs Out of Java Virtual Machine Heap Memory 1–3
 VCD Sink Block Does Not Generate HDL Files on Linux ... 1–4
 Errors Issued With Imported Quartus II Project .. 1–4
 Cannot Compare Simulink Against ModelSim When Using VIP Suite IP 1–5
 MATLAB Hangs If You Press Enter in Signal Compiler Device Box 1–5
 Additional Project Assignments Required for User Libraries 1–6
 Dual-Clock FIFO Simulation Does Not Match ModelSim ... 1–6

Chapter 2. Advanced Blockset

Revision History ... 2–1
Errata ... 2–1
 Simulation Error With Cyclone Series Devices .. 2–2
 DSP Builder Advanced Blockset Reports an Incorrect Version Number 2–3
 Primitive Latency Constraints Do Not Work .. 2–3
 ATB Generation Does Not Follow Links out of Subsystems 2–4
 Incorrect VHDL if Single Simulink Inport Block is Connected to Multiple ChannelIn Ports ... 2–4
 Bad Port Indexing for Complex Data on ChannelOut and ChannelIn 2–5
 Driving Simulink Scopes With Complex Signals Gives Errors 2–5
 No Support for 1-Input Mode ... 2–6
 DSP Builder Advanced User Guide has No Revision History for v9.1 2–6
 Imaginary Output from Complex to Real Imaginary Gives Internal Errors 2–6
 Hardware Tcl Files Do Not Have Correct Port Names for Vector Ports 2–7
 Multiplier Optimizations Can Cause Signal Width Mismatch in Synthesis 2–7
 HIL Simulation of Combined Blockset Design Outputs All Zeros 2–8
 Latency Not Balanced for ModelBus blocks Outside Primitive Subsystem 2–9
 Bus and System Clocks Must Match When Using Bus Stimulus Block 2–9
 Primitive Automatic Testbench Flow Incorrect with Many Integer Bits 2–10
 Limit of 50 Subsystem Ports Anywhere in a Design .. 2–10
 Saturation Limitation When using the Scale Block ... 2–10
 Very High Hard Multiplier Threshold Does Not Force the Use of Logic 2–11
 No Forward Flow Control in Primitive Subsystems .. 2–11
 Limitations of the ModelSim Testbench Flow ... 2–11
 Cannot Import a Combined Blockset Design into SOPC Builder 2–12
 Incorrect Simulation Results if Word Length Greater Than 64 bits 2–12
 Compilation Error if Unused Channel Out Port is Terminated 2–13

Additional Information

Update Status ... Info–1
How to Contact Altera .. Info–1
Typographic Conventions .. Info–1
1. Standard Blockset

This chapter describes new features, revision history, known errata and documentation changes for the DSP Builder standard blockset.

Revision History

Table 1–1 lists the revision history for the DSP Builder standard blockset v9.1, v9.0, and v8.1.

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>November 2009</td>
<td>■ Maintenance release.</td>
</tr>
<tr>
<td>9.0 SP1</td>
<td>May 2009</td>
<td>■ Maintenance release.</td>
</tr>
<tr>
<td>9.0</td>
<td>March 2009</td>
<td>■ Support for Linux operating systems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Support for Arria® II GX.</td>
</tr>
<tr>
<td>8.1</td>
<td>November 2008</td>
<td>■ Removed obsolete Simulation Accelerator block and deprecated support for the Video and Image Processing Suite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Updated Hardware in the loop (HIL) block user interface.</td>
</tr>
</tbody>
</table>

Errata

Errata are functional defects or errors which may cause DSP Builder to deviate from published specifications. Table 1–2 shows the errata that affect the DSP Builder standard blockset v9.1, v9.0, and v8.1.

For the latest errata information, refer to the DSP Builder Release Notes and Errata on the Altera literature website.

Table 1–2. DSP Builder Standard Blockset Errata (Part 1 of 2)

<table>
<thead>
<tr>
<th>Added or Updated</th>
<th>Issue</th>
<th>Affected Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Nov 09</td>
<td>Reset Signal Inverted if _n Appended to Signal Name</td>
<td>Fixed</td>
</tr>
<tr>
<td>15 Jun 09</td>
<td>DSP Block Naming Issue in Software Version 8.1</td>
<td>—</td>
</tr>
<tr>
<td>15 May 09</td>
<td>Incorrect Pin Assignments Test2S60Board.mdl Design Example</td>
<td>Fixed</td>
</tr>
<tr>
<td>01 Apr 09</td>
<td>MATLAB Runs Out of Java Virtual Machine Heap Memory</td>
<td>✓</td>
</tr>
<tr>
<td>15 Mar 09</td>
<td>VCD Sink Block Does Not Generate HDL Files on Linux</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Errors Issued With Imported Quartus II Project</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Cannot Compare Simulink Against ModelSim When Using VIP Suite IP</td>
<td>—</td>
</tr>
<tr>
<td>01 Nov 08</td>
<td>MATLAB Hangs If You Press Enter in Signal Compiler Device Box</td>
<td>✓</td>
</tr>
</tbody>
</table>
Reset Signal Inverted if _n Appended to Signal Name

The reset signal is inverted if _n is appended to the signal name specified in the Clock or Clock_Derived block.

Affected Configurations

Designs which include a Clock or Clock_Derived block.

Design Impact

The inverted reset signal is propagated through the design.

Workaround

Do not append _n to the reset signal specified in a Clock or Clock_Derived block unless you explicitly want the signal to be inverted. Note that you can append _N (uppercase) without inverting the reset signal.

Solution Status

This issue is fixed in DSP Builder v9.1.

DSP Block Naming Issue in Software Version 8.1

The Stratix III DSP block was renamed to DSP block in the v8.0 software because it also supports Stratix IV devices. A forwarding table in the library model ensured that any blocks named Stratix III DSP block upgraded from the previous release was recognized as a DSP block in the v8.0 software.

The name of the block incorrectly reverted to Stratix III DSP in the v8.1 software.

Affected Configurations

Designs upgraded from v8.0 that use the DSP block.

Design Impact

A DSP block in a design upgraded from v8.0 is not recognized in the v8.1 software.

Workaround

If you upgrade to v9.0, any blocks named DSP or Stratix III DSP are recognized as DSP blocks.

Alternatively, you can edit the `<install directory>/quartus/dsp_builder/bin/mdllibrary/allblocks_alteradspbuilder2.mdl` file in the v8.1 software and add the following reverse forwarding table string:
Incorrect Pin Assignments Test2S60Board.mdl Design Example

The pin assignments for the PLL output clock resets are incorrect in the design example Test2S60Board.mdl.

Affected Configurations
Design example Test2S60Board.mdl.

Design Impact
Errors are issued reporting invalid pin assignments when you run the Quartus II Fitter from the Signal Compiler block.

Workaround
Perform the following steps to correct the pin assignments.

1. In MATLAB, navigate to the directory <install directory>\quartus\dsp_builder\DesignExamples\Demos\Board\StratixII_DSPBoard_2S60 and open the model Test2S60Board.mdl.
2. Double-click on the Quartus II assignments block to open the subsystem window.
3. Double-click on the Quartus II Pinout Assignments1 block to open the Block Parameters dialog box for PLL clock reset out. Change the pin location assignments to Pin_AD32, Pin_AB30, Pin_M30, Pin_N29. Click OK to apply and save the changes.
4. Save the model.
5. Use the normal procedures to compile and download the design to the board, and run SignalTap II Analysis on the design.

Solution Status
This issue is fixed in v9.0 SP1 of DSP Builder.

MATLAB Runs Out of Java Virtual Machine Heap Memory

For a very large design, MATLAB may have insufficient heap memory available for the Java virtual machine.

Affected Configurations
Very large designs containing many thousand blocks.

Design Impact
Compilation fails and MATLAB issues an error message of the form:

"OutOfMemoryError: Java heap space"
Workaround
Increase the heap space available to the Java virtual machine. For more information, refer to:

http://www.mathworks.com/support/solutions/data/1-18I2C.html

Solution Status
This issue will be documented in a future release of DSP Builder.

VCD Sink Block Does Not Generate HDL Files on Linux
The VCD Sink block does not generate HDL files on Linux systems.

Affected Configurations
Linux configurations.

Design Impact
No HDL is generated for the VCD Sink block.

Workaround
None.

Solution Status
This issue will be fixed in a future release of DSP Builder.

Errors Issued With Imported Quartus II Project
HDL Import blocks that import Quartus II projects may cause errors while executing the Signal Compiler or TestBench flows.

Affected Configurations
Models with HDL Import blocks that reference Quartus II projects with SEARCH_PATH assignments, rather than USER_LIBRARIES assignments.

Design Impact
Models containing HDL Import blocks that import Quartus II projects generated using Quartus II v8.0 may fail to generate hardware because the library settings are not recognized.

Workaround
Add a USER_LIBRARIES setting to the .qsf file for the Quartus II project to be imported. The assignment value should be the concatenation of all the project’s SEARCH_PATH assignment values, separated by semi-colons and enclosed within quotes. These required search path values may be in the top-level .qsf file, or in .qip files included in the project. Then recompile the HDL Import block.

Solution Status
This issue is fixed in v9.0 of DSP Builder.
Cannot Compare Simulink Against ModelSim When Using VIP Suite IP

Execution of the Compare against HDL or Generate HDL steps in the Testbench Generator dialog box issues an error for Video and Image Processing Suite MegaCore functions.

Affected Configurations
Designs using Video and Image Processing Suite MegaCore function blocks.

Design Impact
Testbench generation does not complete successfully, and automatic comparison of the Simulink simulation results against the results from ModelSim® is not possible.

Workaround
A MATLAB m-script is provided that give access to the testbench flow, with the flow output being sent to the MATLAB command window. The command required to use this script is:

```matlab
alt_dspbuilder_compare_VIP_design_against_HDL(<model>, <performcompare>)
```

where:
- `<model>` is the name of the .mdl file for which the flow is to be run.
- `<performcompare>` is optional, setting it to 0 causes the final Compare Results step to be skipped. The default value of 1 causes the Compare Results step to be run.

After the script is run, you can use the features available in the Advanced tab of the Testbench Generator dialog box (excluding the Generate HDL step).

Solution Status
The Video and Image Processing Suite MegaCore functions are not supported in DSP Builder v9.0 or later.

MATLAB Hangs If You Press Enter in Signal Compiler Device Box

MATLAB hangs if you press the Enter or Return key in the Device box on the Signal Compiler dialog box.

Affected Configurations
All configurations.

Design Impact
None.

Workaround
Take care to avoid pressing the Enter or Return key after typing the device name.

Solution Status
This issue will be fixed in a future release of DSP Builder.
Additional Project Assignments Required for User Libraries

Additional project assignments may be required when using the Export HDL flow with user libraries.

Affected Configurations

Configurations that include MegaCore function, HDL Import, or State Machine Editor blocks.

Design Impact

Compilation fails in the Quartus II software with an error of the form:

```
Error: Node instance <block_name> instantiates undefined entity <entity_name>
```

Workaround

Add the following to the Quartus II project:

- The .qip file corresponding to the entity named in the error message. (This file is located in the import subdirectory corresponding to the library model.)
- In some cases you may also need to add any libraries which are referenced by HDL Import block(s) in the library model.

Solution Status

This issue will be fixed in a future release of DSP Builder.

Dual-Clock FIFO Simulation Does Not Match ModelSim

The Dual-Clock FIFO simulation in Simulink is functionally equivalent to hardware, but not cycle-accurate.

Affected Configurations

Most configurations are affected.

Design Impact

The delay between the write-side adding data and the read-side seeing it, and between the read-side clearing space in the FIFO and the write-side seeing it, does not match hardware.

Workaround

Do not rely on these timing characteristics for correctness of a design.

Solution Status

This issue will be fixed in a future release of DSP Builder.
2. Advanced Blockset

This chapter describes new features, revision history, known errata and documentation changes for the DSP Builder advanced blockset.

Revision History

Table 2–1 lists the revision history for the DSP Builder advanced blockset v9.1, v9.0, and v8.1.

Table 2–1. DSP Builder Advanced Blockset Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>November 2009</td>
<td>■ Primitive block support for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Folding (time-division multiplexing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Simulink Complex type support in arithmetic and memory primitive blocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Simulink 1-D vector (array) support in arithmetic and memory primitive blocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Improved resource utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Run ModelSim system-level testbench now verifies ModelSim simulation against Simulink, and there are no longer restrictions on the stimulus blocks supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Primitive block changes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Convert block now has a saturation option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Mux2 is now generalized to an arbitrary number of inputs (and renamed Mux)</td>
</tr>
<tr>
<td>9.0 SP1</td>
<td>May 2009</td>
<td>Maintenance release.</td>
</tr>
<tr>
<td>9.0</td>
<td>March 2009</td>
<td>Support for Linux operating systems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support for Arria® II GX.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated SOPC Builder support and procedures for instantiating a design.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support for running all the automatic testbenches in a design.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved documentation for the NCO block including multichannel design examples with support for multiple banks.</td>
</tr>
<tr>
<td>8.1</td>
<td>November 2008</td>
<td>New W-CDMA example designs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latency display option on ModelIP blocks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DONT_CARE option on Dual Memory block.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagrammatic channelization format display for ModelIP blocks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quartus II IP (.qip) file support.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latency constraints can be applied using the SynthesisInfo block.</td>
</tr>
</tbody>
</table>

Errata

Errata are functional defects or errors which may cause DSP Builder to deviate from published specifications. Table 2–2 shows the errata that affect the DSP Builder advanced blockset v9.1, v9.0, and v8.1.
For the latest errata information, refer to the *DSP Builder Release Notes and Errata* on the Altera literature website.

Table 2–2. DSP Builder Advanced Blockset Errata

<table>
<thead>
<tr>
<th>Added or Updated</th>
<th>Issue</th>
<th>Affected Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Nov 09</td>
<td>Simulation Error With Cyclone Series Devices</td>
<td>9.1 9.0 SP1 9.0 8.1</td>
</tr>
<tr>
<td></td>
<td>DSP Builder Advanced Blockset Reports an Incorrect Version Number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primitive Latency Constraints Do Not Work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATB Generation Does Not Follow Links out of Subsystems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incorrect VHDL if Single Simulink Import Block is Connected to Multiple Channels In Ports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bad Port Indexing for Complex Data on ChannelOut and ChannelIn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Driving Simulink Scopes With Complex Signals Gives Errors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Support for 1-Input Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSP Builder Advanced User Guide has No Revision History for v9.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imaginary Output from Complex to Real Imaginary Gives Internal Errors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware Tcl Files Do Not Have Correct Port Names for Vector Ports</td>
<td>Fixed</td>
</tr>
<tr>
<td>15 May 09</td>
<td>Multiplier Optimizations Can Cause Signal Width Mismatch in Synthesis</td>
<td>9.1 9.0 SP1 9.0 8.1</td>
</tr>
<tr>
<td></td>
<td>HIL Simulation of Combined Blockset Design Outputs All Zeros</td>
<td></td>
</tr>
<tr>
<td>01 Apr 09</td>
<td>Latency Not Balanced for ModelBus blocks Outside Primitive Subsystem</td>
<td>9.1 9.0 SP1 9.0 8.1</td>
</tr>
<tr>
<td>15 Mar 09</td>
<td>Bus and System Clocks Must Match When Using Bus Stimulus Block</td>
<td>9.1 9.0 SP1 9.0 8.1</td>
</tr>
<tr>
<td></td>
<td>Primitive Automatic Testbench Flow Incorrect with Many Integer Bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limit of 50 Subsystem Ports Anywhere in a Design</td>
<td></td>
</tr>
<tr>
<td>01 Nov 08</td>
<td>Saturation Limitation When using the Scale Block</td>
<td>9.1 9.0 SP1 9.0 8.1</td>
</tr>
<tr>
<td></td>
<td>Very High Hard Multiplier Threshold Does Not Force the Use of Logic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Forward Flow Control in Primitive Subsystems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limitations of the ModelSim Testbench Flow</td>
<td></td>
</tr>
<tr>
<td>15 May 08</td>
<td>Cannot Import a Combined Blockset Design into SOPC Builder</td>
<td>9.1 9.0 SP1 9.0 8.1</td>
</tr>
<tr>
<td></td>
<td>Incorrect Simulation Results if Word Length Greater Than 64 bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compilation Error if Unused Channel Out Port is Terminated</td>
<td></td>
</tr>
</tbody>
</table>

Simulation Error With Cyclone Series Devices

Primitive `Const` blocks that generate a signal driving a `Mult-Add` block sequence may cause a simulation error when targeting Cyclone series devices.

When you target any of the Cyclone devices, simulation may fail in designs that contain a signal from a primitive `Const` block that drives a `Mult` block that drives an `Add` block.

Affected Configurations

This issue affects configurations that target any Cyclone series devices and contain a primitive `Const` driving a `Mult-Add` block sequence.
Design Impact
The following assertion failure occurs, which crashes MATLAB.
outputClock != m_model->m_infiniteClock.

Workaround
Connect the constant signal to the Mult block using a Convert block.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

DSP Builder Advanced Blockset Reports an Incorrect Version Number
DSP Builder Advanced Blockset reports an incorrect version number.

Affected Configurations
This issue affects all configurations.

Design Impact
The version number reported by DSP Builder Advanced Blockset within MATLAB (for example, through the ver MATLAB command) is 0.0.0. This incorrect version number also appears in the header comment of generated HDL files.

Workaround
Ignore the incorrect version numbers.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

Primitive Latency Constraints Do Not Work
In primitive subsystems an option on the SynthesisInfo block should allow you to set a latency constraint for the subsystem. However this feature does not work.

Affected Configurations
This issue affects all configurations.

Design Impact
There is no design impact.

Workaround
This issue has no workaround.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.
ATB Generation Does Not Follow Links out of Subsystems

Synthesizable subsystems where Simulink Inports are directly connected to Simulink Outports may lead to ATB VHDL errors.

Affected Configurations

Synthesizable subsystems where a Simulink Inport block feeds directly into a Simulink Outport block.

Design Impact

When you use the generated ATB (for example by double-clicking Run ModelSim), you receive the following error, because the ATB is trying to read simulation data from a file that does not exist:

```
# ** Error: (vsim-7) Failed to open VHDL file
"../MATLAB/..../rtl/device_atb_problem/DUT/Wire/Out1_auto.stm" in rb mode.
```

Workaround

To workaround the issue, replace direct connections from a Simulink Inport block to a Simulink Outport block with direct connections outside the corresponding subsystem.

Solution Status

This issue will be fixed in a future release of the DSP Builder advanced blockset.

Incorrect VHDL if Single Simulink Inport Block is Connected to Multiple ChannelIn Ports

Connecting single Simulink Inport block to multiple ChannelIn ports may lead to VHDL error in synthesis.

Affected Configurations

This issue affects primitive subsystems where a Simulink Inport block feeds into multiple ChannelIn ports.

Design Impact

When you compile for synthesis in the Quartus II software, you receive the following error, because the same port name appears multiple times in the port list:

```
Error (10465): VHDL error at
one_inport_to_many_channelin_ports_Chip.vhd(40): name "d0" cannot be used because it is already used for a previously declared item
```

Workaround

Add a Simulink Inport block for each ChannelIn input in your subsystem, and feed the desired signals to those ports outside the subsystem.

Solution Status

This issue will be fixed in a future release of the DSP Builder advanced blockset.
Bad Port Indexing for Complex Data on ChannelOut and ChannelIn

You should always connect the channel (DC) input port of the ChannelOut ModelPrim block, if your design uses complex data types. If your design does not have the DC input port connected, as it is not required, you should drive it with a constant zero uint(8).

Similarly, you should always connect the channel (DC) input port of the ChannelIn ModelPrim block, if your design uses complex data types. If your design does not have the DC input port connected, as it is not required, you should connect it up through the subsystem levels and drive it with a constant zero uint(8) in the testbench.

Affected Configurations
This issue affects all configurations.

Design Impact
Without these imaginary components any complex data signals through the channel out may not be correctly connected, and the imaginary component are lost. In addition for the ChannelIn ModelPrim block, if completely unconnected a port ChannelIn_2 is created on the entity, but not on the components.

Workaround
This issue has no workaround.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

Driving Simulink Scopes With Complex Signals Gives Errors

You cannot drive Simulink scopes with complex signals. They only accept real signals (including real vectors). If you attempt to drive a scope with a complex signal in your design, Simulink assume this signal should be real and back-propagates the real type through the design, until such time as there is a clash, where a block is explicitly driven by a complex type.

Affected Configurations
This issue affects all configurations.

Design Impact
This clash results in the following error message:

"Attempted to set output port (n) complexity after it was already set to opposite sense."

If you see this error for a complex port, check that the signal downstream is not driving a scope directly.

Workaround
Add a Simulink Complex to Real-Imag block (Simulink > Math Operations library) and connect the real and imaginary components to the scope individually.
Blocks other than Simulink scopes may also cause similar errors, if they only accept real data types. The same workaround applies.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

No Support for 1-Input Mode
There is no support for 1-input mode on AND, OR, or other logical ModelPrim blocks.

Affected Configurations
This issue affects all configurations.

Design Impact
You see the following error:

```
Altera DSP Builder Advanced Internal Restriction: 'in[i].m_inWidth <= WIDE_MAX_DATAWIDTH'. Error in block
'rrh_duc/device/DUC/carrier_duc/CarrierEnableGainSum/Or_rsrvd_fix' in .\hw_fu.cpp:1221. 
```

Workaround
This issue has no workaround.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

DSP Builder Advanced User Guide has No Revision History for v9.1
The DSP Builder Advanced User Guide has no revision history for v9.1. The following revision history is correct:

- Added appendix on folding
- Added descriptions on complex datatype and vectorization

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

Imaginary Output from Complex to Real Imaginary Gives Internal Errors
You cannot use the imaginary output from Complex to Real-Imag block, if the input signal is real, (despite this imaginary output signal appearing in Simulink). Attempts to use the imaginary output leads to internal errors. In synthesizable subsystems, you receive an error message; in subsystems not for synthesis, you receive a warning message.

Affected Configurations
This issue affects all configurations.
Design Impact
If you use the imaginary output, DSP Builder issues internal errors.

Workaround
Ensure the source signal is complex or remove the Complex to Real-Imag block and generate a constant zero to drive the elements connected to the imaginary signal.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

Hardware Tcl Files Do Not Have Correct Port Names for Vector Ports
If any input ports to the synthesizable system have vector inputs (for example if they feed into a FIR filter with more than one channel and a sample rate matching the clock rate), the <hardware>_hw.tcl file generated for SOPC Builder has misnamed ports.

Affected Configurations
Any synthesizable system that has vector input ports.

Design Impact
The port names in the <hardware>_hw.tcl file are not vectorized. For example, it might only list an input a and an output q, although the VHDL actually contains input port names a0, a1,... and output port names q0, q1,...

Workaround
Manually correct the Tcl file using the generated VHDL as a reference. For example:

add_interface_port exp a export Input 17

becomes:

add_interface_port exp a0 export Input 17
add_interface_port exp a1 export Input 17
add_interface_port exp a2 export Input 17
...
...

Solution Status
This issue is fixed in the DSP Builder advanced blockset v9.1.

Multiplier Optimizations Can Cause Signal Width Mismatch in Synthesis
Multiplier optimizations can lead to signal bit width mismatches and VHDL errors in synthesis.

Affected Configurations
Primitive subsystems where a multiplier feeds directly into an output port.
Design Impact
When you compile for synthesis in the Quartus II software, an error is issued of the form:

```
Error: Actual width (34) of port "q1" on instance "<model>:<submod>"
is not compatible with the formal port width (30) declared by the
instantiated entity
```

This is because the output signal is smaller than expected because of a multiplier optimization not being propagated on to a fixed width entity (usually an subsystem boundary or other fixed-width block).

Workaround
Use a Convert block from the ModelPrim library to explicitly set the required signal format on the output of the multiplier.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

HIL Simulation of Combined Blockset Design Outputs All Zeros
A Hardware in the loop (HIL) design containing blocks from both the standard and advanced blocksets sometimes outputs all zeros when simulated. This problem occurs when the reset type is set to Low in the Signals block.

The DSP Design Flow Guide currently states that an embedded advanced blockset design should have the same reset type as the standard blockset design in which it is embedded. This is incorrect; the advanced blockset design must always have an active high reset.

Affected Configurations
HIL designs derived from a model created using the advanced blockset.

Design Impact
The HIL simulation output remains zero.

Workaround
Change the reset type specified in the Signals block to High by performing the following steps:

1. In the original combined blockset design, set the Reset name to aclr and Reset active to High in the Signals block.
2. Delete all the generated files from the rtl directory specified as the Hardware destination directory in the Control block.
3. Delete all the files from the DSPBuilder_<top level>_import directory.
4. Delete all the files from <top level>_dspbuilder directory.
5. Run Simulink simulation (to generate HDL for the advanced blockset).
6. Compile the design in the Signal Compiler block (generate HDL and create a Quartus II project for the whole design).
7. Open the HIL model and run the normal HIL flow.

The reset level specified in the Clock block is not relevant.

Solution Status

This issue is fixed in the latest version of the *DSP Design Flow Guide*.

Latency Not Balanced for ModelBus blocks Outside Primitive Subsystem

If you are using ModelBus blocks outside of a primitive subsystem with Scheduled synthesis style, it is likely that the latencies on the address, write enable and data paths created for these blocks may not be balanced in v9.0.

Affected Configurations

Configurations using ModelBus blocks outside of a primitive subsystem with Scheduled synthesis style. ModelBus blocks inside a scheduled subsystem are not affected.

Design Impact

The latencies on the address, write enable and data paths created for ModelBus blocks outside of a primitive subsystem may not be balanced.

Workaround

To ensure the data path is registered in line with the address and write enable for such unscheduled blocks, define the following workspace variable before performing simulation and HDL generation (for example in the model **InitFnc** callbacks):

```
DSPBA_Features.useScheduledDataBus = false;
```

The default v9.0 behavior can be restored by setting this variable to true.

Solution Status

This issue will be fixed in a future release of the DSP Builder advanced blockset.

Bus and System Clocks Must Match When Using Bus Stimulus Block

Testbench simulation results are incorrect when using the Bus Stimulus block if the bus clock frequency is different from the frequency of the system clock.

Affected Configurations

Any design that uses the Bus Stimulus block.

Design Impact

The testbench simulation results are incorrect.

Workaround

The bus clock frequency must be the same as the frequency of the system clock. Turn on **Separate Bus Clock** and **Bus Clock Synchronous with System Clock** in the Signal block for your model.
Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

Primitive Automatic Testbench Flow Incorrect with Many Integer Bits
The primitive automatic testbench flow may be incorrect when using fractional representations with many integer bits.

Affected Configurations
Designs that require a large number of integer bits.

Design Impact
Unexpected simulation mismatches are reported.

Workaround
Reduce the number of integer bits required by your model.

Solution Status
This issue is fixed in v9.0 of the DSP Builder advanced blockset.

Limit of 50 Subsystem Ports Anywhere in a Design
All blocks that become functional units are restricted to a maximum of 50 ports.

Affected Configurations
Any block or subsystem that has more than 50 ports.

Design Impact
An assert m_inCount <= m_maxInCount which crashes MATLAB.

Workaround
Avoid creating a subsystem or block with more than 50 ports.

Solution Status
This issue is fixed in v9.0 of the DSP Builder advanced blockset.

Saturation Limitation When using the Scale Block
When you increase the number of fractional bits used for a signal, the MSB may be truncated.

Affected Configurations
Configurations using the Scale block.

Design Impact
The MSB may be truncated.
Workaround
Use a `Convert` block inside the primitive subsystem.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

Very High Hard Multiplier Threshold Does Not Force the Use of Logic
Setting a very high Hard Multiplier Threshold should avoid using any DSP blocks.

Affected Configurations
All configurations.

Design Impact
Unwanted use of DSP blocks.

Workaround
None.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

No Forward Flow Control in Primitive Subsystems
'Bursty' input data is not supported for primitive subsystems, that is designs where the `valid` signal toggles high and low repeatedly.

Affected Configurations
Any primitive subsystem.

Design Impact
The simulation results are incorrect.

Workaround
Avoid using bursts of data.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

Limitations of the ModelSim Testbench Flow
The `Run ModelSim` block can be used to simulate a model in ModelSim. This flow attempts to make a ModelSim testbench by synthesizing all the block (including any Simulink blocks in the top-level). However only a limited number of Simulink blocks are synthesizable and an empty subsystem is created for the unsupported blocks.

Affected Configurations
Any model with unsynthesizable Simulink blocks in the top-level.
Design Impact
The testbench cannot be simulated.

Workaround
Use only the supported blocks in the testbench for your design or write your own HDL for the empty subsystems. (A full list of synthesizable blocks is given in the description of the Run ModelSim block.) Alternatively, you can use the automatic testbench flow to simulate each subsystem in your design separately.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

Cannot Import a Combined Blockset Design into SOPC Builder
You cannot import a design that combines blocks from the standard and advanced blocksets into SOPC Builder.

Affected Configurations
Configurations which combine blocks from the standard and advanced blocksets.

Design Impact
If you attempt to import a combined blockset design into SOPC Builder, warning are issued stating that there are multiple clocks with the same name and the component is not added to the system.

Workaround
There is no workaround.

Solution Status
This issue will be fixed in a future release of the DSP Builder advanced blockset.

Incorrect Simulation Results if Word Length Greater Than 64 bits
The simulation results are incorrect for ModelIP blocks if the word length is greater than 64 bits.

Affected Configurations
Configurations which include ModelIP blocks are affected. However, ModelPrim blocks do support word lengths greater than 64 bits.

Design Impact
The simulation results are incorrect.

Workaround
Restrict the word length used by ModelIP blocks to 64 bits.
Solution Status

This issue will be fixed in a future release of the DSP Builder advanced blockset.

Compilation Error if Unused Channel Out Port is Terminated

Quartus II compilation fails if an unused channel or valid signal from a Channel Out block is connected to a Simulink Terminator block inside a primitive subsystem.

Affected Configurations

Primitive subsystems with unused channel or valid output signals.

Design Impact

Incorrect HDL is generated and errors are issued when you attempt to compile the design in the Quartus II software.

Workaround

Leave the unused signals unconnected or terminate them outside the subsystem.

Solution Status

This issue will be fixed in a future release of the DSP Builder advanced blockset.
Update Status

The following table displays the update status for these release notes.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 November 2009</td>
<td>9.1</td>
<td>Updated for software version 9.1.</td>
</tr>
<tr>
<td>15 June 2009</td>
<td>4.3</td>
<td>Added an errata in the standard blockset chapter.</td>
</tr>
<tr>
<td>May 2009</td>
<td>4.2</td>
<td>Updated for software version 9.0 SP1.</td>
</tr>
<tr>
<td>April 2009</td>
<td>4.1</td>
<td>Added and updated errata in the advanced blockset chapter.</td>
</tr>
<tr>
<td>March 2009</td>
<td>4.0</td>
<td>Updated for software version 9.0.</td>
</tr>
</tbody>
</table>

How to Contact Altera

For the most up-to-date information about Altera® products, refer to the following table.

<table>
<thead>
<tr>
<th>Contact 1</th>
<th>Contact Method</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical support</td>
<td>Website</td>
<td>www.altera.com/support</td>
</tr>
<tr>
<td>Technical training</td>
<td>Website</td>
<td>www.altera.com/training</td>
</tr>
<tr>
<td></td>
<td>Email</td>
<td>custrain@altera.com</td>
</tr>
<tr>
<td>Product literature</td>
<td>Website</td>
<td>www.altera.com/literature</td>
</tr>
<tr>
<td>Non-technical support</td>
<td>Email</td>
<td>nacomp@altera.com</td>
</tr>
<tr>
<td>(General)</td>
<td>Email</td>
<td>authorization@altera.com</td>
</tr>
<tr>
<td>(Software Licensing)</td>
<td>Email</td>
<td></td>
</tr>
</tbody>
</table>

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

This document uses the typographic conventions shown in the following table.

<table>
<thead>
<tr>
<th>Visual Cue</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold Type with Initial Capital Letters</td>
<td>Indicates command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box.</td>
</tr>
<tr>
<td>bold type</td>
<td>Indicates directory names, project names, disk drive names, file names, file name extensions, and software utility names. For example, \qdesigns directory, d: drive, and chiptrip.gdf file.</td>
</tr>
<tr>
<td>Italic Type with Initial Capital Letters</td>
<td>Indicates document titles. For example: AN 519: Stratix IV Design Guidelines.</td>
</tr>
<tr>
<td>Italic type</td>
<td>Indicates variables. For example, (n + 1). Variable names are enclosed in angle brackets ((<)>). For example, (<file name>) and (<project name>.pof) file.</td>
</tr>
<tr>
<td>Visual Cue</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Initial Capital Letters</td>
<td>Indicates keyboard keys and menu names. For example, Delete key and the Options menu.</td>
</tr>
<tr>
<td>“Subheading Title”</td>
<td>Quotation marks indicate references to sections within a document and titles of Quartus II Help topics. For example, “Typographic Conventions.”</td>
</tr>
<tr>
<td>Courier type</td>
<td>Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. Active-low signals are denoted by suffix n. Example: resetn. Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).</td>
</tr>
<tr>
<td>1., 2., 3., and a., b., c., and so on.</td>
<td>Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.</td>
</tr>
<tr>
<td>■ ■</td>
<td>Bullets indicate a list of items when the sequence of the items is not important.</td>
</tr>
<tr>
<td>■ ■</td>
<td>The hand points to information that requires special attention.</td>
</tr>
<tr>
<td>☢ ☢</td>
<td>A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.</td>
</tr>
<tr>
<td>☢ ☢</td>
<td>A warning calls attention to a condition or possible situation that can cause you injury.</td>
</tr>
<tr>
<td>▼ ▼</td>
<td>The angled arrow instructs you to press the enter key.</td>
</tr>
<tr>
<td>▼ ▼</td>
<td>The feet direct you to more information about a particular topic.</td>
</tr>
</tbody>
</table>