Contents

1. DSP Builder for Intel® FPGAs Release Notes ... 3
 1.1. Errata .. 3
 1.2. DSP Builder for Intel FPGAs Advanced Blockset Revision History 3
 1.3. System Requirements .. 7
1. DSP Builder for Intel® FPGAs Release Notes

1.1. Errata

Errata are functional defects or errors, which may cause the product to deviate from published specifications. Documentation issues include errors, unclear descriptions, or omissions from current published specifications or product documents. For full information on errata and the versions affected by errata, refer to the Knowledge Base page of the Intel® website.

Related Information
Knowledge Base

1.2. DSP Builder for Intel FPGAs Advanced Blockset Revision History

Table 1. Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| 21.1 | 2021.06.30| • Added Finite State Machine block and design example.
 | | • Added support for MATLAB version: R2020b | |
| 20.1 | 2020.04.13| Removed device selector in Device Parameters panel. |
| 2019.09.01| | Added support for Intel Agilex® devices. |
| 19.1 | 2019.04.01| • Added support for two new floating-point types float16_m7 (bfloat) and float19_m10.
 | | • Added dependent latency feature. | |
| | | • Added FIFO buffer fill-level reporting. |
| 18.1 | 2018.09.17| • Added HDL import. |
| | | • Added C++ software models. |
| 18.0 | 2018.05.08| • Added support for automatic reset minimization of DSP Builder designs. Reset minimization determines the minimal set of registers in a design that require reset, while retaining the design’s correct functionality. Reducing the number of registers that DSP Builder resets may give improved quality of results i.e. reduced area and increased Fmax.
 | | • Added support for bit fields to the SharedMem block. These fields provide analogous functionality to the existing bit field support in the RegField and RegOut blocks.
 | | • Added beta support for HDL import, which incorporates VHDL or Verilog HDL synthesizable designs into a DSP Builder design. You can then cosimulate the imported design with DSP Builder Simulink components. HDL import includes a minimal user interface, but requires some manual setup. To use this feature, you require a license for the MathWorks HDL Verifier tool.

continued...
<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| 17.1 | 2017.11.06 | • Added super-sample NCO design example.
• Added support for Intel Cyclone® 10 and Intel Stratix® 10 devices.
• Removed instances of Signals block.
• Deleted WYSIWYG option on SynthesisInfo block. |
| 17.0 | 2017.05.05 | • Rebranded as Intel
• Deprecated Signals block
• Added Gaussian and Random Number Generator design examples
• Added variable-size supersampled FFT design example
• Added HybridVFFT block
• Added GeneralVTwiddle and GeneralMultVTwiddle blocks |
| 16.1 | 2016.11.10 | • Added 4-channel 2-antenna DUC and DDC for LTE reference design
• Added BFU_simple block
• Created Standard and Pro editions. Pro supports Arria 10 devices; Standard supports all other families.
• Deprecated the Signals block
• Added functionality for setting the Avalon-MM interface settings in the DSP Builder menu |
| 16.0 | 2016.05.02 | • Reorganized libraries
• Improved folding results on MAX 10 devices
• Added new design examples:
 — Gaussian Random Number Generator
 — DUC_4C4T4R and DDC_4C4T4R LTE digital-up and down-conversion
• Added new FFT pruning strategy: prune_to_widths() |
| 15.1 | 2015.11.11 | • Deprecated Run Quartus II and Run Modelsim blocks
• Added clock crossing support
• Added reconfigurable FIR filters
• Improved bus interfaces:
 — Improved error checking and reporting
 — Improved simulation accuracy
 — Improved bus slave logic implementation
 — Improved clock crossing
• Changed some Avalon-MM interfaces
• Added new blocks:
 — Capture Values
 — Fanout
 — Pause
 — Vectorfanout
• Added IIR: full-rate fixed-point and IIR: full-rate floating-point demos
• Added transmit and receive modem reference design |
| 15.0 | May 2015 | • Added support for SystemVerilog output
• Added external memories library
• Added External Memory block
• Added new Allow write on both ports parameter to DualMem block
• Changed parameters on AvalonMMSlaveSettings block |
| 14.1 | December 2014 | • Added support for Arria 10 hard-floating-point blocks
• Added BusStimulus and BusStimulusFileReader blocks to memory-mapped registers design example.
• Added AvalonMMSlaveSettings block and DSP Builder > Avalon Interfaces > Avalon-MM slave menu option
• Removed bus parameters from Control and Signal blocks |
Removed the following design examples:
- Color Space Converter (Resource Sharing Folding)
- Interpolating FIR Filter with Updating Coefficients
- Primitive FIR Filter (Resource Sharing Folding)
- Single-Stage IIR Filter (Resource Sharing Folding)
- Three-stage IIR Filter (Resource Sharing Folding)

Added system-in-the-loop support

Added new blocks:
- Floating-point classifier
- Floating-point multiply accumulate
- Added hypotenuse function to math block

Added design examples:
- Color space converter
- Complex FIR
- CORDIC from Primitive Blocks
- Crest factor reduction
- Folding FIR
- Variable Integer Rate Decimation Filter
- Vector sort - sequential and iterative

Added reference designs:
- Crest factor reduction
- Direct RF with Synthesizable Testbench
- Dynamic Decimation Filter
- Reconfigurable Decimation Filter
- Variable Integer Rate Decimation Filter

Removed resource sharing folder

Updated ALU folder

14.0 June 2014

- Added support for MAX 10 FPGAs.
- Removed support for Cyclone III and Stratix III devices
- Improved **DSP Builder Run ModelSim** option, which now allows you to run ModelSim for the top-level design or individual submodules
- Changed the generation of HDL into the device level directory (under the specified target RTL directory) rather than in a hierarchy of directories
- Added read signal on bus interface
- Added clear port on the FIFO

continued...
<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| | November 2013 | • Deprecated 13 FFT blocks
| | 13.1 | • Added new design examples:
| | | — Avalon-ST Interface (Input and Output FIFO Buffer) with Backpressure
| | | — Avalon-ST Interface (Output FIFO Buffer) with Backpressure
| | | — Fixed-point maths functions
| | | — Fractional square root using CORDIC
| | | — Normalizer
| | | — Parallel FFT
| | | — Parallel Floating-Point FFT
| | | — Square root using CORDIC
| | | — Switchable FFT/iFFT
| | | — Variable-Size Fixed-Point FFT
| | | — Variable-Size Fixed-Point FFT without BitReverseCoreC Block
| | | — Variable-Size Fixed-Point iFFT
| | | — Variable-Size Fixed-Point iFFT without BitReverseCoreC Block
| | | — Variable-Size Floating-Point FFT
| | | — Variable-Size Floating-Point FFT without BitReverseCoreC Block
| | | — Variable-Size Floating-Point iFFT
| | | — Variable-Size Floating-Point iFFT without BitReverseCoreC Block
| | | • Added new blocks:
| | | — Anchored Delay
| | | — Enabled Delay Line
| | | — Enabled Feedback Delay
| | | — FFT2X, FFT4X, FFT8X, FFT16X, FFT32X, and FFT64X
| | | — FFT2, FFT4, VFFT2, and VFFT4
| | | — General Multitwiddle and General Twiddle (GeneralMultiTwiddle, GeneralTwiddle)
| | | — Hybrid FFT (Hybrid_FFT)
| | | — Parallel Pipelined FFT (PFFT_Pipe)
| | | — Ready
| | | • Removed support for the following devices:
| | | — Arria GX
| | | — Cyclone II
| | | — HardCopy II, HardCopy III, and HardCopy IV
| | | — Stratix, Stratix II, Stratix GX, and Stratix II GX
| | | • Improved ALU folding flow
| | | • Added new functions to Math block.

continued...
Related Information
- DSP Builder Handbook Volume 3: DSP Builder Advanced Blockset
- Errata for DSP Builder advanced blockset in the Knowledge Base

1.3. System Requirements

DSP Builder for Intel FPGAs integrates with MathWorks MATLAB and Simulink tools and with the Intel Quartus® Prime software.
Ensure at least one version of The MathWorks MATLAB and Simulink tool is available on your workstation before you install DSP Builder for Intel FPGAs. You should use the same version of the Intel Quartus Prime software and DSP Builder for Intel FPGAs. DSP Builder for Intel FPGAs only supports 64-bit versions of MATLAB.

From v18.0, DSP Builder for Intel FPGAs advanced blockset is available for Intel Quartus Prime Pro Edition and Intel Quartus Prime Standard Edition. DSP Builder for Intel FPGAs standard blockset is only available for Intel Quartus Prime Standard Edition.

Table 2. DSP Builder for Intel FPGAs MATLAB Dependencies

<table>
<thead>
<tr>
<th>Version</th>
<th>MATLAB Supported Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DSP Builder Standard Blockset</td>
</tr>
<tr>
<td></td>
<td>Intel Quartus Prime Standard Edition</td>
</tr>
<tr>
<td>20.1</td>
<td>Not available</td>
</tr>
<tr>
<td>19.3</td>
<td>Not available</td>
</tr>
<tr>
<td>19.1</td>
<td>Not supported</td>
</tr>
<tr>
<td>18.1</td>
<td>R2013a</td>
</tr>
<tr>
<td>18.0</td>
<td>R2013a</td>
</tr>
<tr>
<td>17.1</td>
<td>R2013a</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>Version</th>
<th>MATLAB Supported Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DSP Builder Standard Blockset</td>
</tr>
<tr>
<td></td>
<td>DSP Builder Advanced Blockset</td>
</tr>
<tr>
<td>Intel Quartus Prime Standard Edition</td>
<td>Intel Quartus Prime Pro Edition</td>
</tr>
<tr>
<td></td>
<td>R2014a</td>
</tr>
<tr>
<td></td>
<td>R2013b</td>
</tr>
</tbody>
</table>

Note: The DSP Builder for Intel FPGAs advanced blockset uses Simulink fixed-point types for all operations and requires licensed versions of Simulink Fixed Point. Intel also recommends the DSP System Toolbox and the Communications System Toolbox, which some design examples use.

Related Information

Intel Software Installation and Licensing.