Intel® Quartus® Prime Pro Edition
Settings File Reference Manual

Updated for Intel® Quartus® Prime Design Suite: 18.0
 1.1. Advanced I/O Timing Assignments .. 23
 1.1.1. BOARD_MODEL_EBD_FAR_END .. 23
 1.1.2. BOARD_MODEL_EBD_FILE_NAME ... 24
 1.1.3. BOARD_MODEL_EBD_SIGNAL_NAME ... 25
 1.1.4. BOARD_MODEL_FAR_C ... 26
 1.1.5. BOARD_MODEL_FAR_DIFFERENTIAL_R ... 27
 1.1.6. BOARD_MODEL_FAR_PULLDOWN_R .. 28
 1.1.7. BOARD_MODEL_FAR_PULLUP_R .. 29
 1.1.8. BOARD_MODEL_FAR_SERIES_R ... 30
 1.1.9. BOARD_MODEL_NEAR_C .. 31
 1.1.10. BOARD_MODEL_NEAR_DIFFERENTIAL_R .. 32
 1.1.11. BOARD_MODEL_NEAR_PULLDOWN_R ... 33
 1.1.12. BOARD_MODEL_NEAR_PULLUP_R ... 34
 1.1.13. BOARD_MODEL_NEAR_SERIES_R ... 35
 1.1.14. BOARD_MODEL_NEAR_TLINE_C_PER_LENGTH 36
 1.1.15. BOARD_MODEL_NEAR_TLINE_LENGTH .. 37
 1.1.16. BOARD_MODEL_NEAR_TLINE_L_PER_LENGTH 38
 1.1.17. BOARD_MODEL_TERMINATION_V ... 39
 1.1.18. BOARD_MODEL_TLINE_C_PER_LENGTH ... 40
 1.1.19. BOARD_MODEL_TLINE_LENGTH .. 41
 1.1.20. BOARD_MODEL_TLINE_L_PER_LENGTH ... 42
 1.1.21. OUTPUT_IO_TIMING_ENDPOINT .. 43
 1.1.22. OUTPUT_IO_TIMING_FAR_END_VMEAS ... 44
 1.1.23. OUTPUT_IO_TIMING_NEAR_END_VMEAS .. 45
 1.2. Analysis & Synthesis Assignments ... 46
 1.2.1. ADV_NETLIST_OPT_ALLOWED ... 46
 1.2.2. ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP 47
 1.2.3. ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION 48
 1.2.4. ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION 49
 1.2.5. ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_RECOGNITION 50
 1.2.6. ALLOW_CHILD_PARTITIONS .. 51
 1.2.7. ALLOW_POWER_UP_DONT_CARE ... 52
 1.2.8. ALLOW_SHIFT_REGISTER_MERGING_ACROSS_HIERARCHIES 53
 1.2.9. ALLOW_SYNCH_CTRL_USAGE .. 54
 1.2.10. ALTERA_A10_IOPLL_BOOTSTRAP .. 55
 1.2.11. AUTO_CLOCK_ENABLE_RECOGNITION .. 56
 1.2.12. AUTO_DSP_RECOGNITION ... 57
 1.2.13. AUTO_ENABLE_SMART_COMPILE ... 58
 1.2.14. AUTO_OPEN_DRAIN_PINS ... 59
 1.2.15. AUTO_PARALLEL_SYNTHESIS .. 60
 1.2.16. AUTO_RAM_RECOGNITION .. 61
 1.2.17. AUTO_RESOURCE_SHARING ... 62
 1.2.18. AUTO_ROM_RECOGNITION .. 63
 1.2.19. AUTO_SHIFT_REGISTER_RECOGNITION ... 64
 1.2.20. BLOCK_DESIGN_NAMING ... 65
 1.2.21. BOARD ... 66
<table>
<thead>
<tr>
<th>Setting</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.22. DEVICE_FILTER_PACKAGE</td>
<td>67</td>
</tr>
<tr>
<td>1.2.23. DEVICE_FILTER_PIN_COUNT</td>
<td>68</td>
</tr>
<tr>
<td>1.2.24. DEVICE_FILTER_SPEED_GRADE</td>
<td>69</td>
</tr>
<tr>
<td>1.2.25. DEVICE_FILTER_VOLTAGE</td>
<td>70</td>
</tr>
<tr>
<td>1.2.26. DISABLE_DSP_NEGATE_INFERENCING</td>
<td>71</td>
</tr>
<tr>
<td>1.2.27. DISABLE_REGISTER_MERGING_ACROSS_HIERARCHIES</td>
<td>72</td>
</tr>
<tr>
<td>1.2.28. DONT_MERGE_REGISTER</td>
<td>73</td>
</tr>
<tr>
<td>1.2.29. DSE_SYNTH_EXTRA_EFFORT_MODE</td>
<td>74</td>
</tr>
<tr>
<td>1.2.30. DSP_BLOCK_BALANCING</td>
<td>75</td>
</tr>
<tr>
<td>1.2.31. EDA_DESIGN_ENTRY_SYNTHESIS_TOOL</td>
<td>76</td>
</tr>
<tr>
<td>1.2.32. EDA_INPUT_DATA_FORMAT</td>
<td>77</td>
</tr>
<tr>
<td>1.2.33. EDA_INPUT_GND_NAME</td>
<td>78</td>
</tr>
<tr>
<td>1.2.34. EDA_INPUT_VCC_NAME</td>
<td>79</td>
</tr>
<tr>
<td>1.2.35. EDA_LMF_FILE</td>
<td>80</td>
</tr>
<tr>
<td>1.2.36. EDA_RUN_TOOL_AUTOMATICALLY</td>
<td>81</td>
</tr>
<tr>
<td>1.2.37. EDA_SHOW_LMF_MAPPING_MESSAGES</td>
<td>82</td>
</tr>
<tr>
<td>1.2.38. EDA_VHDL_LIBRARY</td>
<td>83</td>
</tr>
<tr>
<td>1.2.39. ENABLE_FORMAL_VERIFICATION</td>
<td>84</td>
</tr>
<tr>
<td>1.2.40. ENABLE_STATE_MACHINE_INFERENCE</td>
<td>85</td>
</tr>
<tr>
<td>1.2.41. FAMILY</td>
<td>86</td>
</tr>
<tr>
<td>1.2.42. FORCE_SYNCH_CLEAR</td>
<td>87</td>
</tr>
<tr>
<td>1.2.43. HDL_INITIAL_FANOUT_LIMIT</td>
<td>88</td>
</tr>
<tr>
<td>1.2.44. HDL_MESSAGE_LEVEL</td>
<td>89</td>
</tr>
<tr>
<td>1.2.45. HDL_MESSAGE_OFF</td>
<td>90</td>
</tr>
<tr>
<td>1.2.46. HDL_MESSAGE_ON</td>
<td>91</td>
</tr>
<tr>
<td>1.2.47. HPS_PARTITION</td>
<td>92</td>
</tr>
<tr>
<td>1.2.48. IGNORE_CARRY_BUFFERS</td>
<td>93</td>
</tr>
<tr>
<td>1.2.49. IGNORE_CASCADE_BUFFERS</td>
<td>94</td>
</tr>
<tr>
<td>1.2.50. IGNORE_GLOBAL BUFFERS</td>
<td>95</td>
</tr>
<tr>
<td>1.2.51. IGNORE_LCELL_BUFFERS</td>
<td>96</td>
</tr>
<tr>
<td>1.2.52. IGNORE_MAX_FANOUT_ASSIGNMENTS</td>
<td>97</td>
</tr>
<tr>
<td>1.2.53. IGNORE_ROW_GLOBAL_BUFFERS</td>
<td>98</td>
</tr>
<tr>
<td>1.2.54. IGNORE_SOFT_BUFFERS</td>
<td>99</td>
</tr>
<tr>
<td>1.2.55. IGNORE_TRANSLATE_OFF_AND_SYNTHESIS_OFF</td>
<td>100</td>
</tr>
<tr>
<td>1.2.56. IMPLEMENT_AS_CLOCK_ENABLE</td>
<td>101</td>
</tr>
<tr>
<td>1.2.57. IMPLEMENT_AS_OUTPUT_OF_LOGIC_CELL</td>
<td>102</td>
</tr>
<tr>
<td>1.2.58. INFER_RAMS_FROM_RAW_LOGIC</td>
<td>103</td>
</tr>
<tr>
<td>1.2.59. IP_SEARCH_PATHS</td>
<td>104</td>
</tr>
<tr>
<td>1.2.60. MAX_BALANCING_DSP_BLOCKS</td>
<td>105</td>
</tr>
<tr>
<td>1.2.61. MAX_FANOUT</td>
<td>106</td>
</tr>
<tr>
<td>1.2.62. MAX_LABS</td>
<td>107</td>
</tr>
<tr>
<td>1.2.63. MAX_NUMBER_OF_REGISTERS_FROM_UNINFERRED_RAMS</td>
<td>108</td>
</tr>
<tr>
<td>1.2.64. MAX_RAM_BLOCKS_M4K</td>
<td>109</td>
</tr>
<tr>
<td>1.2.65. MLAB_ADD_TIMING_CONSTRAINTS_FOR_MIXED_PORT_FEED_THROUGH _MODE_SETTING_DONT_CARE</td>
<td>110</td>
</tr>
<tr>
<td>1.2.66. MUX_RESTRUCTURE</td>
<td>111</td>
</tr>
<tr>
<td>1.2.67. NOT_GATE_PUSH_BACK</td>
<td>112</td>
</tr>
<tr>
<td>1.2.68. NUMBER_OF_INVERTED_REGISTERS_REPORTED</td>
<td>113</td>
</tr>
<tr>
<td>1.2.69. NUMBER_OF_PROTECTED_REGISTERS_REPORTED</td>
<td>114</td>
</tr>
<tr>
<td>1.2.70. NUMBER_OF_REMOVED_REGISTERS_REPORTED</td>
<td>115</td>
</tr>
<tr>
<td>1.2.71. NUMBER_OF_SWEPT_NODES_REPORTED</td>
<td>116</td>
</tr>
</tbody>
</table>
1.3. Assembler Assignments .. 168
 1.3.1. AUTO_RESTART_CONFIGURATION.. 168
 1.3.2. CLOCK_SOURCE.. 169
 1.3.3. COMPRESSION_MODE.. 170
 1.3.4. CONFIGURATION_CLOCK_DIVISOR.. 171
 1.3.5. CONFIGURATION_CLOCK_FREQUENCY... 172
 1.3.6. DISABLE_REGISTER_POWERUP_INITIALIZATION.. 173
 1.3.7. ENABLE_ADV_SEU_DETECTION... 174
 1.3.8. ENABLE_AUTONOMOUS_PCIE_HIP... 175
 1.3.9. ENABLE_OCT_DONE... 176
 1.3.10. EPROM_USE_CHECKSUM_AS_USERCODE... 177
 1.3.11. GENERATE_HEX_FILE.. 178
 1.3.12. GENERATE_PMSF_FILES.. 179
 1.3.13. GENERATE_PR_RBF_FILE... 180
 1.3.14. GENERATE_RBF_FILE.. 181
 1.3.15. GENERATE_TTF_FILE.. 182
 1.3.16. HEXOUT_FILE_COUNT_DIRECTION... 183
 1.3.17. HEXOUT_FILE_START_ADDRESS... 184
 1.3.18. HPS_DAP_SPLIT_MODE... 185
 1.3.19. HPS_INITIALIZATION.. 186
 1.3.20. ON_CHIP_BITSTREAM_DECOMPRESSION... 187
 1.3.21. PR_BASE_MSF.. 188
 1.3.22. PR_BASE_SOF.. 189
 1.3.23. PR_SKIP_BASE_CHECK... 190
 1.3.24. PWRMGT_ADV_CLOCK_DATA_FALL_TIME... 191
 1.3.25. PWRMGT_ADV_CLOCK_DATA_RISE_TIME.. 192
 1.3.26. PWRMGT_ADV_DATA_HOLD_TIME... 193
 1.3.27. PWRMGT_ADV_DATA_SETUP_TIME.. 194
 1.3.28. PWRMGT_ADV_FPGA_RELEASE_DELAY... 195
 1.3.29. PWRMGT_ADV_INITIAL_DELAY... 196
 1.3.30. PWRMGT_ADV_VOLTAGE_STABLE_DELAY.. 197
 1.3.31. PWRMGT_ADV_VOLTAGE_READING_ERR_MARGIN.................................... 198
 1.3.32. PWRMGT_BUS_SPEED_MODE... 199
 1.3.33. PWRMGT_DEVICE_ADDRESS_IN_PMBUS_SLAVE_MODE................................ 200
 1.3.34. PWRMGT_DIRECT_FORMAT_COEFFICIENT_B.. 201
 1.3.35. PWRMGT_DIRECT_FORMAT_COEFFICIENT_M.. 202
 1.3.36. PWRMGT_DIRECT_FORMAT_COEFFICIENT_R.. 203
 1.3.37. PWRMGT_LINEAR_FORMAT_N.. 204
 1.3.38. PWRMGT_PAGE_COMMAND_ENABLE... 205
 1.3.39. PWRMGT_SLAVE_DEVICE0_ADDRESS... 206
 1.3.40. PWRMGT_SLAVE_DEVICE1_ADDRESS... 207
 1.3.41. PWRMGT_SLAVE_DEVICE2_ADDRESS... 208
 1.3.42. PWRMGT_SLAVE_DEVICE3_ADDRESS... 209
 1.3.43. PWRMGT_SLAVE_DEVICE4_ADDRESS... 210
 1.3.44. PWRMGT_SLAVE_DEVICE5_ADDRESS... 211
 1.3.45. PWRMGT_SLAVE_DEVICE6_ADDRESS... 212
 1.3.46. PWRMGT_SLAVE_DEVICE7_ADDRESS... 213
 1.3.47. PWRMGT_SLAVE_DEVICE_TYPE.. 214
 1.3.48. PWRMGT_TABLE_VERSION... 215
 1.3.49. PWRMGT_TRANSLATED_VOLTAGE_VALUE_UNIT....................................... 216
 1.3.50. PWRMGT_VOLTAGE_OUTPUT_FORMAT.. 217
1.3.51. RELEASE_CLEARS_BEFORE_TRI_STATES .. 218
1.3.52. STRATIXII_CONFIGURATION_DEVICE .. 219
1.3.53. STRATIX JTAG_USER_CODE ... 220
1.3.54. USE_CHECKERED_PATTERN_AS_UNINITIALIZED_RAM_CONTENT 221
1.3.55. USE_CHECKSUM_AS_USERCODE .. 222
1.3.56. USE_CONFIGURATION_DEVICE ... 223

1.4. Classic Timing Assignments ... 224
1.4.1. ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS 224
1.4.2. CUT_OFF_IO_PIN_FEEDBACK ... 225
1.4.3. CUT_OFF_PATHS_BETWEEN_CLOCK_DOMAINS ... 226
1.4.4. CUT_OFF_READ_DURING_WRITE_PATHS .. 227
1.4.5. DEFAULT_HOLD_MULTICYCLE ... 228
1.4.6. EMIF_SOC_PHYCLK_ADVANCE_MODELING ... 229
1.4.7. ENABLE_HPS_INTERNAL_TIMING .. 230
1.4.8. FLOW_ENABLE_TIMING_ANALYZER_AFTER_EARLY_PLACE_STAGE 231
1.4.9. FLOW_ENABLE_TIMING_ANALYZER_AFTER_PLAN_STAGE 232
1.4.10. IMPLEMENTS_FREE_RUNNING_CLOCK .. 233
1.4.11. INPUT_TRANSITION_TIME ... 234
1.4.12. MAX_CORE_JUNCTION_TEMP .. 235
1.4.13. MIN_CORE_JUNCTION_TEMP .. 236
1.4.14. MIN_MTBF_REQUIREMENT ... 237
1.4.15. NOMINAL_CORE_SUPPLY_VOLTAGE .. 238
1.4.16. PACKAGE_SKEW_COMPENSATION .. 239
1.4.17. PLL_EXTERNAL_FEEDBACK_BOARD_DELAY ... 240
1.4.18. TDC_AGGRESSIVE_HOLD_CLOSURE_EFFORT .. 241
1.4.19. TIMING_ANALYZER_DO_CCPP_REMOVAL ... 242
1.4.20. TIMING_ANALYZER_DO_REPORT_TIMING ... 243
1.4.21. TIMING_ANALYZER_MULTICORNER_ANALYSIS 244
1.4.22. TIMING_ANALYZER_REPORT_NUM_WORST_CASE_TIMING_PATHS 245
1.4.23. TIMING_ANALYZER_REPORT_SCRIPT .. 246
1.4.24. TIMING_ANALYZER_REPORT_SCRIPT_INCLUDE_DEFAULT_ANALYSIS 247
1.4.25. TIMING_ANALYZER_REPORT_WORST_CASE_TIMING_PATHS 248
1.4.26. TIMING_ANALYZER_SIMULTANEOUS_MULTICORNER_ANALYSIS 249
1.4.27. USE_DLL_FREQUENCY_FOR_DQS_DELAY_CHAIN 250

1.5. Compiler Assignments .. 251
1.5.1. ALLOW_REGISTER_DUPLICATION ... 251
1.5.2. ALLOW_REGISTER_MERGING ... 252
1.5.3. ALLOW_REGISTER_RETIMING ... 253
1.5.4. OPTIMIZATION_MODE ... 254

1.6. Design Assistant Assignments ... 256
1.6.1. CLK_RULE_CLKNET_CLKSPINES_THRESHOLD ... 256
1.6.2. DA_CUSTOM_RULE_FILE .. 257
1.6.3. DRC_DEADLOCK_STATE_LIMIT .. 258
1.6.4. DRC_DETAIL_MESSAGE_LIMIT .. 259
1.6.5. DRC_FANOUT_EXCEEDING ... 260
1.6.6. DRC_GATED_CLOCK_FEED ... 261
1.6.7. DRC_REPORT_FANOUT_EXCEEDING .. 262
1.6.8. DRC_REPORT_TOP_FANOUT ... 263
1.6.9. DRC_TOP_FANOUT ... 264
1.6.10. DRC_VIOLATION_MESSAGE_LIMIT .. 265
1.6.11. ENABLE_DRC_SETTINGS ... 266
1.8.15. EDA_FV_HIERARCHY
1.8.16. EDA_GENERATE_GATE_LEVEL_SIMULATION_COMMAND_SCRIPT
1.8.17. EDA_GENERATE_POWER_INPUT_FILE
1.8.18. EDA_GENERATE_RTL_SIMULATION_COMMAND_SCRIPT
1.8.19. EDA_GENERATE_TIMING CLOSURE_DATA
1.8.20. EDA_IBIS_EXTENDED_MODEL_SELECTOR
1.8.21. EDA_IBIS_MODEL_SELECTOR
1.8.22. EDA_IBIS_MUTUAL_COUPLING
1.8.23. EDA_IBIS_SPECIFICATION_VERSION
1.8.24. EDA_IPFS_FILE
1.8.25. EDA_LAUNCH_CMD_LINE_TOOL
1.8.26. EDA_MAP_ILLEGAL_CHARACTERS
1.8.27. EDA_NATIVELINK_GENERATE_SCRIPT_ONLY
1.8.28. EDA_NATIVELINK_PORTABLE_FILE_PATHS
1.8.29. EDA_NATIVELINK_SIMULATION_SETUP_SCRIPT
1.8.30. EDA_NATIVELINK_SIMULATION_TEST_BENCH
1.8.31. EDA_NETLIST_WRITER_OUTPUT_DIR
1.8.32. EDA_RESYNTHESIS_TOOL
1.8.33. EDA_RTL_SIMULATION_RUN_SCRIPT
1.8.34. EDA_RTL_SIM_MODE
1.8.35. EDA_RTL_TEST_BENCH_FILE_NAME
1.8.36. EDA_RTL_TEST_BENCH_NAME
1.8.37. EDA_RTL_TEST_BENCH_RUN_FOR
1.8.38. EDA_SDC_FILE_NAME
1.8.39. EDA_SIMULATION_RUN_SCRIPT
1.8.40. EDA_SIMULATION_TOOL
1.8.41. EDA_TEST_BENCH DESIGN_INSTANCE_NAME
1.8.42. EDA_TEST_BENCH_ENABLE_STATUS
1.8.43. EDA_TEST_BENCH_ENTITY_MODULE_NAME
1.8.44. EDA_TEST_BENCH_EXTRA_ALTERA_SIM_LIB
1.8.45. EDA_TEST_BENCH_FILE
1.8.46. EDA_TEST_BENCH_FILE_NAME
1.8.47. EDA_TEST_BENCH_GATE_LEVEL_NETLIST_LIBRARY
1.8.48. EDA_TEST_BENCH_MODULE_NAME
1.8.49. EDA_TEST_BENCH_NAME
1.8.50. EDA_TEST_BENCH_RUN FOR
1.8.51. EDA_TEST_BENCH_RUN_SIM FOR
1.8.52. EDA_TIME_SCALE
1.8.53. EDA_TIMING_ANALYSIS_TOOL
1.8.54. EDA_TRUNCATE_LONG_HIERARCHY_PATHS
1.8.55. EDA_USERCompiled_SIMULATION_LIBRARY_DIRECTORY
1.8.56. EDA_VHDL_ARCH_NAME
1.8.57. EDA_WAIT_FOR_GUI_TOOL_COMPLETION
1.8.58. EDA_WRITER_DONT_WRITE_TOP_ENTITY
1.8.59. EDA_WRITE_DEVICE_CONTROL_PORTS
1.8.60. EDA_WRITE_NODES FOR_POWER_ESTIMATION

1.9. Equivalence Checker Assignments
1.9.1. EQC_AUTO_BREAK_CONE
1.9.2. EQC_AUTO_COMP_LOOP_CUT
1.9.3. EQC_AUTO_INVERSION
1.9.4. EQC_AUTO_PORTSWAP
1.9.5. EQC_AUTO_TERMINATE... 366
1.9.6. EQC_BBOX_MERGE... 367
1.9.7. EQC_CONSTANT_DFF_DETECTION... 368
1.9.8. EQC_DETECT_DONT_CARES.. 369
1.9.9. EQC_DFF_SS_EMULATION.. 370
1.9.10. EQC_DUPLICATE_DFF_DETECTION.. 371
1.9.11. EQC_LVDS_MERGE.. 372
1.9.12. EQC_MAC_REGISTER_UNPACK.. 373
1.9.13. EQC_PARAMETER_CHECK... 374
1.9.14. EQC_POWER_UP_COMPARE.. 375
1.9.15. EQC_RAM_REGISTER_UNPACK.. 376
1.9.16. EQC_RAM_UNMERGING... 377
1.9.17. EQC_RENAMING_RULES.. 378
1.9.18. EQC_RENAMING_RULES_LIST.. 379
1.9.19. EQC_SET_PARTITION_BB_TO_VCC_GND...................................... 380
1.9.20. EQC_SHOW_ALL_MAPPED_POINTS.. 381
1.9.21. EQC_STRUCTURE_MATCHING... 382
1.9.22. EQC_SUB_CONE_REPORT... 383
1.10. Fitter Assignments .. 384
1.10.1. ACTIVE_SERIAL_CLOCK... 384
1.10.2. ALLOW_ROUTING_TO_PERIPHERY_THROUGH_GLOBAL_NETWORK........ 386
1.10.3. ALLOW_SEU_FAULT_INJECTION.. 387
1.10.4. ALM_REGISTER_PACKING_EFFORT.. 388
1.10.5. AUTO_DELAY_CHAINS... 389
1.10.6. AUTO_DELAY_CHAINS_FOR_HIGH_FANOUT_INPUT_PINS................ 390
1.10.7. AUTO_GLOBAL_CLOCK.. 391
1.10.8. AUTO_GLOBAL_REGISTER_CONTROLS....................................... 392
1.10.9. AUTO_RESERVE_CLKUSR_FOR_CALIBRATION.............................. 393
1.10.10. BASE_PIN_OUT_FILE_ONSAMEFRAME_DEVICE........................... 394
1.10.11. BLOCK_RAM_AND_MLAB_EQUIVALENT_PAUSED_READ_CAPABILITIES... 395
1.10.12. BLOCK_RAM_AND_MLAB_EQUIVALENT_POWER_UP_CONDITIONS...... 396
1.10.13. BLOCK_RAM_TO_MLAB_CELL_CONVERSION................................. 397
1.10.14. CDR_BANDWIDTH_PRESET... 398
1.10.15. CKN_CK_PAIR.. 399
1.10.16. CLOCK_REGION... 400
1.10.17. CONFIGURATION_VCCIO_LEVEL... 402
1.10.18. CONVERT_PR_WARNINGS_TO_ERRORS.................................... 403
1.10.19. CRC_ERROR_OPEN_DRAIN.. 404
1.10.20. CURRENT_STRENGTH_NEW... 405
1.10.21. CVP_CONF_DONE_OPEN_DRAIN... 406
1.10.22. CVP_MODE.. 407
1.10.23. DEVICE.. 408
1.10.24. DEVICE_INITIALIZATION_CLOCK... 409
1.10.25. DEVICE_MIGRATION_LIST.. 410
1.10.26. DEVICE_TECHNOLOGY_MIGRATION_LIST.................................... 411
1.10.27. DQ_GROUP.. 412
1.10.28. DSP_REGISTER_PACKING.. 413
1.10.29. DUPLICATE_ATOM.. 414
1.10.30. ECO_OPTIMIZE_TIMING.. 415
1.10.31. ECO_REGENERATE_REPORT.. 416
1.10.32. ENABLE_BUS_HOLD_CIRCUITRY.. 417
1.10.33. ENABLE_CRC_ERROR_PIN... 418
1.10.34. ENABLE_CVP_CONF_DONE... 419
1.10.35. ENABLE_DEVICE_WIDE_OE... 420
1.10.36. ENABLE_DEVICE_WIDE_RESET.. 421
1.10.37. ENABLE_ED_CRC_CHECK...422
1.10.38. ENABLE_INIT_DONE_OUTPUT.. 423
1.10.39. ENABLE_NCEO_OUTPUT.. 424
1.10.40. ENABLE_PR_PINS... 425
1.10.41. ENABLE_UNUSED_RX_CLOCK_WORKAROUND.. 426
1.10.42. ERROR_CHECK_FREQUENCY_DIVISOR.. 427
1.10.43. EXCLUSIVE_IO_GROUP... 428
1.10.44. FINAL_PLACEMENT_OPTIMIZATION...429
1.10.45. FITTER_AGGRESSIVE_ROUTABILITY_OPTIMIZATION...............................430
1.10.46. FITTER_AUTO_EFFECT_DESIRED_SLACK_MARGIN..................................431
1.10.47. FITTER_EFFORT.. 432
1.10.48. FLEX10K_MAX_PERIPHERAL_OE... 433
1.10.49. FLOW_ENABLE_EARLY_PLACE... 434
1.10.50. FORCE_CONFIGURATION_VCCIO..435
1.10.51. GLOBAL_SIGNAL.. 436
1.10.52. GNDIO_CURRENT_1PT8V...437
1.10.53. GNDIO_CURRENT_2PT5V...438
1.10.54. GNDIO_CURRENT_GTL.. 439
1.10.55. GNDIO_CURRENT_GTL_PLUS... 440
1.10.56. GNDIO_CURRENT_LVC莫斯... 441
1.10.57. GNDIO_CURRENT_LVTTL... 442
1.10.58. GNDIO_CURRENT_PCI...443
1.10.59. GNDIO_CURRENT_SSTL2_CLASS1.. 444
1.10.60. GNDIO_CURRENT_SSTL2_CLASS2.. 445
1.10.61. GNDIO_CURRENT_SSTL3_CLASS1.. 446
1.10.62. GNDIO_CURRENT_SSTL3_CLASS2.. 447
1.10.63. GXB_0PPM_CORECLK..448
1.10.64. HPS_COLD_RESET_PIN_MODE... 449
1.10.65. HPS_WARM_RESET_PIN_MODE.. 450
1.10.66. HSSI_PARAMETER.. 451
1.10.67. IGNORE_HSSI_COLUMN_POWER_WHEN_PRESERVING_UNUSED_XCVR _CHANNELS.. 452
1.10.68. INIT_DONE_OPEN_DRAIN..453
1.10.69. INPUT_DELAY_CHAIN.. 454
1.10.70. INPUT_TERMINATION.. 455
1.10.71. INTERNAL_SCRUBBING... 456
1.10.72. IO_12_LANE_INPUT_DATA_DELAY_CHAIN... 457
1.10.73. IO_12_LANE_INPUT_STROBE_DELAY_CHAIN... 458
1.10.74. IO_MAXIMUM_TOGGLE_RATE...459
1.10.75. IO_PARTITION_PLACEMENT...460
1.10.76. IO_STANDARD... 461
1.10.77. LVDS_DIRECT_LOOPBACK_MODE..462
1.10.78. MACRO_HEAD..463
1.10.79. MACRO_MEMBER..464
1.10.80. MATCH_PLL_COMPENSATION_CLOCK... 465
1.10.81. MIGRATION_DEVICES... 466
1.10.82. MINIMUM_SEU_INTERVAL..467
1.10.184. XCVR_A10_RX_ADP_DFE_FXTAP2_SGN... 582
1.10.185. XCVR_A10_RX_ADP_DFE_FXTAP3... 583
1.10.186. XCVR_A10_RX_ADP_DFE_FXTAP3_SGN... 587
1.10.187. XCVR_A10_RX_ADP_DFE_FXTAP4... 588
1.10.188. XCVR_A10_RX_ADP_DFE_FXTAP4_SGN... 591
1.10.189. XCVR_A10_RX_ADP_DFE_FXTAP5... 592
1.10.190. XCVR_A10_RX_ADP_DFE_FXTAP5_SGN... 595
1.10.191. XCVR_A10_RX_ADP_DFE_FXTAP6... 596
1.10.192. XCVR_A10_RX_ADP_DFE_FXTAP6_SGN... 598
1.10.193. XCVR_A10_RX_ADP_DFE_FXTAP7... 599
1.10.194. XCVR_A10_RX_ADP_DFE_FXTAP7_SGN... 601
1.10.195. XCVR_A10_RX_ADP_DFE_FXTAP8... 602
1.10.196. XCVR_A10_RX_ADP_DFE_FXTAP8_SGN... 605
1.10.197. XCVR_A10_RX_ADP_DFE_FXTAP9... 606
1.10.198. XCVR_A10_RX_ADP_DFE_FXTAP9_SGN... 609
1.10.199. XCVR_A10_RX_ADP_VGA_SEL..610
1.10.200. XCVR_A10_RX_EQ_BW_SEL...611
1.10.201. XCVR_A10_RX_EQ_DC_GAIN_TRIM...612
1.10.202. XCVR_A10_RX_LINK... 613
1.10.203. XCVR_A10_RX_ONE_STAGE_ENABLE...614
1.10.204. XCVR_A10_RX_TERM_SEL... 615
1.10.205. XCVR_A10_TX_COMPENSATION_EN.. 616
1.10.206. XCVR_A10_TX_LINK..617
1.10.207. XCVR_A10_TX_PRE_EMP_SIGN_1ST_POST_TAP.................................... 618
1.10.208. XCVR_A10_TX_PRE_EMP_SIGN_2ND_POST_TAP.................................... 619
1.10.209. XCVR_A10_TX_PRE_EMP_SIGN_PRE_TAP_1T...................................... 620
1.10.210. XCVR_A10_TX_PRE_EMP_SIGN_PRE_TAP_2T...................................... 621
1.10.211. XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP.................. 622
1.10.212. XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP.................. 623
1.10.213. XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T...................... 624
1.10.214. XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T...................... 625
1.10.215. XCVR_A10_TX_SLEW_RATE_CTRL...626
1.10.216. XCVR_A10_TX_TERM_SEL..627
1.10.217. XCVR_A10_TX_VOD_OUTPUT_SWING_CTRL.. 628
1.10.218. XCVR_A10_TX_XTX_PATH_ANALOG_MODE.. 629
1.10.219. XCVR_C10_REFCLK_TERM_TRISTATE...631
1.10.220. XCVR_C10_RX_ADP_CTELE_ACGAIN_4S.. 632
1.10.221. XCVR_C10_RX_ADP_CTELE_EQZ_1S_SEL.. 634
1.10.222. XCVR_C10_RX_ADP_DFE_FXTAP1... 635
1.10.223. XCVR_C10_RX_ADP_DFE_FXTAP10... 639
1.10.224. XCVR_C10_RX_ADP_DFE_FXTAP10_SGN..642
1.10.225. XCVR_C10_RX_ADP_DFE_FXTAP11... 643
1.10.226. XCVR_C10_RX_ADP_DFE_FXTAP11_SGN..646
1.10.227. XCVR_C10_RX_ADP_DFE_FXTAP2... 647
1.10.228. XCVR_C10_RX_ADP_DFE_FXTAP2_SGN... 651
1.10.229. XCVR_C10_RX_ADP_DFE_FXTAP3... 652
1.10.230. XCVR_C10_RX_ADP_DFE_FXTAP3_SGN... 656
1.10.231. XCVR_C10_RX_ADP_DFE_FXTAP4... 657
1.10.232. XCVR_C10_RX_ADP_DFE_FXTAP4_SGN... 660
1.10.233. XCVR_C10_RX_ADP_DFE_FXTAP5... 661
1.10.234. XCVR_C10_RX_ADP_DFE_FXTAP5_SGN... 664
1.10.235. XCVR_C10_RX_AD_P_DFE_FXTAP6	665
1.10.236. XCVR_C10_RX_AD_P_DFE_FXTAP6_SGN	667
1.10.237. XCVR_C10_RX_AD_P_DFE_FXTAP7	668
1.10.238. XCVR_C10_RX_AD_P_DFE_FXTAP7_SGN	670
1.10.239. XCVR_C10_RX_AD_P_DFE_FXTAP8	671
1.10.240. XCVR_C10_RX_AD_P_DFE_FXTAP8_SGN	674
1.10.241. XCVR_C10_RX_AD_P_DFE_FXTAP9	675
1.10.242. XCVR_C10_RX_AD_P_DFE_FXTAP9_SGN	678
1.10.243. XCVR_C10_RX_AD_P_VGA_SEL	679
1.10.244. XCVR_C10_RX_EQ_BW_SEL	680
1.10.245. XCVR_C10_RX_EQ_DC_GAIN_TRIM	681
1.10.246. XCVR_C10_RX_LINK	682
1.10.247. XCVR_C10_RX_ONE_STAGE_ENABLE	683
1.10.248. XCVR_C10_RX_TERM_SEL	684
1.10.249. XCVR_C10_TX_COMPENSATION_EN	685
1.10.250. XCVR_C10_TX_LINK	686
1.10.251. XCVR_C10_TX_PRE_EMP_SIGN_1ST_POST_TAP	687
1.10.252. XCVR_C10_TX_PRE_EMP_SIGN_2ND_POST_TAP	688
1.10.253. XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_1T	689
1.10.254. XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_2T	690
1.10.255. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP	691
1.10.256. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP	692
1.10.257. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T	693
1.10.258. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T	694
1.10.259. XCVR_C10_TX_SLEW_RATE_CTRL	695
1.10.260. XCVR_C10_TX_TERM_SEL	696
1.10.261. XCVR_C10_TX_VOD_OUTPUT_SWING_CTRL	697
1.10.262. XCVR_C10_TX_XTX_PATH_ANALOG_MODE	698
1.10.263. XCVR_CONFIG_GROUP	700
1.10.264. XCVR_S10_REFCLK_TERM_TRISTATE	701
1.10.265. XCVR_USE_HQ_REFCLK	702
1.10.266. XCVR_USE_SKEW_BALANCED	703
1.10.267. XCVR_VCCR_VCCT_VOLTAGE	704

1.11. Netlist Viewer Assignments ... 705
 1.11.1. RTLV_GROUP_COMB_LOGIC_IN_CLOUD .. 705
 1.11.2. RTLV_GROUP_COMB_LOGIC_IN_CLOUD_TMV 706
 1.11.3. RTLV_GROUP_RELATED_NODES .. 707
 1.11.4. RTLV_GROUP_RELATED_NODES_TMV ... 708
 1.11.5. RTLV_REMOVE_FANOUT_FREE_REGISTERS 709
 1.11.6. RTLV_SIMPLIFIED_LOGIC .. 710

1.12. Pin & Location Assignments .. 711
 1.12.1. FAST_INPUT_REGISTER .. 711
 1.12.2. FAST_OUTPUT.Enable_REGISTER .. 712
 1.12.3. FAST_OUTPUT_REGISTER .. 713
 1.12.4. IP_DEBUG_VISIBLE .. 714
 1.12.5. LOCATION .. 715
 1.12.6. PIN_CONNECT_FROM_NODE ... 716
 1.12.7. RESERVE_PIN ... 717
 1.12.8. SUBCLIQUE_OF ... 718
 1.12.9. VIRTUAL_PIN .. 719

1.13. Power Estimation Assignments .. 720
1.13.52. POWER_VCCH_GXB_USER_OPTION.. 771
1.13.53. POWER_VCCIO_USER_OPTION...772
1.13.54. POWER_VCCL_GXB_USER_OPTION...773
1.13.55. POWER_VCCPD_USER_OPTION.. 774
1.13.56. POWER_VCCR_GXBL_USER_OPTION... 775
1.13.57. POWER_VCCR_GXBR_USER_OPTION...776
1.13.58. POWER_VCCR_GXB_USER_OPTION...777
1.13.59. POWER_VCCT_GXBL_USER_OPTION... 778
1.13.60. POWER_VCCT_GXBR_USER_OPTION...779
1.13.61. POWER_VCCT_GXB_USER_OPTION...780
1.13.62. POWER_VCD_FILE_END_TIME..781
1.13.63. POWER_VCD_FILE_START_TIME...782
1.13.64. POWER_VCD_FILTER_GLITCHES...783
1.13.65. VCCAUX_SHARED_USER_VOLTAGE... 784
1.13.66. VCCAUX_USER_VOLTAGE..785
1.13.67. VCCA_FPLL_USER_VOLTAGE... 786
1.13.68. VCCA_GTBR_USER_VOLTAGE...787
1.13.69. VCCA_GTB_USER_VOLTAGE...788
1.13.70. VCCA_GXBL_USER_VOLTAGE...789
1.13.71. VCCA_GXBR_USER_VOLTAGE...790
1.13.72. VCCA_GXB_USER_VOLTAGE...791
1.13.73. VCCA_L_USER_VOLTAGE... 792
1.13.74. VCCA_PLL_USER_VOLTAGE..793
1.13.75. VCCA_R_USER_VOLTAGE...794
1.13.76. VCCA_USER_VOLTAGE...795
1.13.77. VCCBAT_USER_VOLTAGE...796
1.13.78. VCCCB_USER_VOLTAGE...797
1.13.79. VCCD_FPLL_USER_VOLTAGE..798
1.13.80. VCCD_PLL_USER_VOLTAGE..799
1.13.81. VCCD_USER_VOLTAGE...800
1.13.82. VCCEH_GXBL_USER_VOLTAGE... 801
1.13.83. VCCEH_GXBR_USER_VOLTAGE...802
1.13.84. VCCEH_GXB_USER_VOLTAGE...803
1.13.85. VCCE_RAM_USER_VOLTAGE.. 804
1.13.86. VCCE_GXBL_USER_VOLTAGE... 805
1.13.87. VCCE_GXBR_USER_VOLTAGE...806
1.13.88. VCCE_GXB_USER_VOLTAGE...807
1.13.89. VCCE_USER_VOLTAGE...808
1.13.90. VCCHIP_L_USER_VOLTAGE...809
1.13.91. VCCHIP_R_USER_VOLTAGE...810
1.13.92. VCCHIP_USER_VOLTAGE...811
1.13.93. VCCHSSI_L_USER_VOLTAGE... 812
1.13.94. VCCHSSI_R_USER_VOLTAGE...813
1.13.95. VCCH_GTBR_USER_VOLTAGE.. 814
1.13.96. VCCH_GTB_USER_VOLTAGE...815
1.13.97. VCCH_GXBL_USER_VOLTAGE...816
1.13.98. VCCH_GXBR_USER_VOLTAGE...817
1.13.99. VCCH_GXB_USER_VOLTAGE...818
1.13.100. VCCH_L_USER_VOLTAGE... 819
1.13.101. VCCH_R_USER_VOLTAGE...820
1.13.102. VCCINT_USER_VOLTAGE...821
1.13.103. VCCIOREF_HPS_USER_VOLTAGE...822
1.13.104. VCCIO_HPS_USER_VOLTAGE..823
1.13.105. VCCIO_USER_VOLTAGE... 824
1.13.106. VCCL_GTBL_USER_VOLTAGE..825
1.13.107. VCCL_GTBR_USER_VOLTAGE..826
1.13.108. VCCL_GTB_USER_VOLTAGE... 827
1.13.109. VCCL_GXBL_USER_VOLTAGE..828
1.13.110. VCCL_GXBR_USER_VOLTAGE..829
1.13.111. VCCL_GXB_USER_VOLTAGE... 830
1.13.112. VCCL_HPS_USER_VOLTAGE..831
1.13.113. VCCL_USER_VOLTAGE... 832
1.13.114. VCCPD_USER_VOLTAGE...833
1.13.115. VCCPGM_USER_VOLTAGE.. 834
1.13.116. VCCPLL_HPS_USER_VOLTAGE...835
1.13.117. VCCPT_USER_VOLTAGE.. 836
1.13.118. VCCP_USER_VOLTAGE... 837
1.13.119. VCCRSTCLK_HPS_USER_VOLTAGE.. 838
1.13.120. VCCR_GTBL_USER_VOLTAGE..839
1.13.121. VCCR_GTBR_USER_VOLTAGE... 840
1.13.122. VCCR_GTB_USER_VOLTAGE... 841
1.13.123. VCCR_GXBL_USER_VOLTAGE..842
1.13.124. VCCR_GXBR_USER_VOLTAGE... 843
1.13.125. VCCR_GXB_USER_VOLTAGE... 844
1.13.126. VCCR_L_USER_VOLTAGE..845
1.13.127. VCCR_R_USER_VOLTAGE... 846
1.13.128. VCCR_USER_VOLTAGE... 847
1.13.129. VCCT_GTBL_USER_VOLTAGE..848
1.13.130. VCCT_GTBR_USER_VOLTAGE..849
1.13.131. VCCT_GTB_USER_VOLTAGE... 850
1.13.132. VCCT_GXBL_USER_VOLTAGE..851
1.13.133. VCCT_GXBR_USER_VOLTAGE... 852
1.13.134. VCCT_GXB_USER_VOLTAGE... 853
1.13.135. VCCT_L_USER_VOLTAGE..854
1.13.136. VCCT_R_USER_VOLTAGE... 855
1.13.137. VCCT_USER_VOLTAGE... 856
1.13.138. VCC_HPS_USER_VOLTAGE... 857
1.13.139. VCC_USER_VOLTAGE... 858
1.14. Programmer Assignments ..859
1.14.1. GENERATE_CONFIG_HEXOUT_FILE...859
1.14.2. GENERATE_CONFIG_JSC_FILE...860
1.14.3. GENERATE_CONFIG_JAM_FILE... 861
1.14.4. GENERATE_CONFIG_JBC_FILE... 862
1.14.5. GENERATE_CONFIG_JBC_FILE_COMPRESSED... 863
1.14.6. GENERATE_CONFIG_SVF_FILE... 864
1.14.7. GENERATE_JAM_FILE...865
1.14.8. GENERATE_JBC_FILE... 866
1.14.9. GENERATE_JBC_FILE_COMPRESSED... 867
1.14.10. GENERATE_SVF_FILE... 868
1.14.11. HPS_EARLY_IO_RELEASE...869
1.14.12. MERGE_HEX_FILE... 870
1.15. Project-Wide Assignments ... 871
1.15.1. AGGREGATE_REVISION...871
1.15.2. AHDL_FILE..872
1.15.3. AHDL_TEXT_DESIGN_OUTPUT_FILE..873
1.15.4. ALLOW_DSP_RETIMING...874
1.15.5. ALLOW_RAM_RETIMING...875
1.15.6. ASM_FILE...876
1.15.7. AUTO_EXPORT_VER_COMPATIBLE_DB..877
1.15.8. BASE_REVISION_PROJECT_OUTPUT_DIRECTORY.............................878
1.15.9. BDF_FILE...879
1.15.10. BINARY_FILE..880
1.15.11. BSF_FILE..881
1.15.12. CDF_FILE...882
1.15.13. COMMAND_MACRO_FILE..883
1.15.14. CPP_FILE..884
1.15.15. CPP_INCLUDE_FILE...885
1.15.16. CUSP_FILE...886
1.15.17. CVP_REVISION..887
1.15.18. C_FILE...888
1.15.19. DEPENDENCY_FILE..889
1.15.20. DSPBUILDER_FILE..890
1.15.21. EDIF_FILE...891
1.15.22. ELF_FILE..892
1.15.23. ENABLE_COMPACT_REPORT_TABLE..893
1.15.24. ENABLE_REDUCED_MEMORY_MODE..894
1.15.25. EQUATION_FILE...895
1.15.26. FLOW_DISABLE_ASSEMBLER..896
1.15.27. FLOW_ENABLE_IO_ASSIGNMENT_ANALYSIS..................................897
1.15.28. FLOW_ENABLE_PARALLEL_MODULES...898
1.15.29. FLOW_ENABLE_POWER_ANALYZER..899
1.15.30. FLOW_ENABLE_RTL_VIEWER..900
1.15.31. GDF_FILE...901
1.15.32. HEX_FILE..902
1.15.33. HEX_OUTPUT_FILE..903
1.15.34. HPS_ISW_DATA...904
1.15.35. HPS_ISW_EMIF...905
1.15.36. HPS_ISW_FILE...906
1.15.37. HTML_FILE..907
1.15.38. HTML_REPORT_FILE...908
1.15.39. INCLUDE_FILE...909
1.15.40. INVALID_DESIGN_SOURCE...910
1.15.41. IPX_FILE...911
1.15.42. IP_COMPONENT_AUTHOR...912
1.15.43. IP_COMPONENT_DESCRIPTION...913
1.15.44. IP_COMPONENT_DISPLAY_NAME..914
1.15.45. IP_COMPONENT_DOCUMENTATION_LINK.....................................915
1.15.46. IP_COMPONENT_GROUP...916
1.15.47. IP_COMPONENT_INTERNAL...917
1.15.48. IP_COMPONENT_NAME...918
1.15.49. IP_COMPONENT_PARAMETER...919
1.15.50. IP_COMPONENT_REPORT_HIERARCHY..920
1.15.51. IP_COMPONENT_VERSION..921
1.15.103. SDF_OUTPUT_FILE.. 973
1.15.104. SERIAL_BITSTREAM_FILE... 974
1.15.105. SIGNALTAP_FILE... 975
1.15.106. SIP_FILE... 976
1.15.107. SLD_FILE... 977
1.15.108. SMF_FILE.. 978
1.15.109. SOFTWARE_LIBRARY_FILE.. 979
1.15.110. SOPCINFO_FILE.. 980
1.15.111. SOPC_FILE.. 981
1.15.112. SOURCE_TCL_SCRIPT_FILE.. 982
1.15.113. SPD_FILE... 983
1.15.114. SRAM_OBJECT_FILE... 984
1.15.115. SRECORDS_FILE... 985
1.15.116. SVF_FILE.. 986
1.15.117. SYM_FILE.. 987
1.15.118. SYNTHESIS_ONLY_QIP.. 988
1.15.119. SYSTEMVERILOG_FILE... 989
1.15.120. TCL_ENTITY_FILE.. 990
1.15.121. TCL_SCRIPT_FILE... 991
1.15.122. TEMPLATE_FILE.. 992
1.15.123. TEXT_FILE.. 993
1.15.124. TEXT_FORMAT_REPORT_FILE... 994
1.15.125. TIMING_ANALYSIS_OUTPUT_FILE... 995
1.15.126. VCD_FILE.. 996
1.15.127. VECTOR_TABLE_OUTPUT_FILE... 997
1.15.128. VECTOR_TEXT_FILE... 998
1.15.129. VECTOR_WAVEFORM_FILE.. 999
1.15.130. VERILOG_FILE.. 1000
1.15.131. VERILOG_INCLUDE_FILE... 1001
1.15.132. VERILOG_OUTPUT_FILE... 1002
1.15.133. VERILOG_TEST_BENCH_FILE... 1003
1.15.134. VER_COMPATIBLE_DB_DIR... 1004
1.15.135. VHDL_FILE.. 1005
1.15.136. VHDL_OUTPUT_FILE... 1006
1.15.137. VHDL_TEST_BENCH_FILE.. 1007
1.15.138. VQM_FILE... 1008
1.15.139. ZIP_VECTOR_WAVEFORM_FILE.. 1009

1.16. Retimer Assignments ... 1010
1.16.1. HYPER_RETIMER_FAST_FORWARD_ADD_PIPELINING_MAX.................. 1010
1.16.2. HYPER_RETIMER_FAST_FORWARD_ASYNC_CLEAR............................... 1011
1.16.3. HYPER_RETIMER_FAST_FORWARD_DSP_BLOCKS................................. 1012
1.16.4. HYPER_RETIMER_FAST_FORWARD_RAM_BLOCKS................................. 1013
1.16.5. HYPER_RETIMER_FAST_FORWARD_USER_PRESERVE_RESTRICTION........ 1014

1.17. Retimer Fast Forward Assignments .. 1015
1.17.1. CRITICAL_CHAIN_VIEWER... 1015
1.17.2. FLOW_ENABLE_HYPER_RETIMER_FAST_FORWARD.......................... 1016

1.18. Signal Tap Assignments .. 1017
1.18.1. CREATE_PARTITION_BOUNDARY_PORTS....................................... 1017
1.18.2. ENABLE_LOGIC_ANALYZER_INTERFACE... 1018
1.18.3. ENABLE_SIGNALTAP... 1019
1.18.4. STP_FILE.. 1020
1.18. USE_LOGIC_ANALYZER_INTERFACE_FILE ... 1021
1.18.6. USE_SIGNALTAP_FILE ... 1022

1.19. Simulator Assignments ... 1023
1.19.1. ACTION .. 1023
1.19.2. ADD_DEFAULT_PINS_TO_SIMULATION_OUTPUT_WAVEFORMS 1024
1.19.3. ADD_TO_SIMULATION_OUTPUT_WAVEFORMS 1025
1.19.4. ALIAS ... 1026
1.19.5. AUTO_USE_SIMULATION_PDB_NETLIST.. 1027
1.19.6. BREAKPOINT_STATE .. 1028
1.19.7. CHECK_OUTPUTS .. 1029
1.19.8. END_TIME ... 1030
1.19.9. EXTERNAL_PIN_CONNECTION ... 1031
1.19.10. GLITCH_DETECTION .. 1032
1.19.11. GLITCH_INTERVAL .. 1033
1.19.12. IMMEDIATE_ASSERTION_FAIL_ACTION ... 1034
1.19.13. IMMEDIATE_ASSERTION_FAIL_MESSAGE 1035
1.19.14. IMMEDIATE_ASSERTION_PASS_MESSAGE 1036
1.19.15. IMMEDIATE_ASSERTION_STATE ... 1037
1.19.16. IMMEDIATE_ASSERTION_TEST_CONDITION 1038
1.19.17. INCREMENTAL_VECTOR_INPUT_SOURCE 1039
1.19.18. PASSIVE_RESISTOR .. 1040
1.19.19. SETUP_HOLD_DETECTION ... 1041
1.19.20. SETUP_HOLD_DETECTION_INPUT_REGISTERS_BIDIR_PINS_DISABLED 1042
1.19.21. SETUP_HOLD_TIME_VIOLATION_DETECTION 1043
1.19.22. SIMULATION_BUS_CHANNEL_GROUPING 1044
1.19.23. SIMULATION_COMPARE_SIGNAL ... 1045
1.19.24. SIMULATION_COMPARE_SIGNAL ... 1046
1.19.25. SIMULATION_DEFAULT_VECTOR_COMPARE_TOLERANCE 1047
1.19.26. SIMULATION_DEFAULT_VECTOR_COMPARE_TOLERANCE 1048
1.19.27. SIMULATION_MISSING_0_VALUE_COVERAGE_REPORT_PANEL 1049
1.19.28. SIMULATION_MISSING_1_VALUE_COVERAGE_REPORT_PANEL 1050
1.19.29. SIMULATION_MODE .. 1051
1.19.30. SIMULATION_NETLIST_VIEWER .. 1052
1.19.31. SIMULATION_SIGNAL_COMPARE_TOLERANCE 1053
1.19.32. SIMULATION_VDB_RESULT_FLUSH ... 1054
1.19.33. SIMULATION_VECTOR_COMPARE_BEGIN_TIME 1055
1.19.34. SIMULATION_VECTOR_COMPARE_END_TIME 1056
1.19.35. SIMULATION_VECTOR_COMPARE_RULE_FOR_0 1057
1.19.36. SIMULATION_VECTOR_COMPARE_RULE_FOR_1 1058
1.19.37. SIMULATION_VECTOR_COMPARE_RULE_FOR_DC 1059
1.19.38. SIMULATION_VECTOR_COMPARE_RULE_FOR_H 1060
1.19.39. SIMULATION_VECTOR_COMPARE_RULE_FOR_L 1061
1.19.40. SIMULATION_VECTOR_COMPARE_RULE_FOR_P 1062
1.19.41. SIMULATION_VECTOR_COMPARE_RULE_FOR_W 1063
1.19.42. SIMULATION_VECTOR_COMPARE_RULE_FOR_X 1064
1.19.43. SIMULATION_VECTOR_COMPARE_RULE_FOR_Z 1065
1.19.44. SIM_BEHAVIOR_SIMULATION .. 1066
1.19.45. SIM_COMPILE_HDL_FILES ... 1067
1.19.46. SIM_HDL_TOP_MODULE_NAME .. 1068
1.19.47. SIM_OVERWRITE_WAVEFORM_INPUTS .. 1069
1.19.48. SIM_TAP_REGISTER_D_Q_PORTS .. 1070

The following Intel® Quartus® Prime Pro Edition settings reflect Intel Quartus Prime Pro Edition software version 18.0.

1.1. **Advanced I/O Timing Assignments**

1.1.1. **BOARD_MODEL_EBD_FAR_END**

Specifies the far-end node to be used in the Electronic Board Description (EBD) path description.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_instance_assignment -name BOARD_MODEL_EBD_FAR_END -to <to> -entity <entity name> <value>
```
1.1.2. BOARD_MODEL_EBD_FILE_NAME

Specifies the Electronic Board Description (EBD) file that contains the path description for an I/O pin.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports wildcards.

The value of this assignment is case sensitive.

Syntax

```
set_instance_assignment -name BOARD_MODEL_EBD_FILE_NAME -to <to> -
entity <entity name> <value>
```
1.1.3. BOARD_MODEL_EBD_SIGNAL_NAME

Specifies the Electronic Board Description (EBD) path description to be used with an I/O pin. You must specify the EBD file name.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_instance_assignment -name BOARD_MODEL_EBD_SIGNAL_NAME -to <to> -entity <entity name> <value>
```
1.1.4. BOARD_MODEL_FAR_C

Specifies, in farads, the board trace model far capacitance.

Type
String

Device Support
- Intel Arria® 10
- Intel Cyclone® 10 GX
- Intel Stratix® 10

Notes
This assignment supports wildcards.

Syntax

```bash
set_instance_assignment -name BOARD_MODEL_FAR_C -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_FAR_C -section_id <section identifier> <value>
```
1.1.5. BOARD_MODEL_FAR_DIFFERENTIAL_R

Specifies, in ohms, the board trace model far differential resistance.

Type
String

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment supports wildcards.

Syntax

```plaintext
set_instance_assignment -name BOARD_MODEL_FAR_DIFFERENTIAL_R -to <to> -
entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_FAR_DIFFERENTIAL_R -section_id
<section identifier> <value>
```
1.1.6. BOARD_MODEL_FAR_PULLDOWN_R

Specifies, in ohms, the board trace model far pull-down resistance.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_FAR_PULLDOWN_R -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_FAR_PULLDOWN_R -section_id <section identifier> <value>
```
1.1.7. BOARD_MODEL_FAR_PULLUP_R

Specifies, in ohms, the board trace model far pull-up resistance.

Type
String

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_FAR_PULLUP_R -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_FAR_PULLUP_R -section_id <section identifier> <value>
```
1.1.8. BOARD_MODEL_FAR_SERIES_R

Specifies, in ohms, the board trace model far series resistance.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```bash
set_instance_assignment -name BOARD_MODEL_FAR_SERIES_R -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_FAR_SERIES_R -section_id <section identifier> <value>
```
1.1.9. BOARD_MODEL_NEAR_C

Specifies, in farads, the board trace model near capacitance.

Type
String

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_NEAR_C -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_NEAR_C -section_id <section identifier> <value>
```
1.1.10. BOARD_MODEL_NEAR_DIFFERENTIAL_R

Specifies, in ohms, the board trace model near differential resistance.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```bash
set_instance_assignment -name BOARD_MODEL_NEAR_DIFFERENTIAL_R -to <to> -
entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_NEAR_DIFFERENTIAL_R -section_id <section identifier> <value>
```
1.1.11. BOARD_MODEL_NEAR_PULLDOWN_R

Specifies, in ohms, the board trace model near pull-down resistance.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_NEAR_PULLDOWN_R -to <to> -
entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_NEAR_PULLDOWN_R -section_id
<section identifier> <value>
```
1.1.12. BOARD_MODEL_NEAR_PULLUP_R

Specifies, in ohms, the board trace model near pull-up resistance.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_NEAR_PULLUP_R -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_NEAR_PULLUP_R -section_id <section identifier> <value>
```
1.1.13. BOARD_MODEL_NEAR_SERIES_R

Specifies, in ohms, the board trace model near series resistance.

Type
String

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_NEAR_SERIES_R -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_NEAR_SERIES_R -section_id <section identifier> <value>
```
1.1.14. BOARD_MODEL_NEAR_TLINE_C_PER_LENGTH

Specifies, in farads/inch, the board trace model near transmission line distributed capacitance.

Type
String

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_NEAR_TLINE_C_PER_LENGTH -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_NEAR_TLINE_C_PER_LENGTH -section_id <section identifier> <value>
```
1.1.15. BOARD_MODEL_NEAR_TLINE_LENGTH

Specifies, in inches, the board trace model near transmission line length.

Type
String

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_NEAR_TLINE_LENGTH -to <to> -
entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_NEAR_TLINE_LENGTH -section_id
<section identifier> <value>
```
1.1.16. BOARD_MODEL_NEAR_TLINE_L_PER_LENGTH

Specifies, in henrys/inch, the board trace model near transmission line distributed inductance.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```plaintext
set_instance_assignment -name BOARD_MODEL_NEAR_TLINE_L_PER_LENGTH -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_NEAR_TLINE_L_PER_LENGTH -section_id <section identifier> <value>
```
1.1.17. BOARD_MODEL_TERMINATION_V

Specifies, in volts, the board trace model termination voltage.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_TERMINATION_V -to <to> -
entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_TERMINATION_V -section_id
<section identifier> <value>
```
1.1.18. BOARD_MODEL_TLINE_C_PER_LENGTH

Specifies, in farads/inch, the board trace model far transmission line distributed capacitance.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```plaintext
set_instance_assignment -name BOARD_MODEL_TLINE_C_PER_LENGTH -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_TLINE_C_PER_LENGTH -section_id <section identifier> <value>
```
1.1.19. BOARD_MODEL_TLINE_LENGTH

Specifies, in inches, the board trace model far transmission line length.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_TLINE_LENGTH -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_TLINE_LENGTH -section_id <section identifier> <value>
```
1.1.20. BOARD_MODEL_TLINE_L_PER_LENGTH

Specifies, in henrys/inch, the board trace model for transmission line distributed inductance.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```
set_instance_assignment -name BOARD_MODEL_TLINE_L_PER_LENGTH -to <to> -entity <entity name> <value>
set_global_assignment -name BOARD_MODEL_TLINE_L_PER_LENGTH -section_id <section identifier> <value>
```
1.1.21. OUTPUT_IO_TIMING_ENDPOINT

Specifies the node at which output I/O Timing ends.

Type

Enumeration

Values

- Far End
- Near End

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```
set_instance_assignment -name OUTPUT_IO_TIMING_ENDPOINT -to <to> -entity <entity name> <value>
set_global_assignment -name OUTPUT_IO_TIMING_ENDPOINT -entity <entity name> <value>
set_global_assignment -name OUTPUT_IO_TIMING_ENDPOINT <value>
```

Default Value

Near End
1.1.22. OUTPUT_IO_TIMING_FAR_END_VMEAS

Specifies, in volts, the measurement voltage at the far-end.

Type
String

Device Support
• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes
This assignment supports wildcards.

Syntax

```
set_instance_assignment -name OUTPUT_IO_TIMING_FAR_END_VMEAS -to <to> -
entity <entity name> <value>
set_global_assignment -name OUTPUT_IO_TIMING_FAR_END_VMEAS -section_id
<section identifier> <value>
set_global_assignment -name OUTPUT_IO_TIMING_FAR_END_VMEAS <value>
```
1.1.23. OUTPUT_IO_TIMING_NEAR_END_VMEAS

Specifies, in volts, the measurement voltage at the near-end.

Type

String

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports wildcards.

Syntax

```
set_instance_assignment -name OUTPUT_IO_TIMING_NEAR_END_VMEAS -to <to> -entity <entity name> <value>
set_global_assignment -name OUTPUT_IO_TIMING_NEAR_END_VMEAS -section_id <section identifier> <value>
set_global_assignment -name OUTPUT_IO_TIMING_NEAR_END_VMEAS <value>
```
1.2. Analysis & Synthesis Assignments

1.2.1. ADV_NETLIST_OPT_ALLOWED

Specifies whether the Compiler should perform advanced netlist optimizations, such as gate-level retiming or physical synthesis, on the specified node or entity. If this option is set to 'Default', the Compiler duplicates, moves, or changes the synthesis of the node or entity, or allows register retiming during netlist optimization, only if doing so does not negatively affect the timing or performance of the design. If this option is set to 'Always Allow', the Compiler can alter the node or entity, even if doing so affects the timing or performance of the design. Intel does not recommend using this setting. If this option is set to 'Never Allow' the Compiler cannot alter the node or entity.

Type

Enumeration

Values

- Always Allow
- Default
- Never Allow

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name ADV_NETLIST_OPT_ALLOWED -entity <entity name> <value>
set_instance_assignment -name ADV_NETLIST_OPT_ALLOWED -to <to> -entity <entity name> <value>
```

Example

```
set_instance_assignment -name adv_netlist_opt_allowed "always allow" -to reg
```
1.2.2. ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP

Specifies whether to perform WYSIWYG primitive resynthesis during synthesis. This option uses the setting specified in the Optimization Technique logic option.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP <value>
set_instance_assignment -name ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP -to <to> -entity <entity name> <value>
```

Default Value

Off

Example

```
set_global_assignment -name adv_netlist_opt_synth_wysiwyg_remap on
set_instance_assignment -name adv_netlist_opt_synth_wysiwyg_remap on -to foo
```

See Also

Optimization Technique
1.2.3. ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION

Allows the Compiler to infer RAMs of any size, even if they don't meet the current minimum requirements.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION <value>
set_global_assignment -name ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION -entity <entity name> <value>
set_instance_assignment -name ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION -to <to> -entity <entity name> <value>
```

Default Value

Off

Example

```
set_global_assignment -name allow_any_ram_size_for_recognition off
set_instance_assignment -name allow_any_ram_size_for_recognition off -to foo
```
1.2.4. ALLOW_ANY_ROM_SIZE_FOR RECOGNITION

Allows the Compiler to infer ROMs of any size even if the ROMs do not meet the design’s current minimum size requirements.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION <value>
set_global_assignment -name ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION -entity <entity name> <value>
set_instance_assignment -name ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION -to <to> -entity <entity name> <value>
```

Default Value

Off

Example

```
set_global_assignment -name allow_any_rom_size_for_recognition off
set_instance_assignment -name allow_any_rom_size_for_recognition off -to foo
```
1.2.5. ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_RECOGNITION

Allows the Compiler to infer shift registers of any size even if they do not meet the design's current minimum size requirements.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_RECOGNITION <value>
set_global_assignment -name ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_RECOGNITION -entity <entity name> <value>
set_instance_assignment -name ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_RECOGNITION -to <to> -entity <entity name> <value>
```

Default Value

Off

Example

```plaintext
set_global_assignment -name allow_any_shift_register_size_for_recognition off
set_instance_assignment -name allow_any_shift_register_size_for_recognition -to foo
```
1.2.6. ALLOW_CHILD_PARTITIONS

Specifies whether or not an instance or a section of design hierarchy can contain user partitions.

Type

Boolean

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports synthesis wildcards.

Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_global_assignment -name ALLOW_CHILD_PARTITIONS -entity <entity</td>
</tr>
<tr>
<td>name> <value></td>
</tr>
<tr>
<td>set_instance_assignment -name ALLOW_CHILD_PARTITIONS -to <to> -entity</td>
</tr>
<tr>
<td><entity name> <value></td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_global_assignment -name allow_child_partitions off</td>
</tr>
<tr>
<td>set_instance_assignment -name allow_child_partitions off -to</td>
</tr>
<tr>
<td>"sub:inst"</td>
</tr>
</tbody>
</table>
1.2.7. ALLOW_POWER_UP_DONT_CARE

Causes registers that do not have a Power-Up Level logic option setting to power up with a don’t care logic level (X). A don’t care setting allows the Compiler to change the power-up level of a register to minimize the area of the design.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```bash
set_global_assignment -name ALLOW_POWER_UP_DONT_CARE <value>
```

Default Value

On

Example

```bash
set_global_assignment -name allow_power_up_dont_care off
```

See Also

Power-Up Level
1.2.8. ALLOW_SHIFT_REGISTER_MERGING_ACROSS_HIERARCHIES

Allows the Compiler to take shift registers from different hierarchies of the design and put them in the same RAM.

Type

Enumeration

Values

- Always
- Auto
- Off

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name ALLOW_SHIFT_REGISTER_MERGING_ACROSS_HIERARCHIES <value>
set_global_assignment -name ALLOW_SHIFT_REGISTER_MERGING_ACROSS_HIERARCHIES -entity <entity name> <value>
set_instance_assignment -name ALLOW_SHIFT_REGISTER_MERGING_ACROSS_HIERARCHIES -to <to> -entity <entity name> <value>
```

Default Value

Auto

Example

```
set_global_assignment -name allow_shift_register_merging_across_hierarchies off
set_instance_assignment -name allow_shift_register_merging_across_hierarchies off -to foo
```

See Also

Auto Shift Register Replacement
1.2.9. ALLOW_SYNCH_CTRL_USAGE

Allows the Compiler to utilize synchronous clear and/or synchronous load signals in normal mode logic cells. Turning on this option helps to reduce the total number of logic cells used in the design, but might negatively impact the fitting since synchronous control signals are shared by all the logic cells in a LAB.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name ALLOW_SYNCH_CTRL_USAGE <value>
set_global_assignment -name ALLOW_SYNCH_CTRL_USAGE -entity <entity name> <value>
set_instance_assignment -name ALLOW_SYNCH_CTRL_USAGE -to <to> -entity <entity name> <value>
```

Default Value

On

Example

```
set_global_assignment -name allow_synch_ctrl_usage off
set_instance_assignment -name allow_synch_ctrl_usage off -to foo
```

See Also

Force Use of Synchronous Clear Signals
1.2.10. ALTERA_A10_IOPLL_BOOTSTRAP

Turns on the A10 IOPLL bootstrap fix

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```plaintext
cset_global_assignment -name ALTERA_A10_IOPLL_BOOTSTRAP <value>
```

1.2.11. AUTO_CLOCK_ENABLE_RECOGNITION

Allows the Compiler to find logic that feeds a register and move the logic to the register's clock enable input port.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name AUTO_CLOCK_ENABLE_RECOGNITION <value>
set_global_assignment -name AUTO_CLOCK_ENABLE_RECOGNITION -entity <entity name> <value>
set_instance_assignment -name AUTO_CLOCK_ENABLE_RECOGNITION -to <to> -entity <entity name> <value>
```

Default Value

On

Example

```
set_global_assignment -name auto_clock_enable_replacement off
set_instance_assignment -name auto_clock_enable_replacement off -to reg
```
1.2.12. AUTO_DSP_RECOGNITION

Allows the Compiler to find a multiply-accumulate function or a multiply-add function that can be replaced with a DSP block.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.
This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name AUTO_DSP_RECOGNITION <value>
set_global_assignment -name AUTO_DSP_RECOGNITION -entity <entity name> <value>
set_instance_assignment -name AUTO_DSP_RECOGNITION -to <to> -entity <entity name> <value>
```

Default Value

On

Example

```
set_global_assignment -name auto_dsp_recognition off
set_instance_assignment -name auto_dsp_recognition off -to foo
```
1.2.13. AUTO_ENABLE_SMART_COMPILE

Specifies whether the Signal Tap Logic Analyzer should perform a smart compilation if conditions exist in which Signal Tap with incremental routing is used.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name AUTO_ENABLE_SMART_COMPILE <value>
```
1.2.14. AUTO_OPEN_DRAIN_PINS

Allows the Compiler to automatically convert a tri-state buffer with a strong low data input into the equivalent open-drain buffer.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name AUTO_OPEN_DRAIN_PINS <value>
set_global_assignment -name AUTO_OPEN_DRAIN_PINS -entity <entity name> <value>
set_instance_assignment -name AUTO_OPEN_DRAIN_PINS -to <to> -entity <entity name> <value>
```

Default Value

On

Example

```
set_global_assignment -name auto_open_drain_pins off
set_instance_assignment -name auto_open_drain_pins off -to foo
```
1.2.15. AUTO_PARALLEL_SYNTHESIS

Option to enable/disable automatic parallel synthesis. This option can be used to speed up synthesis compile time by using multiple processors when available.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name AUTO_PARALLEL_SYNTHESIS <value>
```

Default Value
On

Example

```
set_global_assignment -name auto_parallel_synthesis on
```
1.2.16. AUTO_RAM_RECOGNITION

Allows the Compiler to find a set of registers and logic that can be replaced with the altsyncram or the lpm_ram_dp megafuction. Turning on this option may change the functionality of the design.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Analysis & Synthesis report.
This assignment supports synthesis wildcards.

Syntax

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| set_global_assignment -name AUTO_RAM_RECOGNITION <value> | Sets the global assignment value
| set_global_assignment -name AUTO_RAM_RECOGNITION -entity <entity name> <value> | Sets the global assignment value for a specific entity
| set_instance_assignment -name AUTO_RAM_RECOGNITION -to <to> -entity <entity name> <value> | Sets the instance assignment value for a specific entity

Default Value
On

Example

```
set_global_assignment -name auto_ram_recognition off
set_instance_assignment -name auto_ram_recognition off -to foo
```
1.2.17. AUTO_RESOURCE_SHARING

Allows the Compiler to share hardware resources among many similar, but mutually exclusive, operations in your HDL source code. If you enable this option, the Compiler will merge compatible addition, subtraction, and multiplication operations. By merging operations, this may reduce the area required by your design. Because resource sharing introduces extra muxing and control logic on each shared resource, it may negatively impact the final fmax of your design.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name AUTO_RESOURCE_SHARING <value>
set_global_assignment -name AUTO_RESOURCE_SHARING -entity <entity name> <value>
set_instance_assignment -name AUTO_RESOURCE_SHARING -to <to> -entity <entity name> <value>
```

Default Value

Off
1.2.18. AUTO_ROM_RECOGNITION

Allows the Compiler to find logic that can be replaced with the altsyncram or the lpm_rom megafunction. Turning on this option may change the power-up state of the design.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report. This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name AUTO_ROM_RECOGNITION <value>
set_global_assignment -name AUTO_ROM_RECOGNITION -entity <entity name> <value>
set_instance_assignment -name AUTO_ROM_RECOGNITION -to <to> -entity <entity name> <value>
```

Default Value

On

Example

```plaintext
set_global_assignment -name auto_rom_recognition off
set_instance_assignment -name auto_rom_recognition off -to foo
```
1.2.19. AUTO_SHIFT_REGISTER_RECOGNITION

Allows the Compiler to find a group of shift registers of the same length that can be replaced with the altshift_taps megafunction. The shift registers must all use the same clock and clock enable signals, must not have any other secondary signals, and must have equally spaced taps that are at least three registers apart.

Type

Enumeration

Values

- Always
- Auto
- Off

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name AUTO_SHIFT_REGISTER_RECOGNITION <value>
set_global_assignment -name AUTO_SHIFT_REGISTER_RECOGNITION -entity <entity name> <value>
set_instance_assignment -name AUTO_SHIFT_REGISTER_RECOGNITION -to <to> -entity <entity name> <value>
```

Default Value

Auto

Example

```
set_global_assignment -name auto_shift_register_recognition off
set_instance_assignment -name auto_shift_register_recognition off -to foo
```
1.2.20. BLOCK_DESIGN_NAMING

Specify the naming scheme used for the block design. This option is ignored if it is assigned to anything other than a design entity.

Type

Enumeration

Values

- Auto
- MaxPlusII
- QuartusII

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name BLOCK_DESIGN_NAMING -entity <entity name> <value>
set_instance_assignment -name BLOCK_DESIGN_NAMING -to <to> -entity <entity name> <value>
set_global_assignment -name BLOCK_DESIGN_NAMING <value>
```

Default Value

Auto

Example

```plaintext
set_global_assignment -name block_design_naming MaxPlusII
set_instance_assignment -name block_design_naming MaxPlusII -to top
```
1.2.21. BOARD

Specifies the board or development kit to use.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

set_global_assignment -name BOARD <value>
1.2.22. DEVICE_FILTER_PACKAGE

Package filter for available devices.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax
```
set_global_assignment -name DEVICE_FILTER_PACKAGE <value>
```

Default Value
Any
1.2.23. DEVICE_FILTER_PIN_COUNT

Pin count filter for available devices.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

```
set_global_assignment -name DEVICE_FILTER_PIN_COUNT <value>
```

Default Value

Any
1.2.24. DEVICE_FILTER_SPEED_GRADE

Speed grade filter for available devices.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

set_global_assignment -name DEVICE_FILTER_SPEED_GRADE <value>

Default Value
Any
1.2.25. DEVICE_FILTER_VOLTAGE

Voltage filter for available devices.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

```
set_global_assignment -name DEVICE_FILTER_VOLTAGE <value>
```
1.2.26. DISABLE_DSP_NEGATE_INFERENCING

Allow you to specify whether to use the negate port on an inferred DSP block.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Analysis & Synthesis report.
This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name DISABLE_DSP_NEGATE_INFERENCING -entity <entity name> <value>
set_instance_assignment -name DISABLE_DSP_NEGATE_INFERENCING -to <to> -entity <entity name> <value>
set_global_assignment -name DISABLE_DSP_NEGATE_INFERENCING <value>
```

Default Value
Off

Example

```
set_global_assignment -name DISABLE_DSP_NEGATE_INFERENCING ON
set_instance_assignment -name DISABLE_DSP_NEGATE_INFERENCING OFF -to dps1
```
1.2.27. DISABLE_REGISTER_MERGING_ACROSS_HIERARCHIES

Specifies whether registers that are in different hierarchies are allowed to be merged if their inputs are the same.

Type

Enumeration

Values

- Auto
- Off
- On

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name DISABLE_REGISTER_MERGING_ACROSS_HIERARCHIES <value>
```

Default Value

Auto
1.2.28. DONT_MERGE_REGISTER

When set to On, this option prevents the specified register from merging with other registers, and prevents other registers from merging with the specified register.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports Fitter wildcards.
This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name DONT_MERGE_REGISTER -entity <entity name> <value>
set_instance_assignment -name DONT_MERGE_REGISTER -to <to> -entity <entity name> <value>
```

Example

```
set_instance_assignment -name dont_merge_register on -to foo
```
1.2.29. DSE_SYNTH_EXTRA_EFFORT_MODE

Specifies the Design Space Explorer synthesis extra effort mode.

Type

Enumeration

Values

- MODE_1
- MODE_2
- MODE_3
- MODE_4
- MODE_5
- MODE_DEFAULT

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

None

Syntax

```
set_global_assignment -name DSE_SYNTH_EXTRA_EFFORT_MODE <value>
```
1.2.30. DSP_BLOCK_BALANCING

Allows you to control the conversion of certain DSP block slices during DSP block balancing.

Type
 Enumeration

Values
 • Auto
 • DSP blocks
 • Logic Elements
 • Off
 • Simple 18-bit Multipliers
 • Simple Multipliers
 • Width 18-bit Multipliers

Device Support
 • Intel Arria 10
 • Intel Cyclone 10 GX
 • Intel Stratix 10

Notes
 This assignment is included in the Analysis & Synthesis report.
 This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name DSP_BLOCK_BALANCING -entity <entity name> <value>
set_instance_assignment -name DSP_BLOCK_BALANCING -to <to> -entity <entity name> <value>
set_global_assignment -name DSP_BLOCK_BALANCING <value>
```

Default Value
 Auto

Example

```
set_global_assignment -name dsp_block_balancing "dsp blocks"
set_instance_assignment -name dsp_block_balancing "logic elements" -to mult0
```
1.2.31. EDA_DESIGN_ENTRY_SYNTHESIS_TOOL

Specifies the third-party EDA tool used for design entry/synthesis

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name EDA_DESIGN_ENTRY_SYNTHESIS_TOOL <value>
set_global_assignment -name EDA_DESIGN_ENTRY_SYNTHESIS_TOOL -entity <entity name> <value>
```

Default Value

<None>
1.2.32. EDA_INPUT_DATA_FORMAT

Specifies the format of the input data read from other EDA design entry/synthesis tools.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

- `set_global_assignment -name EDA_INPUT_DATA_FORMAT -section_id <section identifier> <value>`
- `set_global_assignment -name EDA_INPUT_DATA_FORMAT -entity <entity name> -section_id <section identifier> <value>`

Default Value

NONE, requires section identifier
1.2.33. EDA_INPUT_GND_NAME

Specifies the global high signal used in the files generated by the EDA synthesis tool, which is GND.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EDA_INPUT_GND_NAME -section_id <section identifier> <value>
set_global_assignment -name EDA_INPUT_GND_NAME -entity <entity name> -section_id <section identifier> <value>
```

Default Value

GND, requires section identifier
1.2.34. EDA_INPUT_VCC_NAME

Specifies the global power-down signal.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EDA_INPUT_VCC_NAME -section_id <section identifier> <value>
set_global_assignment -name EDA_INPUT_VCC_NAME -entity <entity name> -section_id <section identifier> <value>
```

Default Value

VCC, requires section identifier
1.2.35. EDA_LMF_FILE

Specifies the default Library Mapping File (.lmf) for the current compilation.

Type

File name

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name EDA_LMF_FILE -section_id <section identifier> <value>
set_global_assignment -name EDA_LMF_FILE -entity <entity name> -section_id <section identifier> <value>
```
1.2.36. EDA_RUN_TOOL_AUTOMATICALLY

Runs the third-party EDA tool automatically from Quartus Prime when a design is compiled.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EDA_RUN_TOOL_AUTOMATICALLY -section_id <section identifier> <value>
set_global_assignment -name EDA_RUN_TOOL_AUTOMATICALLY -entity <entity name> -section_id <section identifier> <value>
```

Default Value

Off, requires section identifier
1.2.37. EDA_SHOW_LMF_MAPPING_MESSAGES

Determines whether to display messages describing the mappings used in the Library Mapping File.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EDA_SHOW_LMF_MAPPING_MESSAGES -section_id <section identifier> <value>
set_global_assignment -name EDA_SHOW_LMF_MAPPING_MESSAGES -entity <entity name> -section_id <section identifier> <value>
```

Default Value

Off, requires section identifier
1.2.38. EDA_VHDL_LIBRARY

Specifies the logical name of a user-defined VHDL design library: physical name.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_instance_assignment -name EDA_VHDL_LIBRARY -to <to> -section_id <section identifier> <value>
set_instance_assignment -name EDA_VHDL_LIBRARY -to <to> -entity <entity name> -section_id <section identifier> <value>
```
1.2.39. ENABLE_FORMAL_VERIFICATION

Allows the Compiler to write scripts that can be used to run OneSpin formal verification tool. These are the only supported scripts used for formal verification.

Type
Boolean

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name ENABLE_FORMAL_VERIFICATION <value>
```

Default Value
Off

Example

```
set_global_assignment -name enable_formal_verification on
```
1.2.40. ENABLE_STATE_MACHINE_INFERENCE

Allows the Compiler to infer state machines from Verilog/Vhdl Design Files. The Compiler optimizes state machines using special techniques to reduce area and/or improve performance. If set to Off, the Compiler extracts and optimizes state machines in Verilog/VHDL Design Files as regular logic.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name ENABLE_STATE_MACHINE_INFERENCE <value>
```

Default Value

On

Example

```
set_global_assignment -name enable_state_machine_inference on
```
1.2.41. FAMILY

Specifies the device family to use for compilation.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name FAMILY <value>
```

Default Value
Cyclone 10 GX
1.2.42. FORCE_SYNCH_CLEAR

Forces the Compiler to utilize synchronous clear signals in normal mode logic cells. Turning on this option helps to reduce the total number of logic cells used in the design, but might negatively impact the fitting since synchronous control signals are shared by all the logic cells in a LAB.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name FORCE_SYNCH_CLEAR <value>
set_global_assignment -name FORCE_SYNCH_CLEAR -entity <entity name> <value>
set_instance_assignment -name FORCE_SYNCH_CLEAR -to <to> -entity <entity name> <value>
```

Default Value

Off

Example

```plaintext
set_global_assignment -name force_synch_clear on
set_instance_assignment -name force_synch_clear on -to foo
```

See Also

Allow Synchronous Control Signals
1.2.43. HDL_INITIAL_FANOUT_LIMIT

Directs Integrated Synthesis to check the initial fan-out of each net in the netlist immediately after elaboration but prior to any netlist optimizations. If the fan-out for a net exceeds the specified limit, then Integrated Synthesis will issue a warning.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name HDL_INITIAL_FANOUT_LIMIT -entity <entity name> <value>
set_instance_assignment -name HDL_INITIAL_FANOUT_LIMIT -to <to> -entity <entity name> <value>
```

Example

```
set_instance_assignment -name hdl_initial_fanout_limit 100 -to foo
```
1.2.44. HDL_MESSAGE_LEVEL

Specifies the type of HDL messages you want to view, including messages that display processing errors in the HDL source code. 'Level1' allows you to view only the most important HDL messages. 'Level2' allows you to view most HDL messages, including warning and information based messages. 'Level3' allows you to view all HDL messages, including warning and information based messages and alerts about potential design problems or lint errors.

Type

Enumeration

Values

- Level1
- Level2
- Level3

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name HDL_MESSAGE_LEVEL <value>
```

Default Value

Level2
1.2.45. HDL_MESSAGE_OFF

Specifies the list of HDL message ids you want to turn off for this project.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

INTEGER_RANGE

10000, 11000

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name HDL_MESSAGE_OFF <value>
```
1.2.46. HDL_MESSAGE_ON

Specifies the list of HDL message ids you want to turn on for this project.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

INTEGER_RANGE

10000, 11000

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name HDL_MESSAGE_ON <value>
```
1.2.47. HPS_PARTITION

Specifies whether an entity or instance is a special-purpose partition that models the internals of the Hard Processor System (HPS).

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```plaintext
set_global_assignment -name HPS_PARTITION -entity <entity name> <value>
set_instance_assignment -name HPS_PARTITION -to <to> -entity <entity name> <value>
```

Example

```plaintext
set_instance_assignment -name hps_partition on -entity hps
```
1.2.48. IGNORE_CARRY_BUFFERS

Ignores CARRY_SUM buffers that are instantiated in the design. The Ignore CARRY Buffers option is ignored if it is applied to anything other than an individual CARRY_SUM buffer or to a design entity containing CARRY_SUM buffers. (This option also applies to MAX+PLUS II-style CARRY buffers.)

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name IGNORE_CARRY_BUFFERS <value>
set_global_assignment -name IGNORE_CARRY_BUFFERS -entity <entity name> <value>
set_instance_assignment -name IGNORE_CARRY_BUFFERS -to <to> -entity <entity name> <value>
```

Default Value

Off

Example

```
set_global_assignment -name ignore_carry_buffers on
set_instance_assignment -name ignore_carry_buffers on -to foo
```
1.2.49. IGNORE_CASCADE_BUFFERS

Ignores CASCADE buffers that are instantiated in the design. This option is ignored if it is applied to anything other than an individual CASCADE buffer or a design entity containing CASCADE buffers.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name IGNORE_CASCADE_BUFFERS <value>
set_global_assignment -name IGNORE_CASCADE_BUFFERS -entity <entity name> <value>
set_instance_assignment -name IGNORE_CASCADE_BUFFERS -to <to> -entity <entity name> <value>
```

Default Value

Off

Example

```plaintext
set_global_assignment -name ignore_cascadeBuffers on
set_instance_assignment -name ignore_cascadeBuffers on -to foo
```
1.2.50. IGNORE_GLOBAL_BUFFERS

Ignores GLOBAL buffers that are instantiated in the design. This option is ignored if it is applied to anything other than an individual GLOBAL buffer or a design entity containing GLOBAL buffers.

Type

Boolean

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.
This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name IGNORE_GLOBAL_BUFFERS <value>
set_global_assignment -name IGNORE_GLOBAL_BUFFERS -entity <entity name> <value>
set_instance_assignment -name IGNORE_GLOBAL_BUFFERS -to <to> -entity <entity name> <value>
```

Default Value

Off
1.2.51. IGNORE_LCELL_BUFFERS

Ignores LCELL buffers that are instantiated in the design. This option is ignored if it is applied to anything other than an individual LCELL buffer or a design entity containing LCELL buffers.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.
This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name IGNORE_LCELL_BUFFERS <value>
set_global_assignment -name IGNORE_LCELL_BUFFERS -entity <entity name> <value>
set_instance_assignment -name IGNORE_LCELL_BUFFERS -to <to> -entity <entity name> <value>
```

Default Value

Off

Example

```
set_global_assignment -name ignore_lcell_buffers on
set_instance_assignment -name ignore_lcell_buffers on -to foo
```
1.2.52. IGNORE_MAX_FANOUT_ASSIGNMENTS

Directs the Compiler to ignore the Maximum Fan-Out Assignments on a node, an entity, or the whole design. One can remove the Maximum Fan-Out Assignments from the project but it is inconvenient/impossible as some assignments are embedded in the HDL sources.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name IGNORE_MAX_FANOUT_ASSIGNMENTS <value>
set_global_assignment -name IGNORE_MAX_FANOUT_ASSIGNMENTS -entity <entity name> <value>
set_instance_assignment -name IGNORE_MAX_FANOUT_ASSIGNMENTS -to <to> -entity <entity name> <value>
```

Default Value

Off
1.2.53. IGNORE_ROW_GLOBAL_BUFFERS

Ignores ROW GLOBAL buffers that are instantiated in the design. This option is ignored if it is applied to anything other than an individual GLOBAL buffer or a design entity containing GLOBAL buffers.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name IGNORE_ROW_GLOBAL_BUFFERS <value>
set_global_assignment -name IGNORE_ROW_GLOBAL_BUFFERS -entity <entity name> <value>
set_instance_assignment -name IGNORE_ROW_GLOBAL_BUFFERS -to <to> -entity <entity name> <value>
```

Default Value

Off
1.2.54. IGNORE_SOFT_BUFFERS

Ignores SOFT buffers that are instantiated in the design. This option is ignored if it is applied to anything other than an individual SOFT buffer or a design entity containing SOFT buffers.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name IGNORE_SOFT_BUFFERS <value>
set_global_assignment -name IGNORE_SOFT_BUFFERS -entity <entity name> <value>
set_instance_assignment -name IGNORE_SOFT_BUFFERS -to <to> -entity <entity name> <value>
```

Default Value

On

Example

```
set_global_assignment -name ignore_soft_buffers off
set_instance_assignment -name ignore_soft_buffers off -to foo
```
1.2.55. **IGNORE_TRANSLATE_OFF_AND_SYNTHESIS_OFF**

Instructs Analysis & Synthesis to ignore all translate_off/synthesis_off synthesis directives in your Verilog and VHDL design files. You can use this option to disable these synthesis directives and include previously ignored code during elaboration.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name IGNORE_TRANSLATE_OFF_AND_SYNTHESIS_OFF <value>
```

Default Value

Off

Example

```
set_global_assignment -name ignore_translate_off_and_synthesis_off on
```
1.2.56. IMPLEMENT_AS_CLOCK_ENABLE

Specifies that this node should function as a clock enable signal for one or more registers.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_instance_assignment -name IMPLEMENT_AS_CLOCK_ENABLE -to <to> -
entity <entity name> <value>
```
1.2.57. IMPLEMENT_AS_OUTPUT_OF_LOGIC_CELL

Implements the output of a primitive in a logic cell. You can apply this option to a logic function that would not ordinarily be implemented in a logic cell, typically a combinatorial function such as an AND2 gate. Implementing the output of a primitive a logic cell makes it possible to observe its output in simulation and timing analysis. However, because an additional logic cell is used, overall device utilization will increase. This option does not insert an additional logic cell on a function that is already implemented in a logic cell, such as a flipflop. This option is ignored if it is applied to anything other than a primitive.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_instance_assignment -name IMPLEMENT_AS_OUTPUT_OF_LOGIC_CELL -to <to> -entity <entity name> <value>
```

Example

```
set_instance_assignment -name implement_as_output_of_logic_cell on -to foo
```
1.2.58. INFER_RAMs_FROM_RAW_LOGIC

Instructs the Compiler to infer RAM from registers and multiplexers. Some HDL patterns that differ from Intel FPGA RAM templates are initially converted into logic. However, these structures function as RAM and, because of that, the Compiler may create an altsyncram megafuction instance for them at a later stage when this assignment is on. With this assignment is turned on, the Compiler may use more device RAM resources and less LABs.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name INFER_RAMs_FROM_RAW_LOGIC <value>
set_global_assignment -name INFER_RAMs_FROM_RAW_LOGIC -entity <entity name> <value>
set_instance_assignment -name INFER_RAMs_FROM_RAW_LOGIC -to <to> -entity <entity name> <value>
```

Default Value

On

Example

```plaintext
set_global_assignment -name infer_rams_from_raw_logic off
set_instance_assignment -name infer_rams_from_raw_logic off -to foo
```
1.2.59. IP_SEARCH_PATHS

Specifies the IP search paths specific to the project.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```bash
set_global_assignment -name IP_SEARCH_PATHS <value>
```
1.2.60. MAX_BALANCING_DSP_BLOCKS

Allows you to specify the maximum number of DSP blocks that the DSP block balancer will assume exist in the current device for each partition. This option overrides the usual method of using the maximum number of DSP blocks the current device supports.

Type

Integer

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name MAX_BALANCING_DSP_BLOCKS <value>
set_instance_assignment -name MAX_BALANCING_DSP_BLOCKS -to <to> -entity <entity name> <value>
```

Default Value

-1 (Unlimited)

Example

```plaintext
set_global_assignment -name max_balancing_dsp_blocks 4
set_instance_assignment -name max_balancing_dsp -to "my_partition_root_entity:my_partition_root_entity_inst"
```
1.2.61. MAX_FANOUT

Directs the Compiler to control the number of destinations the specified node feeds so the fan-out count does not exceed the value specified as the maximum number of fan-out allowed from the node.

Type

Integer

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports synthesis wildcards.

Syntax

```bash
set_global_assignment -name MAX_FANOUT -entity <entity name> <value>
set_instance_assignment -name MAX_FANOUT -to <to> -entity <entity name> <value>
```

Example

```bash
set_instance_assignment -name max_fanout 10 -to foo
```
1.2.62. MAX_LABS

Allows you to specify the maximum number of LABs that Analysis & Synthesis should try to utilize for a device. This option overrides the usual method of using the maximum number of LABs the current device supports, when the value is non-negative and is less than the maximum number of LABs available on the current device.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name MAX_LABS <value>
set_instance_assignment -name MAX_LABS -to <to> -entity <entity name> <value>
```

Default Value

-1 (Unlimited)

Example

```plaintext
set_global_assignment -name max_labs 100
```
1.2.63. MAX_NUMBER_OF_REGISTERS_FROM_UNINFERRED_RAMS

Allows you to specify the maximum number of registers that Analysis & Synthesis can use for conversion of uninferred RAMs. You can use this option as a project-wide option or on a specific partition by setting the assignment on the instance name of the partition root. The assignment on a partition overrides the global assignment (if any) for that particular partition. This option prevents synthesis from causing long compilations and running out of memory when many registers are used for uninferred RAMs. Instead of continuing the compilation, the Quartus Prime software issues an error and exits.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name MAX_NUMBER_OF_REGISTERS_FROM_UNINFERRED_RAMS <value>
set_instance_assignment -name MAX_NUMBER_OF_REGISTERS_FROM_UNINFERRED_RAMS -to <to> -entity <entity name> <value>
```

Default Value

-1 (Unlimited)

Example

```
set_global_assignment -name max_number_of_registers_from_uninferred_rams 2048
```

1.2.64. MAX_RAM_BLOCKS_M4K

Allows you to specify the maximum number of M4K, M9K, M20K, or M10K memory blocks that the Compiler may use for a device. This option overrides the usual method of using the maximum number of M4K, M9K, M20K, or M10K memory blocks the current device supports, when the value is non-negative and is less than the maximum number of M4K, M9K, M20K, or M10K memory blocks available on the current device.

Type

Integer

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name MAX_RAM_BLOCKS_M4K <value>
set_instance_assignment -name MAX_RAM_BLOCKS_M4K -to <to> -entity <entity name> <value>
```

Default Value

-1 (Unlimited)

Example

```
set_global_assignment -name max_ram_blocks_m4k 4
```

See Also

Maximum Number of M512 Memory Blocks Maximum Number of M-RAM Memory Blocks
1.2.65. MLAB_ADD_TIMING_CONSTRAINTS_FOR_MIXED_PORT_FEED_THROUGH_MODE_SETTING_DONT_CARE

Allows you to specify whether you want the Timing Analyzer to evaluate timing constraints between the write and the read operation of the MLAB memory block. Performing a write and read operation simultaneously at the same address might result in metastability because no timing constraints between those operations exist by default. Turning on this option introduces timing constraints between the write and read operation on the MLAB memory block and thereby avoids metastability issues; however, turning on this option degrades the performance of the MLAB memory blocks. If your design does not perform write and read operations simultaneously at the same address you do not need to set this option.

Type

Boolean

Device Support

• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes

This assignment supports Fitter wildcards.
This assignment is included in the Fitter report.
This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name MLAB_ADD_TIMING_CONSTRAINTS_FOR_MIXED_PORT_FEED_THROUGH_MODE_SETTING_DONT_CARE -
entity <entity name> <value>

set_global_assignment -name MLAB_ADD_TIMING_CONSTRAINTS_FOR_MIXED_PORT_FEED_THROUGH_MODE_SETTING_DONT_CARE -
to <to> -entity <entity name> <value>

set_global_assignment -name MLAB_ADD_TIMING_CONSTRAINTS_FOR_MIXED_PORT_FEED_THROUGH_MODE_SETTING_DONT_CARE
```

Default Value

Off
1.2.66. MUX_RESTRUCTURE

Allows the Compiler to reduce the number of logic elements required to implement multiplexers in a design. This option is useful if your design contains buses of fragmented multiplexers. This option repacks multiplexers more efficiently for area, allowing the design to implement multiplexers with a reduced number of logic elements. You can select the 'On' setting to minimize your design area; it will decrease logic element usage but may negatively affect design clock speed (fMAX). You can select the 'Off' to disable multiplexer restructuring; it does not decrease logic element usage and does not affect design clock speed (fMAX). You may select 'Auto' setting to allow the Quartus Prime software to determine whether multiplexer restructuring should be enabled. The Quartus Prime software uses other synthesis settings, for example, the Optimization Technique option, to determine if multiplexer restructuring should be applied to the design; the 'Auto' setting will decrease logic element usage but may negatively affect design clock speed (fMAX).

Type

Enumeration

Values

- Auto
- Off
- On

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name MUX_RESTRUCTURE <value>
set_global_assignment -name MUX_RESTRUCTURE -entity <entity name> <value>
set_instance_assignment -name MUX_RESTRUCTURE -to <to> -entity <entity name> <value>
```

Default Value

Auto

Example

```
set_global_assignment -name mux_restructure off
set_instance_assignment -name mux_restructure on -to accel
```
1.2.67. NOT_GATE_PUSH_BACK

Allows the Compiler to push an inversion (that is, a NOT gate) back through a register and implement it on that register's data input if it is necessary to implement the design. If this option is turned on, a register may power up to an active-high state, so it may need to be explicitly cleared during initial operation of the device. This option is ignored if it is applied to anything other than an individual register or a design entity containing registers. If it is applied to an output pin that is directly fed by a register, it is automatically transferred to that register.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name NOT_GATE_PUSH_BACK -entity <entity name> <value>
set_instance_assignment -name NOT_GATE_PUSH_BACK -to <to> -entity <entity name> <value>
set_global_assignment -name NOT_GATE_PUSH_BACK <value>
```

Default Value

On

Example

```plaintext
set_global_assignment -name not_gate_push_back off
set_instance_assignment -name not_gate_push_back off -to reg
```
1.2.68. NUMBER_OF_INVERTED_REGISTERS_REPORTED

Allows you to specify the maximum number of inverted registers that the Synthesis Report should display.

Type
Integer

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Analysis & Synthesis report.

Syntax

```plaintext
set_global_assignment -name NUMBER_OF_INVERTED_REGISTERS_REPORTED <value>
```

Default Value
100

Example

```plaintext
set_global_assignment -name NUMBER_OF_INVERTED_REGISTERS_REPORTED 200
```
1.2.69. NUMBER_OF_PROTECTED_REGISTERS_REPORTED

Allows you to specify the maximum number of protected registers that the Synthesis Report should display.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name NUMBER_OF_PROTECTED_REGISTERS_REPORTED <value>
```

Default Value

100

Example

```
set_global_assignment -name NUMBER_OF_PROTECTED_REGISTERS_REPORTED 200
```
1.2.70. NUMBER_OF_REMOVED_REGISTERS_REPORTED

Allows you to specify the maximum number of removed registers that the Synthesis Report should display.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name NUMBER_OF_REMOVED_REGISTERS_REPORTED <value>
```

Default Value

5000

Example

```
set_global_assignment -name NUMBER_OF_REMOVED_REGISTERS_REPORTED 200
```
1.2.71. NUMBER_OF_SWEPT_NODES_REPORTED

Allows you to specify the maximum number of swept nodes that the Synthesis Report displays. A swept node is any node which was eliminated from your design because the Quartus Prime software found the node to be unnecessary.

Type
Integer

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name NUMBER_OF_SWEPT_NODES_REPORTED <value>
```

Default Value
5000

Example

```
set_global_assignment -name NUMBER_OF_SWEPT_NODES_REPORTED 200
```
1.2.72. OCP_HW_EVAL

Enables or disables Intel FPGA IP Evaluation Mode feature.

Type

Enumeration

Values

- Disable
- Enable

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name OCP_HW_EVAL <value>
```

Default Value

Enable
1.2.73. OPTIMIZATION_TECHNIQUE

Specifies the overall optimization goal for Analysis & Synthesis: attempt to maximize performance, minimize logic usage, or balance high performance with minimal logic usage.

Old Name
Optimization Technique -- Stratix IV

Type
Enumeration

Values
- Area
- Balanced
- Speed

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Analysis & Synthesis report.
This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name OPTIMIZATION_TECHNIQUE <value>
set_global_assignment -name OPTIMIZATION_TECHNIQUE -entity <entity name> <value>
set_instance_assignment -name OPTIMIZATION_TECHNIQUE -to <to> -entity <entity name> <value>
```

Default Value
Balanced

Example

```
set_global_assignment -name optimization_technique speed
```
1.2.74. OPTIMIZE_POWER_DURING_SYNTHESIS

Controls the power-driven compilation setting of Analysis & Synthesis. This option determines how aggressively Analysis & Synthesis optimizes the design for power. If this option is set to 'Off', Analysis & Synthesis does not perform any power optimizations. If this option is set to 'Normal compilation', Analysis & Synthesis performs power optimizations as long as they are not expected to reduce design performance. When this option is set to 'Extra effort', Analysis & Synthesis will perform additional power optimizations which may reduce design performance.

Type

Enumeration

Values

- Extra effort
- Normal compilation
- Off

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name OPTIMIZE_POWER_DURING_SYNTHESIS <value>
set_global_assignment -name OPTIMIZE_POWER_DURING_SYNTHESIS -entity <entity name> <value>
set_instance_assignment -name OPTIMIZE_POWER_DURING_SYNTHESIS -to <to> -entity <entity name> <value>
```

Default Value

Normal compilation

Example

```plaintext
set_global_assignment -name optimize_power_during_synthesis off
```
1.2.75. PARAMETER

Assigns an attribute that determines the logic created or used to implement the function, for example, the width of a bus. Parameters are characteristics that determine the size, behavior, or silicon implementation of a function. Parameter values are inherited from project defaults or higher hierarchical levels unless you make explicit assignments to individual nodes. Parameters are also overridden by explicit logic synthesis and fitting options.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```plaintext
set_parameter <value>
set_parameter -entity <entity name> <value>
```
1.2.76. POWER_UP_LEVEL

Causes a register to power up with the specified logic level, either High (1) or Low (0). If this option is specified for an input pin, it is automatically transferred to the register that is driven by the pin if the following conditions are present: (1) there is no intervening logic, other than inversion, between the pin and the register; (2) the input pin drives the data input of the register; and (3) the input pin does not fan-out to any other logic. If this option is specified for an output or bidirectional pin, it is automatically transferred to the register that feeds the pin if: (1) there is no intervening logic, other than inversion, between the register and the pin; and (2) the register does not fan-out to any other logic. You can assign this option to any register, or to a pin with any logic configuration other than those described above. You can also assign this option to a design entity containing registers if you want to set the power level for all registers in the design entity. In order for the register to power up with the specified logic level, the Compiler may perform NOT Gate Push-Back on the register.

Type

Enumeration

Values

• High
• Low

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports synthesis wildcards.

Syntax

- set_global_assignment -name POWER_UP_LEVEL -entity <entity name> <value>
- set_instance_assignment -name POWER_UP_LEVEL -to <to> -entity <entity name> <value>

Example

- set_instance_assignment -name power_up_level low -to foo

See Also

Power-Up Don't Care
1.2.77. PRESERVE_FANOUT_FREE_NODE

Prevents a register that has no fan-out from being removed during synthesis.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
None

Syntax

```
set_instance_assignment -name PRESERVE_FANOUT_FREE_NODE -to <to> -
entity <entity name> <value>
```

Example

```
set_instance_assignment -name preserve_fanout_free_node on -to reg
```
1.2.78. PRESERVE_REGISTER

Prevents a register from minimizing away during synthesis and prevents sequential netlist optimizations. Sequential netlist optimizations can eliminate redundant registers and registers with constant drivers.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports Fitter wildcards.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name PRESERVE_REGISTER -entity <entity name> <value>
set_instance_assignment -name PRESERVE_REGISTER -to <to> -entity <entity name> <value>
```

Example

```
set_instance_assignment -name preserve_register on -to foo
```
1.2.79. PRESERVE_REGISTER_SYN_ONLY

Prevents a register from minimizing away during synthesis. This does not affect retiming or other optimizations in the fitter.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment supports Fitter wildcards.
This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name PRESERVE_REGISTER_SYN_ONLY -entity <entity name> <value>
set_instance_assignment -name PRESERVE_REGISTER_SYN_ONLY -to <to> -entity <entity name> <value>
```

Example

```plaintext
set_instance_assignment -name preserve_register_syn_only on -to foo
```
1.2.80. PRPOF_ID

Specifies whether a register is a unique partial reconfiguration bitstream identifier. The same identifier value will be used to generate the partial reconfiguration bitstream.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Fitter report.
This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name PRPOF_ID -entity <entity name> <value>
set_instance_assignment -name PRPOF_ID -to <to> -entity <entity name> <value>
set_global_assignment -name PRPOF_ID <value>
```

Default Value

Off

Example

```
set_instance_assignment -name prpof_id on -to reg
```
1.2.81. RAMSTYLE_ATTRIBUTE

Sets the ramstyle attribute of a shift register, RAM, or ROM.

Type

Enumeration

Values

- M10K
- M144K
- M20K
- M4K
- M512
- M9K
- MEGARAM
- MLAB
- auto
- logic

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name RAMSTYLE_ATTRIBUTE -entity <entity name> <value>
set_instance_assignment -name RAMSTYLE_ATTRIBUTE -to <to> -entity <entity name> <value>
```

Example

```plaintext
set_instance_assignment -name ramstyle_attribute M512 -to foo
```
1.2.82. RBCGEN_CRITICAL_WARNING_TO_ERROR

To convert Quartus Prime critical warning to error.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

None

Syntax

```
set_global_assignment -name RBCGEN_CRITICAL_WARNING_TO_ERROR <value>
```

Default Value

On
1.2.83. REMOVE_DUPLICATE_REGISTERS

Removes a register if it is identical to another register. If two registers generate the same logic, the second one will be deleted and the first one will be made to fan out to the second one's destinations. Also, if the deleted register has different logic option assignments, they will be ignored. This option is useful if you wish to prevent the Compiler from removing duplicate registers that you have used deliberately. You can do this by setting the option to Off. This option is ignored if it is applied to anything other than an individual register or a design entity containing registers.

Old Name

DUPLICATE_REGISTER_EXTRACTION

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports Fitter wildcards.
This assignment is included in the Analysis & Synthesis report.
This assignment supports synthesis wildcards.

Syntax

- `set_global_assignment -name REMOVE_DUPLICATE_REGISTERS <value>`
- `set_global_assignment -name REMOVE_DUPLICATE_REGISTERS -entity <entity name> <value>`
- `set_instance_assignment -name REMOVE_DUPLICATE_REGISTERS -to <to> -entity <entity name> <value>`

Default Value

On

Example

- `set_global_assignment -name remove_duplicate_registers off`
- `set_instance_assignment -name remove_duplicate_registers off -to foo`
1.2.84. REMOVE_REDUNDANT_LOGIC_CELLS

Removes redundant LCELL primitives or WYSIWYG primitives. Turning this option on optimizes a circuit for area and speed. This option is ignored if it is applied to anything other than a design entity.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name REMOVE_REDUNDANT_LOGIC_CELLS -entity <entity name> <value>
set_instance_assignment -name REMOVE_REDUNDANT_LOGIC_CELLS -to <to> -entity <entity name> <value>
set_global_assignment -name REMOVE_REDUNDANT_LOGIC_CELLS <value>
```

Default Value

Off

Example

```plaintext
set_global_assignment -name remove_redundant_logic_cells on
set_instance_assignment -name remove_redundant_logic_cells on -to node
```
1.2.85. REPORT_PARAMETER_SETTINGS_PRO

Specifies whether the synthesis report should include the panels in the Parameter Settings by Entity Instance folder

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```plaintext
set_global_assignment -name REPORT_PARAMETER_SETTINGS_PRO <value>
```

Default Value

On
1.2.86. REPORT_PR_INITIAL_VALUES_AS_ERROR

Allows you to flag explicitly defined initial values found in PR partitions as Errors instead of Warnings.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name REPORT_PR_INITIAL_VALUES_AS_ERROR <value>
```

Default Value

Off

Example

```
set_global_assignment -name REPORT_PR_INITIAL_VALUES_AS_ERROR ON
```
1.2.87. REPORT_SOURCE_ASSIGNMENTS_PRO

Specifies whether the synthesis report should include the panels in the Source Assignments folder

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name REPORT_SOURCE_ASSIGNMENTS_PRO <value>
```

Default Value

On
1.2.88. RESYNTHESIS_OPTIMIZATION_EFFORT

Specifies whether the resynthesis tool should focus on fmax or area during resynthesis.

Type

Enumeration

Values

- Low
- Normal

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name RESYNTHESIS_OPTIMIZATION_EFFORT -section_id <section identifier> <value>
set_global_assignment -name RESYNTHESIS_OPTIMIZATION_EFFORT -entity <entity name> -section_id <section identifier> <value>
```

Default Value

Normal, requires section identifier
1.2.89. **RESYNTHESIS_PHYSICAL_SYNTHESIS**

Specifies the physical synthesis level for resynthesis.

Type

Enumeration

Values

- ADVANCED
- Normal

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```plaintext
set_global_assignment -name RESYNTHESIS_PHYSICAL_SYNTHESIS -section_id <section identifier> <value>
set_global_assignment -name RESYNTHESIS_PHYSICAL_SYNTHESIS -entity <entity name> -section_id <section identifier> <value>
```

Default Value

Normal, requires section identifier
1.2.90. RESYNTHESIS_RETIMING

Specifies the paths on which retiming will be performed: all paths, register-to-register paths only, or none.

Type

Enumeration

Values

- CORE
- Full
- Off

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```plaintext
set_global_assignment -name RESYNTHESIS_RETIMING -section_id <section_identifier> <value>
set_global_assignment -name RESYNTHESIS_RETIMING -entity <entity name> -section_id <section_identifier> <value>
```

Default Value

FULL, requires section identifier
1.2.91. SAFE_STATE_MACHINE

Tells the compiler to implement state machines that can recover gracefully from an illegal state.

Type

Enumeration

Values

- Auto
- Never
- On

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name SAFE_STATE_MACHINE -entity <entity name> <value>
set_instance_assignment -name SAFE_STATE_MACHINE -to <to> -entity <entity name> <value>
set_global_assignment -name SAFE_STATE_MACHINE <value>
```

Default Value

Auto

Example

```
set_global_assignment -name safe_state_machine on
set_instance_assignment -name safe_state_machine on -to foo
```

See Also

State Machine Processing Extract Verilog State Machines Extract VHDL State Machines
1.2.92. SAVE_DISK_SPACE

Saves disk space by reducing the number of node names available for entering assignments, simulation, timing analysis, reporting, etc.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```plaintext
set_global_assignment -name SAVE_DISK_SPACE <value>
```

Default Value

On
1.2.93. SEARCH_PATH

Specifies the path name of a user-defined library.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name SEARCH_PATH <value>
```
1.2.94. SHIFT_REGISTER_RECOGNITION_ACLR_SIGNAL

Allows the Compiler to find a group of shift registers of the same length that can be replaced with the altshift_taps megafuction. The shift registers must all use the same aclr signals, must not have any other secondary signals, and must have equally spaced taps that are at least three registers apart. To use this option, you must turn on the Auto Shift Register Replacement logic option.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name SHIFT_REGISTER_RECOGNITION_ACLR_SIGNAL <value>
set_global_assignment -name SHIFT_REGISTER_RECOGNITION_ACLR_SIGNAL -entity <entity name> <value>
set_instance_assignment -name SHIFT_REGISTER_RECOGNITION_ACLR_SIGNAL -to <to> -entity <entity name> <value>
```

Default Value

On

Example

```plaintext
set_global_assignment -name shift_register_recognition_aclr_signal off
set_instance_assignment -name shift_register_recognition_aclr_signal off -to foo
```
1.2.95. SIZE_OF_LATCH_REPORT

Allows you to specify the maximum number of latches that the Synthesis Report should display.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```plaintext
set_global_assignment -name SIZE_OF_LATCH_REPORT <value>
```

Default Value

100

Example

```plaintext
set_global_assignment -name SIZE_OF_LATCH_REPORT 200
```
1.2.96. SIZE_OF_PR_INITIAL_CONDITIONS_REPORT

Allows you to specify the maximum number of registers that the PR Initial Conditions Report should display.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name SIZE_OF_PR_INITIAL_CONDITIONS_REPORT <value>
```

Default Value

15

Example

```
set_global_assignment -name SIZE_OF_PR_INITIAL_CONDITIONS_REPORT 200
```
1.2.97. SMART_COMPILE_IGNORES_TDC_FOR_STRATIX_PLL_CHANGES

Allows the Compiler to skip the fitting stage during smart recompilation when design changes may affect timing requirements. This option is available only for changes to Cyclone, Stratix, and Stratix GX PLL parameters, and Stratix GX gigabit transceiver block (GXB) parameters.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name SMART_COMPILE_IGNORES_TDC_FOR_STRATIX_PLL_CHANGES <value>
```

Default Value

Off
1.2.98. STATE_MACHINE_PROCESSING

Specifies the processing style used to compile a state machine. You can use your own 'User-Encoded' style, or select 'One-Hot', 'Minimal Bits', 'Gray', 'Johnson', 'Sequential' or 'Auto' (Compiler-selected) encoding.

Type
Enumeration

Values
- Auto
- Gray
- Johnson
- Minimal Bits
- One-Hot
- Sequential
- User-Encoded

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Analysis & Synthesis report.
This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name STATE_MACHINE_PROCESSING -entity <entity name> <value>
set_instance_assignment -name STATE_MACHINE_PROCESSING -to <to> -entity <entity name> <value>
set_global_assignment -name STATE_MACHINE_PROCESSING <value>
```

Default Value
Auto

Example

```
set_global_assignment -name state_machine_processing "one-hot"
set_instance_assignment -name state_machine_processing "one-hot" -to foo
```

See Also
Extract Verilog State Machines Extract VHDL State Machines
1.2.99. STRICT_RAM_RECOGNITION

When this option is ON, the Compiler is only allowed to replace RAM if the hardware matches the design exactly.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name STRICT_RAM_RECOGNITION <value>
set_global_assignment -name STRICT_RAM_RECOGNITION -entity <entity name> <value>
set_instance_assignment -name STRICT_RAM_RECOGNITION -to <to> -entity <entity name> <value>
```

Default Value

Off

Example

```
set_global_assignment -name strict_ram_recognition on
set_global_assignment -name strict_ram_recognition on -to foo
```
1.2.100. SYNCHRONIZATION_REGISTER_CHAIN_LENGTH

This setting specifies the maximum number of registers in a row to be considered as a synchronization chain. Synchronization chains are sequences of registers with the same clock, no fanout in between, such that the first register is fed by a pin, or by logic in another clock domain. These registers will be considered for metastability analysis (available for some families), and are also protected from optimizations such as retiming. When gate-level retiming is turned on, these registers will not be moved. The default length is device-specific.

Old Name
ADV_NETLIST_OPT_METASTABLE_REGS

Type
Integer

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Analysis & Synthesis report.
This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <value>
set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH -entity <entity name> <value>
set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH -to <to> -entity <entity name> <value>
```
1.2.101. SYNTHESIS_EFFORT

Controls the synthesis trade-off between compilation speed and performance and area. The default is 'Auto'. You can select 'Fast' for faster compilation speed at the cost of performance and area.

Type

Enumeration

Values

- Auto
- Fast

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name SYNTHESIS_EFFORT <value>
```

Default Value

Auto

Example

```
set_global_assignment -name synthesis_effort fast
```
1.2.102. SYNTHESIS_KEEP_SYNCH_CLEAR_PRESET_BEHAVIOR_IN_UNMAPPER

When this option is set to On, synthesis will keep the synchronous clear/preset behavior when remap I/O wysiwyg primitives (from other device families) using DDIO INPUT feature to the targeted device family.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name SYNTHESIS_KEEP_SYNCH_CLEAR_PRESET_BEHAVIOR_IN_UNMAPPER <entity name> <value>
synthesis_keep_synch_clear_preset_behavior_in_unmapper <value>
```

Example

```plaintext
set_global_assignment -name synthesis_keep_synch_clear_preset_behavior_in_unmapper on
set_instance_assignment -name synthesis_keep_synch_clear_preset_behavior_in_unmapper on -to foo
```
1.2.103. SYNTHESIS_S10_MIGRATION_CHECKS

Option to enable/disable Arria 10 to Stratix 10 Synthesis Migration Checks.

Type

Boolean

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name SYNTHESIS_S10_MIGRATION_CHECKS <value>
```

Default Value

Off

Example

```
set_global_assignment -name SYNTHESIS_S10_MIGRATION_CHECKS on
```
1.2.104. SYNTH_CLOCK_MUX_PROTECTION

Causes the multiplexers in the clock network to be decomposed to 2to1 multiplexer trees, and protected from being merged with, or transferred to, other logic. This option helps the Timing Analyzer to understand clock behavior.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name SYNTH_CLOCK_MUX_PROTECTION <value>
```

Default Value
On

Example

```
set_global_assignment -name synth_clock_mux_protection off
```
1.2.105. SYNTH_GATED_CLOCK_CONVERSION

Automatically converts gated clocks in the design to use clock enable pins if clock enable pins are not used in the original design. Clock gating logic can contain AND, OR, MUX, and NOT gates. Turning on this option may increase memory use and overall run time. You must use the Timing Analyzer for timing analysis, and you must define all base clocks in Synopsys Design Constraints (SDC) format.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name SYNTH_GATED_CLOCK_CONVERSION -entity <entity name> <value>
set_instance_assignment -name SYNTH_GATED_CLOCK_CONVERSION -to <to> -entity <entity name> <value>
set_global_assignment -name SYNTH_GATED_CLOCK_CONVERSION <value>
```

Default Value

Off

Example

```
set_global_assignment -name synth_gated_clock_conversion on
set_instance_assignment -name synth_gated_clock_conversion on -to foo
```
1.2.106. SYNTH_MESSAGE_LEVEL

Specifies the type of Analysis & Synthesis messages you want to view. Setting this option to 'Low' allows you to view only the most important Analysis & Synthesis messages. Setting this option to 'Medium' allows you to view most Analysis & Synthesis messages, but hides the detailed messages in Analysis & Synthesis report. Setting this option to 'High' allows you to view all Analysis & Synthesis messages.

Type

Enumeration

Values

- High
- Low
- Medium

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```shell
set_global_assignment -name SYNTH_MESSAGE_LEVEL <value>
```

Default Value

Medium
1.2.107. SYNTH_PROTECT_SDC_CONSTRAINT

Causes SDC constraint checking in register merging. It helps to maintain the validity of SDC constraints through compilation.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name SYNTH_PROTECT_SDC_CONSTRAINT <value>
```

Default Value
Off

Example

```
set_global_assignment -name synth_protect_sdc_constraint on
```
1.2.108. SYNTH_RESOURCE_AWARE_INFERENCE_FOR_BLOCK_RAM

Specifies whether RAM, ROM, and shift-register inference should take the design and device resources into account.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name
SYNTH_RESOURCE_AWARE_INFERENCE_FOR_BLOCK_RAM <value>
```

Example

```
set_global_assignment -name
synth_resource_aware_inference_for_block_ram on
```
1.2.109. SYNTH_TIMING_DRIVEN_SYNTHESIS

Allows synthesis to use timing information during synthesis to better optimize the design.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```
set_global_assignment -name SYNTH_TIMING_DRIVEN_SYNTHESIS <value>
set_global_assignment -name SYNTH_TIMING_DRIVEN_SYNTHESIS -entity <entity name> <value>
set_instance_assignment -name SYNTH_TIMING_DRIVEN_SYNTHESIS -to <to> -entity <entity name> <value>
```

Example

```
set_global_assignment -name synth_timing_driven_synthesis on
```
1.2.110. TOP_LEVEL_ENTITY

Specifies the full hierarchical path of the entity that is the focus of the current compilation or simulation.

Old Name
FOCUS_ENTITY_NAME

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name TOP_LEVEL_ENTITY <value>
```
1.2.11. USER_LIBRARIES

Specifies the pathnames of user-defined libraries.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name USER_LIBRARIES <value>
```
1.2.112. USE_GENERATED_PHYSICAL_CONSTRAINTS

Specifies the physical constraints file generated by the resynthesis tool to be used by the Quartus Prime software

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```plaintext
set_global_assignment -name USE_GENERATED_PHYSICAL_CONSTRAINTS -section_id <section identifier> <value>
set_global_assignment -name USE_GENERATED_PHYSICAL_CONSTRAINTS -entity <entity name> -section_id <section identifier> <value>
```

Default Value

On, requires section identifier
1.2.113. VERILOG_CONSTANT_LOOP_LIMIT

Defines the iteration limit for Verilog loops with loop conditions that evaluate to compile-time constants on each loop iteration. This limit exists primarily to identify potential infinite loops before they exhaust memory or trap the software in an actual infinite loop.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

``` pulver
set_global_assignment -name VERILOG_CONSTANT_LOOP_LIMIT <value>
set_global_assignment -name VERILOG_CONSTANT_LOOP_LIMIT -entity <entity name> <value>
set_instance_assignment -name VERILOG_CONSTANT_LOOP_LIMIT -to <to> -entity <entity name> <value>
```

Default Value

5000

Example

``` Pulitzer
set_global_assignment -name verilog_constant_loop_limit 3000
```
1.2.114. VERILOG_INPUT_VERSION

Type

Enumeration

Values

- SystemVerilog_2005
- SystemVerilog_2009
- Verilog_1995
- Verilog_2001

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```plaintext
set_global_assignment -name VERILOG_INPUT_VERSION <value>
```

Default Value

Verilog_2001
1.2.115. **VERILOG_LMF_FILE**

Specifies the default Library Mapping File (.lmf) for the current compilation.

Type

File name

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name VERILOG_LMF_FILE <value>
```
1.2.116. VERILOG_MACRO

Defines Verilog HDL macro - same as `define directive

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name VERILOG_MACRO <value>
```
1.2.117. VERILOG_NON_CONSTANT_LOOP_LIMIT

Defines the iteration limit for Verilog loops with loop conditions that do not evaluate to compile-time constants on each loop iteration. This limit exists primarily to identify potential infinite loops before they exhaust memory or trap the software in an actual infinite loop.

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

This assignment supports synthesis wildcards.

Syntax

```plaintext
set_global_assignment -name VERILOG_NON_CONSTANT_LOOP_LIMIT <value>
set_global_assignment -name VERILOG_NON_CONSTANT_LOOP_LIMIT -entity <entity name> <value>
set_instance_assignment -name VERILOG_NON_CONSTANT_LOOP_LIMIT -to <to> -entity <entity name> <value>
```

Default Value

250

Example

```plaintext
set_global_assignment -name verilog_non_constant_loop_limit 3000
```
1.2.118. VERILOG_SHOW_LMF_MAPPING_MESSAGES

Determines whether to display messages describing the mappings used in the Library Mapping File.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name VERILOG_SHOW_LMF_MAPPING_MESSAGES <value>
```
1.2.119. VHDL_INPUT_LIBRARY

Specifies the logical name of a user-defined VHDL design library : physical name.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_instance_assignment -name VHDL_INPUT_LIBRARY -to <to> <value>
```
1.2.120. VHDL_INPUT_VERSION

Type

Enumeration

Values

• VHDL_1987
• VHDL_1993
• VHDL_2008

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name VHDL_INPUT_VERSION <value>
```

Default Value

VHDL_1993
1.2.121. VHDL_LMF_FILE

Specifies the default Library Mapping File (.lmf) for the current compilation.

Type
File name

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Analysis & Synthesis report.

Syntax

```plaintext
set_global_assignment -name VHDL_LMF_FILE <value>
```
1.2.122. VHDL_SHOW_LMF_MAPPING_MESSAGES

Determines whether to display messages describing the mappings used in the Library Mapping File.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Analysis & Synthesis report.

Syntax

```
set_global_assignment -name VHDL_SHOW_LMF_MAPPING_MESSAGES <value>
```
1.3. Assembler Assignments

1.3.1. AUTO_RESTART_CONFIGURATION

Directs the device to restart the configuration process automatically if a data error is encountered. If this option is turned off, you must externally direct the device to restart the configuration process if an error occurs.

Old Name
Auto restart on configuration error

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name AUTO_RESTART_CONFIGURATION <value>
```

Default Value
On
1.3.2. CLOCK_SOURCE

Specifies whether the configuration device generates an internal clock or applies an external clock.

Type
Enumeration

Values
- External
- Internal

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Fitter report.

Syntax

```makefile
set_global_assignment -name CLOCK_SOURCE <value>
```

Default Value
Internal
1.3.3. COMPRESSION_MODE

Allows you to compress SRAM Object Files (.sof) stored in a Programmer Object File (.pof) for a configuration device.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name COMPRESSION_MODE <value>
```

Default Value

Off
1.3.4. CONFIGURATION_CLOCK_DIVISOR

Specifies the clock frequency divisor, which is used to determine the period of the system clock.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name CONFIGURATION_CLOCK_DIVISOR <value>
```

Default Value

1
1.3.5. CONFIGURATION_CLOCK FREQUENCY

Specifies the clock frequency of the configuration device.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name CONFIGURATION_CLOCK_FREQUENCY <value>
```

Default Value
10 MHz
1.3.6. DISABLE_REGISTER_POWERUP_INITIALIZATION

Specifies whether the Assembler generates a bit stream with register power-up initialization.

Type

Boolean

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name DISABLE_REGISTER_POWERUP_INITIALIZATION <value>
```

Default Value

Off
1.3.7. ENABLE_ADV_SEU_DETECTION

Allows you to enable the Advanced SEU Detection compiler to generate design SEU sensitivity map file. If this option is turned on, the SMH file will be generated.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

None

Syntax

```
set_global_assignment -name ENABLE_ADV_SEU_DETECTION <value>
```

Default Value

Off

Example

```
set_global_assignment -name ENABLE_ADV_SEU_DETECTION ON
```

See Also

PARTITION_ASD_REGION_ID
1.3.8. ENABLE_AUTONOMOUS_PCIE_HIP

Directs the device to release the PCIe HIP after the periphery is configured and before core configuration is completed. This option doesn't take effect in CvP Init mode since the periphery automatically comes up first, all other modes bring the PCIe HIP up first when this option is selected.

Old Name
Auto restart on configuration error

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX

Notes
This assignment is included in the Fitter report.

Syntax
```
set_global_assignment -name ENABLE_AUTONOMOUS_PCIE_HIP <value>
```

Default Value
Off
1.3.9. ENABLE_OCT_DONE

This option controls whether the INIT_DONE signal will be gated by OCT_DONE signal which indicates the Power-Up OCT calibration is completed. If this option is turned off, the INIT_DONE signal is not gated by the OCT_DONE signal.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name ENABLE_OCT_DONE <value>
```

Default Value

Off
1.3.10. EPROM_USE_CHECKSUM_AS_USERCODE

Uses the checksum value from the Programmer Object File (.pof) as the JTAG user code.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name EPROM_USE_CHECKSUM_AS_USERCODE <value>
```

Default Value

Off
1.3.11. GENERATE_HEX_FILE

Generates a Hexadecimal (Intel-format) Output File (.hexout) containing configuration data that can be programmed into a parallel data source, such as an EPROM or a mass storage device, which then in turn configures the target device.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name GENERATE_HEX_FILE <value>
```

Default Value

Off
1.3.12. GENERATE_PMSF_FILES

Generates a Partial-Masked SOF file (.pmsf) containing both configuration data and region definitions that can be used to re-configure a device region. If this option is turned on, the Partial-Masked SOF files (.pmsf) will be generated instead of Mask Settings files (.msf).

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Syntax

```plaintext
set_global_assignment -name GENERATE_PMSF_FILES <value>
```

Default Value

On

Example

```plaintext
set_global_assignment -name GENERATE_PMSF_FILES ON
```

See Also

GENERATE_PMSF_FILES
1.3.13. GENERATE_PR_RBF_FILE

Generates a Partial Reconfiguration Raw Binary File (.rbf) containing configuration data that an intelligent external controller can use to reconfigure the portion of target device.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name GENERATE_PR_RBF_FILE <value>
```
1.3.14. GENERATE_RBF_FILE

Generates a Raw Binary File (.rbf) containing configuration data that an intelligent external controller can use to configure the target device.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name GENERATE_RBF_FILE <value>
```

Default Value

Off
1.3.15. GENERATE_TTF_FILE

Generates a Tabular Text File (.ttf) containing configuration data that an intelligent external controller can use to configure the target device.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name GENERATE_TTF_FILE <value>
```

Default Value
Off
1.3.16. HEXOUT_FILE_COUNT_DIRECTION

Specifies the count direction for the data in a Hexadecimal (Intel-Format) Output File (.hexout) as up or down.

Old Name

HEX_FILE_COUNT_UP_DOWN

Type

Enumeration

Values

- Down
- Up

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name HEXOUT_FILE_COUNT_DIRECTION <value>
```

Default Value

Up
1.3.17. HEXOUT_FILE_START_ADDRESS

Specifies the starting memory address for a Hexadecimal (Intel-Format) Output File (.hexout).

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name HEXOUT_FILE_START_ADDRESS <value>
```

Default Value
0
1.3.18. HPS_DAP_SPLIT_MODE

Enables the HPS debug access port (DAP) pins. When HPS JTAG pins are selected, these HPS JTAG pins are shared with other HPS uses and with user logic.

Type

Enumeration

Values

- Disabled
- HPS Pins
- SDM Pins

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name HPS_DAP_SPLIT_MODE <value>
```

Default Value

Disabled
1.3.19. HPS_INITIALIZATION

Selects the order in which the Hard Processor System (HPS) and the FPGA are configured.

Type

Enumeration

Values

- After INIT_DONE
- HPS First
- When requested by FPGA

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name HPS_INITIALIZATION <value>
```

Default Value

After INIT_DONE
1.3.20. ON_CHIP_BITSTREAM_DECOMPRESSION

Allows the device to accept and decompress bitstreams during configuration. Produces compressed bitstreams and enables bitstream decompression.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name ON_CHIP_BITSTREAM_DECOMPRESSION <value>
```

Default Value

On
1.3.21. **PR_BASE_MSF**

Specify block name and path of base revision MSF file for mask comparison in a PR project.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name PR_BASE_MSF <value>
```
1.3.22. PR_BASE_SOF

Specify path of base revision SOF file for bit settings comparison in a PR project.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name PR_BASE_SOF <value>
```
1.3.23. PR_SKIP_BASE_CHECK

Disable mask comparison and logic verification for a reconfigurable partition in a PR project.

Type

String

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name PR_SKIP_BASE_CHECK <value>
```
1.3.24. PWRMGT_ADV_CLOCK_DATA_FALL_TIME

Specify fall time of clock and data signals in nanoseconds. Integer value between 0 and 65535. The relevant SMBus requirement is tf as detailed in the SMBus AC Specifications. This is for PMBus Master mode.

Type

Integer

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_ADV_CLOCK_DATA_FALL_TIME <value>
```

Default Value

0
1.3.25. PWRMGT_ADV_CLOCK_DATA_RISE_TIME

Specify rise time of clock and data signals in nanoseconds. Integer value between 0 and 65535. The relevant SMBus requirement is tf as detailed in the SMBus AC Specifications. This is for PMBus Master mode.

Type

Integer

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_ADV_CLOCK_DATA_RISE_TIME <value>
```

Default Value

0
1.3.26. PWRMGT_ADV_DATA_HOLD_TIME

Specify data hold time in nanoseconds. Integer value between 0 and 65535. This parameter is used to control the hold time of SDA during transmit in both PMBus Master and PMBus Slave mode. The relevant SMBus requirement is tHD:DAT as detailed in the SMBus AC Specifications.

Type

Integer

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_ADV_DATA_HOLD_TIME <value>
```

Default Value

0
1.3.27. PWRMGT_ADV_DATA_SETUP_TIME

Specify data setup time in nanoseconds. Integer value between 0 and 65535. The amount of time delay introduced in the rising edge of SCL relative to SDA changing when a read-request is serviced. The relevant SMBus requirement is tSU:DAT as detailed in the SMBus AC Specifications. This is for PMBus slave mode.

Type
Integer

Device Support
• Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```bash
set_global_assignment -name PWRMGT_ADV_DATA_SETUP_TIME <value>
```

Default Value

0
1.3.28. PWRMGT_ADV_FPGA_RELEASE_DELAY

When operation mode is PMBus Slave mode, specify value in unassigned decimal value between 0 and 255 for delay duration in milliseconds before starting FPGA after first successful VOUT_COMMAND is responded.

Type

Integer

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_ADV_FPGA_RELEASE_DELAY <value>
```

Default Value

10
1.3.29. PWRMGT_ADV_INITIAL_DELAY

When operation mode is PMBus Master mode, specify value in unassigned decimal value between 0 and 255 for delay duration in milliseconds before first command is used.

Type

Integer

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_ADV_INITIAL_DELAY <value>
```

Default Value

0
1.3.30. PWRMGT_ADV_VOLTAGE_STABLE_DELAY

When operation mode is PMBus Master mode, specify value in unassigned decimal value between 0 and 255 for delay duration in milliseconds for voltage to stabilize after each voltage update.

Type

Integer

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_ADV_VOLTAGE_STABLE_DELAY <value>
```

Default Value

10
1.3.31. PWRMGT_ADV_VOUT_READING_ERR_MARGIN

Specify power level feedback reading error margin index at 0.25% granularity, used by the controller to determine if target VID is achieved. 0: +/-1.00%, 1: +/-1.25%, ... 28: +/-8.00%

Type

Integer

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_ADV_VOUT_READING_ERR_MARGIN <value>
```

Default Value

0
1.3.32. PWRMGT_BUS_SPEED_MODE

Specifies bus speed mode in PMBus Master mode

Type

Enumeration

Values

- 100 KHz
- 400 KHz

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_BUS_SPEED_MODE <value>
```

Default Value

100 KHz
1.3.33. PWRMGT_DEVICE_ADDRESS_IN_PMBUS_SLAVE_MODE

Specifies 7 bit Hexadecimal value without leading prefix 0x for address, for instance 7F, for device address assignment when in PMBus Slave mode. It must be non-zero address.

Type
String

Device Support
- Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```plaintext
set_global_assignment -name PWRMGT_DEVICE_ADDRESS_IN_PMBUS_SLAVE_MODE <value>
```

Default Value
00
1.3.34. PWRMGT_DIRECT_FORMAT_COEFFICIENT_B

Specifies direct format coefficient b when in PMBus Master mode. Signed integer between -32768 and 32767. Coefficient b is the offset. This value is supplied by the PMBus devices manufacturer in the product literature. User must set this parameter when output voltage format of PMBus device is Direct formator or auto discovery format.

Type

String

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_DIRECT_FORMAT_COEFFICIENT_B <value>
```

Default Value

0
1.3.35. PWRMGT_DIRECT_FORMAT_COEFFICIENT_M

Specifies direct format coefficient \(m \) when in PMBus Master mode. Signed integer between -32768 and 32767. Coefficient \(m \) is the slope coefficient. This value is supplied by the PMBus devices manufacturer in the product literature. User must set this parameter when output voltage format of PMBus device is Direct format or auto discovery format. It must be a non-zero value when output voltage format of PMBus device is Direct format.

Type

String

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_DIRECT_FORMAT_COEFFICIENT_M <value>
```

Default Value

0
1.3.36. PWRMGT_DIRECT_FORMAT_COEFFICIENT_R

Specify direct format coefficient R when in PMBus Master mode. Signed integer between -128 and 127. Coefficient R is the exponent. This value is supplied by the PMBus devices manufacturer in the product literature. User must set this parameter when output voltage format of PMBus device is Direct format or auto discovery format.

Type

String

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_DIRECT_FORMAT_COEFFICIENT_R <value>
```

Default Value

0
1.3.37. PWRMGT_LINEAR_FORMAT_N

Specify linear format N when in PMBus Master mode. Signed integer between -16 and 15. This is exponent for for the mantissa for output voltage related command when VOUT format is set to Linear format. This value is supplied by the PMBus devices manufacturer in the product literature. A nonzero value must be specified when linear voltage output format is chosen.

Type

String

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_LINEAR_FORMAT_N <value>
```

Default Value

0
1.3.38. PWRMGT_PAGE_COMMAND_ENABLE

By enabling PAGE command, the FPGA PMBus master will use PAGE command to set all output channels on registered regulator modules to respond to VOUT_COMMAND.

Type
Boolean

Device Support
- Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_PAGE_COMMAND_ENABLE <value>
```

Default Value
Off
1.3.39. PWRMGT_SLAVE DEVICE0 ADDRESS

Specifies 7 bit Hexadecimal value without leading prefix 0x, for instance 7F, for slave address of the voltage regulator when in PMBus Master mode. It must be non-zero address.

Type

String

Device Support

• Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_SLAVE_DEVICE0_ADDRESS <value>
```

Default Value

00
1.3.40. PWRMGT_SLAVE_DEVICE1_ADDRESS

Specifies 7 bit Hexadecimal value without leading prefix 0x, for instance 7F, for slave address of the voltage regulator when in PMBus Master mode.

Type
String

Device Support
- Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_SLAVE_DEVICE1_ADDRESS <value>
```

Default Value
00
1.3.41. PWRMGT_SLAVE_DEVICE2_ADDRESS

Specifies 7 bit Hexadecimal value without leading prefix 0x, for instance 7F, for slave address of the voltage regulator when in PMBus Master mode.

Type
String

Device Support
- Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_SLAVE_DEVICE2_ADDRESS <value>
```

Default Value

00
1.3.42. PWRMGT_SLAVE_DEVICE3_ADDRESS

Specifies 7 bit Hexadecimal value without leading prefix 0x, for instance 7F, for slave address of the voltage regulator when in PMBus Master mode.

Type

String

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```bash
set_global_assignment -name PWRMGT_SLAVE_DEVICE3_ADDRESS <value>
```

Default Value

00
1.3.43. PWRMGT_SLAVE_DEVICE4_ADDRESS

Specifies 7 bit Hexadecimal value without leading prefix 0x, for instance 7F, for slave address of the voltage regulator when in PMBus Master mode.

Type

String

Device Support

- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_SLAVEDEVICE4_ADDRESS <value>
```

Default Value

00
1.3.44. PWRMGT_SLAVE_DEVICES5_ADDRESS

Specifies 7 bit Hexadecimal value without leading prefix 0x, for instance 7F, for slave address of the voltage regulator when in PMBus Master mode.

Type
String

Device Support
- Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```set_global_assignment -name PWRMGT_SLAVE_DEVICES5_ADDRESS <value>```

Default Value

00
1.3.45. PWRMGT_SLAVEDEVICE6_ADDRESS

Specifies 7 bit Hexadecimal value without leading prefix 0x, for instance 7F, for slave address of the voltage regulator when in PMBus Master mode.

Type
String

Device Support
• Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PWRMGT_SLAVEDEVICE6_ADDRESS <value>
```

Default Value
00
1.3.46. PWRMGT_SLAVE_DEVICE7_ADDRESS

Specifies 7 bit Hexadecimal value without leading prefix 0x, for instance 7F, for slave address of the voltage regulator when in PMBus Master mode.

**Type**

String

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```text
set_global_assignment -name PWRMGT_SLAVE_DEVICE7_ADDRESS <value>
```

**Default Value**

00
1.3.47. PWRMGT_SLAVE_DEVICE_TYPE

Specifies the slave device type when the target FPGA device is in PMBus master mode.

**Type**

Enumeration

**Values**

- LTM4677
- Other

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name PWRMGT_SLAVE_DEVICE_TYPE <value>
```

**Default Value**

LTM4677
1.3.48. PWRMGT_TABLE_VERSION

Power table version. 0 is a reserved value to indicate the power table is invalid

Type
Integer

Device Support
• Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```plaintext
set_global_assignment -name PWRMGT_TABLE_VERSION <value>
```

Default Value
1
1.3.49. PWRMGT_TRANSLATED_VOLTAGE_VALUE_UNIT

 specifies the output voltage format when in PMBus Master mode.

 **Type**

 Enumeration

 **Values**

 - Millivolts
 - Volts

 **Device Support**

 - This setting can be used in projects targeting any Intel FPGA device family.

 **Notes**

 This assignment is included in the Fitter report.

 **Syntax**

 ```
 set_global_assignment -name PWRMGT_TRANSLATED_VOLTAGE_VALUE_UNIT <value>
 ```

 **Default Value**

 Volts
1.3.50. PWRMGT_VOLTAGE_OUTPUT_FORMAT

Specifies the output voltage format when in PMBus Master mode.

**Type**

Enumeration

**Values**

- Auto discovery
- Direct format
- Linear format

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name PWRMGT_VOLTAGE_OUTPUT_FORMAT <value>
```

**Default Value**

Auto discovery
1.3.51. RELEASE_CLEARS_BEFORE_TRI_STATES

Directs the device to release the clear signal on registered logic cells and I/O cells before releasing the output enable override on tri-state buffers. If this option is turned off, the output enable signals are released before the clear overrides are released.

Old Name
Release clears before tri-states

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name RELEASE_CLEARS_BEFORE_TRI_STATES <value>
```

Default Value
Off
1.3.52. STRATIXII_CONFIGURATION_DEVICE

Specifies the configuration device that you want to use as the means of configuring the target device.

**Old Name**

STRATIX_II_CONFIGURATION_DEVICE

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name STRATIXII.Configuration_DEVICE <value>
```

**Default Value**

Auto
1.3.53. STRATIX_JTAG_USER_CODE

Specifies user-defined information about the target device. The JTAG user code is an extension of the option register. This data can be read with the JTAG USERCODE instruction.

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
None

**Syntax**

```plaintext
set_global_assignment -name STRATIX_JTAG_USER_CODE <value>
```

**Default Value**

`FFFFFFFF`
1.3.54. USE_CHECKERED_PATTERN_AS_UNINITIALIZED_RAM_CONTENT

Loads a checkered pattern as initial RAM content into all RAM blocks without specified RAM content that supports content initialization. Turning on this option does not affect simulation, which may cause on-chip behavior to differ from simulation results.

**Type**

Enumeration

**Values**

- 0000
- 0101
- 1010
- 1111
- OFF
- ON
- RANDOM

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name
USE_CHECKERED_PATTERN_AS_UNINITIALIZED_RAM_CONTENT <value>
```

**Default Value**

OFF
1.3.55. USE_CHECKSUM_AS_USERCODE

Sets the JTAG user code to match the checksum value of the device programming file. The programming file is a Programmer Object File (.pof) for non-volatile devices, such as MAX II devices, or an SRAM Object File (.sof) for SRAM-based devices. If you turn this option on, the JTAG user code option is not available.

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_CHECKSUM_AS_USERCODE <value>
```

**Default Value**
On
1.3.56. USE_CONFIGURATION_DEVICE

Specifies that you intend to use a configuration device(s) such as the EPC2 as the means of configuring the target device. This option directs the Compiler to create a Programmer Output File (.pof) for programming the configuration device. If multiple configuration devices are needed, one POF is created for each device, with names of the following format: name.pof, name_1.pof, name_2.pof, etc.

**Type**

Boolean

**Device Support**

- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Virtual JTAG TAP

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_CONFIGURATION_DEVICE <value>
```
1.4. Classic Timing Assignments

1.4.1. ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS

Directs the Timing Analyzer to analyze latches as synchronous elements, rather than
as combinational elements. Although latches continue to be implemented as a LUT
feeding back onto itself, turning on this option directs the Timing Analyzer to analyze
all latches as synchronous elements. Specifically, the clock enable is analyzed as an
inverted clock. The Timing Analyzer reports the results of setup and hold analysis on
these latches

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS
<value>
```

**Default Value**

On
1.4.2. CUT_OFF_IO_PIN_FEEDBACK

Cuts off feedback from I/O pins during timing analysis. Cutting off I/O pin feedback is especially useful when a bidirectional pin is connected directly or indirectly to both the input and the output of a latch. This type of feedback path is continuous because it is not interrupted by any clocked logic primitives.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name CUT_OFF_IO_PIN_FEEDBACK <value>
```

**Default Value**

On
1.4.3. CUT_OFF_PATHS_BETWEEN_CLOCK_DOMAINS

Cuts the paths between registers clocked by unrelated clocks. This option makes the timing analysis reporting similar to MAX+PLUS II timing analysis reporting.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name CUT_OFF_PATHS_BETWEEN_CLOCK_DOMAINS <value>
```

**Default Value**

On
1.4.4. CUT_OFF_READ_DURING_WRITE_PATHS

Cuts the path from the write enable register through the ESB to a destination register.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

None

Syntax

```
set_global_assignment -name CUT_OFF_READ_DURING_WRITE_PATHS <value>
```

Default Value

On
1.4.5. DEFAULT_HOLD_MULTICYCLE

Determines the default hold multicycle. The 'Same as Multicycle' setting ensures that the signal is latched on the final edge only. The 'One' setting assumes that the design can latch on any edge, up to and including the final edge. The 'Same as Multicycle' setting will give fewer hold time violation warnings. The 'One' setting is more restrictive, but it is the default setting for the Timing Analyzer and other third-party timing analyzers. This setting can be overridden on specific nodes with the Hold Multicycle option.

**Type**

Enumeration

**Values**

- One
- Same as Multicycle

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name DEFAULT_HOLD_MULTICYCLE <value>
```

**Default Value**

Same as Multicycle

**Example**

```
set_global_assignment -name default_hold_multicycle "Same as Multicycle"
set_global_assignment -name default_hold_multicycle "One"
```

**See Also**

MULTICYCLE, SRC_MULTICYCLE, HOLD_MULTICYCLE, SRC_HOLD_MULTICYCLE, SETUP_RELATIONSHIP, HOLD_RELATIONSHIP

MNL-1088 | 2020.07.20

1.4.6. EMIF_SOC_PHYCLK_ADVANCE_MODELING

Instructs routing annotation to adjust the AV-SoC Phyclk delays.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EMIF_SOC_PHYCLK_ADVANCE_MODELING <value>
```

**Default Value**

Off
1.4.7. ENABLE_HPS_INTERNAL_TIMING

Enable HPS Internal Timing Characteristics

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```bash
set_global_assignment -name ENABLE_HPS_INTERNAL_TIMING <value>
```

Default Value

Off
1.4.8. FLOW_ENABLE_TIMING_ANALYZER_AFTER_EARLY_PLACE_STAGE

Allows you to turn on or turn off running the Timing Analyzer after Early Place stage during compilation

Old Name
FLOW_ENABLE_TIMEQUEST_AFTER_EARLY_PLACE_STAGE

Type
Boolean

Device Support
- Intel Stratix 10

Notes
None

Syntax

```
set_global_assignment -name FLOW_ENABLE_TIMING_ANALYZER_AFTER_EARLY_PLACE_STAGE <value>
```

Default Value
Off
1.4.9. FLOW_ENABLE_TIMING_ANALYZER_AFTER_PLAN_STAGE

Allows you to turn on or turn off running the Timing Analyzer after Plan stage during compilation

Old Name
FLOW_ENABLE_TIMEQUEST_AFTER_PLAN_STAGE

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX

Notes
None

Syntax

```
set_global_assignment -name FLOW_ENABLE_TIMING_ANALYZER_AFTER_PLAN_STAGE <value>
```

Default Value
Off
1.4.10. IMPLEMENTS_FREE_RUNNING_CLOCK

Specifies if timing analysis should consider if a node implements a free-running clock versus assuming the node implement a clock that could be arbitrarily gated. The setting has implications on how end-of-life effects are applied.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment supports wildcards.
This assignment is copied to any duplicated nodes.
This assignment supports Fitter wildcards.
This assignment is included in the Fitter report.
The value of this assignment must be a node name.

**Syntax**

```
set_instance_assignment -name IMPLEMENTS_FREE_RUNNING_CLOCK -to <to> -
entity <entity name> <value>
```
1.4.11. INPUT_TRANSITION_TIME

Specifies the input transition time. This assignment is used in Quartus to adjust the timing of the I/O buffers for all families that support AIOT. It is also used when generating the PrimeTime script that it is used by the HardCopy back end. This assignment gets converted as a set_input_transition SDC command. If the assignment does not exist, Quartus will generate a set_input_transition using 80% of VCCN * 1V/ns where VCCN depends on the I/O Standard used.

**Type**

Time

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports wildcards.

This assignment is copied to any duplicated nodes.

**Syntax**

```
set_instance_assignment -name INPUT_TRANSITION_TIME -to <to> -entity
<entity name> <value>
```
1.4.12. MAX_CORE_JUNCTION_TEMP

This is the maximum core junction temperature that will be encountered during operation. Specified in degrees Celsius.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name MAX_CORE_JUNCTION_TEMP <value>
```
1.4.13. MIN_CORE_JUNCTION_TEMP

This is the minimum core junction temperature that will be encountered during operation. Specified in degrees Celsius

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name MIN_CORE_JUNCTION_TEMP <value>
```
1.4.14. MIN_MTBF_REQUIREMENT

Specifies the minimum acceptable Mean Time Between Failures (MTBF), either globally for the design or for a specific synchronizer chain (if applied to the head register of a synchronizer chain). The MTBF value used will be 10 to the power of this setting value, in years. If the MTBF of a synchronizer chain is less than this value, it will be marked as a dangerous, asynchronous transfer that is in need of additional synchronization registers to help avoid metastability.

**Type**
Integer

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**INTEGER_RANGE**
-8, 9

**Notes**
This assignment supports wildcards.

**Syntax**

```
set_global_assignment -name MIN_MTBF_REQUIREMENT <value>
set_instance_assignment -name MIN_MTBF_REQUIREMENT -to <to> -entity <entity name> <value>
```

**Default Value**
9
1.4.15. NOMINAL_CORE_SUPPLY_VOLTAGE

Specifies the voltage for the core power supply. For Stratix III devices, the core supply voltage applies only to the VCCL power rail. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name NOMINAL_CORE_SUPPLY_VOLTAGE <value>
```
1.4.16. PACKAGE_SKEW_COMPENSATION

Indicates that the package skew for the signal has been compensated by the board trace delays.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name PACKAGE_SKEW_COMPENSATION -to <to> -entity <entity name> <value>
```
1.4.17. PLL_EXTERNAL_FEEDBACK_BOARD_DELAY

Specifies an external board delay between a feedback output pin and a feedback input pin (fbin) for a PLL in external feedback mode. This option is ignored if it is assigned to anything other than the fbin pin of a PLL.

**Type**

Time

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

None

**Syntax**

```
set_instance_assignment -name PLL_EXTERNAL_FEEDBACK_BOARD_DELAY -to <to> -entity <entity name> <value>
set_global_assignment -name PLL_EXTERNAL_FEEDBACK_BOARD_DELAY <value>
```
1.4.18. TDC_AGGRESSIVE_HOLD_CLOSURE_EFFORT

Instructs the Fitter to aggressively optimize for hold timing closure.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name TDC_AGGRESSIVE_HOLD_CLOSURE_EFFORT <value>
```

**Default Value**

Off
1.4.19. TIMING_ANALYZER_DO_CCPP_REMOVAL

Directs the Timing Analyzer to remove common clock path pessimism (CCPP) during slack computation.

**Old Name**
TIMEQUEST_DO_CCPP_REMOVAL

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Intel Stratix 10
- Virtual JTAG TAP

**Notes**
None

**Syntax**

```
set_global_assignment -name TIMING_ANALYZER_DO_CCPP_REMOVAL <value>
```
1.4.20. TIMING_ANALYZER_DO_REPORT_TIMING

Directs the Timing Analyzer to report the worst-case path per clock domain and analysis.

Old Name
TIMEQUEST_DO_REPORT_TIMING

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

set_global_assignment -name TIMING_ANALYZER_DO_REPORT_TIMING <value>

Default Value
Off
1.4.21. TIMING_ANALYZER_MULTICORNER_ANALYSIS

Directs the Timing Analyzer to perform multicorner timing analysis, which analyzes the design against best-case and worst-case operating conditions. Turning on this option does not enable multicorner analysis in the Fitter.

Old Name
TIMEQUEST_MULTICORNER_ANALYSIS

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Intel Stratix 10
- Virtual JTAG TAP

Notes
None

Syntax

```bash
set_global_assignment -name TIMING_ANALYZER_MULTICORNER_ANALYSIS <value>
```
1.4.22. TIMING_ANALYZER_REPORT_NUM_WORST_CASE_TIMING_PATHS

Specifies the maximum number of worst-case timing paths for the Timing Analyzer to report per clock domain and analysis.

Old Name
TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS

Type
Integer

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

INTEGER_RANGE
1, 100000

Notes
None

Syntax

```
set_global_assignment -name TIMING_ANALYZER_REPORT_NUM_WORST_CASE_TIMING_PATHS <value>
```

Default Value
100
1.4.23. TIMING_ANALYZER_REPORT_SCRIPT

Specifies the name of the tcl script that will be used to overwrite the default Timing Analyzer report panels created during a normal compile.

**Old Name**

TIMEQUEST_REPORT_SCRIPT

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name TIMING_ANALYZER_REPORT_SCRIPT <value>
```
1.4.24. TIMING_ANALYZER_REPORT_SCRIPT_INCLUDE_DEFAULT_ANALYSIS

Directs the Timing Analyzer to perform default timing analysis prior to running the user-specified report script specified by TIMING_ANALYZER_REPORT_SCRIPT.

**Old Name**

TIMEQUEST_REPORT_SCRIPT_INCLUDE_DEFAULT_ANALYSIS

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name TIMING_ANALYZER_REPORT_SCRIPT_INCLUDE_DEFAULT_ANALYSIS <value>
```

**Default Value**

On
1.4.25. TIMING_ANALYZER_REPORT_WORST_CASE_TIMING_PATHS

Directs the Timing Analyzer to report worst-case timing paths per clock domain and analysis.

Old Name
TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Intel Stratix 10
- Virtual JTAG TAP

Notes
None

Syntax

set_global_assignment -name TIMING_ANALYZER_REPORT_WORST_CASE_TIMING_PATHS <value>

Default Value
Off
1.4.26. TIMING_ANALYZER_SIMULTANEOUS_MULTICORNER_ANALYSIS

When multicorner timing analysis is enabled, directs the Timing Analyzer to analyze all corners at once, rather than only analyzing corners that are explicitly asked for. This can save time when it is known that analysis of multiple corners will be needed at some point. If analysis is only needed for a single corner, turning off this setting will save memory.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name TIMING_ANALYZER_SIMULTANEOUS_MULTICORNER_ANALYSIS <value>
```

**Default Value**

On
1.4.27. USE_DLL_FREQUENCY_FOR_DQS_DELAY_CHAIN

Instructs STA to take DLL frequency into account while calculating phase shift of DQS delay chain

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name USE_DLL_FREQUENCY_FOR_DQS_DELAY_CHAIN
<value>
```

**Default Value**

Off
1.5. Compiler Assignments

1.5.1. ALLOW_REGISTER_DUPLICATION

Controls whether the Compiler is allowed to duplicate registers to improve design performance. When register duplication is allowed, the Compiler may perform optimizations that create a second copy of a register and move a portion of its fan-out to this new node, in order to improve routability and/or reduce the total routing wire required to route a net with many fan-outs. If register duplication is disabled, optimizations that retime registers will also be disabled. This setting affects Analysis & Synthesis and the Fitter.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.
This assignment is included in the Analysis & Synthesis report.

**Syntax**

```plaintext
set_global_assignment -name ALLOW_REGISTER_DUPLICATION <value>
```

**Default Value**

On

**Example**

```plaintext
set_global_assignment -name allow_register_duplication on
```
1.5.2. ALLOW_REGISTER_MERGING

Controls whether the Compiler is allowed to remove registers that are identical to other registers in the design. When register merging is allowed, in cases where two registers generate the same logic, one may be deleted and the remaining one will be made to also fan-out to the deleted register's destinations. This option is useful if you wish to prevent the Compiler from removing duplicate registers that you have used deliberately. If register merging is disabled, optimizations that ret ime registers will also be disabled.

This setting affects Analysis & Synthesis and the Fitter.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX

Notes
This assignment is included in the Fitter report.
This assignment is included in the Analysis & Synthesis report.

Syntax

```text
set_global_assignment -name ALLOW_REGISTER_MERGING <value>
```

Default Value
On

Example

```text
set_global_assignment -name allow_register_merging off
```
### 1.5.3. ALLOW_REGISTER_RETIMING

Controls whether the Compiler is allowed to retime registers to improve design performance. When register retiming is allowed, the Compiler may perform optimizations that move combinational logic across register boundaries, maintaining the overall logic of the design component but also balancing the data path delays between each register.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment supports wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ALLOW_REGISTER_RETIMING <value>
set_instance_assignment -name ALLOW_REGISTER_RETIMING -to <to> -entity <entity name> <value>
```

**Default Value**

On

**Example**

```
set_global_assignment -name allow_register_retiming on
```
1.5.4. OPTIMIZATION_MODE

Controls the Compiler's high-level optimization strategy. By default, the Quartus Prime Compiler optimizes in a balanced mode, targeting the design's timing constraints. The alternate modes cause the Compiler to prioritize a particular optimization metric. High effort modes primarily enable additional optimizations that increase compilation time. Aggressive modes may increase compilation time and also make trade-offs that may harm the other optimization metrics (performance, area, etc.).

'High Performance Effort' mode will cause the compiler to target increased positive timing margin (via Standard Fit compilation), increase the timing optimization effort applied during placement and routing, and enable timing-related Physical Synthesis optimizations (as allowed by the register optimization settings below). Each of these additional optimizations can increase compilation time. 'Aggressive Performance' mode enables the same optimizations as 'High Performance Effort' mode, and additionally enables options during Analysis & Synthesis to maximize design performance at a potential increase to logic area. If design utilization is already very high, this option may lead to difficulty in fitting which could also negatively affect overall optimization quality.

'High Power Effort' mode guides the Compiler to spend additional compilation time reducing routing utilization, which saves dynamic power. In 'Aggressive Power' mode, the Compiler will further target reducing the routing usage of signals with the highest specified (via Signal Activity File) or estimated toggle rates, saving additional dynamic power but potentially affecting performance.

'Aggressive Area' mode instructs the Compiler to target an area minimal solution, even if this reduces overall timing performance.

'Aggressive Compile Time' mode instructs the Compiler to reduce performance optimization effort and perform minimal reporting in order to save compile time.

This setting affects Analysis & Synthesis and the Fitter.

Type

Enumeration

Values

- Aggressive Area
- Aggressive Compile Time
- Aggressive Performance
- Aggressive Power
- Balanced
- High Performance Effort
- High Power Effort

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

This assignment is included in the Analysis & Synthesis report.
Syntax

set_global_assignment -name OPTIMIZATION_MODE <value>

Default Value

Balanced
1.6. Design Assistant Assignments

1.6.1. CLK_RULE_CLKNET_CLKSPINES_THRESHOLD

Specifies the threshold value for clock net not mapped to clock spines rule.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name CLK_RULE_CLKNET_CLKSPINES_THRESHOLD <value>
```

**Default Value**

25
1.6.2. DA_CUSTOM_RULE_FILE

Used to set the path for DA custom rule file

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name DA_CUSTOM_RULE_FILE <value>
```
1.6.3. DRC_DEADLOCK_STATE_LIMIT

Specifies the maximum number of states that you want the Design Assistant to detect as a deadlock condition. A larger number will result in longer processing time.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name DRC_DEADLOCK_STATE_LIMIT <value>
```

**Default Value**

2
1.6.4. DRC_DETAIL_MESSAGE_LIMIT

Specifies the maximum number of detail messages that you want the Design Assistant to report.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name DRC_DETAIL_MESSAGE_LIMIT <value>
```

**Default Value**

10
1.6.5. DRC_FANOUT_EXCEEDING

Specifies the minimum amount of fan-out that a node must have to be reported by the Design Assistant.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name DRC_FANOUT_EXCEEDING <value>
```

**Default Value**

30
1.6.6. DRC_GATED_CLOCK_FEED

Specifies the minimum amount of clock port a gated clock must feed so that it's an acceptable gated clock.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name DRC_GATED_CLOCK_FEED <value>
```

**Default Value**

30
1.6.7. DRC_REPORT_FANOUT_EXCEEDING

Directs the Design Assistant to report all nodes with more than the specified amount of fan-out.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name DRC_REPORT_FANOUT_EXCEEDING <value>
```
1.6.8. DRC_REPORT_TOP_FANOUT

Directs the Design Assistant to report the specified number of nodes with the highest fan-out.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```plaintext
set_global_assignment -name DRC_REPORT_TOP_FANOUT <value>
```
1.6.9. DRC_TOP_FANOUT

 Specifies the number of nodes with the highest fan-out that you want the Design Assistant to report.

 Type
 Integer

 Device Support
 • This setting can be used in projects targeting any Intel FPGA device family.

 Syntax

 set_global_assignment -name DRC_TOP_FANOUT <value>

 Default Value
 50
1.6.10. DRC_VIOLATION_MESSAGE_LIMIT

Specifies the maximum number of violation messages that you want the Design Assistant to report.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name DRC_VIOLATION_MESSAGE_LIMIT <value>
```

**Default Value**

30
1.6.11. ENABLE_DRC_SETTINGS

Directs the Design Assistant to run during a compilation based on user settings.

Type

Boolean

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

None

Syntax

```
set_global_assignment -name ENABLE_DRC_SETTINGS <value>
```

Default Value

Off
1.6.12. HARDCOPY_FLOW_AUTOMATION

Specifies which HardCopy flow will be run in HardCopy timing wizard

**Type**

Enumeration

**Values**

- COMPILE_NEW_PROJECT
- FULL_COMPILATION
- MIGRATIONONLY

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name HARDCOPY_FLOW_AUTOMATION <value>
```

**Default Value**

MIGRATIONONLY
1.6.13. HARDCOPY_NEW_PROJECT_PATH

Specifies the directory path for the new/migrated HardCopy project.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name HARDCOPY_NEW_PROJECT_PATH <value>
```
1.6.14. HCPY_CAT

Direct Design Assistant to detect HardCopy rules on the design. All HardCopy rules apply to HardCopy devices only.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name HCPY_CAT <value>
```
1.6.15. HCPY_PLL_MULTIPLE_CLK_NETWORK_TYPES

Direct Design Assistant to detect PLL that feeds multiple clock network types.

Type
Boolean

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

```
set_global_assignment -name HCPY_PLL_MULTIPLE_CLK_NETWORK_TYPES <value>
```
1.6.16. HCPY_VREF_PINS

Direct Design Assistant to detect VREF pins on the design. This rule applies to HardCopy devices only.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

```plaintext
set_global_assignment -name HCPY_VREF_PINS <value>
```
1.7. Design Partition Assignments

1.7.1. ABSORB_PATHS_FROM_OUTPUTS_TO_INPUTS

Allows the Compiler to optimize connections from a partition's outputs to its inputs by making the path internal to the partition. You must also enable the cross-boundary optimizations feature for this partition using the CROSS_BOUNDARY_OPTIMIZATIONS assignment.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

None

Syntax

```
set_global_assignment -name ABSORB_PATHS_FROM_OUTPUTS_TO_INPUTS -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name ABSORB_PATHS_FROM_OUTPUTS_TO_INPUTS -to <to> -entity <entity name> -section_id <section identifier> <value>
```

Default Value

On, requires section identifier and entity name
1.7.2. AUTOMATIC_DANGLING_PORT_TIEOFF

Disable automatic tie-off of dangling boundary ports in the partition rooted at the specified instance.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_instance_assignment -name AUTOMATIC_DANGLING_PORT_TIEOFF -to <to> <value>
```
1.7.3. CROSS_BOUNDARY_OPTIMIZATIONS

This setting specifies whether the Compiler should optimize across the partition’s boundary. If enabled, the Compiler may be able to optimize the logic inside the partition by applying various cross-boundary optimizations, such as constant propagation and dangling logic removal. Specific cross-boundary optimizations are enabled by individual assignments.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```plaintext
set_global_assignment -name CROSS_BOUNDARY_OPTIMIZATIONS -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name CROSS_BOUNDARY_OPTIMIZATIONS -to <to> -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier and entity name
1.7.4. EMPTY

Directs the compiler to empty a partition.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

**Syntax**

```
set_instance_assignment -name EMPTY -to <to> -entity <entity name> <value>
```
1.7.5. ENABLE_LAB_SHARING_WITH_PARENT_PARTITION

Allows logic from the target partition to share LAB resources with the immediate parent partition.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

**Syntax**

```
set_instance_assignment -name ENABLE_LAB_SHARING_WITH_PARENT_PARTITION -to <to> -entity <entity name> -section_id <section identifier> <value>
```
1.7.6. ENABLE STRICT PRESERVATION

Specifies whether IO pin belong to a strictly preserved safety IP. Setting defaults to off.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
None

**Syntax**

```
set_global_assignment -name ENABLE STRICT PRESERVATION -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name ENABLE STRICT PRESERVATION -to <to> -entity <entity name> -section_id <section identifier> <value>
```
1.7.7. ENTITY_REBINDING

Entity Re-binding binds the Partial Reconfiguration/Periphery Reuse Core partition instance to its corresponding entity.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_instance_assignment -name ENTITY_REBINDING -to <to> -entity <entity name> <value>
```
1.7.8. EXPORT_BLOCK_NAME_OBFUSCATION

Obfuscate all names under this hierarchy during export.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_instance_assignment -name EXPORT_BLOCK_NAME_OBFUSCATION -to <to>
<value>
```
1.7.9. IGNORE_PARTITIONS

Specifies whether the compiler should ignore partition assignments in the project.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
This assignment is not copied when you create a companion revision for HardCopy II devices.

**Syntax**

```
set_global_assignment -name IGNORE_PARTITIONS <value>
```

**Default Value**
Off
1.7.10. INCREMENTAL_COMPILATION_EXPORT_FLATTEN

Specifies whether the netlist exported to the QXP file should flatten sub-partitions

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is not copied when you create a companion revision for HardCopy II devices.

Syntax

```plaintext
set_global_assignment -name INCREMENTAL_COMPILATION_EXPORT_FLATTEN <value>
```
1.7.11. INCREMENTAL_COMPILATION_EXPORT_POST_FIT

Specifies whether the exported QXP file contains the post-fit netlist

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is not copied when you create a companion revision for HardCopy II devices.

**Syntax**

```bash
set_global_assignment -name INCREMENTAL_COMPILATION_EXPORT_POST_FIT <value>
```
1.7.12. INCREMENTAL_COMPILATION_EXPORT_POST_SYNTH

Specifies whether the exported QXP file contains the post-synthesis netlist

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is not copied when you create a companion revision for HardCopy II devices.

**Syntax**

```
set_global_assignment -name INCREMENTAL_COMPILATION_EXPORT_POST_SYNTH <value>
```
1.7.13. INSERT_BOUNDARY_WIRE_LUTS

Enables wire lut insertion for boundary ports in the given partition (the partition is named by hierarchy path). This ensures that the inputs and outputs can have their locations preserved, which is useful for partial reconfiguration and compiling a design containing a blackbox.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

**Syntax**

```
set_instance_assignment -name INSERT_BOUNDARY_WIRE_LUTS -to <to> -
entity <entity name> <value>
```
1.7.14. MERGE_EQUIVALENT_BIDIRS

Allows the Compiler to merge electrically equivalent bidirectional inputs. You must also enable the cross-boundary optimizations feature for this partition using the CROSS_BOUNDARY_OPTIMIZATIONS assignment.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```plaintext
set_global_assignment -name MERGE_EQUIVALENT_BIDIRS -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name MERGE_EQUIVALENT_BIDIRS -to <to> -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

On, requires section identifier and entity name
1.7.15. MERGE_EQUIVALENT_INPUTS

Allows the Compiler to merge inputs connected to the same source. You must also enable the cross-boundary optimizations feature for this partition using the CROSS_BOUNDARY_OPTIMIZATIONS assignment.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

None

Syntax

```
set_global_assignment -name MERGE_EQUIVALENT_INPUTS -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name MERGE_EQUIVALENT_INPUTS -to <to> -entity <entity name> -section_id <section identifier> <value>
```

Default Value

On, requires section identifier and entity name
1.7.16. PARTIAL_RECONFIGURATION_PARTITION

Specifies if this partition in the design is partially reconfigurable.

**Old Name**
PR_PARTITION

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

**Syntax**

```
set_instance_assignment -name PARTIAL_RECONFIGURATION_PARTITION -to <to> -entity <entity name> <value>
```
1.7.17. PARTITION

Creates a partition rooted at the specified instance. When an instance is defined as a partition, its hierarchical boundaries are fixed, allowing it to be independently exported or imported in many cases. The value of this assignment is the name of the design block that contains the implementation for the partition. The partition name must be unique in the complete design across all hierarchies.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_instance_assignment -name PARTITION -to <to> -entity <entity name> <value>
```
1.7.18. PARTITION_ALWAYS_USE_QXP_NETLIST

Specifies whether to always use the netlist in the QXP file associated with the partition, either because the QXP file is imported into the partition, or is specified as a source file for the partition. Setting defaults to off.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is not copied when you create a companion revision for HardCopy II devices.

Syntax

```
set_global_assignment -name PARTITION_ALWAYS_USE_QXP_NETLIST -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name PARTITION_ALWAYS_USE_QXP_NETLIST -to <to> -entity <entity name> -section_id <section identifier> <value>
```

Default Value

Off, requires section identifier and entity name
1.7.19. PARTITION_ASD_REGION

Specifies the advanced SEU detection region assignment for this partition.

Type

Integer

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

Syntax

```
set_instance_assignment -name PARTITION_ASD_REGION -to <to> -entity <entity name> <value>
```
1.7.20. PARTITION_ASD_REGION_ID

Indicates the advanced sensitivity detection region assignment for this partition.

**Type**
Integer

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**
This assignment is not copied when you create a companion revision for HardCopy II devices.

**Syntax**

```plaintext
set_global_assignment -name PARTITION_ASD_REGION_ID -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name PARTITION_ASD_REGION_ID -to <to> -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**
1, requires section identifier and entity name
1.7.21. PARTITION_ENABLE STRICT_PRESERVATION

Specifies whether partition is a strictly preserved safety IP. Setting defaults to off.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name PARTITION_ENABLE STRICT_PRESERVATION -entity <entity name> <value>
set_instance_assignment -name PARTITION_ENABLE STRICT_PRESERVATION -to <to> -entity <entity name> <value>
```

**Default Value**
Off, requires entity name
1.7.22. PARTITION_IGNORE_SOURCE_FILE_CHANGES

Specifies whether to use the requested post-synthesis or post-fit netlist when it is available, even when source file changes are present. Setting defaults to off.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is not copied when you create a companion revision for HardCopy II devices.

**Syntax**

```plaintext
set_global_assignment -name PARTITION_IGNORE_SOURCE_FILE_CHANGES -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name PARTITION_IGNORE_SOURCE_FILE_CHANGES -to <to> -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier and entity name
1.7.23. PARTITION_PRESERVE_HIGH_SPEED_TILES

Specifies whether to preserve the high-speed tiles in the post-fit netlist, if applicable.

Type  
Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is not copied when you create a companion revision for HardCopy II devices.

Syntax

```
set_global_assignment -name PARTITION_PRESERVE_HIGH_SPEED_TILES -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name PARTITION_PRESERVE_HIGH_SPEED_TILES -to <to> -entity <entity name> -section_id <section identifier> <value>
```

Default Value

On, requires section identifier and entity name
1.7.24. PERIPHERY_REUSE_CORE

Specifies that a core design partition can be compiled with preserved periphery from a Partition Database File (.qdb).

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes

Syntax

```
set_instance_assignment -name PERIPHERY_REUSE_CORE -to <to> -entity <entity name> <value>
```
1.7.25. PRESERVE

Directs the compiler to preserve the existing results of a partition. The value of this assignment is the snapshot to preserve, such as "final" or "placed". If the specified snapshot does not exist, the compiler will exit with an error message. By default, the partition's results will not be preserved unless the only results available for the partition are later than the stage currently being compiled. For example, if the only snapshot for a partition is the "placed" snapshot, the Fitter will preserve the partition until the end of placement, and will not attempt to preserve it during routing.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_instance_assignment -name PRESERVE -to <to> -entity <entity name> <value>
```
1.7.26. PROPAGATE_CONSTANTS_ON_INPUTS

Allows the Compiler to use constants on a partition input to optimize the logic in the partition. You must also enable the cross-boundary optimizations feature for the partition using the CROSS_BOUNDARY_OPTIMIZATIONS assignment.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```plaintext
set_global_assignment -name PROPAGATE_CONSTANTS_ON_INPUTS -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name PROPAGATE_CONSTANTS_ON_INPUTS -to <to> -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

On, requires section identifier and entity name
1.7.27. PROPAGATE_INVERSIONS_ON_INPUTS

 Specifies that the Compiler should push inversions into partition inputs when possible. This cross-boundary optimization is especially important when inverted clock or asynchronous signals are connected to a partition input. Without this optimization, the Compiler may need to implement the inversion with a logic cell, introducing skew on the clock or reset path. The partition must also have enabled cross-boundary optimizations with the CROSS_BOUNDARY_OPTIMIZATIONS assignment.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name PROPAGATE_INVERSIONS_ON_INPUTS -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name PROPAGATE_INVERSIONS_ON_INPUTS -to <to> -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

On, requires section identifier and entity name
1.7.28. QDB_FILE_PARTITION

Similar to the PARTITION assignment, this assignment creates a partition rooted at the specified instance. When an instance is defined as a partition, its hierarchical boundaries are fixed, allowing it to be independently exported or imported in many cases. The value of the assignment is the QDB partition archive that will be imported into the partition during Synthesis.

If a PARTITION and QDB_FILE_PARTITION assignment target the same instance then the PARTITION assignment determines the partition's name. If no PARTITION assignment exists then the partition name will be automatically created.

Type

File name

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

The value of this assignment is case sensitive.

Syntax

```
set_instance_assignment -name QDB_FILE_PARTITION -to <to> -entity <entity name> <value>
```
1.7.29. QDB_PATH

Specify path to read and write compiler generated database to a directory other than project directory.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name QDB_PATH <value>
```
1.7.30. REMOVE_LOGIC_ON_UNCONNECTED_OUTPUTS

Allows the Compiler to remove logic connected to dangling partitions outputs. You must also enable the cross-boundary optimizations feature for this partition using the CROSS_BOUNDARY_OPTIMIZATIONS assignment.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name REMOVE_LOGIC_ON_UNCONNECTED_OUTPUTS -entity <entity name> -section_id <section identifier> <value>
set_instance_assignment -name REMOVE_LOGIC_ON_UNCONNECTED_OUTPUTS -to <to> -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

On, requires section identifier and entity name
1.8. EDA Netlist Writer Assignments

1.8.1. EDA_BOARD_BOUNDARY_SCAN_OPERATION

Specify the BSDL file operation either for pre-configuration or post-configuration

**Type**
Enumeration

**Values**
- POST_CONFIG
- PRE_CONFIG

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```bash
set_global_assignment -name EDA_BOARD_BOUNDARY_SCAN_OPERATION -
section_id <section identifier> <value>
```

**Default Value**

PRE_CONFIG, requires section identifier
1.8.2. EDA_BOARD_DESIGN_BOUNDARY_SCAN_TOOL

Specifies the boundary scan format used for board level boundary scan testing.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_BOARD_DESIGN_BOUNDARY_SCAN_TOOL <value>
set_global_assignment -name EDA_BOARD_DESIGN_BOUNDARY_SCAN_TOOL -entity <entity name> <value>
```

**Default Value**

<None>
1.8.3. EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL

Specifies the EDA third-party tool used for board level signal integrity analysis.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL <value>
set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL entity <entity name> <value>
```

**Default Value**

<None>
1.8.4. EDA_BOARD_DESIGN_SYMBOL_TOOL

Specifies the EDA third-party tool used for board level schematic design.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_BOARD_DESIGN_SYMBOL_TOOL <value>
set_global_assignment -name EDA_BOARD_DESIGN_SYMBOL_TOOL -entity <entity name> <value>
```

**Default Value**

<None>
1.8.5. EDA_BOARD_DESIGN_TIMING_TOOL

Specifies the EDA third-party tool used for board level timing analysis.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_BOARD_DESIGN_TIMING_TOOL <value>
set_global_assignment -name EDA_BOARD_DESIGN_TIMING_TOOL -entity <entity name> <value>
```

**Default Value**

<None>
1. **EDA_BOARD_DESIGN_TOOL**

   Specifies the EDA third-party tool used for board level design and analysis.

   **Type**
   String

   **Device Support**
   - This setting can be used in projects targeting any Intel FPGA device family.

   **Notes**
   The value of this assignment is case sensitive.
   This assignment is included in the Fitter report.

   **Syntax**
   ```
 set_global_assignment -name EDA_BOARD_DESIGN_TOOL <value>
 set_global_assignment -name EDA_BOARD_DESIGN_TOOL -entity <entity name> <value>
   ```

   **Default Value**
   <None>
1.8.7. EDA_DESIGN_EXTRA_ALTERA_SIM_LIB

Specify additional ALTERA simulation model libraries required is used by the design files

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name EDA_DESIGN_EXTRA_ALTERA_SIM_LIB -section_id <section identifier> <value>
```
1.8.8. EDA_DESIGN_INSTANCE_NAME

Specify the instance name of the design in the test bench

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_DESIGN_INSTANCE_NAME -section_id <section identifier> <value>
```
1.8.9. EDA_ENABLE_GLITCH_FILTERING

Write logic to filter glitches in the simulation netlist.

Type
Boolean

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EDA_ENABLE_GLITCH_FILTERING -section_id <section identifier> <value>
set_global_assignment -name EDA_ENABLE_GLITCH_FILTERING -entity <entity name> -section_id <section identifier> <value>
```

Default Value
Off, requires section identifier
1.8.10. EDA_ENABLE_IPUTF_MODE

Allows you to simulate designs containing hw.tcl based IP cores. This may require adding .sip files to your Quartus Prime project. This variable may be removed in future releases.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name EDA_ENABLE_IPUTF_MODE -section_id <section_identifier> <value>
set_global_assignment -name EDA_ENABLE_IPUTF_MODE -entity <entity name> -section_id <section_identifier> <value>
```

**Default Value**

On, requires section identifier
1.8.11. EDA_EXTRA_ELAB_OPTION

Additional custom simulation elaboration options for one or more simulators.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_EXTRA_ELAB_OPTION -section_id <section identifier> <value>
```
```
set_global_assignment -name EDA_EXTRA_ELAB_OPTION -entity <entity name>
 -section_id <section identifier> <value>
```

**Default Value**

"", requires section identifier
1.8.12. EDA_FLATTEN_BUSES

Flattens all buses when creating the VHDL Output File (.vho). You should turn on this option if your third-party EDA environment does not support buses.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name EDA_FLATTEN_BUSES -section_id <section identifier> <value>
set_global_assignment -name EDA_FLATTEN_BUSES -entity <entity name> -section_id <section identifier> <value>
```

Default Value

Off, requires section identifier
1.8.13. EDA_FORMAL_VERIFICATION_ALLOW_RETIMING

Allow register retiming to be turned on for formal verification

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name EDA_FORMAL_VERIFICATION_ALLOW_RETIMING - section_id <section identifier> <value>
set_global_assignment -name EDA_FORMAL_VERIFICATION_ALLOW_RETIMING - entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.14. EDA_FORMAL_VERIFICATION_TOOL

Specifies the EDA third-party tool used for formal verification.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name EDA_FORMAL_VERIFICATION_TOOL <value>
set_global_assignment -name EDA_FORMAL_VERIFICATION_TOOL -entity <entity name> <value>
```

**Default Value**

<None>
1.8.15. EDA_FV_HIERARCHY

Determines how the hierarchy of design entities is to be processed during compilation. 'BLACKBOX' setting causes the entity to be handled as a black-box in the EDA flow. 'NONE' setting is the default and means no special handling to be done. The option applies only to the design entity to which it is assigned; lower-level entities do not inherit their parent entity's setting for this option.

**Type**

Enumeration

**Values**

- BLACKBOX
- Off

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```bash
set_global_assignment -name EDA_FV_HIERARCHY -entity <entity name> <value>
set_instance_assignment -name EDA_FV_HIERARCHY -to <to> -entity <entity name> <value>
```
1.8.16. EDA_GENERATE_GATE_LEVEL_SIMULATION_COMMAND_SCRIPT

Directs the EDA Netlist Writer to generate a command script to run gate-level simulation with a third-party EDA tool.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```plaintext
set_global_assignment -name EDA_GENERATE_GATE_LEVEL_SIMULATION_COMMAND_SCRIPT -section_id <section identifier> <value>
set_global_assignment -name EDA_GENERATE_GATE_LEVEL_SIMULATION_COMMAND_SCRIPT -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.17. EDA_GENERATE_POWER_INPUT_FILE

Generates a Power Input File (.pwf) to perform power analysis in the Quartus Prime software when using third-party simulation tools.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_GENERATE_POWER_INPUT_FILE -section_id <section identifier> <value>
set_global_assignment -name EDA_GENERATE_POWER_INPUT_FILE -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.18. EDA_GENERATE_RTL_SIMULATION_COMMAND_SCRIPT

Directs the EDA Netlist Writer to generate a command script to run RTL functional simulation with a third-party EDA tool.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name EDA_GENERATE_RTL_SIMULATION_COMMAND_SCRIPT -section_id <section identifier> <value>
set_global_assignment -name EDA_GENERATE_RTL_SIMULATION_COMMAND_SCRIPT -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.19. EDA_GENERATE_TIMING_CLOSURE_DATA

Generates back-annotation data for performing in-place optimization with the LeonardoSpectrum software.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_GENERATE_TIMING_CLOSURE_DATA -section_id <section identifier> <value>
set_global_assignment -name EDA_GENERATE_TIMING_CLOSURE_DATA -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.20. EDA_IBIS_EXTENDED_MODEL_SELECTOR

Enable or disable information about related IO Standards in the model selector section of IBIS files. Will turn on EDA_IBIS_MODEL_SELECTOR when set to true.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name EDA_IBIS_EXTENDED_MODEL_SELECTOR -section_id <section identifier> <value>
set_global_assignment -name EDA_IBIS_EXTENDED_MODEL_SELECTOR -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**
Off, requires section identifier
1.8.21. EDA_IBIS_MODEL_SELECTOR

Enable or disable model selector feature for IBIS Writer

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```plaintext
set_global_assignment -name EDA_IBIS_MODEL_SELECTOR -section_id <section identifier> <value>
set_global_assignment -name EDA_IBIS_MODEL_SELECTOR -entity <entity name> -section_id <section identifier> <value>
```

Default Value

Off, requires section identifier
1.8.22. EDA_IBIS_MUTUAL_COUPLING

Allows you to print the per pin RLC package model with mutual coupling when generating IBIS Output Files (.ibs) with the EDA Netlist Writer. The lumped RLC package model information appears in the IBIS Output File.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EDA_IBIS_MUTUAL_COUPLING -section_id <section identifier> <value>
set_global_assignment -name EDA_IBIS_MUTUAL_COUPLING -entity <entity name> -section_id <section identifier> <value>
```

Default Value

Off, requires section identifier
1.8.23. EDA_IBIS_SPECIFICATION_VERSION

Specifies the IBIS Specification version.

Type
Enumeration

Values
• 4p2
• 5p0

Device Support
• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Syntax

```
set_global_assignment -name EDA_IBIS_SPECIFICATION_VERSION -section_id <section identifier> <value>
```

Default Value

4p2, requires section identifier
1.8.24. EDA_IPFS_FILE

Specifies the library to which IPFS file should be compiled

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_IPFS_FILE -section_id <section identifier> <value>
```
1.8.25. EDA_LAUNCH_CMD_LINE_TOOL

Allows you to launch third-party EDA tools in the command-line mode rather than opening the graphical user interface.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name EDA_LAUNCH_CMD_LINE_TOOL -section_id <section identifier> <value>
set_global_assignment -name EDA_LAUNCH_CMD_LINE_TOOL -entity <entity name> -section_id <section identifier> <value>
```

Default Value

Off, requires section identifier
1.8.26. EDA_MAP_ILLEGAL_CHARACTERS

Maps the vertical bar (|), tilde (~), and colon (:) characters in Quartus Prime hierarchical node names to the legal Verilog HDL characters z, x, and underscore (_), respectively, in Verilog Output Files. Turning on this option also maps other illegal non-alphanumeric characters, including brackets [], parentheses, (), angle brackets <>, and braces {} to underscores (_).

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_MAP_ILLEGAL_CHARACTERS -section_id <section identifier> <value>
set_global_assignment -name EDA_MAP_ILLEGAL_CHARACTERS -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.27. EDA_NATIVELINK_GENERATE_SCRIPT_ONLY

Allows you to generate the script for a third-party EDA tool without running the EDA tool.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
None

**Syntax**

```
set_global_assignment -name EDA_NATIVELINK_GENERATE_SCRIPT_ONLY -
section_id <section identifier> <value>
```

**Default Value**
Off, requires section identifier
### 1.8.28. EDA_NATIVELINK_PORTABLE_FILE_PATHS

Specifies that the file paths in the generated third-party EDA tool command scripts should be written out using relative paths for design and testbench files, and by using a variable to refer to Quartus Prime simulation library path.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_NATIVELINK_PORTABLE_FILE_PATHS -
section_id <section identifier> <value>
set_global_assignment -name EDA_NATIVELINK_PORTABLE_FILE_PATHS -entity
<entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.29. EDA_NATIVELINK_SIMULATION_SETUP_SCRIPT

Specify the script for EDA Tool. After compiling models, design files and test bench files, Native Link uses this script to set up the simulation

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name EDA_NATIVELINK_SIMULATION_SETUP_SCRIPT -section_id <section identifier> <value>
```
1.8.30. EDA_NATIVELINK_SIMULATION_TEST_BENCH

Specify the active logical name of the test bench, that will be used to perform NativeLink Simulation

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_NATIVELINK_SIMULATION_TEST_BENCH -section_id <section identifier> <value>
```
1.8.31. EDA_NETLIST_WRITER_OUTPUT_DIR

Specify the output directory for EDA Netlist Writer

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR -section_id <section identifier> <value>
```
1.8.32. EDA_RESYNTHESIS_TOOL

Specifies the EDA tool used for resynthesis.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_global_assignment -name EDA_RESYNTHESIS_TOOL &lt;value&gt;</td>
<td>Sets the EDA tool used for resynthesis.</td>
</tr>
<tr>
<td>set_global_assignment -name EDA_RESYNTHESIS_TOOL -entity &lt;entity name&gt;</td>
<td>Additional entity-specific setting.</td>
</tr>
</tbody>
</table>

**Default Value**

<None>
1.8.33. EDA_RTL_SIMULATION_RUN_SCRIPT

Specifies the script file for performing RTL simulation using third-party simulation software.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_RTL_SIMULATION_RUN_SCRIPT -section_id <section identifier> <value>
set_global_assignment -name EDA_RTL_SIMULATION_RUN_SCRIPT -entity <entity name> -section_id <section identifier> <value>
```
1.8.34. EDA_RTL_SIM_MODE

Enables the Advanced Options - VHDL or Verilog Simulation options for Test Bench mode or Command/macro mode.

**Type**

Enumeration

**Values**

- COMMAND_MACRO_MODE
- NOT_USED
- TEST_BENCH_MODE

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EDA_RTL_SIM_MODE -section_id <section identifier> <value>
set_global_assignment -name EDA_RTL_SIM_MODE -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

NOT_USED, requires section identifier
1.8.35. EDA_RTL_TEST_BENCH_FILE_NAME

Specifies the RTL simulation test bench file name for Test Bench Mode. File type can be a VHDL Test Bench File (.vht), VHDL File (.vhd), Verilog HDL Test Bench File (.vt), or Verilog HDL file (.v).

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name EDA_RTL_TEST_BENCH_FILE_NAME -section_id <section identifier> <value>
set_global_assignment -name EDA_RTL_TEST_BENCH_FILE_NAME -entity <entity name> -section_id <section identifier> <value>
```
1.8.36. **EDA_RTL_TEST_BENCH_NAME**

Specifies the name of top-level test bench in RTL simulation test bench file.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_RTL_TEST_BENCH_NAME -section_id <section_identifier> <value>
set_global_assignment -name EDA_RTL_TEST_BENCH_NAME -entity <entity_name> -section_id <section_identifier> <value>
```
1.8.37. EDA_RTL_TEST_BENCH_RUN_FOR

Specifies the time duration for RTL simulation using third-party simulation.

**Type**

Time

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name EDA_RTL_TEST_BENCH_RUN_FOR -section_id <section identifier> <value>
set_global_assignment -name EDA_RTL_TEST_BENCH_RUN_FOR -entity <entity name> -section_id <section identifier> <value>
```
1.8.38. EDA_SDC_FILE_NAME

Name of Design Constraints file to be sourced in scripts generated for third party tools

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_SDC_FILE_NAME -section_id <section identifier> <value>
set_global_assignment -name EDA_SDC_FILE_NAME -entity <entity name> -section_id <section identifier> <value>
```
### 1.8.39. EDA_SIMULATION_RUN_SCRIPT

Specifies the script file for running a third-party simulation in Command/macro mode.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name EDA_SIMULATION_RUN_SCRIPT -section_id <section identifier> <value>
set_global_assignment -name EDA_SIMULATION_RUN_SCRIPT -entity <entity name> -section_id <section identifier> <value>
```
1.8.40. EDA_SIMULATION_TOOL

Specifies the third-party EDA tool used for simulation.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name EDA_SIMULATION_TOOL <value>
set_global_assignment -name EDA_SIMULATION_TOOL -entity <entity name>
```

Default Value

<None>
1.8.41. EDA_TEST_BENCH_DESIGN_INSTANCE_NAME

Specifies the instance name of the design entity in the test bench file.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name EDA_TEST_BENCH_DESIGN_INSTANCE_NAME -
section_id <section identifier> <value>
set_global_assignment -name EDA_TEST_BENCH_DESIGN_INSTANCE_NAME -entity
<entity name> -section_id <section identifier> <value>
```
1.8.42. EDA_TEST_BENCH_ENABLE_STATUS

Enables the Advanced Options - VHDL or Verilog Simulation options for Test Bench mode or Command/macro mode.

**Type**
 Enumeration

**Values**
- COMMAND_MACRO_MODE
- NOT_USED
- TEST_BENCH_MODE

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```sql
set_global_assignment -name EDA_TEST_BENCH_ENABLE_STATUS -section_id <section identifier> <value>
set_global_assignment -name EDA_TEST_BENCH_ENABLE_STATUS -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

NOT_USED, requires section identifier
1.8.43. EDA_TEST_BENCH_ENTITY_MODULE_NAME

Specifies the top-level design entity in the test bench file.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_TEST_BENCH_ENTITY_MODULE_NAME -section_id <section identifier> <value>
set_global_assignment -name EDA_TEST_BENCH_ENTITY_MODULE_NAME -entity <entity name> -section_id <section identifier> <value>
```
1.8.44. EDA_TEST_BENCH_EXTRA_ALTERA_SIM_LIB

Tells NativeLink to add extra simulation libraries to the specified module. This is required by the memory controllers (both new and legacy).

Type

String

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name EDA_TEST_BENCH_EXTRA_ALTERA_SIM_LIB -section_id <section_identifier> <value>
```
1.8.45. EDA_TEST_BENCH_FILE

Associates a test bench file with the logical test bench name

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_TEST_BENCH_FILE -section_id <section_identifier> <value>
```
1.8.46. EDA_TEST_BENCH_FILE_NAME

Specifies the test bench file name for Test Bench Mode. File type can be a VHDL Test Bench File (.vht), Verilog HDL Test Bench File (.vt), or another design file type.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```bash
set_global_assignment -name EDA_TEST_BENCH_FILE_NAME -section_id <section identifier> <value>
set_global_assignment -name EDA_TEST_BENCH_FILE_NAME -entity <entity name> -section_id <section identifier> <value>
```
1.8.47. EDA_TEST_BENCH_GATE_LEVEL_NETLIST_LIBRARY

Specify the simulation library to which Gate Level Netlist will be compiled

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_TEST_BENCH_GATE_LEVEL_NETLIST_LIBRARY -
section_id <section identifier> <value>
```
1.8.48. EDA_TEST_BENCH_MODULE_NAME

Associates a test bench file with the logical test bench name

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_TEST_BENCH_MODULE_NAME -section_id <section identifier> <value>
```
1.8.49. EDA_TEST_BENCH_NAME

Define a logical name for test bench. Each test bench logical name has associated section, containing test bench information, and section_id being the logical test bench name.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name EDA_TEST_BENCH_NAME -section_id <section_identifier> <value>
```
1.8.50. EDA_TEST_BENCH_RUN_FOR

Specifies the simulation run time for a third-party simulation in Test Bench Mode.

**Type**
- Time

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EDA_TEST_BENCH_RUN_FOR -section_id <section identifier> <value>
set_global_assignment -name EDA_TEST_BENCH_RUN_FOR -entity <entity name> -section_id <section identifier> <value>
```
1.8.51. EDA_TEST_BENCH_RUN_SIM_FOR

Specify the time interval for running EDA Simulation

**Type**

Time

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EDA_TEST_BENCH_RUN_SIM_FOR -section_id <section identifier> <value>
```
1.8.52. EDA_TIME_SCALE

Specifies the time unit used to represent timing delays in each Verilog Output File. The value for the Time Scale option may be between 0.001 ns and 10ns, and should be a multiple of 10.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name EDA_TIME_SCALE -section_id <section_identifier> <value>
set_global_assignment -name EDA_TIME_SCALE -entity <entity name> -section_id <section_identifier> <value>
```
1.8.53. EDA_TIMING_ANALYSIS_TOOL

Specifies the EDA third-party tool used for timing analysis.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_TIMING_ANALYSIS_TOOL <value>
set_global_assignment -name EDA_TIMING_ANALYSIS_TOOL -entity <entity name> <value>
```

**Default Value**

<None>
1.8.54. EDA_TRUNCATE_LONG_HIERARCHY_PATHS

Truncate hierarchical node names to 80 characters.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_TRUNCATE_LONG_HIERARCHY_PATHS -
section_id <section identifier> <value>
set_global_assignment -name EDA_TRUNCATE_LONG_HIERARCHY_PATHS -entity
<entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.55. EDA_USER_COMPILED_SIMULATION_LIBRARY_DIRECTORY

Specify the directory where you store the library generated with the EDA Simulation Library Compiler tool. Note: Do not use this option to specify the directory for ModelSim - Intel FPGA precompiled libraries or Active-HDL precompiled libraries.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```plaintext
set_global_assignment -name EDA_USER_COMPILED_SIMULATION_LIBRARY_DIRECTORY -section_id <section identifier> <value>
```

Default Value

<None>, requires section identifier
1.8.56. EDA_VHDL_ARCH_NAME

Specify the name of Architecture in the generated VHDL simulation netlist.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name EDA_VHDL_ARCH_NAME -section_id <section identifier> <value>
```

**Default Value**
structure, requires section identifier
1.8.57. EDA_WAIT_FOR_GUI_TOOL_COMPLETION

Specifies that NativeLink should wait for the EDA tool GUI launched by it to finish.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EDA_WAIT_FOR_GUI_TOOL_COMPLETION -
section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.58. EDA_WRITER_DONT_WRITE_TOP_ENTITY

Do not write top-level entity in VHDL Output File (.vho).

Type
Boolean

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name EDA_WRITER_DONT_WRITE_TOP_ENTITY -
section_id <section_identifier> <value>
```

Default Value
Off, requires section identifier
1.8.59. EDA_WRITE_DEVICE_CONTROL_PORTS

Add the devpor, devclrn, and devoe signals in the design as input ports in the top-level design hierarchy in the Verilog or VHDL simulation netlist for the project.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name EDA_WRITE_DEVICE_CONTROL_PORTS -section_id <section identifier> <value>
set_global_assignment -name EDA_WRITE_DEVICE_CONTROL_PORTS -entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

Off, requires section identifier
1.8.60. EDA_WRITE_NODES_FOR_POWER_ESTIMATION

Write script for Simulation tool to generate VCD file for outputs for power estimation.

**Type**

Enumeration

**Values**

- ALL_NODES
- NO_COMBINATIONAL_OUTPUT
- Off

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```text
set_global_assignment -name EDA_WRITE_NODES_FOR_POWER_ESTIMATION -
section_id <section identifier> <value>
set_global_assignment -name EDA_WRITE_NODES_FOR_POWER_ESTIMATION -
entity <entity name> -section_id <section identifier> <value>
```

**Default Value**

OFF, requires section identifier
1.9. Equivalence Checker Assignments

1.9.1. EQC_AUTO_BREAK_CONE

Enable EQC for auto cone break when compare is abort.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EQC_AUTO_BREAK_CONE <value>
```

**Default Value**

On
1.9.2. EQC_AUTO_COMP_LOOP_CUT

Enable EQC for auto cut comp loop.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EQC_AUTO_COMP_LOOP_CUT <value>
```

Default Value

On
1.9.3. EQC_AUTO_INVERSION

Enable EQC for auto check inversion level.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EQC_AUTO_INVERSION <value>
```

**Default Value**

On
1.9.4. EQC_AUTO_PORTSWAP

Enable EQC auto swap the port.

Type
Boolean

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```sh
set_global_assignment -name EQC_AUTO_PORTSWAP <value>
```

Default Value

On
1.9.5. EQC_AUTO_TERMINATE

Enable auto terminates when conclusion(not equivalent or undecided) is met.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name EQC_AUTO_TERMINATE <value>
```

**Default Value**
On
1.9.6. EQC_BBOX_MERGE

Enable EQC automatic merge black box.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EQC_BBOX_MERGE <value>
```

**Default Value**
On
1.9.7. EQC_CONSTANT_DFF_DETECTION

Enable EQC automatic constant DFF detection

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EQC_CONSTANT_DFF_DETECTION <value>
```

Default Value

On
1.9.8. EQC_DETECT_DONT_CARES

Enable EQC detect don't cares.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name EQC_DETECT_DONT_CARES <value>
```

**Default Value**

On
1.9.9. EQC_DFF_SS_EMULATION

Enable EQC DFF secondary signal emulation.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EQC_DFF_SS_EMULATION <value>
```

**Default Value**

On
1.9.10. EQC_DUPLICATE_DFF_DETECTION

Enable EQC automatic duplicate DFF detection

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EQC_DUPLICATE_DFF_DETECTION <value>
```

**Default Value**

On
1.9.11. EQC_LVDS_MERGE

Enable EQC automatic merge LVDS.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EQC_LVDS_MERGE <value>
```

**Default Value**

On
1.9.12. EQC_MAC_REGISTER_UNPACK

Enable EQC for auto unpack MAC register.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EQC_MAC_REGISTER_UNPACK <value>
```

**Default Value**

On
1.9.13. EQC_PARAMETER_CHECK

Enable EQC check parameter.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name EQC_PARAMETER_CHECK <value>
```

**Default Value**

On
1.9.14. EQC_POWER_UP_COMPARE

Enable EQC for comparing on the power-up level.

Type

Boolean

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EQC_POWER_UP_COMPARE <value>
```

Default Value

Off
1.9.15. EQC_RAM_REGISTER_UNPACK

Enable EQC for auto unpack RAM register.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EQC_RAM_REGISTER_UNPACK <value>
```

Default Value
On
1.9.16. EQC_RAM_UNMERGING

Enable EQC automatic unmerge RAM.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```bash
set_global_assignment -name EQC_RAM_UNMERGING <value>
```

**Default Value**

On
1.9.17. EQC_RENAMING_RULES

Enable EQC use renaming rules.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EQC_RENAMING_RULES <value>
```

Default Value

On
1.9.18. EQC_RENAMING_RULES_LIST

Store eqc renaming rules

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```sh
set_global_assignment -name EQC_RENAMING_RULES_LIST <value>
```
1.9.19. EQC_SET_PARTITION_BB_TO_VCC_GND

Enable EQC for set partition Black-box unconnected input to VCC or GND.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EQC_SET_PARTITION_BB_TO_VCC_GND <value>
```

Default Value

On
1.9.20. EQC_SHOW_ALL_MAPPED_POINTS

Enable EQC show all mapped points.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name EQC_SHOW_ALL_MAPPED_POINTS <value>
```

**Default Value**

Off
1.9.21. EQC_STRUCTURE_MATCHING

Enable EQC for map using structure matching.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name EQC_STRUCTURE_MATCHING <value>
```

**Default Value**

On
1.9.22. EQC_SUB_CONE_REPORT

Enable EQC show sub cone report.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name EQC_SUB_CONE_REPORT <value>
```

Default Value
Off
1.10. Fitter Assignments

1.10.1. ACTIVE_SERIAL_CLOCK

Specifies the clock source for Fast Active Serial programming.

**Type**

Enumeration

**Values**

- AS_FREQ_100MHZ
- AS_FREQ_108MHZ
- AS_FREQ_115MHZ_IOSC
- AS_FREQ_125MHZ
- AS_FREQ_133MHZ
- AS_FREQ_25MHZ
- AS_FREQ_50MHZ
- AS_FREQ_58MHZ_IOSC
- AS_FREQ_71_5MHZ
- AS_FREQ_77MHZ_IOSC
- AS_FREQ_80MHZ
- CLKUSR
- FREQ_100MHz
- FREQ_12_5MHz
- FREQ_20MHz
- FREQ_25MHz
- FREQ_40MHz
- FREQ_50MHz

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ACTIVE_SERIAL_CLOCK <value>
```
Example

```bash
set_global_assignment -name active_serial_clock "CLKUSR"
```

See Also

USER_START_UP_CLOCK
1.10.2. ALLOW_ROUTING_TO_PERIPHERY_THROUGH_GLOBAL_NETWORK

Specifies that a signal can be routed from an IO pin to periphery destinations using global routing paths. This allows the router to consider global and non-global routing paths and does not guarantee that a signal will be routed using global routing paths. Additionally, this will not route the signal to its destinations in a skew balanced manner. Only supported for Stratix 10 devices.

**Type**

Boolean

**Device Support**

- Intel Stratix 10

**Notes**

This assignment supports wildcards.

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name ALLOW_ROUTING_TO_PERIPHERY_THROUGH_GLOBAL_NETWORK -to <to> <value>
set_instance_assignment -name ALLOW_ROUTING_TO_PERIPHERY_THROUGH_GLOBAL_NETWORK -from <from> -to <to> <value>
```

**Example**

```
set_instance_assignment -name ALLOW_ROUTING_TO_PERIPHERY_THROUGH_GLOBAL_NETWORK ON -to clk
```
1.10.3. ALLOW_SEU_FAULT_INJECTION

Allow SEU fault injection.

**Type**
Boolean

**Device Support**
- Intel Stratix 10

**Notes**
None

**Syntax**

```
set_global_assignment -name ALLOW_SEU_FAULT_INJECTION <value>
```

**Example**

```
set_global_assignment -name ALLOW_SEU_FAULT_INJECTION ON
```
1.10.4. ALM_REGISTER_PACKING_EFFORT

This guides how aggressively the Fitter will pack ALMs when trying to place registers into desired LAB locations. Specifically, this option can be used to increase the usage of secondary register locations during placement. Increasing ALM packing density may lower the number of ALMs needed to fit the design but it may also reduce routing flexibility and timing performance. It should also be noted that this setting is used as a hint for the Fitter only. Low - The Fitter will avoid ALM packing configurations that combine LUTs and registers which have no direct connectivity. Avoiding these configurations may improve timing performance but will increase the number of ALMs used to implement the design. Medium - The Fitter allows some configurations that combine unconnected LUTs and registers to be implemented in ALM locations. The Fitter will make more usage of secondary register locations within the ALM. High - The Fitter enables all legal and desired ALM packing configurations. In dense designs, the Fitter will automatically increase the ALM register packing effort as required to enable the design to fit.

Type

Enumeration

Values

- High
- Low
- Medium

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

None

Syntax

```
set_global_assignment -name ALM_REGISTER_PACKING_EFFORT <value>
```

Default Value

Medium
1.10.5. AUTO_DELAY_CHAINS

Allows the Fitter to choose the optimal delay chain to meet tsu and tco timing requirements for all I/O elements. Turning on this option may reduce the number of tsu violations while introducing a minimal number of th violations. Turning on this option does not override delay chain settings on individual nodes.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name AUTO_DELAY_CHAINS <value>
```
1.10.6. AUTO_DELAY_CHAINS_FOR_HIGH_FANOUT_INPUT_PINS

Allows the Fitter to choose how to optimize the delay chains for high fanout input pins. You must enable the Auto Delay Chains option for this option to work. Enabling this option may reduce the number of tsu violation, but the compile time increases significantly, as the Fitter tries to optimize the settings for all fanouts.

Type

Enumeration

Values

• Off
• On

Device Support

• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name AUTO_DELAY_CHAINS_FOR_HIGH_FANOUT_INPUT_PINS <value>
```

Default Value

OFF
1.10.7. AUTO_GLOBAL_CLOCK

Allows the Compiler to choose the signal that feeds the most clock inputs to flipflops as a global clock signal that is made available throughout the device on the global routing paths. If you want to prevent the Compiler from automatically selecting a particular signal as global clock, set the Global Signal option to 'Off' on that signal.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Intel Stratix 10
- Virtual JTAG TAP

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

- `set_global_assignment -name AUTO_GLOBAL_CLOCK <value>`
- `set_global_assignment -name AUTO_GLOBAL_CLOCK -entity <entity name> <value>`
- `set_instance_assignment -name AUTO_GLOBAL_CLOCK -to <to> -entity <entity name> <value>`

**Default Value**

On
1.10.8. AUTO_GLOBAL_REGISTER_CONTROLS

Allows the Compiler to choose the signals that feed the most control signal inputs to flipflops (excluding clock signals) as global signals that are made available throughout the device on the global routing paths. Depending on the target device family, these control signals can include asynchronous clear and load, synchronous clear and load, clock enable, and preset signals. If you want to prevent the Compiler from automatically selecting a particular signal as global register control signal, set the Global Signal option to 'Off' on that signal.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Intel Stratix 10
- Virtual JTAG TAP

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name AUTO_GLOBAL_REGISTER_CONTROLS <value>
set_global_assignment -name AUTO_GLOBAL_REGISTER_CONTROLS -entity <entity name> <value>
set_instance_assignment -name AUTO_GLOBAL_REGISTER_CONTROLS -to <to> -entity <entity name> <value>
```

**Default Value**

On
1.10.9. AUTO_RESERVE_CLKUSR_FOR_CALIBRATION

Automatically reserve CLKUSR pin for calibration purposes

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name AUTO_RESERVE_CLKUSR_FOR_CALIBRATION <value>
```

**Default Value**

On

**Example**

```
set_global_assignment -name AUTO_RESERVE_CLKUSR_FOR_CALIBRATION OFF
```
1.10.10. BASE_PIN_OUT_FILE_ON_SAMEFRAME_DEVICE

Directs the Compiler to base the Pin-Out File (.pin) and floorplan package views on the largest selected SameFrame device.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name BASE_PIN_OUT_FILE_ON_SAMEFRAME_DEVICE
<value>
```

**Default Value**

Off
1.10.11. BLOCK_RAM_AND_MLAB_EQUIVALENT_PAUSED_READ_CAPABILITIES

Controls whether RAMs implemented in MLAB cells must have equivalent pause read capabilities as RAMs implemented in block RAM. Pausing a read is the ability to keep around the last read value when reading is disabled. Allowing differences in paused read capabilities will provide the fitter more flexibility in implementing RAMs using MLAB cells. If this option is set to 'Don't Care', the Fitter may convert RAMs to MLAB cells even if they won't have equivalent paused read capabilities to a block RAM implementation. The Fitter will also output an information message notifying the user of RAMs with different paused read capabilities. If this option is set to 'Care', the Fitter will not convert RAMs to MLAB cells unless they have the equivalent paused read capabilities to a block RAM implementation. To allow the fitter the most flexibility in deciding which RAMs are implemented using MLAB cells, set this option to 'Don't Care'.

**Type**

Enumeration

**Values**

- Care
- Don't Care

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name BLOCK_RAM_AND_MLAB_EQUIVALENT_PAUSED_READ_CAPABILITIES <value>
set_global_assignment -name BLOCK_RAM_AND_MLAB_EQUIVALENT_PAUSED_READ_CAPABILITIES -entity <entity name> <value>
set_instance_assignment -name BLOCK_RAM_AND_MLAB_EQUIVALENT_PAUSED_READ_CAPABILITIES -to <to> -entity <entity name> <value>
```

**Default Value**

Care
1.10.12. **BLOCK_RAM_AND_MLAB_EQUIVALENT_POWER_UP_CONDITIONS**

Controls whether RAMs implemented in MLAB cells must have equivalent power up conditions as RAMs implemented in block RAM. Power up conditions occur when the device is powered up or globally reset. Allowing non-equivalent power up conditions will provide the fitter more flexibility in implementing RAMs using MLAB cells. If this option is set to 'Auto', the Fitter may convert RAMs to MLAB cells even if they won't have equivalent power up conditions to a block RAM implementation. The Fitter will also output a warning message notifying the user of RAMs with non-equivalent power up conditions. If this option is set to 'Don't Care', the same behavior as 'Auto' applies, but the warning message will instead be an information message. If this option is set to 'Care', the Fitter will not convert RAMs to MLAB cells unless they have equivalent power up conditions to a block RAM implementation. To allow the fitter the most flexibility in deciding which RAMs are implemented using MLAB cells, set this option to 'Auto' or 'Don't Care'.

**Type**

Enumeration

**Values**

- Auto
- Care
- Don't Care

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```text
set_global_assignment -name BLOCK_RAM_AND_MLAB_EQUIVALENT_POWER_UP_CONDITIONS <value>
set_global_assignment -name BLOCK_RAM_AND_MLAB_EQUIVALENT_POWER_UP_CONDITIONS -entity <entity name> <value>
set_instance_assignment -name BLOCK_RAM_AND_MLAB_EQUIVALENT_POWER_UP_CONDITIONS -to <to> -entity <entity name> <value>
```

**Default Value**

Auto
1.10.13. BLOCK_RAM_TO_MLAB_CELL_CONVERSION

Controls whether the fitter is able to convert RAMs to use LAB locations when those RAMs use 'Auto' as the selected block type. If this option is changed to 'Off' then only MLAB cells in the design or RAM cells with a block type setting of 'MLAB' will use LAB locations to implement memory.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```plaintext
set_global_assignment -name BLOCK_RAM_TO_MLAB_CELL_CONVERSION <value>
set_global_assignment -name BLOCK_RAM_TO_MLAB_CELL_CONVERSION -entity <entity name> <value>
set_instance_assignment -name BLOCK_RAM_TO_MLAB_CELL_CONVERSION -to <to> -entity <entity name> <value>
```

Default Value
On
1.10.14. CDR_BANDWIDTH_PRESET

Specifies the CDR (clock data recovery) bandwidth preset setting.

Type

Enumeration

Values

- Auto
- High
- Low
- Medium

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

Syntax

```
set_instance_assignment -name CDR_BANDWIDTH_PRESET -to <to> -entity <entity name> <value>
```
1.10.15. CKN_CK_PAIR

Specifies the pairing of a CKn pin to a CK pin. The I/O pin of a CK CKn pair must be placed on a differential pin pair. This option is ignored if is assigned to anything other than an I/O pad, input buffer, or output buffer.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```bash
set_instance_assignment -name CKN_CK_PAIR -from <from> -to <to> -entity <entity name> <value>
```
1.10.16. CLOCK_REGION

Specifies the placement of the clock region of a global signal for floorplanning reasons. For example, a Clock Region assignment can be used to ensure that a certain area of the device has access to a global signal, throughout all future design iterations. A Clock Region assignment can also be used in cases of congestion involving global signal resources. By specifying a smaller clock region size, the assignment prevents a signal using spine clock and other clock routing resources in the excluded sectors that may be encountering clock-related congestion.

For devices up to and including Arria 10, this assignment takes as its value the names of those Global, Regional, Periphery or Spine Clock regions. These region names are visible in Chip Planner by enabling the appropriate Clock Region layer in the Layers Settings dialog box. Examples of valid values include "Regional Clock Region 1" or "Periphery Clock Region 1". When constraining a global signal to a smaller than normal region, for example, to avoid clock congestion, you may specify a clock region of a different type than the global resources being used. For example, a signal with a Global Signal assignment of "Global Clock", but a Clock Region assignment of "Regional Clock Region 0", constrains the clock to use global network routing resources, but only to the region covered by Regional Clock Region 0. To provide a finer level of control, you can also list multiple smaller clock regions, separated by commas. For example: "Periphery Clock Region 0, Periphery Clock Region 1" constrains a signal to only the area reachable by those two periphery clock networks.

For Stratix 10 devices, clock regions can be constrained to a rectangle whose dimensions are defined by the sector grid, as seen in the Clock Sector Region layer of the Chip Planner. This assignment specifies the bottom left and top right coordinates of the rectangle in the format "SX# SY# SX# SY#". For example, "SX0 SY0 SX1 SY1" constrains the clock to a 2x2 region, from the bottom left of sector (0,0) to the top right of sector (1,1). For a constraint spanning only one sector, it is sufficient to specify the location of that sector, for example "SX1 SY1". The bounding rectangle can also be specified by the bottom left and top right corners in chip coordinates, for example, "X37 Y181 X273 Y324". However, such a constraint should be sector aligned (using sector coordinates guarantees this) or the Fitter automatically snaps to the smallest sector aligned rectangle that still encompasses the original assignment. The "SX# SY# SX# SY# | X# Y# X# Y#" strings are case-insensitive.

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
This assignment supports wildcards.
This assignment supports Fitter wildcards.

**Syntax**

```plaintext
set_instance_assignment -name CLOCK_REGION -to <to> -entity <entity name> <value>
```

400
set_instance_assignment -name CLOCK_REGION -from <from> -to <to> -entity <entity name> <value>
1.10.17. CONFIGURATION_VCCIO_LEVEL

Specifies the VCCIO voltage of the configuration pins for the current configuration scheme on the target device.

Type
String

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
None

Syntax

```
set_global_assignment -name CONFIGURATION_VCCIO_LEVEL <value>
```

Default Value
Auto

Example

```
set_global_assignment -name CONFIGURATION_VCCIO_LEVEL 1.8V
```

See Also
FORCE_CONFIGURATION_VCCIO
1.10.18. CONVERT_PR_WARNINGS_TO_ERRORS

Turns PR warnings into errors when enabled.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

**Syntax**

```
set_global_assignment -name CONVERT_PR_WARNINGS_TO_ERRORS <value>
```

**Default Value**

Off

**Example**

```
set_global_assignment -name CONVERT_PR_WARNINGS_TO_ERRORS ON
```
1.10.19. CRC_ERROR_OPEN_DRAIN

Specify open drain on the CRC Error pin should be enabled or not

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**
None

**Syntax**

```
set_global_assignment -name CRC_ERROR_OPEN_DRAIN <value>
```

**Example**

```
set_global_assignment -name crc_error_open_drain on
set_global_assignment -name crc_error_open_drain off
```

**See Also**

CRC_ERROR_CHECKING ERROR_CHECK_FREQUENCY_DIVISOR
1.10.20. CURRENT_STRENGTH_NEW

Sets the drive strength of a pin. Specify a number (in mA), MIN, or MAX for output or bidirectional pins that support programmable drive strength. Please refer to the family data sheet for which drive strengths are allowed for each I/O standard. This option is ignored if it is applied to anything other than an output or bidirectional pin.

Old Name

CURRENT_STRENGTH

Type

String

Device Support

• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes

This assignment supports Fitter wildcards.

Syntax

```
set_instance_assignment -name CURRENT_STRENGTH_NEW -to <to> -entity <entity name> <value>
```

Example

```
set_instance_assignment -name CURRENT_STRENGTH_NEW 12MA -to output_pin
```

See Also

IO_STANDARD OUTPUT_TERMINATION
### 1.10.21. CVP_CONFDONE_OPEN_DRAIN

Specify open drain on the CvP_CONFDONE pin should be enabled or not

**Old Name**
CVPCIE_CONFDONE_OPEN_DRAIN

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**
None

**Syntax**

```plaintext
set_global_assignment -name CVP_CONFDONE_OPEN_DRAIN <value>
```

**Default Value**
On

**Example**

```plaintext
set_global_assignment -name CVP_CONFDONE_OPEN_DRAIN on
set_global_assignment -name CVP_CONFDONE_OPEN_DRAIN off
```

**See Also**
ENABLE_CVP_CONFDONE
1.10.22. CVP_MODE

Specifies the configuration mode for Configuration via Protocol (CvP). In Core initialization mode, the periphery image is stored in an external configuration device and is loaded into the FPGA through the conventional configuration scheme. The core image is stored in a host memory and is loaded into the FPGA through the PCIe link. In core update mode, the FPGA device is initialized after initial system power up by loading the full configuration image from the external local configuration device to the FPGA. User can use the PCIe link to perform one or more FPGA core image update through this mode. In the Off mode, CvP is turned off.

Old Name
CVPCIE_MODE

Type
Enumeration

Values
- Core initialization
- Core initialization and update
- Core update
- Off

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
None

Syntax

```
set_global_assignment -name CVP_MODE <value>
```

Default Value
Off

Example

```
set_global_assignment -name CVP_MODE "Power up and subsequent core configuration"
```
1.10.23. DEVICE

Specifies the device to use.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name DEVICE <value>
```
1.10.24. DEVICE_INITIALIZATION_CLOCK

In 20nm device families, this specifies the clock source for device initialization (the duration between CONF_DONE signal went high and before INIT_DONE signal goes high). In 14nm or later device families, this specifies the clock source used to run the PLL which produces the clock used by the device configuration and monitoring system.

**Type**

Enumeration

**Values**

- INIT_CLKUSR
- INIT_DCLK
- INIT_INTOSC
- OSC_CLK_1_100MHZ
- OSC_CLK_1_125MHZ
- OSC_CLK_1_25MHZ

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name DEVICE_INITIALIZATION_CLOCK <value>
```

**Default Value**

INIT_INTOSC

**Example**

```
set_global_assignment -name DEVICE_INITIALIZATION_CLOCK "CLKUSR"
```

**See Also**

USER_START_UP_CLOCK
1.10.25. DEVICE_MIGRATION_LIST

Shows the selected migration devices for the current device.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name DEVICE_MIGRATION_LIST <value>
```
1.10.26. DEVICE_TECHNOLOGY_MIGRATION_LIST

Shows the selected technology migration devices for the current device.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name DEVICE_TECHNOLOGY_MIGRATION_LIST <value>
```
1.10.27. DQ_GROUP

Specifies the grouping from a DQS pin to its associated DQ pins and the width (4, 9, 18, or 36) of the group. Setting this option allows the Fitter to view the pins as a DQS/DQ pin group. I/O pins of a DQ pin group must be placed in the DQ pin locations of a single DQS group. This option is ignored if is assigned to anything other than an I/O pad, input buffer, or output buffer.

**Type**

Integer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name DQ_GROUP -from <from> -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name DQ_GROUP 9 -from mem_dqs[0] -to mem_dq[0..7]
```

**See Also**

DQSB_DQS_PAIR MEMORY_INTERFACE_DATA_PIN_GROUP
1.10.28. DSP_REGISTER_PACKING

Controls how aggressively the fitter optimizes DSP performance by automatically packing registers into the internal registers of the specified DSP blocks. When the 'Balanced' option is enabled, the Fitter will pack registers into the specified DSP blocks that should improve timing. When 'Always' is enabled, the fitter will aggressively try to pack registers into the specified DSP blocks unless prevented by user constraints or other legality restrictions. When 'Disable' is selected, registers will not be packed into the specified DSP blocks.

**Type**

Enumeration

**Values**

- Always
- Balanced
- Disable

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name DSP_REGISTER_PACKING -to <to> -entity <entity name> <value>
```
1.10.29. DUPLICATE_ATOM

Directs the Compiler to duplicate the source node, and uses the new duplicate node to fan out to the destination node; the original source node no longer fans out to the destination node. Use the 'Value' field to specify the name of the duplicate node.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

The value of this assignment is case sensitive.

This assignment supports Fitter wildcards.

The value of this assignment must be a node name.

**Syntax**

```
set_instance_assignment -name DUPLICATE_ATOM -from <from> -to <to> -entity <entity name> <value>
```
1.10.30. ECO_OPTIMIZE_TIMING

Controls whether the fitter optimizes to meet the user's maximum delay timing requirements (e.g. clock cycle time, Tsu, Tco) during ECO compiles. By default, this option is set to off. Turning it on can improve timing performance at the cost of compilation time.

**Type**

Enumeration

**Values**

- Off
- On

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ECO_OPTIMIZE_TIMING <value>
```

**Default Value**

Off
1.10.31. ECO_REGENERATE_REPORT

Controls whether the fitter report is regenerated during ECO compiles. By default, this option is set to off. Turning it on will regenerate the report at the cost of compilation time.

**Type**

Enumeration

**Values**

- Off
- On

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ECO_REGENERATE_REPORT <value>
```

**Default Value**

Off
1.10.32. ENABLE_BUS_HOLD_CIRCUITRY

Enables bus-hold circuitry during device operation. If this option is turned on, a pin will retain its last logic level when it is not driven, and will not go to a high impedance logic level. The 'Enable Bus-Hold Circuitry' option should not be used at the same time as the 'Weak Pull-Up Resistor' option. This option is ignored if it is applied to anything other than a pin.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports Fitter wildcards.
This assignment is included in the Fitter report.

Syntax

| set_global_assignment -name ENABLE_BUS_HOLD_CIRCUITRY <value> |
| set_global_assignment -name ENABLE_BUS_HOLD_CIRCUITRY -entity <entity name> <value> |
| set_instance_assignment -name ENABLE_BUS_HOLD_CIRCUITRY -to <to> -entity <entity name> <value> |

Default Value

Off

Example

| set_instance_assignment -name ENABLE_BUS_HOLD_CIRCUITRY ON -to pin |
1.10.33. ENABLE_CRC_ERROR_PIN

Specifies error detection CRC and CRC_ERROR pin usage for the selected device. If error detection CRC is turned on, the device checks the validity of the programming data in the device. Any changes in the data while the device is in operation generates an error.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```plaintext
set_global_assignment -name ENABLE_CRC_ERROR_PIN <value>
```

**Default Value**

Off

**Example**

```plaintext
set_global_assignment -name ENABLE_CRC_ERROR_PIN ON
```

**See Also**

ERROR_CHECK_FREQUENCY_DIVISOR CRC_ERROR_OPEN_DRAIN
1.10.34. ENABLE_CVP_CONFDONE

Enable the CvP_CONFDONE pin, which indicates that the device finished core programming in Configuration via Protocol mode. If this option is turned off, the CvP_CONFDONE pin is disabled when the device operates in user mode and is available as a user I/O pin.

Old Name
ENABLE_CVPCIE_CONFDONE

Type
Boolean

Device Support
• Intel Arria 10
• Intel Cyclone 10 GX

Notes
None

Syntax

```
set_global_assignment -name ENABLE_CVP_CONFDONE <value>
```

Default Value
Off

Example

```
set_global_assignment -name ENABLE_CVP_CONFDONE ON
```

See Also
CVP_CONFDONE_OPEN_DRAIN
1.10.35. ENABLE_DEVICE_WIDE_OE

Enables the DEV_OE pin when the device is in user mode. If this option is turned on, all outputs on the chip operate normally. When the pin is disabled, all outputs are tri-stated. If this option is turned off, the DEV_OE pin is disabled when the device operates in user mode and is available as a user I/O pin.

**Old Name**

ENABLE_CHIP_WIDE_OE

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```text
set_global_assignment -name ENABLEDEVICE_WIDE_OE <value>
```

**Default Value**

Off

**Example**

```text
set_global_assignment -name ENABLEDEVICE_WIDE_OE ON
```
1.10.36. ENABLE_DEVICE_WIDE_RESET

Enables the DEV_CLRn pin, which allows all registers of the device to be reset by an external source. If this option is turned off, the DEV_CLRn pin is disabled when the device operates in user mode and is available as a user I/O pin.

**Old Name**

ENABLE_CHIP_WIDE_RESET

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```plaintext
set_global_assignment -name ENABLE_DEVICE_WIDE_RESET <value>
```

**Default Value**

Off

**Example**

```plaintext
set_global_assignment -name ENABLE_DEVICE_WIDE_RESET ON
```
1.10.37. ENABLE_ED_CRC_CHECK

Enable the error detection CRC check. The status is SEU_ERROR output SDM_IO. If error detection CRC is turned on, the device checks the validity of the programming data in the device. Any changes in the data while the device is in operation generates an error.

Type
Boolean

Device Support
• Intel Stratix 10

Notes
None

Syntax

```plaintext
set_global_assignment -name ENABLE_ED_CRC_CHECK <value>
```

Example

```plaintext
set_global_assignment -name ENABLE_ED_CRC_CHECK ON
```
1.10.38. ENABLE_INIT_DONE_OUTPUT

Enables the INIT_DONE pin, which allows you to externally monitor when initialization is completed and the device is in user mode. If this option is turned off, the INIT_DONE pin is disabled when the device operates in user mode and is available as a user I/O pin.

**Old Name**

Enable INIT_DONE Output

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name ENABLE_INIT_DONE_OUTPUT <value>
```

**Default Value**

Off

**Example**

```
set_global_assignment -name ENABLE_INIT_DONE_OUTPUT OFF
```

**See Also**

INIT_DONE_OPEN_DRAIN
1.10.39. ENABLE_NCEO_OUTPUT

Enables the nCEO pin. This pin should be connected to the nCE of the succeeding device when multiple devices are being programmed. If this option is turned off, the nCEO pin is disabled when the device operates in user mode and is available as a user I/O pin.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name ENABLE_NCEO_OUTPUT <value>
```

**Default Value**

Off

**Example**

```
set_global_assignment -name ENABLE_NCEO_OUTPUT OFF
```
1.10.40. ENABLE_PR_PINS

Allows you to enable the PR_REQUEST, PR_READY, PR_ERROR, PR_DONE, DCLK, and DATA[31..0] pins. These pins are needed to support partial reconfiguration (PR) with an external host. An external host uses the PR_REQUEST pin to request partial reconfiguration, the PR_READY pin to determine if the device is ready to receive programming data, the PR_ERROR pin to externally monitor programming errors, and the PR_DONE pin to indicate the device finished programming. If this option is turned off, these pins are not available as PR pins when the device operates in user mode and the dual-purpose programming pins are available as user I/O pins.

Type
Boolean

Device Support
• Intel Arria 10
• Intel Cyclone 10 GX

Notes
None

Syntax

| set_global_assignment -name ENABLE_PR_PINS <value> |

Default Value
Off

Example

| set_global_assignment -name ENABLE_PR_PINS ON |

See Also
PR_PINS_OPEN_DRAIN
1.10.41. ENABLE_UNUSED_RX_CLOCK_WORKAROUND

Enable workaround for unused RX clock to preserve its performance over time

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name ENABLE_UNUSED_RX_CLOCK_WORKAROUND <value>
set_instance_assignment -name ENABLE_UNUSED_RX_CLOCK_WORKAROUND -to <to> -entity <entity name> <value>
```

**Default Value**
Off

**Example**

```plaintext
set_global_assignment -name ENABLE_UNUSED_RX_CLOCK_WORKAROUND ON
set_instance_assignment -name ENABLE_UNUSED_RX_CLOCK_WORKAROUND ON -to AW34
```
1.10.42. ERROR_CHECK_FREQUENCY_DIVISOR

Specifies the divide value of the internal clock, which determines the frequency of the CRC. The divide value must be a power of two. Refer to the device handbook to find the frequency of the internal clock for the selected device.

Type
Integer

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
None

Syntax

```
set_global_assignment -name ERROR_CHECK_FREQUENCY_DIVISOR <value>
```

Example

```
set_global_assignment -name ERROR_CHECK_FREQUENCY_DIVISOR 16
```

See Also
CRC_ERROR_CHECKING
### 1.10.43. EXCLUSIVE_IO_GROUP

Assigns an exclusive group number for the specified I/O. I/Os with the different exclusive group number cannot share the same bank.

**Type**

Integer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name EXCLUSIVE_IO_GROUP -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name "EXCLUSIVE_IO_GROUP" -to pin
```
1.10.44. FINAL_PLACEMENT_OPTIMIZATION

Specifies whether the Fitter performs final placement optimizations. Performing final placement optimizations may improve timing and routability, but may also require longer compilation time. The default setting of Automatically can be used with the Auto Fit Fitter Effort Level (also the default) to let the fitter decide whether these optimizations should run based on the routability and timing requirements of the design.

**Type**

Enumeration

**Values**

- Always
- Automatically
- Never

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name FINAL_PLACEMENT_OPTIMIZATION <value>
```

**Default Value**

Automatically
1.10.45. FITTER_AGGRESSIVE_ROUTABILITY_OPTIMIZATION

Specifies whether the Fitter aggressively optimizes for routability. Performing aggressive routability optimizations may decrease design speed, but may also reduce routing wire usage and routing time. The default setting of Automatically lets the fitter decide whether to perform these optimizations based on the routability and timing requirements of the design.

**Type**

Enumeration

**Values**

- Always
- Automatically
- Never

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name FITTER_AGGRESSIVE_ROUTABILITY_OPTIMIZATION <value>
```

**Default Value**

Automatically
1.10.46. FITTER_AUTO_EFFORT_DESIRED_SLACK_MARGIN

Specifies the amount of worst-case slack margin the fitter should try to maintain when the Fitter Effort option is set to 'Auto Fit'. If the design is likely to have at least this much slack on every path, the fitter will reduce optimization effort to reduce compilation time. Otherwise, its behavior will be the same as it is with the 'Standard Fit' Fitter Effort setting.

**Type**

Time

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

None

**Syntax**

```
set_global_assignment -name FITTER_AUTO_EFFORT_DESIRED_SLACK_MARGIN <value>
```

**Default Value**

0ns
1.10.47. FITTER_EFFORT

Controls the fitter's trade-off between performance and compilation speed. Auto Fit adjusts the fitter optimization effort to minimize compilation time, while still achieving the design timing requirements. The Auto Fit Effort Desired Slack Margin option can be used to request that Auto Fit apply sufficient optimization effort to achieve additional timing margin. Standard Fit will use maximum effort regardless of the design's requirements, leading to higher compilation time and more margin on easier designs. For difficult designs, Auto Fit and Standard Fit will both use maximum effort. Fast Fit will decrease optimization effort to reduce compilation time, which may degrade design performance.

Type

Enumeration

Values

• Auto Fit
• Fast Fit
• Standard Fit

Device Support

• Intel Arria 10
• Intel Cyclone 10 GX

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name FITTER_EFFORT <value>
```

Default Value

Auto Fit
1.10.48. FLEX10K_MAX_PERIPHERAL_OE

Sets the limit on the number of peripheral OE buses that can be used.

**Type**

Integer

**Device Support**

* This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name FLEX10K_MAX_PERIPHERAL_OE <value>
```
1.10.49. FLOW_ENABLE_EARLY_PLACE

Allows you to turn on or turn off Early Place during compilation.

Following the Early Place compilation stage, an initial high-level placement of design elements is visible in Chip Planner. This information may be useful to guide floorplanning decisions. In Stratix 10 compilations, global signal and clock routing reports are also available. (For other families, this information is available following the Plan compilation stage.)

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```python
set_global_assignment -name FLOW_ENABLE_EARLY_PLACE <value>
```

**Default Value**

Off
1.10.50. FORCE_CONFIGURATION_VCCIO

Forces the VCCIO voltage of the configuration pins to be the same as the configuration device I/O voltage.

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
None

**Syntax**
```
set_global_assignment -name FORCE_CONFIGURATION_VCCIO <value>
```

**Default Value**
Off

**Example**
```
set_global_assignment -name FORCE_CONFIGURATION_VCCIO ON
```

**See Also**
CONFIGURATION_VCCIO_LEVEL
## 1.10.51. GLOBAL_SIGNAL

Specifies whether the signal should be routed using global routing paths. Global signals can be both pin- and logic-driven, and can be any signal in the design. Turning this option on for a pin or a single-output logic function signal is equivalent to feeding the signal through a GLOBAL buffer. Turning this option off for a particular signal will prevent any of the Auto Global options from using the signal as an automatic global signal.

### Type

Enumeration

### Values

- Dual-Fast Regional Clock
- Dual-Regional Clock
- Fast Regional Clock
- Global Clock
- Large Periphery Clock
- Off
- On
- Periphery Clock
- Regional Clock

### Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Intel Stratix 10
- Virtual JTAG TAP

### Notes

This assignment supports wildcards.

This assignment supports Fitter wildcards.

### Syntax

```
set_instance_assignment -name GLOBAL_SIGNAL -to <to> -entity <entity name> <value>
set_instance_assignment -name GLOBAL_SIGNAL -from <from> -to <to> -entity <entity name> <value>
```

1.10.52. GNDIO_CURRENT_1PT8V

For user to override GNDIO current of 1.8-V io standard. Original current is 2mA

**Type**
Integer

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
None

**Syntax**

```text
set_global_assignment -name GNDIO_CURRENT_1PT8V <value>
```
1.10.53. **GNDIO_CURRENT_2PT5V**

For user to override GNDIO current of 2.5-V io standard. Original current is 2mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name GNDIO_CURRENT_2PT5V <value>
```
1.10.54. GNDIO_CURRENT_GTL

For user to override GNDIO current of GTL. Not yet supported in MAX7000.

Type
Integer

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

```
set_global_assignment -name GNDIO_CURRENT_GTL <value>
```
1.10.55. **GNDIO_CURRENT_GTL_PLUS**

For user to override GNDIO current of GTL+. Original current is 50mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name GNDIO_CURRENT_GTL_PLUS <value>
```
1.10.56. GNDIO_CURRENT_LVCMOS

For user to override GNDIO current of LVCMOS. Original current is 2mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name GNDIO_CURRENT_LVCMOS <value>
```
1.10.57. GNDIO_CURRENT_LVTTL

For user to override GNDIO current of LVTTL. Original current is 4mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name GNDIO_CURRENT_LVTTL <value>
```
1.10.58. GNDIO_CURRENT_PCI

For user to override GNDIO current of PCI. Original current is 4mA

**Type**
Integer

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
None

**Syntax**

```
set_global_assignment -name GNDIO_CURRENT_PCI <value>
```
1.10.59. GNDIO_CURRENT_SSTL2_CLASS1

For user to override GNDIO current of SSTL2_CLASS1. Original current is 14mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name GNDIO_CURRENT_SSTL2_CLASS1 <value>
```
1.10.60. **GNDIO_CURRENT_SSTL2_CLASS2**

For user to override GNDIO current of SSTL2_CLASS2. Original current is 21mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name GNDIO_CURRENT_SSTL2_CLASS2 <value>
```
1.10.61. **GNDIO_CURRENT_SSTL3_CLASS1**

For user to override GNDIO current of SSTL3_CLASS1. Original current is 18mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```plaintext
set_global_assignment -name GNDIO_CURRENT_SSTL3_CLASS1 <value>
```
1.10.62. **GNDIO_CURRENT_SSTL3_CLASS2**

For user to override GNDIO current of SSTL3_CLASS2. Original current is 25mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name GNDIO_CURRENT_SSTL3_CLASS2 <value>
```
1.10.63. GXB_0PPM_CORECLK

Specifies core clocks that have zero PPM difference. Follow the Intel High Speed I/O Applications Technical Support recommendations when using this assignment.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```plaintext
set_instance_assignment -name GXB_0PPM_CORECLK -to <to> -entity <entity name> <value>
```
1.10.64. HPS_COLD_RESET_PIN_MODE

Use the reset pin as input-only or open-drain bidirectional.

**Type**

Enumeration

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name HPS_COLD_RESET_PIN_MODE <value>
```

**Default Value**

BIDIRECTIONAL
1.10.65. HPS_WARM_RESET_PIN_MODE

Use the reset pin as input-only or open-drain bidirectional.

**Type**

Enumeration

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name HPS_WARM_RESET_PIN_MODE <value>
```

**Default Value**

BIDIRECTIONAL
1.10.66. HSSI_PARAMETER

A logic option that allows you to set the parameter settings of the transmitter/receiver channel.

**Type**

String

**Device Support**

- Intel Stratix 10

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_instance_assignment -name HSSI_PARAMETER -to <to> -entity <entity name> <value>
```
1.10.67. IGNORE_HSSI_COLUMN_POWER_WHEN_PRESERVING_UNUSED_XCVR_CHANNELS

Ignore the power supply of HSSI column when preserving unused RX/TX channels. By default, any unused RX/TX channels in each HSSI column will be preserved.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name IGNORE_HSSI_COLUMN_POWER_WHEN_PRESERVING_UNUSED_XCVR_CHANNELS <value>
```

**Default Value**

On

**Example**

```
set_global_assignment -name IGNORE_HSSI_COLUMN_POWER_WHEN_PRESERVING_UNUSED_XCVR_CHANNELS OFF
```
1.10.68. INIT_DONE_OPEN_DRAIN

Specify open drain on the INIT_DONE pin should be enabled or not

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX

Notes
None

Syntax

set_global_assignment -name INIT_DONE_OPEN_DRAIN <value>

Default Value
On

Example

set_global_assignment -name init_done_open_drain on
set_global_assignment -name init_done_open_drain off

See Also
ENABLE_INIT_DONE_OUTPUT
1.10.69. INPUT_DELAY_CHAIN

Specifies the propagation delay for Input Delay Chain. This is an advanced option that should be used only after you have compiled a project, checked the I/O timing, and determined that the timing is unsatisfactory. For detailed information on how to use this option, refer to the data sheet for the device family. This option is ignored if it is applied to anything other than an input or bidirectional pin.

Old Name
INPUT_DELAY

Type
Integer

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports Fitter wildcards.

Syntax

```
set_instance_assignment -name INPUT_DELAY_CHAIN -to <to> -entity <entity name> <value>
set_instance_assignment -name INPUT_DELAY_CHAIN -from <from> -to <to> -entity <entity name> <value>
```
1.10.70. INPUT_TERMINATION

Allows the Compiler to configure the on-chip termination (OCT) and impedance matching for an I/O pin. OCT helps to prevent signal reflections and maintain signal integrity. This option is ignored if it is applied to anything other than an I/O pad, input buffer, or output buffer.

Type
String

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment supports Fitter wildcards.

Syntax

```plaintext
set_instance_assignment -name INPUT_TERMINATION -to <to> -entity <entity name> <value>
```

Example

```plaintext
set_instance_assignment -name INPUT_TERMINATION "PARALLEL 50 OHM WITH CALIBRATION" -to pin_name
```

See Also

IO_STANDARD OCT_CONTROL_BLOCK OUTPUT_OCT_VALUE
1.10.71. INTERNAL_SCRUBBING

Specifies internal scrubbing usage for the selected device. If internal scrubbing is turned on, the device corrects single error or double adjacent error within the core configuration memory while the device is still running.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

None

**Syntax**

```
set_global_assignment -name INTERNAL_SCRUBBING <value>
```

**Default Value**

Off

**Example**

```
set_global_assignment -name INTERNAL_SCRUBBING ON
```
1.10.72. IO_12_LANE_INPUT_DATA_DELAY_CHAIN

Specifies the propagation delay for IO_12_LANE Input Data Delay Chain. This is an advanced option that should be used only after you have compiled a project, checked the I/O timing, and determined that the timing is unsatisfactory. For detailed information on how to use this option, refer to the data sheet for the device family. This option is ignored if it is applied to anything other than an input or bidirectional pin.

**Old Name**

IO_12_LANE_INPUT_DATA_DELAY

**Type**

Integer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name IO_12_LANE_INPUT_DATA_DELAY_CHAIN -to <to> -entity <entity name> <value>
set_instance_assignment -name IO_12_LANE_INPUT_DATA_DELAY_CHAIN -from <from> -to <to> -entity <entity name> <value>
```
1.10.73. IO_12_LANE_INPUT_STROBE_DELAY_CHAIN

Specifies the propagation delay for IO_12_LANE Input Strobe Delay Chain. This is an advanced option that should be used only after you have compiled a project, checked the I/O timing, and determined that the timing is unsatisfactory. For detailed information on how to use this option, refer to the data sheet for the device family. This option is ignored if it is applied to anything other than an input or bidirectional pin.

Old Name

IO_12_LANE_INPUT_STROBE_DELAY

Type

Integer

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports Fitter wildcards.

Syntax

```
set_instance_assignment -name IO_12_LANE_INPUT_STROBE_DELAY_CHAIN -to <to> -entity <entity name> <value>
set_instance_assignment -name IO_12_LANE_INPUT_STROBE_DELAY_CHAIN -from <from> -to <to> -entity <entity name> <value>
```
1.10.74. IO_MAXIMUM_TOGGLE_RATE

Specifies the toggle rate of this node. You can specify the desired frequency setting. This option is ignored if it is applied to anything other than pins. This option can be used to direct the Fitter in its toggle-rate checking while allowing a single-ended pin to be placed closer to a differential pin. This assignment is used to analyze signal integrity under worst case conditions (highest possible toggle rate). A different assignment, Power Toggle Rate, is used to specify the expected time-averaged toggle rate rather than worst-case toggle rate, and is used by the Power Analyzer to estimate time-averaged power consumption. Use the Synchronizer Toggle Rate if you want to configure the data rates used for Metastability Reporting in the Timing Analyzer.

Old Name

TOGGLE RATE, TOGGLE_RATE

Type

Frequency

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment supports Fitter wildcards.

Syntax

```
set_instance_assignment -name IO_MAXIMUM_TOGGLE_RATE -to <to> -entity <entity name> <value>
```
1.10.75. IO_PARTITION_PLACEMENT

Specifies whether the I/O should be put in a preserved partition to preserve I/O settings, or if it should be put in the root. Typically I/Os should be placed in the root to maximize the flexibility for the design. However, for some IPs it is desirable to preserve I/O settings such as I/O Standards, in which case it would need to go in the partition.

**Type**

Enumeration

**Values**

- PARTITION
- ROOT

**Device Support**

- Intel Arria 10
- Intel Stratix 10

**Notes**

None

**Syntax**

```
set_instance_assignment -name IO_PARTITION_PLACEMENT -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name IO_PARTITION_PLACEMENT PARTITION -to pin
```
110.76. IO_STANDARD

Specifies the I/O standard of a pin. Different device families support different I/O standards, and restrictions apply to placing pins with different I/O standards together. For detailed information, refer to the device family data sheet and to Application Note 117 (Using Selectable I/O Standards in Intel FPGA Devices). This option is ignored if it is applied to anything other than a pin or a top-level design entity.

Type
String

Device Support
• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes
This assignment supports Fitter wildcards.
This assignment supports synthesis wildcards.

Syntax

```text
set_instance_assignment -name IO_STANDARD -to <to> -entity <entity name> <value>
```

Example

```text
set_instance_assignment -name IO_STANDARD LVDS -to pin
```

See Also

STRATIX_DEVICE_IO_STANDARD CURRENT_STRENGTH_NEW SLEW_RATE OUTPUT_TERMINATION INPUT_TERMINATION PROGRAMMABLE_PREEMPHASIS PROGRAMMABLE_VOD
1.10.77. LVDS_DIRECT_LOOPBACK_MODE

Enable the LVDS Direct Loop Mode on a True Differential output pin. This assignment should only apply from an input pin to an output pin and both of them should have True Differential I/O standard. When this feature is enabled, data coming in from the adjacent RX pair gets looped back to the TX pair. This feature can be used to verify the Tx and Rx buffer by checking the data transmit and received. This option is ignored if it is applied to anything other than a pin or a top-level design entity.

Type

Boolean

Device Support

• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes

This assignment supports Fitter wildcards.
This assignment is included in the Fitter report.

Syntax

set_instance_assignment -name LVDS_DIRECT_LOOPBACK_MODE -from <from> -to <to> -entity <entity name> <value>

Example

set_instance_assignment -name LVDS_DIRECT_LOOPBACK_MODE -from true_diff_in_pin_p -to true_diff_out_pin_p

See Also

IO_STANDARD
1.10.78. MACRO_HEAD

Specifies the head block of a macro.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```bash
set_instance_assignment -name MACRO_HEAD -to <to> -entity <entity name> <value>
```
1.10.79. MACRO_MEMBER

Specifies a block to be placed with respect to its macro head.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name MACRO_MEMBER -entity <entity name> <value>
set_instance_assignment -name MACRO_MEMBER -to <to> -entity <entity name> <value>
set_instance_assignment -name MACRO_MEMBER -from <from> -to <to> -entity <entity name> <value>
```
1.10.80. MATCH_PLL_COMPENSATION_CLOCK

Allows you to specify a PLL output clock feeding a clock network as a compensation target for a PLL in NORMAL or SOURCE_SYNCHRONOUS mode. This configures the PLL to match its feedback path to the target’s clock network. This option is ignored if it is applied to anything other than a PLL output clock.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_instance_assignment -name MATCH_PLL_COMPENSATION_CLOCK -to <to> -entity <entity name> <value>
```
1.10.81. MIGRATION_DEVICES

Shows the selected migration devices for the target device.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is not copied when you create a companion revision for HardCopy II devices.

**Syntax**

```
set_global_assignment -name MIGRATION_DEVICES <value>
```
1.10.82. MINIMUM_SEU_INTERVAL

Specifies the minimum time between two checks of the same bit. Setting to 0 means check as frequently as possible. Setting to a large value saves power. The unit of interval is millisecond. The maximum allowed number of intervals is 10000.

Type
Integer

Device Support
- Intel Stratix 10

Notes
None

Syntax

```
set_global_assignment -name MINIMUM_SEU_INTERVAL <value>
```

Example

```
set_global_assignment -name MINIMUM_SEU_INTERVAL 300
```

See Also

CRC_ERROR_CHECKING
1.10.83. MODULE_BLOATING_FACTOR

Allows the Compiler to set a placement bloating factor on a specified entity in the Fitter.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
This assignment supports Fitter wildcards.

**Syntax**

```
set_global_assignment -name MODULE_BLOATING_FACTOR <value>
set_global_assignment -name MODULE_BLOATING_FACTOR -entity <entity name> <value>
set_instance_assignment -name MODULE_BLOATING_FACTOR -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name MODULE_BLOATING_FACTOR 1 -entity ddr
```
1.10.84. NCEO_OPEN_DRAIN

Specify open drain on the nCEO pin should be enabled or not

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**
None

**Syntax**
```
set_global_assignment -name NCEO_OPEN_DRAIN <value>
```

**Default Value**
On

**Example**
```
set_global_assignment -name nceo_open_drain on
set_global_assignment -name nceo_open_drain off
```

**See Also**
ENABLE_NCEO_OUTPUT
1.1.085. NUMBER_OF_EXAMPLE_NODES_REPORTED

Allows you to specify the maximum number of example nodes fitter messages should display.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name NUMBER_OF_EXAMPLE_NODES_REPORTED <value>
```

**Default Value**

50

**Example**

```plaintext
set_global_assignment -name NUMBER_OF_EXAMPLE_NODES_REPORTED 200
```
1.10.86. OE_DELAY_CHAIN

Specifies the propagation delay for Output Enable Delay Chain. This is an advanced option that should be used only after you have compiled a project, checked the I/O timing, and determined that the timing is unsatisfactory. For detailed information on how to use this option, refer to the data sheet for the device family. This option is ignored if it is applied to anything other than an output or bidirectional pin.

**Old Name**

OE_DELAY

**Type**

Integer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name OE_DELAY_CHAIN -to <to> -entity <entity name> <value>
```
1.10.87. OPTIMIZE_FOR_METASTABILITY

This setting improves the reliability of the design by increasing its Mean Time Between Failures (MTBF). When this setting is enabled, the Fitter will aim to increase the output setup slacks of synchronizer registers in the design, which can exponentially increase the design MTBF. This option takes effect only if the Timing Analyzer is being used for timing-driven compilation. Use the Timing Analyzer's report_metastability command to review the synchronizers detected in your design and to produce MTBF estimates.

Type

Enumeration

Values

• Off
• On

Device Support

• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <value>
```

Default Value

On
1.10.88. OPTIMIZE_HOLD_TIMING

Allows the Fitter to optimize hold time by adding delay to the appropriate paths. The Optimize Timing option must be turned on in order for this option to work. If you are using the Timing Analyzer, and specify the I/O paths and Minimum tpd Paths setting, all assignments involving I/O pins are optimized. Specifying the All Paths setting directs the Fitter to optimize the hold time of all paths. Turning off this option directs the Fitter not to optimize the hold time of any paths.

**Type**

Enumeration

**Values**

- All Paths
- IO Paths and Minimum TPD Paths
- Off

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name OPTIMIZE_HOLD_TIMING <value>
```
1.10.89. OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING

Controls whether the fitter optimizes I/O pin timing by automatically packing registers into I/Os to minimize I/O -> register and register -> I/O delays. When the 'Normal' option is enabled, the Fitter will opportunistically pack registers into I/Os that should improve I/O timing. When 'Pack All I/O Registers' is enabled, the fitter will aggressively try to pack any registers connected to input, output or output enable pins into I/Os unless prevented by user constraints or other legality restrictions. By default, this option is set to 'Normal'. This option requires the Optimize Timing option to be enabled for it to work.

**Type**

Enumeration

**Values**

- Normal
- Off
- Pack All IO Registers

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING
<value>
```

**Default Value**

Normal
1.10.90. OPTIMIZE_MULTI_CORNER_TIMING

Controls whether the Fitter optimizes a design to meet timing requirements at all process corners and operating conditions. The Optimize Timing logic option must be enabled for this option to work. When this setting is turned off, designs are optimized to meet timing only at the slow timing process corner and operating condition. When this option is turned on, designs are optimized to meet timing at all corners and operating conditions; as a result, turning on this option helps create a design implementation that is more robust across process, temperature, and voltage variations.

Turning on this option does not enable multicorner support for the Timing Analyzer and EDA Netlist Writer. To enable multicorner support for the Timing Analyzer and EDA Netlist Writer, see the Compilation Process Settings page of the Settings dialog box.

**Old Name**

OPTIMIZE_FAST_CORNER_TIMING, Optimize Fast-Corner Timing

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Intel Stratix 10
- Virtual JTAG TAP

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name OPTIMIZE_MULTI_CORNER_TIMING <value>
```
1.10.91. OPTIMIZE_PERSONA_ROUTABILITY

Allows users to avoid PR aggregate compilation by applying optimization techniques in the router during PR implementation compiles

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name OPTIMIZE_PERSONA_ROUTABILITY <value>
```

**Default Value**

Off
1.10.92. OPTIMIZE_POWER_DURING_FITTING

Controls the power-driven compilation setting of the Fitter. This option determines how aggressively the Fitter optimizes the design for power. If this option is set to 'Off', the Fitter does not perform any power optimizations. If this option is set to 'Normal compilation', the Fitter performs power optimizations which should not impact design performance or increase compile time. When this option is set to 'Extra effort', the Fitter will perform additional power optimizations which may affect design performance and/or increase compile time. For the best results with Extra Effort power optimization during fitting, you should specify a Signal Activity File (SAF file) that lists the toggle rate of each signal in the design. To generate the most accurate Signal Activity File (SAF file) use a gate-level simulation, with glitch filtering, of the compiled design. Specify this SAF file as an input to the Power Analyzer in the Power Analysis Settings, and recompile the design with Extra Effort Power Optimization during fitting. The signal activities (toggle rates) in the SAF file help guide the fitter to reduce power.

**Type**

Enumeration

**Values**

- Extra effort
- Normal compilation
- Off

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name OPTIMIZE_POWER_DURING_FITTING <value>
set_global_assignment -name OPTIMIZE_POWER_DURING_FITTING -entity <entity name> <value>
set_instance_assignment -name OPTIMIZE_POWER_DURING_FITTING -to <to> -entity <entity name> <value>
```

**Default Value**

Normal compilation
1.10.93. OPTIMIZE_TIMING

Controls whether the Fitter optimizes to meet the maximum delay timing requirements (for example, clock cycle time). By default, this option is set to Normal compilation. Turning it off can help fit designs that have extremely high interconnect requirements and can also reduce compilation time, although at the expense of significant timing performance (since the fitter will be ignoring the design's timing requirements). If this option is off, other fitter timing optimization options have no effect (such as Optimize Hold Timing).

Old Name

OPTIMIZE_INTERNAL_TIMING, USE_TIMING_DRIVEN_COMPILATION

Type

Enumeration

Values

- Normal compilation
- Off

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```bash
set_global_assignment -name OPTIMIZE_TIMING <value>
```

Default Value

Normal compilation
1.10.94. OUTPUT_DELAY_CHAIN

Specifies the propagation delay for Output Delay Chain. This is an advanced option that should be used only after you have compiled a project, checked the I/O timing, and determined that the timing is unsatisfactory. For detailed information on how to use this option, refer to the data sheet for the device family. This option is ignored if it is applied to anything other than an output or bidirectional pin.

**Old Name**

OUTPUT_DELAY

**Type**

Integer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name OUTPUT_DELAY_CHAIN -to <to> -entity <entity name> <value>
```
1.10.95. OUTPUT_TERMINATION

Allows the Compiler to configure the on-chip termination (OCT) and impedance matching for an I/O pin. OCT helps to prevent signal reflections and maintain signal integrity. This option is ignored if it is applied to anything other than an I/O pad, input buffer, or output buffer.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name OUTPUT_TERMINATION -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name OUTPUT_TERMINATION *SERIES 50 OHM WITH CALIBRATION* -to pin_name
```

**See Also**

INPUT_OCT_VALUE IO_STANDARD OCT_CONTROL_BLOCK
1.10.96. PERIPHERY_TO_CORE_PLACEMENT_AND_ROUTING_OPTIMIZATION

Specifies whether the Fitter should perform targeted placement and routing optimization on direct connections between periphery logic and registers in the FPGA core. If this option is set to 'Auto', the Fitter will automatically identify transfers with tight timing windows, place the core registers, and route all connections to or from the periphery. These placement and routing decisions are performed before the rest of core placement and routing, ensuring these timing-critical connections can meet timing, and also avoid routing congestion. If this option is set to 'On', all transfers between the periphery and core registers will be optimized, regardless of timing requirements. Setting this option to 'On' globally is not recommended -- instead it is intended for use in the Assignment Editor to force optimization to a targeted set of nodes or entities.

**Type**

Enumeration

**Values**

- Auto
- Off
- On

**Device Support**

- Intel Arria 10

**Notes**

This assignment supports wildcards.

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

The value of this assignment must be a node name.

**Syntax**

```
set_global_assignment -name PERIPHERY_TO_CORE_PLACEMENT_AND_ROUTING_OPTIMIZATION <value>

set_global_assignment -name PERIPHERY_TO_CORE_PLACEMENT_AND_ROUTING_OPTIMIZATION -entity <entity name> <value>

set_instance_assignment -name PERIPHERY_TO_CORE_PLACEMENT_AND_ROUTING_OPTIMIZATION -to <to> -entity <entity name> <value>
```

**Default Value**

OFF
1.10.97. PERIPH_FITTER_SCRIPT

Specifies the name of the tcl script that will be used to overwrite the default periphery fitter placement script used during a normal compile.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name PERIPH_FITTER_SCRIPT <value>
```
1.10.98. PERIPH_REPORT_SCRIPT

Specifies the name of the tcl script that will be used to overwrite the default periphery fitter report panels created during a normal compile.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name PERIPH_REPORT_SCRIPT <value>
```
1.10.99. PHYSICAL_SYNTHESIS

Enables the Physical Synthesis engine that includes combinational and sequential optimization during fitting to improve circuit performance.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name PHYSICAL_SYNTHESIS <value>
```

Default Value
Off
1.10.100. PLACEMENT_EFFORT_MULTIPLIER

Controls how much time the fitter spends in placement. The default value is 1.0 and legal values must be greater than 0. Specifying a floating-point number allows you to control the placement effort. A higher value increases CPU time but may improve placement quality. For example, a value of ‘4’ will increase fitting time by approximately 2 to 4 times but may increase quality.

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Intel Stratix 10
- Virtual JTAG TAP

**Notes**
This assignment is not copied when you create a companion revision for HardCopy II devices.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name PLACEMENT_EFFORT_MULTIPLIER <value>
```

**Default Value**

1.0
1.10.101. PLL_AUTO_RESET

Causes the PLL to self-reset automatically on loss of lock.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.
This assignment is included in the Fitter report.
This assignment supports synthesis wildcards.

**Syntax**

```
set_instance_assignment -name PLL_AUTO_RESET -to <to> -entity <entity name> <value>
```
1.10.102. PLL_BANDWIDTH_PRESET

Specifies the PLL bandwidth preset setting.

**Type**

Enumeration

**Values**

- Auto
- High
- Low
- Medium

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

This assignment supports synthesis wildcards.

**Syntax**

```bash
set_instance_assignment -name PLL_BANDWIDTH_PRESET -to <to> -entity <entity name> <value>
```
1.10.103. PLL_COMPENSATION_MODE

Specifies the routing path of the PLL feedback clock and adjusts the delay chains in the PLL.

**Type**

Enumeration

**Values**

- Direct
- EMIF
- External Feedback
- LVDS
- Normal
- Source Synchronous
- Zero Delay Buffer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

This assignment supports synthesis wildcards.

**Syntax**

```
set_instance_assignment -name PLL_COMPENSATION_MODE -to <to> -entity <entity name> <value>
```
1.10.104. PLL_OPTIMIZE_PHASE_SHIFT_FOR_TIMING

Allows the Fitter to set the phase shift of a PLL output counter, and hence the phase shift of its generated clock, to improve timing for all edges affected by this clock. Apply multicycle timing exceptions to paths between the generated clock and other clocks in the design to avoid timing violations.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_instance_assignment -name PLL_OPTIMIZE_PHASE_SHIFT_FOR_TIMING -to
<to> -entity <entity name> <value>
```
1.10.105. PRESERVE_UNUSED_XCVR_CHANNEL

Preserve the performance of unused RX/TX channels over time, if they are intended to be used in future

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

set_global_assignment -name PRESERVE_UNUSED_XCVR_CHANNEL <value>
set_instance_assignment -name PRESERVE_UNUSED_XCVR_CHANNEL -to <to> -entity <entity name> <value>

Default Value
Off

Example

set_global_assignment -name PRESERVE_UNUSED_XCVR_CHANNEL ON
set_instance_assignment -name PRESERVE_UNUSED_XCVR_CHANNEL ON -to AW34
1.10.106. PROGRAMMABLE_POWER_MAXIMUM_HIGH_SPEED_FRACTION_OF_USED_LAB_TILES

Sets an upper limit on the fraction of the LAB tiles used by your design that can be high-speed. Legal values must be between 0.0 and 1.0. The default value is 1.0. A value of 1.0 means that there is no restriction on the number of high-speed tiles, and the fitter will use the minimum number needed to meet the timing requirements of your design. Specifying a value lower than 1.0 might degrade timing quality, because some timing critical resources might be forced into low-power mode.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name PROGRAMMABLE_POWER_MAXIMUM_HIGH_SPEED_FRACTION_OF_USED_LAB_TILES <value>
```

**Default Value**

1.0
1.10.107. PROGRAMMABLE_POWER_TECHNOLOGY_SETTING

Controls how the fitter configures tiles to operate in high-speed mode or low-power mode. Automatic specifies that the fitter should try to minimize power without sacrificing timing performance. Minimize Power Only specifies that the fitter should set the maximum number of tiles to operate in low-power mode. Force All Used Tiles to High Speed specifies that the fitter should set all used tiles to operate in high-speed mode. Force All Tiles with Failing Timing Paths to High Speed specifies that the fitter should ensure that all paths that are failing timing are set to high-speed mode. For designs that meet timing, the behavior of this setting should be similar to the Automatic setting. For designs that fail timing, all paths with negative slack will be put in high-speed mode. Note that this will likely not increase the speed of the design, and it may increase static power consumption, but it may assist in determining which logic paths need to be re-designed in order to close timing.

**Type**

Enumeration

**Values**

- Automatic
- Force All Tiles with Failing Timing Paths to High Speed
- Force All Used Tiles to High Speed
- Minimize Power Only

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name PROGRAMMABLE_POWER_TECHNOLOGY_SETTING <value>
```
1.10.108. PROGRAMMABLE_PREEMPHASIS

Implements control of programmable pre-emphasis, which helps compensate for high frequency losses. This option is ignored if it is applied to anything other than an output or bidirectional pin, or a top-level design entity containing output or bidirectional pins.

Type

Integer

Device Support

• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

INTEGER_RANGE

0, 3

Notes

This assignment supports Fitter wildcards.
This assignment is included in the Fitter report.

Syntax

set_global_assignment -name PROGRAMMABLE_PREEMPHASIS -entity <entity name> <value>
set_instance_assignment -name PROGRAMMABLE_PREEMPHASIS -to <to> -entity <entity name> <value>
set_global_assignment -name PROGRAMMABLE_PREEMPHASIS <value>

Example

set_instance_assignment -name PROGRAMMABLE_PREEMPHASIS 0 -to pin

See Also

IO_STANDARD
1.10.109. PROGRAMMABLE_VOD

Implements control of programmable VOD. This option is ignored if it is applied to anything other than an output or bidirectional pin, or a top-level design entity containing output or bidirectional pins.

**Type**

Integer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**INTEGER_RANGE**

0, 3

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name PROGRAMMABLE_VOD -entity <entity name> <value>
set_instance_assignment -name PROGRAMMABLE_VOD -to <to> -entity <entity name> <value>
set_global_assignment -name PROGRAMMABLE_VOD <value>
```

**Example**

```
set_instance_assignment -name PROGRAMMABLE_PREEMPHASIS 0 -to pin
```

**See Also**

IO_STANDARD
1.10.110. **PR_DONE_OPEN_DRAIN**

Specify open drain on the PR_DONE pin should be enabled or not

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name PR_DONE_OPEN_DRAIN <value>
```

**Default Value**

On

**Example**

```
set_global_assignment -name pr_done_open_drain on
set_global_assignment -name pr_done_open_drain off
```

**See Also**

ENABLE_PR_PINS
1.10.111. PR_ERROR_OPEN_DRAIN

Specify open drain on the PR_ERROR pin should be enabled or not

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name PR_ERROR_OPEN_DRAIN <value>
```

**Default Value**

On

**Example**

```
set_global_assignment -name pr_error_open_drain on
set_global_assignment -name pr_error_open_drain off
```

**See Also**

ENABLE_PR_PINS
1.10.112. PR_PINS_OPEN_DRAIN

Specifies open drain on the Partial Reconfiguration pins (PR_READY, PR_ERROR, and PR_DONE) should be enabled or not

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**
None

**Syntax**

```plaintext
set_global_assignment -name PR_PINS_OPEN_DRAIN <value>
```

**Default Value**
Off

**Example**

```plaintext
set_global_assignment -name pr_pins_open_drain on
set_global_assignment -name pr_pins_open_drain off
```

**See Also**
ENABLE_PR_PINS
1.10.113. PR_READY_OPEN_DRAIN

Specify open drain on the PR_READY pin should be enabled or not

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name PR_READY_OPEN_DRAIN <value>
```

**Default Value**

On

**Example**

```
set_global_assignment -name pr_ready_open_drain on
set_global_assignment -name pr_ready_open_drain off
```

**See Also**

ENABLE_PR_PINS
1.10.114. QII_AUTO_PACKED_REGISTERS

Allows the Compiler to combine a register and a combinational function, or to implement registers using I/O cells, RAM blocks, or DSP blocks instead of logic cells. This option controls how aggressively the Fitter combines registers with other function blocks to reduce the area of the design. Generally, the 'Auto' or 'Sparse Auto' settings should be used for this option. The other options limit the flexibility of the Fitter to combine registers with other function blocks and can result in no fits. When 'Auto', the default setting is selected, the Fitter attempts to achieve the best performance with good area. If necessary, additional logic is combined to reduce the area of the design so that it can fit within the selected device. When this setting is 'Sparse Auto', the Fitter attempts to achieve the highest performance with possibly increased area, but without exceeding the logic capacity of the device. If this option is set to 'Off', the Fitter does not combine registers with other functions. The 'Off' setting severely increases the area of the design and may cause a no fit. If this option is set to 'Sparse', the Fitter combines functions in a way which improves performance for many designs. If this option is set to 'Normal', the Fitter combines functions that are expected to maximize design performance and reduce area. When this option is set to 'Minimize Area', the Fitter aggressively combines unrelated functions to reduce the area required for placing the design, at the expense of performance. When this option is set to 'Minimize Area with Chains', the Fitter even more aggressively combines functions that are part of register cascade chains or can be converted to register cascade chains. If this option is set to any value but 'Off', registers are combined with I/O cells to improve I/O timing (as long as the Optimize IOC Register Placement For Timing option allows it), and with DSP blocks and RAM blocks to reduce the area required for placing the design or to improve timing when possible.

Old Name

AUTO_PACKED_REGISTERS_ARMSTRONG, AUTO_PACKED_REGISTERS_STRATIXII,
Auto Packed Registers -- Stratix II/II GX/III Cyclone II/III Arria GX

Type

Enumeration

Values

- Auto
- Minimize Area
- Minimize Area with Chains
- Normal
- Off
- Sparse
- Sparse Auto

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.
Syntax

```
set_global_assignment -name QII_AUTO_PACKED_REGISTERS <value>
set_global_assignment -name QII_AUTO_PACKED_REGISTERS -entity <entity name> <value>
set_instance_assignment -name QII_AUTO_PACKED_REGISTERS -to <to> -entity <entity name> <value>
```

Default Value

Auto
1.10.115. RELATIVE_NEUTRON_FLUX

is the neutron flux rate used by the seu calculator

**Type**

Double

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name RELATIVE_NEUTRON_FLUX <value>
```

**Default Value**

1.0
1.10.116. RESERVE_ALL_UNUSED_PINS_WEAK_PULLUP

Reserves all unused pins on the target device in one of 5 states: as inputs that are tri-stated, as outputs that drive ground, as outputs that drive an unspecified signal, as input tri-stated with bus-hold, or as input tri-stated with weak pull-up.

**Type**

Enumeration

**Values**

- As input tri-stated
- As input tri-stated with bus-hold
- As input tri-stated with weak pull-up
- As output driving an unspecified signal
- As output driving ground

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name RESERVE_ALL_UNUSED_PINS_WEAK_PULLUP <value>
```

**Default Value**

As input tri-stated with weak pull-up
1.10.117. RESERVE_AVST_CLK_AFTER_CONFIGURATION

Specifies how the AVST clock pin should be used when the device is operating in user mode after configuration via AVST x16 or AVST x32 is complete.

Type

Enumeration

Values

- As input tri-stated
- Use as regular IO

Device Support

- Intel Stratix 10

Notes

None

Syntax

```
set_global_assignment -name RESERVE_AVST_CLK_AFTER_CONFIGURATION <value>
```

Default Value

Use as regular IO

Example

```
set_global_assignment -name RESERVE_AVST_CLK_AFTER_CONFIGURATION "USE AS REGULAR IO"
```
1.10.118. RESERVE_AVST_DATA15_THROUGH_DATA0_AFTER_CONFIGURATION

Specifies how the AVST data[15:0] pin should be used when the device is operating in user mode after configuration via AVST x16 or AVST x32 is complete.

**Type**

 Enumeration

**Values**

- As input tri-stated
- Use as regular IO

**Device Support**

- Intel Stratix 10

**Notes**

None

**Syntax**

```
set_global_assignment -name RESERVE_AVST_DATA15_THROUGH_DATA0_AFTER_CONFIGURATION <value>
```

**Default Value**

Use as regular IO

**Example**

```
set_global_assignment -name RESERVE_AVST_DATA15_THROUGH_DATA0_AFTER_CONFIGURATION "USE AS REGULAR IO"
```
1.10.119. RESERVE_AVST_DATA31_THROUGH_DATA16_AFTER_CONFIGURATION

Specifies how the AVST data[31:16] pin should be used when the device is operating in user mode after configuration via AVST x32 is complete.

**Type**

Enumeration

**Values**

- As input tri-stated
- Use as regular IO

**Device Support**

- Intel Stratix 10

**Notes**

None

**Syntax**

```
set_global_assignment -name RESERVE_AVST_DATA31_THROUGH_DATA16_AFTER_CONFIGURATION <value>
```

**Default Value**

Use as regular IO

**Example**

```
set_global_assignment -name RESERVE_AVST_DATA31_THROUGH_DATA16_AFTER_CONFIGURATION "USE AS REGULAR IO"
```
1.10.120. RESERVE_AVST_VALID_AFTER_CONFIGURATION

Specifies how the AVST valid pin should be used when the device is operating in user mode after configuration via AVST x16 or AVST x32 is complete.

**Type**

Enumeration

**Values**

- As input tri-stated
- Use as regular IO

**Device Support**

- Intel Stratix 10

**Notes**

None

**Syntax**

```plaintext
set_global_assignment -name RESERVE_AVST_VALID_AFTER_CONFIGURATION <value>
```

**Default Value**

Use as regular IO

**Example**

```plaintext
set_global_assignment -name RESERVE_AVST_VALID_AFTER_CONFIGURATION *USE AS REGULAR IO*
```
1.10.121. RESERVE_DATA0_AFTER_CONFIGURATION

Specifies how the Data[0] pin should be used when the device is operating in user mode after configuration is complete. Depending on the current device and configuration scheme, the Data[0] pin can be reserved as a regular I/O pin, as an input that is tri-stated, as an output that drives ground, as an output that drives an unspecified signal, or compiler configured. If the Data[0] pin is reserved as a regular I/O pin, the Data[0] pin can be used as an ordinary I/O pin after configuration. If the Data[0] pin is only used to interface with external memory for configuration, the Data[0] pin should be reserved as compiler configured.

Type

Enumeration

Values

- As input tri-stated
- As output driving an unspecified signal
- As output driving ground
- Compiler configured
- Use as regular IO

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX

Notes

None

Syntax

```
set_global_assignment -name RESERVE_DATA0_AFTER_CONFIGURATION <value>
```

Default Value

As input tri-stated

Example

```
set_global_assignment -name RESERVE_DATA0_AFTER_CONFIGURATION "USE AS REGULAR IO"
```
1.10.122. RESERVE_DATA15_THROUGH_DATA8_AFTER_CONFIGURATION

Specifies how the Data[15..8] pins should be used when the device is operating in user mode after configuration is complete.

**Type**

Enumeration

**Values**

- As input tri-stated
- As output driving an unspecified signal
- As output driving ground
- Use as regular IO

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name RESERVE_DATA15_THROUGH_DATA8_AFTER_CONFIGURATION <value>
```

**Default Value**

Use as regular IO

**Example**

```
set_global_assignment -name RESERVE_DATA15_THROUGH_DATA8_AFTER.Configuration "USE AS REGULAR IO"
```
### 1.10.123. RESERVE_DATA31_THROUGH_DATA16_AFTER_CONFIGURATION

Specifies how the Data[31..16] pins should be used when the device is operating in user mode after configuration is complete.

**Type**

Enumeration

**Values**

- As input tri-stated
- As output driving an unspecified signal
- As output driving ground
- Use as regular IO

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name RESERVE_DATA31_THROUGH_DATA16_AFTER_CONFIGURATION <value>
```

**Default Value**

Use as regular IO

**Example**

```
set_global_assignment -name RESERVE_DATA31_THROUGH_DATA16_AFTER_CONFIGURATION "USE AS REGULAR IO"
```
1.10.124. RESERVE_DATA7_THROUGH_DATA1_AFTER_CONFIGURATION

Specifies how the Data[7..1] pins should be used when the device is operating in user mode after configuration is complete. Depending on the current device and configuration scheme, these pins can be reserved as regular I/O pins, as inputs that are tri-stated, as outputs that drive ground, or as outputs that drive an unspecified signal. If this pin is reserved as a regular I/O pin, the Data[7..1] pins can be used as ordinary I/O pins after configuration.

**Type**

Enumeration

**Values**

- As input tri-stated
- As output driving an unspecified signal
- As output driving ground
- Use as regular IO

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name RESERVE_DATA7_THROUGH_DATA1_AFTER_CONFIGURATION <value>
```

**Default Value**

Use as regular IO

**Example**

```
set_global_assignment -name RESERVE_DATA7_THROUGH_DATA1_AFTER_CONFIGURATION "USE AS REGULAR IO"
```
1.10.125. **RESERVE_FLEXIBLE_CLOCK_NETWORK**

Allows you to specify whether this clock should be routed using only flexible section clock network routing. This setting may improve routability for reconfigurable clocks, or clocks that will drive new logic in a later compile.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```plaintext
set_instance_assignment -name RESERVE_FLEXIBLE_CLOCK_NETWORK -to <to> -entity <entity name> <value>
```
1.10.126. RESERVE_PR_PINS

Allows you to reserve the PR_REQUEST, PR_READY, PR_ERROR, PR_DONE, DCLK, and DATA[15..0] pins and prevent other pins from using them. Once these pins are reserved, they could not use to support partial reconfiguration (PR) with an external host as well when the device operates in user mode.

Type

Boolean

Device Support

• Intel Arria 10
• Intel Cyclone 10 GX

Notes

None

Syntax

```
set_global_assignment -name RESERVE_PR_PINS <value>
```

Default Value

Off

Example

```
set_global_assignment -name RESERVE_PR_PINS ON
```

See Also

ENABLE_PR_PINS
1.10.127. RESERVE_ROUTING_OUTPUT_FLEXIBILITY

Allows you to specify whether the router should reserve output flexibility in this compilation. This setting helps maintain certain routing flexibility for later compilation, but may affect routability in this compilation.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX

Notes

This assignment supports Fitter wildcards.

Syntax

```
set_global_assignment -name RESERVE_ROUTING_OUTPUT_FLEXIBILITY <value>
```

Default Value

Off
1.10.128. ROUTER_CLOCKING_TOPOLOGY_ANALYSIS

Directs the router to perform an analysis of the design's clocking topology and adjust the optimization approach on paths with significant clock skew. Enabling this option may improve hold timing at the cost of increased compile time.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX

Notes
This assignment is not copied when you create a companion revision for HardCopy II devices.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name ROUTER_CLOCKING_TOPOLOGY_ANALYSIS <value>
```

Default Value
Off
1.10.129. ROUTER_EFFORT_MULTIPLIER

Controls how quickly the router tries to find a valid solution. The default value is 1.0 and legal values must be greater than or equal to 0.25. Values higher than 1.0 may improve routing quality at the expense of run-time on difficult-to-route circuits. Values lower than 1.0 can reduce router run-time, but usually reduces routing quality slightly.

**Type**

String

**Device Support**

- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Virtual JTAG TAP

**Notes**

This assignment is not copied when you create a companion revision for HardCopy II devices.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ROUTER_EFFORT_MULTIPLIER <value>
```

**Default Value**

1.0
1.10.130. ROUTER_LCELL_INSERTION_AND_LOGIC_DUPLICATION

Allows the Fitter to automatically insert buffer logic cells between two nodes without altering the functionality of the design. Buffer logic cells are created from unused logic cells in the device. This option also allows the Fitter to duplicate a logic cell within a LAB when there are unused logic cells available in a LAB. Using this option can increase compilation time. The default setting of Auto will allow these operations to run when 1) the design requires them to fit the design or 2) the performance of the design can be improved by this optimization with a nominal compilation time increase.

**Type**

Enumeration

**Values**

- Auto
- Off
- On

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ROUTER_LCELL_INSERTION_AND_LOGIC_DUPLICATION <value>
```

**Default Value**

Auto
1.10.131. ROUTER_REGISTER_DUPLICATION

Allows the Fitter to automatically duplicate registers within a LAB containing empty logic cells. This option does not alter the functionality of the design. The Auto Register Duplication option is also ignored if you select OFF as the setting for the Logic Cell Insertion -- Logic Duplication logic option. Turning on this option can allow the Logic Cell Insertion -- Logic Duplication logic option to improve a design's routability, but can make formal verification of a design more difficult.

**Type**

Enumeration

**Values**

- Auto
- Off
- On

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ROUTER_REGISTER_DUPLICATION <value>
```

**Default Value**

Auto
1.10.132. ROUTER_TIMING_OPTIMIZATION_LEVEL

Controls how aggressively the router tries to meet timing requirements. Setting this option to Maximum can increase design speed slightly, at the cost of increased compile time. Setting this option to Minimum can reduce compile time, at the cost of slightly reduced design speed. The default value is Normal.

**Type**

Enumeration

**Values**

- MAXIMUM
- MINIMUM
- Normal

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- EPC1
- EPC2
- Enhanced Configuration Devices
- Flash Memory
- Intel Stratix 10
- Virtual JTAG TAP

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ROUTER_TIMING_OPTIMIZATION_LEVEL <value>
```

**Default Value**

Normal
1.10.133. RZQ_GROUP

Specifies an RZQ pin name and an OCT to terminate the given pin. Using the same RZQ pin name instructs the fitter to use the same OCT to terminate the group of pins.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name RZQ_GROUP -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name RZQ_GROUP oct_rzq_in -to output_pin
```

**See Also**

OUTPUT_TERMINATION
1.10.134. SDM_DIRECT_TO_FACTORY_IMAGE

If this pin asserted then device loads the factory image as the first image after boot without attempting to load any application image.

**Type**

String

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name SDM_DIRECT_TO_FACTORY_IMAGE <value>
```

**Default Value**

AUTO
1.10.135. SDM_PCIE_CALIB_START

Output to drive high when configuration has started PCIe Calibration.

**Type**
String

**Device Support**
- Intel Stratix 10

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```sh
set_global_assignment -name SDM_PCIE_CALIB_START <value>
```

**Default Value**
AUTO
1.10.136. SEED

Specifies the starting value the Fitter uses when randomly determining the initial placement for the current design. The value can be any non-negative integer value. Changing the starting value may or may not produce better fitting. Specify a starting value only if the Fitter is not meeting timing requirements by a small amount. The Design Space Explorer tool lets you sweep many seed values easily to find the best value for a given project. Modifying the design or Quartus settings even slightly will usually change which seed is best for the design.

Old Name

INITIAL_PLACEMENT_CONFIGURATION

Type

Integer

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is not copied when you create a companion revision for HardCopy II devices.

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name SEED <value>
```

Default Value

1
1.10.137. SEU_FIT_REPORT

determines whether the SEU report is displayed or not

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SEU_FIT_REPORT <value>
```

**Default Value**

Off
1.10.138. SLEW_RATE

Implements control of low-to-high/high-to-low transitions on output pins to help reduce switching noise. When a large number of output pins switch simultaneously, pins that use the lower Slew Rate option help reduce switching noise. This option is ignored if it is applied to anything other than an output or bidirectional pin, or a top-level design entity containing output or bidirectional pins. Note that using this option may increase the delay for output or bidir pins, which can affect slack on Tco paths for the pins this is applied to.

**Type**

Integer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**INTEGER_RANGE**

0, 3

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name SLEW_RATE -entity <entity name> <value>
set_instance_assignment -name SLEW_RATE -to <to> -entity <entity name> <value>
set_global_assignment -name SLEW_RATE <value>
```

**Example**

```plaintext
set_instance_assignment -name SLEW_RATE 0 -to pin
```

**See Also**

IO_STANDARD CURRENT_STRENGTH_NEW OUTPUT_TERMINATION
1.10.139. SLOW_SLEW_RATE

Implements slow low-to-high/high-to-low transitions on output pins to help reduce switching noise. When a large number of output pins switch simultaneously, pins that use the Slow Slew Rate option help reduce switching noise. This option is ignored if it is applied to anything other than an output or bidirectional pin, or a top-level design entity containing output or bidirectional pins. Note that using this option increases the delay for output or bidir pins, which can affect slack on Tco paths for the pins this is applied to.

**Type**

Boolean

**Device Support**

- EPC1
- EPC2
- Enhanced Configuration Devices

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name SLOW_SLEW_RATE -entity <entity name> <value>
set_instance_assignment -name SLOW_SLEW_RATE -to <to> -entity <entity name> <value>
set_global_assignment -name SLOW_SLEW_RATE <value>
```

**Default Value**

Off
1.10.140. STRATIXV_CONFIGURATION_SCHEME

The method used to configure a device with a design. Available configuration schemes depend on selected device family: Passive Serial (PS), Passive Parallel x8 (PPx8), Passive Parallel x16 (PPx16), Passive Parallel x32 (PPx32), Active Serial x1 (ASx1), Active Serial x4 (ASx4) and AVST x8, x16 and x32.

Type

Enumeration

Values

• AVST x16
• AVST x32
• AVST x8
• Active Serial
• Active Serial x1
• Active Serial x4
• Passive Parallel x16
• Passive Parallel x32
• Passive Parallel x8
• Passive Serial

Device Support

• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes

None

Syntax

```
set_global_assignment -name STRATIXV_CONFIGURATION_SCHEME <value>
```

Example

```
set_global_assignment -name STRATIXV_CONFIGURATION_SCHEME "Active Serial"
```
1.10.141. STRATIX_DEVICE_IO_STANDARD

Specifies the default I/O standard to be used for pins on the target device.

**Old Name**
YEAGER_DEVICE_IO_STANDARD

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD <value>
```

**Example**

```
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "1.2 V"
```

**See Also**

IO_STANDARD
1.10.142. SYNCHRONIZER_IDENTIFICATION

Specifies how the Timing Analyzer identifies registers as being part of a synchronization register chain for metastability analysis. A synchronization register chain is a sequence of registers with the same clock with no fan-out in between, which is driven by a pin or logic from another clock domain. If this option is set to 'Off', the Timing Analyzer does not identify the specified registers, or the registers within the specified entity, as synchronization registers. If the option is set to 'Auto', the Timing Analyzer identifies valid synchronization registers that are part of a chain with more than one register that contains no combinational logic. If this option is set to 'Forced if Asynchronous', the Timing Analyzer identifies synchronization register chains if the software detects an asynchronous signal transfer, even if there is combinational logic or only one register in the chain. If this option is set to 'Forced', then the specified register, or all registers within the specified entity, are identified as synchronizers. The 'Forced' option should not be applied to the entire design, because doing so identifies all registers in the design as synchronizers. Registers that are identified as synchronizers are optimized for improved Mean Time Between Failure (MTBF) as long as the Optimize Design for Metastability option is turned on. If a synchronization register chain is identified with the 'Forced' or 'Forced if Asynchronous' option, then the Timing Analyzer reports the metastability MTBF for the chain. MTBF is not reported for automatically-detected register chains; you can use the 'Auto' setting to generate a report of possible synchronization chains in your design. If a synchronization register chain is identified with the 'Forced' or 'Forced if Asynchronous' option, then the Timing Analyzer reports the metastability MTBF for the chain when it meets the design timing requirements.

Old Name
ANALYZE_METASTABILITY

Type
Enumeration

Values
- Auto
- Forced
- Forced If Asynchronous
- Off

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment supports wildcards.
This assignment supports Fitter wildcards.
This assignment is included in the Fitter report.
Syntax

```plaintext
set_global_assignment -name SYNCHRONIZER_IDENTIFICATION <value>
set_global_assignment -name SYNCHRONIZER_IDENTIFICATION -entity <entity name> <value>
set_instance_assignment -name SYNCHRONIZER_IDENTIFICATION -to <to> -entity <entity name> <value>
```

Default Value

Auto
1.10.143. SYNCHRONIZER_TOGGLE_RATE

Specifies the toggle rate of this register. The units for this value are in transitions per second, and must be positive. This is used when calculating the Mean Time Between Failures (MTBF) of a synchronizer chain in the Metastability Report. This only applies when the Timing Analyzer is used. You can specify the desired frequency setting on the first register of a synchronizer chain, and this will determine the data rate used in the MTBF estimation. There are two other assignments associated with toggle rates. The I/O Maximum Toggle Rate is only used for pins, and specifies the worst-case toggle rates used for signal integrity purposes. The Power Toggle Rate assignment is used to specify the expected time-averaged toggle rate, and is used by the Power Analyzer to estimate time-averaged power consumption.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE -to <to> -entity <entity name> <value>
```
1.10.144. TERMINATION_CONTROL_BLOCK

Specifies the control block used for calibrated on-chip termination (OCT) and impedance matching for an I/O pin. OCT helps to prevent signal reflections and maintain signal integrity. This option is ignored if it is applied to anything other than an I/O pad, input buffer, or output buffer. This option should only be used on I/O pins which have a calibrated termination assignment.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

The value of this assignment is case sensitive.

This assignment is copied to any duplicated nodes.

This assignment supports Fitter wildcards.

The value of this assignment must be a node name.

**Syntax**

```
set_instance_assignment -name TERMINATION_CONTROL_BLOCK -to <to> -
entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name TERMINATION_CONTROL_BLOCK "my_oct:inst|
my_oct_alt_oct_toq:my_oct_alt_oct_toq_component|sd1a_0" -to pin_name
```

**See Also**

INPUT_OCT_VALUE IO_STANDARD OUTPUT_OCT_VALUE
1.10.145. TREAT_BIDIR_AS_OUTPUT

Directs the bidirectional pin to be essentially treated as an output pin meaning that the input path is used for feedback from the output path.

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
This assignment supports Fitter wildcards.
This assignment is included in the Fitter report.

**Syntax**

```text
set_global_assignment -name TREAT_BIDIR_AS_OUTPUT <value>
set_global_assignment -name TREAT_BIDIR_AS_OUTPUT -entity <entity name> <value>
set_instance_assignment -name TREAT_BIDIR_AS_OUTPUT -to <to> -entity <entity name> <value>
```

**Default Value**
Off

**Example**

```text
set_instance_assignment -name TREAT_BIDIR_AS_OUTPUT ON -to bidir_pin
```

**See Also**
IO_STANDARD
1.10.146. **TRI_STATE_SPI_PINS**

This option controls Active Configuration Controller to tri-state the Active Configuration pins in user mode. This option would be ignored if the selected configuration scheme is not an Active Configuration scheme.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name TRI_STATE_SPI_PINS <value>
```

**Default Value**

Off
1.10.147. **UNFORCE_MERGE_PLL**

Prevents the specified PLL to be merged with the master PLL. Use this option only for two compatible PLLs driven by the same clock source.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_instance_assignment -name UNFORCE_MERGE_PLL -to <to> -entity <entity name> <value>
```
1.10.148. UNUSED_TSD_PINS_GND

If this option is turned on, unused temperature sensing diode (TSD) pins, TEMPDIODEp/TEMPDIODEn, on the device are automatically set to GND in the Pin-Out File (.pin) file. By default, the TSD pins are available for connection to an external temperature sensing device; however, you must manually connect the pins to GND if they are not connected. Turning on this option only updates the information in the .pin file, it does not affect FPGA behavior.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name UNUSED_TSD_PINS_GND <value>
```

**Default Value**

Off
1.10.149. USE_AS_3V_GPIO

This assignment is required when attempting to place a GPIO using a non-3V IO standard in a location that supports 3V IOs. It allows the fitter to place this in a 3V IO location (not allowed by default). Applies to S10 only.

Type
Boolean

Device Support
• Intel Stratix 10

Notes
This assignment supports Fitter wildcards.
This assignment supports synthesis wildcards.

Syntax

```bash
set_global_assignment -name USE_AS_3V_GPIO -entity <entity name> <value>
set_instance_assignment -name USE_AS_3V_GPIO -to <to> -entity <entity name> <value>
```

Example

```bash
set_instance_assignment -name USE_AS_3V_GPIO ON -to pin
```
1.10.150. USE_CONF_DONE

Implement CONF_DONE using appropriate configuration pin resource.

Type
String

Device Support
• Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```plaintext
set_global_assignment -name USE_CONF_DONE <value>
```

Default Value
AUTO
1.10.151. USE_CVP_CONFDONE

Enable the CvP_CONFDONE pin, which indicates that the device finished core programming in Configuration via Protocol mode. If this option is turned off, the CvP_CONFDONE pin is disabled when the device operates in user mode and is available as a user I/O pin.

**Type**

String

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_CVP_CONFDONE <value>
```

**Default Value**

AUTO
**1.10.152. USE_HPS_COLD_RESET**

Enable the HPS cold reset pin.

**Type**

String

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_HPS_COLD_RESET <value>
```

**Default Value**

AUTO
1.10.153. USE_HPS_WARM_RESET

Enable the HPS warm nreset pin.

**Type**

String

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_HPS_WARM_RESET <value>
```

**Default Value**

AUTO
1.10.154. USE_INIT_DONE

Enables the INIT_DONE pin, which allows you to externally monitor when initialization is completed and the device is in user mode. If this option is turned off, the INIT_DONE pin is disabled when the device operates in user mode and is available as a user I/O pin.

**Type**

String

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name USE_INIT_DONE <value>
```

**Default Value**

AUTO
1.10.155. USE_PWRMGT_ALERT

Implement PWRMGT_ALERT using appropriate configuration pin resource.

**Type**
String

**Device Support**
- Intel Stratix 10

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```text
set_global_assignment -name USE_PWRMGT_ALERT <value>
```

**Default Value**
AUTO
1.10.156. USE_PWRMGT_PWM0

An output signal generated from PMW master.

**Type**

String

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_PWRMGT_PWM0 <value>
```

**Default Value**

AUTO
1.10.157. **USE_PWRMGT_SCL**

Implement PWRMGT_SCL using appropriate configuration pin resource.

**Type**
String

**Device Support**
- Intel Stratix 10

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_PWRMGT_SCL <value>
```

**Default Value**
AUTO
1.10.158. USE_PWRMGT_SDA

Implement PWRMGT_SDA using appropriate configuration pin resource.

**Type**

String

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_PWRMGT_SDA <value>
```

**Default Value**

AUTO
1.10.159. USE_SEU_ERROR

Enable the SEU_ERROR pin.

Type
String

Device Support
• Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name USE_SEU_ERROR <value>
```

Default Value
AUTO
1.10.160. USE_UIB_CATTRIP

Output to indicate an extreme over-temperature conditioning resulted from UIB usage.

Type
String

Device Support
• Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name USE_UIB_CATTRIP <value>
```

Default Value
AUTO
1.10.161. VCCIO_CURRENT_1PT8V

For user to override VCCIO current of 1.8-V io standard. Original current is 2mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name VCCIO_CURRENT_1PT8V <value>
```
1.10.162. \texttt{VCCIO\_CURRENT\_2PT5V}

For user to override VCCIO current of 2.5-V io standard. Original current is 2mA

Type
Integer

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

\begin{verbatim}
set\_global\_assignment -name VCCIO\_CURRENT\_2PT5V <value>
\end{verbatim}
1.10.163. VCCIO_CURRENT_GTL

For user to override VCCIO current of GTL. Not yet supported in MAX7000.

Type
Integer

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

```
set_global_assignment -name VCCIO_CURRENT_GTL <value>
```
1.10.164. VCCIO_CURRENT_GTL_PLUS

For user to override VCCIO current of GTL+. Original current is 0mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name VCCIO_CURRENT_GTL_PLUS <value>
```
1.10.165. VCCIO_CURRENT_LVCMOS

For user to override VCCIO current of LVCMOS. Original current is 2mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name VCCIO_CURRENT_LVCMOS <value>
```
1.10.166. VCCIO_CURRENT_LVTTL

For user to override VCCIO current of LVTTL. Original current is 4mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name VCCIO_CURRENT_LVTTL <value>
```
1.10.167. VCCIO_CURRENT_PCI

For user to override VCCIO current of PCI. Original current is 4mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name VCCIO_CURRENT_PCI <value>
```
1.10.168. VCCIO_CURRENT_SSTL2_CLASS1

For user to override VCCIO current of SSTL2_CLASS1. Original current is 14mA

Type
Integer

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

```bash
set_global_assignment -name VCCIO_CURRENT_SSTL2_CLASS1 <value>
```
1.10.169. VCCIO_CURRENT_SSTL2_CLASS2

For user to override VCCIO current of SSTL2_CLASS2. Original current is 21mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name VCCIO_CURRENT_SSTL2_CLASS2 <value>
```
1.10.170. VCCIO_CURRENT_SSTL3_CLASS1

For user to override VCCIO current of SSTL3_CLASS1. Original current is 18mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name VCCIO_CURRENT_SSTL3_CLASS1 <value>
```
1.10.171. VCCIO_CURRENT_SSTL3_CLASS2

For user to override VCCIO current of SSTL3_CLASS2. Original current is 25mA

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name VCCIO_CURRENT_SSTL3_CLASS2 <value>
```
1.10.172. VID_OPERATION_MODE

Enable Voltage Identification Logic in the target device with selected operation mode.

**Type**

Enumeration

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VID_OPERATION_MODE <value>
```

**Default Value**

PMBus Master

**Example**

```plaintext
set_global_assignment -name VID_OPERATION_MODE "PMBus Master"
```
1.10.173. VREF_MODE

Specifies VREF mode of a pin.

**Type**

Enumeration

**Values**

- CALIBRATED
- CALIBRATED_SSTL
- EXTERNAL
- VCCIO_45
- VCCIO_50
- VCCIO_55
- VCCIO_65
- VCCIO_70
- VCCIO_75

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_global_assignment -name VREF_MODE <value>
set_global_assignment -name VREF_MODE -entity <entity name> <value>
set_instance_assignment -name VREF_MODE -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name VREF_MODE EXTERNAL -to pin
```

**See Also**

VREF_MODE
1.10.174. WEAK_PULL_UP_RESISTOR

Enables the weak pull-up resistor when the device is operating in user mode. This option pulls a high-impedance bus signal to VCC. The Weak Pull-Up Resistor option should not be used at the same time as the Enable Bus-Hold Circuitry option. This option is ignored if it is applied to anything other than a pin.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name WEAK_PULL_UP_RESISTOR <value>
set_global_assignment -name WEAK_PULL_UP_RESISTOR -entity <entity name> <value>
set_instance_assignment -name WEAK_PULL_UP_RESISTOR -to <to> -entity <entity name> <value>
```

**Default Value**

Off

**Example**

```
set_instance_assignment -name WEAK_PULL_UP_RESISTOR ON -to pin
```
1.10.175. XCVR_A10_REFCLK_TERM_TRISTATE

A logic option that directs the Compiler to enable the internal termination of the dedicated reference clock pin.

**Type**

Enumeration

**Values**

- TRISTATE_OFF
- TRISTATE_ON

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_REFCLK_TERM_TRISTATE -to <to> -
entity <entity name> <value>
```
1.10.176. XCVR_A10_RX_ADG_CTLE_ACGAIN_4S

A logic option that allows you to control the amount of AC gain on the equalizer in high gain mode. The amount of AC gain is proportional to the setting where '0' gives the lowest AC gain and '31' gives the largest AC gain. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_CITLE_ACGAIN_4S_0
- RADP_CITLE_ACGAIN_4S_1
- RADP_CITLE_ACGAIN_4S_10
- RADP_CITLE_ACGAIN_4S_11
- RADP_CITLE_ACGAIN_4S_12
- RADP_CITLE_ACGAIN_4S_13
- RADP_CITLE_ACGAIN_4S_14
- RADP_CITLE_ACGAIN_4S_15
- RADP_CITLE_ACGAIN_4S_16
- RADP_CITLE_ACGAIN_4S_17
- RADP_CITLE_ACGAIN_4S_18
- RADP_CITLE_ACGAIN_4S_19
- RADP_CITLE_ACGAIN_4S_2
- RADP_CITLE_ACGAIN_4S_20
- RADP_CITLE_ACGAIN_4S_21
- RADP_CITLE_ACGAIN_4S_22
- RADP_CITLE_ACGAIN_4S_23
- RADP_CITLE_ACGAIN_4S_24
- RADP_CITLE_ACGAIN_4S_25
- RADP_CITLE_ACGAIN_4S_26
- RADP_CITLE_ACGAIN_4S_27
- RADP_CITLE_ACGAIN_4S_28
- RADP_CITLE_ACGAIN_4S_3
- RADP_CITLE_ACGAIN_4S_4
- RADP_CITLE_ACGAIN_4S_5
- RADP_CITLE_ACGAIN_4S_6
- RADP_CITLE_ACGAIN_4S_7
- RADP_CITLE_ACGAIN_4S_8
- RADP_CITLE_ACGAIN_4S_9
Device Support
• Intel Arria 10

Notes

Syntax

```plaintext
set_instance_assignment -name XCVR_A10_RX_ADP_C TLE_ACGAIN_4S -to <to> -
entity <entity name> <value>
```
A logic option that allows you to control the amount of AC gain on the one-stage equalizer. The amount of AC gain is proportional to the setting where '0' gives the lowest AC gain and '15' gives the largest AC gain. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_CTLER_EQZ_1S_SEL_0
- RADP_CTLER_EQZ_1S_SEL_1
- RADP_CTLER_EQZ_1S_SEL_10
- RADP_CTLER_EQZ_1S_SEL_11
- RADP_CTLER_EQZ_1S_SEL_12
- RADP_CTLER_EQZ_1S_SEL_13
- RADP_CTLER_EQZ_1S_SEL_14
- RADP_CTLER_EQZ_1S_SEL_15
- RADP_CTLER_EQZ_1S_SEL_2
- RADP_CTLER_EQZ_1S_SEL_3
- RADP_CTLER_EQZ_1S_SEL_4
- RADP_CTLER_EQZ_1S_SEL_5
- RADP_CTLER_EQZ_1S_SEL_6
- RADP_CTLER_EQZ_1S_SEL_7
- RADP_CTLER_EQZ_1S_SEL_8
- RADP_CTLER_EQZ_1S_SEL_9

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_ADSP_CLTE_EQZ_1S_SEL -to <to> -
entity <entity name> <value>
```
1.10.178. **XCVR_A10_RX_ADJ_DFE_FXTAP1**

A logic option that allows you to specify the coefficient setting for fix tap one in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP1_0
- RADP_DFE_FXTAP1_1
- RADP_DFE_FXTAP1_10
- RADP_DFE_FXTAP1_100
- RADP_DFE_FXTAP1_101
- RADP_DFE_FXTAP1_102
- RADP_DFE_FXTAP1_103
- RADP_DFE_FXTAP1_104
- RADP_DFE_FXTAP1_105
- RADP_DFE_FXTAP1_106
- RADP_DFE_FXTAP1_107
- RADP_DFE_FXTAP1_108
- RADP_DFE_FXTAP1_109
- RADP_DFE_FXTAP1_11
- RADP_DFE_FXTAP1_110
- RADP_DFE_FXTAP1_111
- RADP_DFE_FXTAP1_112
- RADP_DFE_FXTAP1_113
- RADP_DFE_FXTAP1_114
- RADP_DFE_FXTAP1_115
- RADP_DFE_FXTAP1_116
- RADP_DFE_FXTAP1_117
- RADP_DFE_FXTAP1_118
- RADP_DFE_FXTAP1_119
- RADP_DFE_FXTAP1_12
- RADP_DFE_FXTAP1_120
- RADP_DFE_FXTAP1_121
- RADP_DFE_FXTAP1_122
- RADP_DFE_FXTAP1_123
- RADP_DFE_FXTAP1_124

MNL-1088 | 2020.07.20

- RADP_DFE_FXTAP1_125
- RADP_DFE_FXTAP1_126
- RADP_DFE_FXTAP1_127
- RADP_DFE_FXTAP1_13
- RADP_DFE_FXTAP1_14
- RADP_DFE_FXTAP1_15
- RADP_DFE_FXTAP1_16
- RADP_DFE_FXTAP1_17
- RADP_DFE_FXTAP1_18
- RADP_DFE_FXTAP1_19
- RADP_DFE_FXTAP1_2
- RADP_DFE_FXTAP1_20
- RADP_DFE_FXTAP1_21
- RADP_DFE_FXTAP1_22
- RADP_DFE_FXTAP1_23
- RADP_DFE_FXTAP1_24
- RADP_DFE_FXTAP1_25
- RADP_DFE_FXTAP1_26
- RADP_DFE_FXTAP1_27
- RADP_DFE_FXTAP1_28
- RADP_DFE_FXTAP1_29
- RADP_DFE_FXTAP1_3
- RADP_DFE_FXTAP1_30
- RADP_DFE_FXTAP1_31
- RADP_DFE_FXTAP1_32
- RADP_DFE_FXTAP1_33
- RADP_DFE_FXTAP1_34
- RADP_DFE_FXTAP1_35
- RADP_DFE_FXTAP1_36
- RADP_DFE_FXTAP1_37
- RADP_DFE_FXTAP1_38
- RADP_DFE_FXTAP1_39
- RADP_DFE_FXTAP1_4
- RADP_DFE_FXTAP1_40
- RADP_DFE_FXTAP1_41
- RADP_DFE_FXTAP1_42
- RADP_DFE_FXTAP1_43
- RADP_DFE_FXTAP1_44
• RADP_DFE_FXTAP1_45
• RADP_DFE_FXTAP1_46
• RADP_DFE_FXTAP1_47
• RADP_DFE_FXTAP1_48
• RADP_DFE_FXTAP1_49
• RADP_DFE_FXTAP1_5
• RADP_DFE_FXTAP1_50
• RADP_DFE_FXTAP1_51
• RADP_DFE_FXTAP1_52
• RADP_DFE_FXTAP1_53
• RADP_DFE_FXTAP1_54
• RADP_DFE_FXTAP1_55
• RADP_DFE_FXTAP1_56
• RADP_DFE_FXTAP1_57
• RADP_DFE_FXTAP1_58
• RADP_DFE_FXTAP1_59
• RADP_DFE_FXTAP1_6
• RADP_DFE_FXTAP1_60
• RADP_DFE_FXTAP1_61
• RADP_DFE_FXTAP1_62
• RADP_DFE_FXTAP1_63
• RADP_DFE_FXTAP1_64
• RADP_DFE_FXTAP1_65
• RADP_DFE_FXTAP1_66
• RADP_DFE_FXTAP1_67
• RADP_DFE_FXTAP1_68
• RADP_DFE_FXTAP1_69
• RADP_DFE_FXTAP1_7
• RADP_DFE_FXTAP1_70
• RADP_DFE_FXTAP1_71
• RADP_DFE_FXTAP1_72
• RADP_DFE_FXTAP1_73
• RADP_DFE_FXTAP1_74
• RADP_DFE_FXTAP1_75
• RADP_DFE_FXTAP1_76
• RADP_DFE_FXTAP1_77
• RADP_DFE_FXTAP1_78
• RADP_DFE_FXTAP1_79
Device Support

- Intel Arria 10

Notes

Syntax

```
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP1 -to <to> -
entity <entity name> <value>
```
1.10.179. XCVR_A10_RX_ADPA_DP_DFE_FXTAP10

A logic option that allows you to specify the coefficient setting for fix tap ten in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**  
Enumeration

**Values**
- RADP_DFE_FXTAP10_0
- RADP_DFE_FXTAP10_1
- RADP_DFE_FXTAP10_10
- RADP_DFE_FXTAP10_11
- RADP_DFE_FXTAP10_12
- RADP_DFE_FXTAP10_13
- RADP_DFE_FXTAP10_14
- RADP_DFE_FXTAP10_15
- RADP_DFE_FXTAP10_16
- RADP_DFE_FXTAP10_17
- RADP_DFE_FXTAP10_18
- RADP_DFE_FXTAP10_19
- RADP_DFE_FXTAP10_2
- RADP_DFE_FXTAP10_20
- RADP_DFE_FXTAP10_21
- RADP_DFE_FXTAP10_22
- RADP_DFE_FXTAP10_23
- RADP_DFE_FXTAP10_24
- RADP_DFE_FXTAP10_25
- RADP_DFE_FXTAP10_26
- RADP_DFE_FXTAP10_27
- RADP_DFE_FXTAP10_28
- RADP_DFE_FXTAP10_29
- RADP_DFE_FXTAP10_3
- RADP_DFE_FXTAP10_30
- RADP_DFE_FXTAP10_31
- RADP_DFE_FXTAP10_32
- RADP_DFE_FXTAP10_33
- RADP_DFE_FXTAP10_34
- RADP_DFE_FXTAP10_35
MNL-1088 | 2020.07.20

- RADP_DFE_FXTAP10_36
- RADP_DFE_FXTAP10_37
- RADP_DFE_FXTAP10_38
- RADP_DFE_FXTAP10_39
- RADP_DFE_FXTAP10_4
- RADP_DFE_FXTAP10_40
- RADP_DFE_FXTAP10_41
- RADP_DFE_FXTAP10_42
- RADP_DFE_FXTAP10_43
- RADP_DFE_FXTAP10_44
- RADP_DFE_FXTAP10_45
- RADP_DFE_FXTAP10_46
- RADP_DFE_FXTAP10_47
- RADP_DFE_FXTAP10_48
- RADP_DFE_FXTAP10_49
- RADP_DFE_FXTAP10_5
- RADP_DFE_FXTAP10_50
- RADP_DFE_FXTAP10_51
- RADP_DFE_FXTAP10_52
- RADP_DFE_FXTAP10_53
- RADP_DFE_FXTAP10_54
- RADP_DFE_FXTAP10_55
- RADP_DFE_FXTAP10_56
- RADP_DFE_FXTAP10_57
- RADP_DFE_FXTAP10_58
- RADP_DFE_FXTAP10_59
- RADP_DFE_FXTAP10_6
- RADP_DFE_FXTAP10_60
- RADP_DFE_FXTAP10_61
- RADP_DFE_FXTAP10_62
- RADP_DFE_FXTAP10_63
- RADP_DFE_FXTAP10_7
- RADP_DFE_FXTAP10_8
- RADP_DFE_FXTAP10_9

**Device Support**
- Intel Arria 10
Notes
Syntax

set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP10 -to <to> -entity <entity name> <value>
1.10.180. XCVR_A10_RX_ADPA_DP_DFE_FXTAP10_SGN

Type

Enumeration

Values

- RADP_DFE_FXTAP10_SGN_0
- RADP_DFE_FXTAP10_SGN_1

Device Support

- Intel Arria 10

Notes

Syntax

```
set_instance_assignment -name XCVR_A10_RX_ADPA_DP_DFE_FXTAP10_SGN -to <to> -entity <entity name> <value>
```
1.10.181. XCVR_A10_RX_ADPI_DFE_FXTAP11

A logic option that allows you to specify the coefficient setting for fix tap eleven in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

Type

Enumeration

Values

- RADP_DFE_FXTAP11_0
- RADP_DFE_FXTAP11_1
- RADP_DFE_FXTAP11_10
- RADP_DFE_FXTAP11_11
- RADP_DFE_FXTAP11_12
- RADP_DFE_FXTAP11_13
- RADP_DFE_FXTAP11_14
- RADP_DFE_FXTAP11_15
- RADP_DFE_FXTAP11_16
- RADP_DFE_FXTAP11_17
- RADP_DFE_FXTAP11_18
- RADP_DFE_FXTAP11_19
- RADP_DFE_FXTAP11_2
- RADP_DFE_FXTAP11_20
- RADP_DFE_FXTAP11_21
- RADP_DFE_FXTAP11_22
- RADP_DFE_FXTAP11_23
- RADP_DFE_FXTAP11_24
- RADP_DFE_FXTAP11_25
- RADP_DFE_FXTAP11_26
- RADP_DFE_FXTAP11_27
- RADP_DFE_FXTAP11_28
- RADP_DFE_FXTAP11_29
- RADP_DFE_FXTAP11_3
- RADP_DFE_FXTAP11_30
- RADP_DFE_FXTAP11_31
- RADP_DFE_FXTAP11_32
- RADP_DFE_FXTAP11_33
- RADP_DFE_FXTAP11_34
- RADP_DFE_FXTAP11_35
Device Support

- Intel Arria 10
Notes

Syntax

```
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP11 -to <to> -
entity <entity name> <value>
```
1.10.182. **XCVR_A10_RX_ADPT_DFE_FXTAP11_SGN**

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP11_SGN_0
- RADP_DFE_FXTAP11_SGN_1

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```bash
set_instance_assignment -name XCVR_A10_RX_ADPT_DFE_FXTAP11_SGN -to <to> -entity <entity name> <value>
```
1.10.183. XCVR_A10_RX_ADPA_DP_DFE_FXTAP2

A logic option that allows you to specify the coefficient setting for fix tap two in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP2_0
- RADP_DFE_FXTAP2_1
- RADP_DFE_FXTAP2_10
- RADP_DFE_FXTAP2_100
- RADP_DFE_FXTAP2_101
- RADP_DFE_FXTAP2_102
- RADP_DFE_FXTAP2_103
- RADP_DFE_FXTAP2_104
- RADP_DFE_FXTAP2_105
- RADP_DFE_FXTAP2_106
- RADP_DFE_FXTAP2_107
- RADP_DFE_FXTAP2_108
- RADP_DFE_FXTAP2_109
- RADP_DFE_FXTAP2_11
- RADP_DFE_FXTAP2_110
- RADP_DFE_FXTAP2_111
- RADP_DFE_FXTAP2_112
- RADP_DFE_FXTAP2_113
- RADP_DFE_FXTAP2_114
- RADP_DFE_FXTAP2_115
- RADP_DFE_FXTAP2_116
- RADP_DFE_FXTAP2_117
- RADP_DFE_FXTAP2_118
- RADP_DFE_FXTAP2_119
- RADP_DFE_FXTAP2_12
- RADP_DFE_FXTAP2_120
- RADP_DFE_FXTAP2_121
- RADP_DFE_FXTAP2_122
- RADP_DFE_FXTAP2_123
- RADP_DFE_FXTAP2_124
• RADP_DFE_FXTAP2_125
• RADP_DFE_FXTAP2_126
• RADP_DFE_FXTAP2_127
• RADP_DFE_FXTAP2_13
• RADP_DFE_FXTAP2_14
• RADP_DFE_FXTAP2_15
• RADP_DFE_FXTAP2_16
• RADP_DFE_FXTAP2_17
• RADP_DFE_FXTAP2_18
• RADP_DFE_FXTAP2_19
• RADP_DFE_FXTAP2_2
• RADP_DFE_FXTAP2_20
• RADP_DFE_FXTAP2_21
• RADP_DFE_FXTAP2_22
• RADP_DFE_FXTAP2_23
• RADP_DFE_FXTAP2_24
• RADP_DFE_FXTAP2_25
• RADP_DFE_FXTAP2_26
• RADP_DFE_FXTAP2_27
• RADP_DFE_FXTAP2_28
• RADP_DFE_FXTAP2_29
• RADP_DFE_FXTAP2_3
• RADP_DFE_FXTAP2_30
• RADP_DFE_FXTAP2_31
• RADP_DFE_FXTAP2_32
• RADP_DFE_FXTAP2_33
• RADP_DFE_FXTAP2_34
• RADP_DFE_FXTAP2_35
• RADP_DFE_FXTAP2_36
• RADP_DFE_FXTAP2_37
• RADP_DFE_FXTAP2_38
• RADP_DFE_FXTAP2_39
• RADP_DFE_FXTAP2_4
• RADP_DFE_FXTAP2_40
• RADP_DFE_FXTAP2_41
• RADP_DFE_FXTAP2_42
• RADP_DFE_FXTAP2_43
• RADP_DFE_FXTAP2_44
• RADP_DFE_FXTAP2_45
• RADP_DFE_FXTAP2_46
• RADP_DFE_FXTAP2_47
• RADP_DFE_FXTAP2_48
• RADP_DFE_FXTAP2_49
• RADP_DFE_FXTAP2_5
• RADP_DFE_FXTAP2_50
• RADP_DFE_FXTAP2_51
• RADP_DFE_FXTAP2_52
• RADP_DFE_FXTAP2_53
• RADP_DFE_FXTAP2_54
• RADP_DFE_FXTAP2_55
• RADP_DFE_FXTAP2_56
• RADP_DFE_FXTAP2_57
• RADP_DFE_FXTAP2_58
• RADP_DFE_FXTAP2_59
• RADP_DFE_FXTAP2_6
• RADP_DFE_FXTAP2_60
• RADP_DFE_FXTAP2_61
• RADP_DFE_FXTAP2_62
• RADP_DFE_FXTAP2_63
• RADP_DFE_FXTAP2_64
• RADP_DFE_FXTAP2_65
• RADP_DFE_FXTAP2_66
• RADP_DFE_FXTAP2_67
• RADP_DFE_FXTAP2_68
• RADP_DFE_FXTAP2_69
• RADP_DFE_FXTAP2_7
• RADP_DFE_FXTAP2_70
• RADP_DFE_FXTAP2_71
• RADP_DFE_FXTAP2_72
• RADP_DFE_FXTAP2_73
• RADP_DFE_FXTAP2_74
• RADP_DFE_FXTAP2_75
• RADP_DFE_FXTAP2_76
• RADP_DFE_FXTAP2_77
• RADP_DFE_FXTAP2_78
• RADP_DFE_FXTAP2_79
• RADP_DFE_FXTAP2_8
• RADP_DFE_FXTAP2_80
• RADP_DFE_FXTAP2_81
• RADP_DFE_FXTAP2_82
• RADP_DFE_FXTAP2_83
• RADP_DFE_FXTAP2_84
• RADP_DFE_FXTAP2_85
• RADP_DFE_FXTAP2_86
• RADP_DFE_FXTAP2_87
• RADP_DFE_FXTAP2_88
• RADP_DFE_FXTAP2_89
• RADP_DFE_FXTAP2_9
• RADP_DFE_FXTAP2_90
• RADP_DFE_FXTAP2_91
• RADP_DFE_FXTAP2_92
• RADP_DFE_FXTAP2_93
• RADP_DFE_FXTAP2_94
• RADP_DFE_FXTAP2_95
• RADP_DFE_FXTAP2_96
• RADP_DFE_FXTAP2_97
• RADP_DFE_FXTAP2_98
• RADP_DFE_FXTAP2_99

**Device Support**

• Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP2 -to <to> -
entity <entity name> <value>
```
1.10.184. XCVR_A10_RX_ADP_DFE_FXTAP2_SGN

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP2_SGN_0
- RADP_DFE_FXTAP2_SGN_1

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP2_SGN -to <to> -entity <entity name> <value>
```
### 1.10.185. XCVR_A10_RX_ADP_DFE_FXTAP3

A logic option that allows you to specify the coefficient setting for fix tap three in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

#### Type

Enumeration

#### Values

- `RADP_DFE_FXTAP3_0`
- `RADP_DFE_FXTAP3_1`
- `RADP_DFE_FXTAP3_10`
- `RADP_DFE_FXTAP3_100`
- `RADP_DFE_FXTAP3_101`
- `RADP_DFE_FXTAP3_102`
- `RADP_DFE_FXTAP3_103`
- `RADP_DFE_FXTAP3_104`
- `RADP_DFE_FXTAP3_105`
- `RADP_DFE_FXTAP3_106`
- `RADP_DFE_FXTAP3_107`
- `RADP_DFE_FXTAP3_108`
- `RADP_DFE_FXTAP3_109`
- `RADP_DFE_FXTAP3_11`
- `RADP_DFE_FXTAP3_110`
- `RADP_DFE_FXTAP3_111`
- `RADP_DFE_FXTAP3_112`
- `RADP_DFE_FXTAP3_113`
- `RADP_DFE_FXTAP3_114`
- `RADP_DFE_FXTAP3_115`
- `RADP_DFE_FXTAP3_116`
- `RADP_DFE_FXTAP3_117`
- `RADP_DFE_FXTAP3_118`
- `RADP_DFE_FXTAP3_119`
- `RADP_DFE_FXTAP3_12`
- `RADP_DFE_FXTAP3_120`
- `RADP_DFE_FXTAP3_121`
- `RADP_DFE_FXTAP3_122`
- `RADP_DFE_FXTAP3_123`
- `RADP_DFE_FXTAP3_124`
• RADP_DFE_FXTAP3_125
• RADP_DFE_FXTAP3_126
• RADP_DFE_FXTAP3_127
• RADP_DFE_FXTAP3_13
• RADP_DFE_FXTAP3_14
• RADP_DFE_FXTAP3_15
• RADP_DFE_FXTAP3_16
• RADP_DFE_FXTAP3_17
• RADP_DFE_FXTAP3_18
• RADP_DFE_FXTAP3_19
• RADP_DFE_FXTAP3_2
• RADP_DFE_FXTAP3_20
• RADP_DFE_FXTAP3_21
• RADP_DFE_FXTAP3_22
• RADP_DFE_FXTAP3_23
• RADP_DFE_FXTAP3_24
• RADP_DFE_FXTAP3_25
• RADP_DFE_FXTAP3_26
• RADP_DFE_FXTAP3_27
• RADP_DFE_FXTAP3_28
• RADP_DFE_FXTAP3_29
• RADP_DFE_FXTAP3_3
• RADP_DFE_FXTAP3_30
• RADP_DFE_FXTAP3_31
• RADP_DFE_FXTAP3_32
• RADP_DFE_FXTAP3_33
• RADP_DFE_FXTAP3_34
• RADP_DFE_FXTAP3_35
• RADP_DFE_FXTAP3_36
• RADP_DFE_FXTAP3_37
• RADP_DFE_FXTAP3_38
• RADP_DFE_FXTAP3_39
• RADP_DFE_FXTAP3_4
• RADP_DFE_FXTAP3_40
• RADP_DFE_FXTAP3_41
• RADP_DFE_FXTAP3_42
• RADP_DFE_FXTAP3_43
• RADP_DFE_FXTAP3_44
• RADP_DFE_FXTAP3_45
• RADP_DFE_FXTAP3_46
• RADP_DFE_FXTAP3_47
• RADP_DFE_FXTAP3_48
• RADP_DFE_FXTAP3_49
• RADP_DFE_FXTAP3_5
• RADP_DFE_FXTAP3_50
• RADP_DFE_FXTAP3_51
• RADP_DFE_FXTAP3_52
• RADP_DFE_FXTAP3_53
• RADP_DFE_FXTAP3_54
• RADP_DFE_FXTAP3_55
• RADP_DFE_FXTAP3_56
• RADP_DFE_FXTAP3_57
• RADP_DFE_FXTAP3_58
• RADP_DFE_FXTAP3_59
• RADP_DFE_FXTAP3_6
• RADP_DFE_FXTAP3_60
• RADP_DFE_FXTAP3_61
• RADP_DFE_FXTAP3_62
• RADP_DFE_FXTAP3_63
• RADP_DFE_FXTAP3_64
• RADP_DFE_FXTAP3_65
• RADP_DFE_FXTAP3_66
• RADP_DFE_FXTAP3_67
• RADP_DFE_FXTAP3_68
• RADP_DFE_FXTAP3_69
• RADP_DFE_FXTAP3_7
• RADP_DFE_FXTAP3_70
• RADP_DFE_FXTAP3_71
• RADP_DFE_FXTAP3_72
• RADP_DFE_FXTAP3_73
• RADP_DFE_FXTAP3_74
• RADP_DFE_FXTAP3_75
• RADP_DFE_FXTAP3_76
• RADP_DFE_FXTAP3_77
• RADP_DFE_FXTAP3_78
• RADP_DFE_FXTAP3_79
Device Support

- Intel Arria 10

Syntax

```
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP3 -to <to> - entity <entity name> <value>
```
1.10.186. XCVR_A10_RX_ADH_DFE_FXTAP3_SGN

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP3_SGN_0
- RADP_DFE_FXTAP3_SGN_1

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```bash
set_instance_assignment -name XCVR_A10_RX_ADH_DFE_FXTAP3_SGN -to <to> -entity <entity name> <value>
```
1.10.187. XCVR_A10_RX_ADAP_DFE_FXTAP4

A logic option that allows you to specify the coefficient setting for floating tap four in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP4_0
- RADP_DFE_FXTAP4_1
- RADP_DFE_FXTAP4_10
- RADP_DFE_FXTAP4_11
- RADP_DFE_FXTAP4_12
- RADP_DFE_FXTAP4_13
- RADP_DFE_FXTAP4_14
- RADP_DFE_FXTAP4_15
- RADP_DFE_FXTAP4_16
- RADP_DFE_FXTAP4_17
- RADP_DFE_FXTAP4_18
- RADP_DFE_FXTAP4_19
- RADP_DFE_FXTAP4_2
- RADP_DFE_FXTAP4_20
- RADP_DFE_FXTAP4_21
- RADP_DFE_FXTAP4_22
- RADP_DFE_FXTAP4_23
- RADP_DFE_FXTAP4_24
- RADP_DFE_FXTAP4_25
- RADP_DFE_FXTAP4_26
- RADP_DFE_FXTAP4_27
- RADP_DFE_FXTAP4_28
- RADP_DFE_FXTAP4_29
- RADP_DFE_FXTAP4_3
- RADP_DFE_FXTAP4_30
- RADP_DFE_FXTAP4_31
- RADP_DFE_FXTAP4_32
- RADP_DFE_FXTAP4_33
- RADP_DFE_FXTAP4_34
- RADP_DFE_FXTAP4_35
Device Support

- Intel Arria 10
Notes

Syntax

```plaintext
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP4 -to <to> -
entity <entity name> <value>
```
1.10.188. XCVR_A10_RX_ADPA_DFE_FXTAP4_SGN

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP4_SGN_0
- RADP_DFE_FXTAP4_SGN_1

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_ADPA_DFE_FXTAP4_SGN -to <to> -
entity <entity name> <value>
```
1.10.189. XCVR_A10_RX_ADP_DFE_FXTAP5

A logic option that allows you to specify the coefficient setting for fix tap five in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP5_0
- RADP_DFE_FXTAP5_1
- RADP_DFE_FXTAP5_10
- RADP_DFE_FXTAP5_11
- RADP_DFE_FXTAP5_12
- RADP_DFE_FXTAP5_13
- RADP_DFE_FXTAP5_14
- RADP_DFE_FXTAP5_15
- RADP_DFE_FXTAP5_16
- RADP_DFE_FXTAP5_17
- RADP_DFE_FXTAP5_18
- RADP_DFE_FXTAP5_19
- RADP_DFE_FXTAP5_2
- RADP_DFE_FXTAP5_20
- RADP_DFE_FXTAP5_21
- RADP_DFE_FXTAP5_22
- RADP_DFE_FXTAP5_23
- RADP_DFE_FXTAP5_24
- RADP_DFE_FXTAP5_25
- RADP_DFE_FXTAP5_26
- RADP_DFE_FXTAP5_27
- RADP_DFE_FXTAP5_28
- RADP_DFE_FXTAP5_29
- RADP_DFE_FXTAP5_3
- RADP_DFE_FXTAP5_30
- RADP_DFE_FXTAP5_31
- RADP_DFE_FXTAP5_32
- RADP_DFE_FXTAP5_33
- RADP_DFE_FXTAP5_34
- RADP_DFE_FXTAP5_35
Device Support

- Intel Arria 10
Syntax

```
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP5 -to <to> -
entity <entity name> <value>
```

Notes
1.10.190. XCVR_A10_RX_ADPane_ADFE_FXTAP5_SGN

Type
Enumeration

Values
- RADP_DFE_FXTAP5_SGN_0
- RADP_DFE_FXTAP5_SGN_1

Device Support
- Intel Arria 10

Notes

Syntax

```
set_instance_assignment -name XCVR_A10_RX_ADPane_ADFE_FXTAP5_SGN -to <to> -
entity <entity name> <value>
```
1.10.191. XCVR_A10_RX_ADPA_DP_DFE_FXTAP6

A logic option that allows you to specify the coefficient setting for fix tap six in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP6_0
- RADP_DFE_FXTAP6_1
- RADP_DFE_FXTAP6_10
- RADP_DFE_FXTAP6_11
- RADP_DFE_FXTAP6_12
- RADP_DFE_FXTAP6_13
- RADP_DFE_FXTAP6_14
- RADP_DFE_FXTAP6_15
- RADP_DFE_FXTAP6_16
- RADP_DFE_FXTAP6_17
- RADP_DFE_FXTAP6_18
- RADP_DFE_FXTAP6_19
- RADP_DFE_FXTAP6_2
- RADP_DFE_FXTAP6_20
- RADP_DFE_FXTAP6_21
- RADP_DFE_FXTAP6_22
- RADP_DFE_FXTAP6_23
- RADP_DFE_FXTAP6_24
- RADP_DFE_FXTAP6_25
- RADP_DFE_FXTAP6_26
- RADP_DFE_FXTAP6_27
- RADP_DFE_FXTAP6_28
- RADP_DFE_FXTAP6_29
- RADP_DFE_FXTAP6_3
- RADP_DFE_FXTAP6_30
- RADP_DFE_FXTAP6_31
- RADP_DFE_FXTAP6_4
- RADP_DFE_FXTAP6_5
- RADP_DFE_FXTAP6_6
• RADP_DFE_FXTAP6_7
• RADP_DFE_FXTAP6_8
• RADP_DFE_FXTAP6_9

Device Support
- Intel Arria 10

Notes

Syntax

```plaintext
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP6 -to <to> -
entity <entity name> <value>
```
1.10.192. XCVR_A10_RX_ADPane_DFE_FXTAP6_SGN

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP6_SGN_0
- RADP_DFE_FXTAP6_SGN_1

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_ADPane_DFE_FXTAP6_SGN -to <to> -
entity <entity name> <value>
```
1.10.193. XCVR_A10_RX_ADAP_DFE_FXTAP7

A logic option that allows you to specify the coefficient setting for fix tap seven in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP7_0
- RADP_DFE_FXTAP7_1
- RADP_DFE_FXTAP7_10
- RADP_DFE_FXTAP7_11
- RADP_DFE_FXTAP7_12
- RADP_DFE_FXTAP7_13
- RADP_DFE_FXTAP7_14
- RADP_DFE_FXTAP7_15
- RADP_DFE_FXTAP7_16
- RADP_DFE_FXTAP7_17
- RADP_DFE_FXTAP7_18
- RADP_DFE_FXTAP7_19
- RADP_DFE_FXTAP7_2
- RADP_DFE_FXTAP7_10
- RADP_DFE_FXTAP7_21
- RADP_DFE_FXTAP7_22
- RADP_DFE_FXTAP7_23
- RADP_DFE_FXTAP7_24
- RADP_DFE_FXTAP7_25
- RADP_DFE_FXTAP7_26
- RADP_DFE_FXTAP7_27
- RADP_DFE_FXTAP7_28
- RADP_DFE_FXTAP7_29
- RADP_DFE_FXTAP7_3
- RADP_DFE_FXTAP7_30
- RADP_DFE_FXTAP7_31
- RADP_DFE_FXTAP7_4
- RADP_DFE_FXTAP7_5
- RADP_DFE_FXTAP7_6
- RADP_DFE_FXTAP7_7
- RADP_DFE_FXTAP7_8
- RADP_DFE_FXTAP7_9

**Device Support**
- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_AD_P_DFE_FXTAP7 -to <to> -entity <entity name> <value>
```
1.10.194. XCVR_A10_RX_ADPO_DFE_FXTAP7_SGN

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP7_SGN_0
- RADP_DFE_FXTAP7_SGN_1

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_ADPO_DFE_FXTAP7_SGN -to <to> -entity <entity name> <value>
```
A logic option that allows you to specify the coefficient setting for fix tap eight in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- `RADP_DFE_FXTAP8_0`
- `RADP_DFE_FXTAP8_1`
- `RADP_DFE_FXTAP8_10`
- `RADP_DFE_FXTAP8_11`
- `RADP_DFE_FXTAP8_12`
- `RADP_DFE_FXTAP8_13`
- `RADP_DFE_FXTAP8_14`
- `RADP_DFE_FXTAP8_15`
- `RADP_DFE_FXTAP8_16`
- `RADP_DFE_FXTAP8_17`
- `RADP_DFE_FXTAP8_18`
- `RADP_DFE_FXTAP8_19`
- `RADP_DFE_FXTAP8_2`
- `RADP_DFE_FXTAP8_20`
- `RADP_DFE_FXTAP8_21`
- `RADP_DFE_FXTAP8_22`
- `RADP_DFE_FXTAP8_23`
- `RADP_DFE_FXTAP8_24`
- `RADP_DFE_FXTAP8_25`
- `RADP_DFE_FXTAP8_26`
- `RADP_DFE_FXTAP8_27`
- `RADP_DFE_FXTAP8_28`
- `RADP_DFE_FXTAP8_29`
- `RADP_DFE_FXTAP8_3`
- `RADP_DFE_FXTAP8_30`
- `RADP_DFE_FXTAP8_31`
- `RADP_DFE_FXTAP8_32`
- `RADP_DFE_FXTAP8_33`
- `RADP_DFE_FXTAP8_34`
- `RADP_DFE_FXTAP8_35`
- RADP_DFE_FXTAP8_36
- RADP_DFE_FXTAP8_37
- RADP_DFE_FXTAP8_38
- RADP_DFE_FXTAP8_39
- RADP_DFE_FXTAP8_4
- RADP_DFE_FXTAP8_40
- RADP_DFE_FXTAP8_41
- RADP_DFE_FXTAP8_42
- RADP_DFE_FXTAP8_43
- RADP_DFE_FXTAP8_44
- RADP_DFE_FXTAP8_45
- RADP_DFE_FXTAP8_46
- RADP_DFE_FXTAP8_47
- RADP_DFE_FXTAP8_48
- RADP_DFE_FXTAP8_49
- RADP_DFE_FXTAP8_5
- RADP_DFE_FXTAP8_50
- RADP_DFE_FXTAP8_51
- RADP_DFE_FXTAP8_52
- RADP_DFE_FXTAP8_53
- RADP_DFE_FXTAP8_54
- RADP_DFE_FXTAP8_55
- RADP_DFE_FXTAP8_56
- RADP_DFE_FXTAP8_57
- RADP_DFE_FXTAP8_58
- RADP_DFE_FXTAP8_59
- RADP_DFE_FXTAP8_6
- RADP_DFE_FXTAP8_60
- RADP_DFE_FXTAP8_61
- RADP_DFE_FXTAP8_62
- RADP_DFE_FXTAP8_63
- RADP_DFE_FXTAP8_7
- RADP_DFE_FXTAP8_8
- RADP_DFE_FXTAP8_9

**Device Support**

- Intel Arria 10
Notes

Syntax

```
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP8 -to <to> -
entity <entity name> <value>
```
1.10.196. XCVR_A10_RX_ADPCA10RX_AdP_DFE_FXTAP8_SGN

Type

Enumeration

Values

- RADP_DFE_FXTAP8_SGN_0
- RADP_DFE_FXTAP8_SGN_1

Device Support

- Intel Arria 10

Notes

Syntax

```
set_instance_assignment -name XCVR_A10_RX_ADPCA10RX_AdP_DFE_FXTAP8_SGN -to <to> -
entity <entity name> <value>
```
1.10.197. XCVR_A10_RX_ADQ_DFE_FXTAP9

A logic option that allows you to specify the coefficient setting for fix tap nine in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP9_0
- RADP_DFE_FXTAP9_1
- RADP_DFE_FXTAP9_10
- RADP_DFE_FXTAP9_11
- RADP_DFE_FXTAP9_12
- RADP_DFE_FXTAP9_13
- RADP_DFE_FXTAP9_14
- RADP_DFE_FXTAP9_15
- RADP_DFE_FXTAP9_16
- RADP_DFE_FXTAP9_17
- RADP_DFE_FXTAP9_18
- RADP_DFE_FXTAP9_19
- RADP_DFE_FXTAP9_2
- RADP_DFE_FXTAP9_20
- RADP_DFE_FXTAP9_21
- RADP_DFE_FXTAP9_22
- RADP_DFE_FXTAP9_23
- RADP_DFE_FXTAP9_24
- RADP_DFE_FXTAP9_25
- RADP_DFE_FXTAP9_26
- RADP_DFE_FXTAP9_27
- RADP_DFE_FXTAP9_28
- RADP_DFE_FXTAP9_29
- RADP_DFE_FXTAP9_3
- RADP_DFE_FXTAP9_30
- RADP_DFE_FXTAP9_31
- RADP_DFE_FXTAP9_32
- RADP_DFE_FXTAP9_33
- RADP_DFE_FXTAP9_34
- RADP_DFE_FXTAP9_35
Device Support

- Intel Arria 10
Syntax

```
set_instance_assignment -name XCVR_A10_RX_ADP_DFE_FXTAP9 -to <to> -
entity <entity name> <value>
```
1.10.198. XCVR_A10_RX_ADП_DFE_FXTAP9_SGN

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP9_SGN_0
- RADP_DFE_FXTAP9_SGN_1

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_ADП_DFE_FXTAP9_SGN -to <to> -entity <entity name> <value>
```
1.10.199. XCVR_A10_RX_ADJP_VGA_SEL

A logic option that allows you to control the amount of output voltage swing on the variable gain amplifier. The amount of voltage swing is proportional to the setting where '0' gives the lowest swing and '7' gives the largest swing. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_VGA_SEL_0
- RADP_VGA_SEL_1
- RADP_VGA_SEL_2
- RADP_VGA_SEL_3
- RADP_VGA_SEL_4
- RADP_VGA_SEL_5
- RADP_VGA_SEL_6
- RADP_VGA_SEL_7

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```bash
set_instance_assignment -name XCVR_A10_RX_ADJP_VGA_SEL -to <to> -entity <entity name> <value>
```
1.10.200. XCVR_A10_RX_EQ_BW_SEL

**Type**

Enumeration

**Values**

- EQ_BW_1
- EQ_BW_2
- EQ_BW_3
- EQ_BW_4

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_EQ_BW_SEL -to <to> -entity <entity name> <value>
```
1.10.201. XCVR_A10_RX_EQ_DC_GAIN_TRIM

A logic option that allows you to control the amount of DC gain on equalizer in high gain mode. The amount of DC gain is proportional to the setting where '0' gives the lowest DC gain and '28' gives the largest DC gain.

**Type**

Enumeration

**Values**

- NO_DC_GAIN
- STG1_GAIN7
- STG2_GAIN7
- STG3_GAIN7
- STG4_GAIN7

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_EQ_DC_GAIN_TRIM -to <to> -
entity <entity name> <value>
```
1.10.202. **XCVR_A10_RX_LINK**

A logic option that allows you to specify the type of communication for the receiver link. Quartus Prime will use this option to determine the legal data rate and power mode for the link.

**Type**

Enumeration

**Values**

- LR
- SR

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_RX_LINK -to <to> -entity <entity name> <value>
```
1.10.203. XCVR_A10_RX_ONE_STAGE_ENABLE

**Type**

Enumeration

**Values**

- NON_S1_MODE
- S1_MODE

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```bash
set_instance_assignment -name XCVR_A10_RX_ONE_STAGE_ENABLE -to <to> -entity <entity name> <value>
```
1.10.204. XCVR_A10_RX_TERM_SEL

A logic option that allows you to specify the termination value of a transceiver Rx pin.

**Type**

Enumeration

**Values**

- R_EXT0
- R_R1
- R_R2

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_A10_RX_TERM_SEL -to <to> -entity <entity name> <value>
```
1.10.205. XCVR_A10_TX_COMPENSATION_EN

A logic option that allows you to turn on the compensation for transmitter data rate above 9 Gbps. Turning on this option draws more power on the transmitter buffer.

**Type**

Enumeration

**Values**

- DISABLE
- ENABLE

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_TX_COMPENSATION_EN -to <to> -
entity <entity name> <value>
```
1.10.206. XCVR_A10_TX_LINK

A logic option that allows you to specify the type of communication for the transmitter link. Quartus Prime will use this option to determine the legal data rate and power mode for the link.

Type

Enumeration

Values

- LR
- SR

Device Support

- Intel Arria 10

Notes

Syntax

```
set_instance_assignment -name XCVR_A10_TX_LINK -to <to> -entity <entity name> <value>
```
1.10.207. **XCVR_A10_TX_PRE_EMP_SIGN_1ST_POST_TAP**

A logic option that allows you to specify the output polarity of the transmitter pre-emphasis first post-tap.

**Type**

Enumeration

**Values**

- FIR_POST_1T_NEG
- FIR_POST_1T_POS

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_A10_TX_PRE_EMP_SIGN_1ST_POST_TAP -to <to> -entity <entity name> <value>
```
1.10.208. **XCVR_A10_TX_PRE_EMP_SIGN_2ND_POST_TAP**

A logic option that allows you to specify the output polarity of the transmitter pre-emphasis second post-tap.

**Type**

Enumeration

**Values**

- FIR_POST_2T_NEG
- FIR_POST_2T_POS

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_A10_TX_PRE_EMP_SIGN_2ND_POST_TAP -to <to> -entity <entity name> <value>
```
1.10.209. XCVR_A10_TX_PRE_EMP_SIGN_PRE_TAP_1T

A logic option that allows you to specify the output polarity of the transmitter pre-emphasis first pre-tap.

**Type**

Enumeration

**Values**

- FIR_PRE_1T_NEG
- FIR_PRE_1T_POS

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_TX_PRE_EMP_SIGN_PRE_TAP_1T -to <to> -entity <entity name> <value>
```
1.10.210. **XCVR_A10_TX_PRE_EMP_SIGN_PRE_TAP_2T**

A logic option that allows you to specify the output polarity of the transmitter pre-emphasis second pre-tap.

**Type**

Enumeration

**Values**

- FIR_PRE_2T_NEG
- FIR_PRE_2T_POS

**Device Support**

- Intel Arria 10

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_A10_TX_PRE_EMP_SIGN_PRE_TAP_2T -to <to> -entity <entity name> <value>
```
1.10.211. XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP

A logic option that allows you to control the magnitude of transmitter pre-emphasis first post-tap. Legal values are: 0 to 25.

**Type**
Integer

**Device Support**
- Intel Arria 10

**INTEGER_RANGE**
0, 25

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP -to <to> -entity <entity name> <value>
```
1.10.212. XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP

A logic option that allows you to control the magnitude of transmitter pre-emphasis second post-tap. Legal values are: 0 to 12.

Type
Integer

Device Support
• Intel Arria 10

INTEGRER_RANGE
0, 12

Notes

Syntax

```
set_instance_assignment -name XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP -to <to> -entity <entity name> <value>
```
1.10.213. **XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T**

A logic option that allows you to control the magnitude of transmitter pre-emphasis first pre-tap. Legal values are: 0 to 16.

**Type**

Integer

**Device Support**

- Intel Arria 10

**INTEGER_RANGE**

0, 16

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T -to <to> -entity <entity name> <value>
```
1.10.214. XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T

A logic option that allows you to control the magnitude of transmitter pre-emphasis second pre-tap. Legal values are: 0 to 7.

**Type**

Integer

**Device Support**

- Intel Arria 10

**INTEGER_RANGE**

0, 7

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T -to <to> -entity <entity name> <value>
```
1.10.215. XCVR_A10_TX_SLEW_RATE_CTRL

Type

Enumeration

Values

- SLEW_R0
- SLEW_R1
- SLEW_R2
- SLEW_R3
- SLEW_R4
- SLEW_R5
- SLEW_R6
- SLEW_R7

Device Support

- Intel Arria 10

Notes

Syntax

```
set_instance_assignment -name XCVR_A10_TX_SLEW_RATE_CTRL -to <to> -
entity <entity name> <value>
```
1.10.216. XCVR_A10_TX_TERM_SEL

A logic option that allows you to specify the termination value of a transceiver Tx pin.

**Type**
Enumeration

**Values**
- R_R1
- R_R2

**Device Support**
- Intel Arria 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_A10_TX_TERM_SEL -to <to> -entity <entity name> <value>
```
1.10.217. XCVR_A10_TX_VOD_OUTPUT_SWING_CTRL

A logic option that allows you to control the transmitter output swing level. Legal values are: 0 to 31.

Type

Integer

Device Support

• Intel Arria 10

INTEGER_RANGE

0, 31

Notes

Syntax

```
set_instance_assignment -name XCVR_A10_TX_VOD_OUTPUT_SWING_CTRL -to <to> -entity <entity name> <value>
```
1.10.218. XCVR_A10_TX_XTX_PATH_ANALOG_MODE

Type

Enumeration

Values

- CEI_11100_LR
- CEI_11100_SR
- CEI_4976_LR
- CEI_4976_SR
- CEI_6375_LR
- CEI_6375_SR
- CEI_9950_LR
- CEI_9950_SR
- CPRI_12500
- CPRI_E12LVII
- CPRI_E12LVIII
- CPRI_E24LVII
- CPRI_E24LVIII
- CPRI_E30LVII
- CPRI_E30LVIII
- CPRI_E48LVII
- CPRI_E48LVIII
- CPRI_E60LVII
- CPRI_E60LVIII
- CPRI_E6LVII
- CPRI_E6LVIII
- CPRI_E96LVIII
- CPRI_E99LVIII
- HIGIG_4062
- HIGIG_5000
- HIGIG_6250
- HIGIG_6562
- IEEE_10G_BASE_CR_10312
- IEEE_10G_KR_10312
- IEEE_40G_BASE_KR_10312
- INTERLAKEN_11100
- INTERLAKEN_12500
• INTERLAKEN_6375
• JESD204_A_B_12500
• JESD204_A_B_6375
• QSGMII_5000
• SERIAL_LITE_III_16400
• SERIAL_LITE_III_17400
• SFI_S_6250
• SRIO_5000_LR
• SRIO_5000_MR
• SRIO_5000_SR
• SRIO_6250_LR
• SRIO_6250_MR
• SRIO_6250_SR
• USER_CUSTOM

Device Support
• Intel Arria 10

Notes

Syntax

```plaintext
set_instance_assignment -name XCVR_A10_TX_TXT_PATH_ANALOG_MODE -to <to> -entity <entity name> <value>
```
1.10.219. XCVR_C10_REFCLK_TERM_TRISTATE

A logic option that directs the Compiler to enable the internal termination of the dedicated reference clock pin.

**Type**

Enumeration

**Values**

- TRISTATE_OFF
- TRISTATE_ON

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_REFCLK_TERM_TRISTATE -to <to> -
entity <entity name> <value>
```
1.10.220. XCVR_C10_RX_ADG_CTLE_ACGAIN_4S

A logic option that allows you to control the amount of AC gain on the equalizer in high gain mode. The amount of AC gain is proportional to the setting where '0' gives the lowest AC gain and '31' gives the largest AC gain. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_C1LE_ACGAIN_4S_0
- RADP_C1LE_ACGAIN_4S_1
- RADP_C1LE_ACGAIN_4S_10
- RADP_C1LE_ACGAIN_4S_11
- RADP_C1LE_ACGAIN_4S_12
- RADP_C1LE_ACGAIN_4S_13
- RADP_C1LE_ACGAIN_4S_14
- RADP_C1LE_ACGAIN_4S_15
- RADP_C1LE_ACGAIN_4S_16
- RADP_C1LE_ACGAIN_4S_17
- RADP_C1LE_ACGAIN_4S_18
- RADP_C1LE_ACGAIN_4S_19
- RADP_C1LE_ACGAIN_4S_2
- RADP_C1LE_ACGAIN_4S_20
- RADP_C1LE_ACGAIN_4S_21
- RADP_C1LE_ACGAIN_4S_22
- RADP_C1LE_ACGAIN_4S_23
- RADP_C1LE_ACGAIN_4S_24
- RADP_C1LE_ACGAIN_4S_25
- RADP_C1LE_ACGAIN_4S_26
- RADP_C1LE_ACGAIN_4S_27
- RADP_C1LE_ACGAIN_4S_28
- RADP_C1LE_ACGAIN_4S_3
- RADP_C1LE_ACGAIN_4S_4
- RADP_C1LE_ACGAIN_4S_5
- RADP_C1LE_ACGAIN_4S_6
- RADP_C1LE_ACGAIN_4S_7
- RADP_C1LE_ACGAIN_4S_8
- RADP_C1LE_ACGAIN_4S_9
Device Support

- Intel Cyclone 10 GX

Notes

Syntax

```plaintext
set_instance_assignment -name XCVR_C10_RX_ADP_CTLE_ACGAIN_4S -to <to> -entity <entity name> <value>
```
1.10.221. **XCVR_C10_RX_ADG_CTLE_EQZ_1S_SEL**

A logic option that allows you to control the amount of AC gain on the one-stage equalizer. The amount of AC gain is proportional to the setting where '0' gives the lowest AC gain and '15' gives the largest AC gain. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RAPD_CTE_EQZ_1S_SEL_0
- RAPD_CTE_EQZ_1S_SEL_1
- RAPD_CTE_EQZ_1S_SEL_10
- RAPD_CTE_EQZ_1S_SEL_11
- RAPD_CTE_EQZ_1S_SEL_12
- RAPD_CTE_EQZ_1S_SEL_13
- RAPD_CTE_EQZ_1S_SEL_14
- RAPD_CTE_EQZ_1S_SEL_15
- RAPD_CTE_EQZ_1S_SEL_2
- RAPD_CTE_EQZ_1S_SEL_3
- RAPD_CTE_EQZ_1S_SEL_4
- RAPD_CTE_EQZ_1S_SEL_5
- RAPD_CTE_EQZ_1S_SEL_6
- RAPD_CTE_EQZ_1S_SEL_7
- RAPD_CTE_EQZ_1S_SEL_8
- RAPD_CTE_EQZ_1S_SEL_9

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_C10_RX_ADG_CTLE_EQZ_1S_SEL -to <to> -
entity <entity name> <value>
```
1.10.222. XCVR_C10_RX_ADPA_DFE_FXTAP1

A logic option that allows you to specify the coefficient setting for fix tap one in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP1_0
- RADP_DFE_FXTAP1_1
- RADP_DFE_FXTAP1_10
- RADP_DFE_FXTAP1_100
- RADP_DFE_FXTAP1_101
- RADP_DFE_FXTAP1_102
- RADP_DFE_FXTAP1_103
- RADP_DFE_FXTAP1_104
- RADP_DFE_FXTAP1_105
- RADP_DFE_FXTAP1_106
- RADP_DFE_FXTAP1_107
- RADP_DFE_FXTAP1_108
- RADP_DFE_FXTAP1_109
- RADP_DFE_FXTAP1_11
- RADP_DFE_FXTAP1_110
- RADP_DFE_FXTAP1_111
- RADP_DFE_FXTAP1_112
- RADP_DFE_FXTAP1_113
- RADP_DFE_FXTAP1_114
- RADP_DFE_FXTAP1_115
- RADP_DFE_FXTAP1_116
- RADP_DFE_FXTAP1_117
- RADP_DFE_FXTAP1_118
- RADP_DFE_FXTAP1_119
- RADP_DFE_FXTAP1_12
- RADP_DFE_FXTAP1_120
- RADP_DFE_FXTAP1_121
- RADP_DFE_FXTAP1_122
- RADP_DFE_FXTAP1_123
- RADP_DFE_FXTAP1_124
• RADP_DFE_FXTAP1_125
• RADP_DFE_FXTAP1_126
• RADP_DFE_FXTAP1_127
• RADP_DFE_FXTAP1_13
• RADP_DFE_FXTAP1_14
• RADP_DFE_FXTAP1_15
• RADP_DFE_FXTAP1_16
• RADP_DFE_FXTAP1_17
• RADP_DFE_FXTAP1_18
• RADP_DFE_FXTAP1_19
• RADP_DFE_FXTAP1_2
• RADP_DFE_FXTAP1_20
• RADP_DFE_FXTAP1_21
• RADP_DFE_FXTAP1_22
• RADP_DFE_FXTAP1_23
• RADP_DFE_FXTAP1_24
• RADP_DFE_FXTAP1_25
• RADP_DFE_FXTAP1_26
• RADP_DFE_FXTAP1_27
• RADP_DFE_FXTAP1_28
• RADP_DFE_FXTAP1_29
• RADP_DFE_FXTAP1_3
• RADP_DFE_FXTAP1_30
• RADP_DFE_FXTAP1_31
• RADP_DFE_FXTAP1_32
• RADP_DFE_FXTAP1_33
• RADP_DFE_FXTAP1_34
• RADP_DFE_FXTAP1_35
• RADP_DFE_FXTAP1_36
• RADP_DFE_FXTAP1_37
• RADP_DFE_FXTAP1_38
• RADP_DFE_FXTAP1_39
• RADP_DFE_FXTAP1_4
• RADP_DFE_FXTAP1_40
• RADP_DFE_FXTAP1_41
• RADP_DFE_FXTAP1_42
• RADP_DFE_FXTAP1_43
• RADP_DFE_FXTAP1_44
• RADP_DFE_FXTAP1_45
• RADP_DFE_FXTAP1_46
• RADP_DFE_FXTAP1_47
• RADP_DFE_FXTAP1_48
• RADP_DFE_FXTAP1_49
• RADP_DFE_FXTAP1_5
• RADP_DFE_FXTAP1_50
• RADP_DFE_FXTAP1_51
• RADP_DFE_FXTAP1_52
• RADP_DFE_FXTAP1_53
• RADP_DFE_FXTAP1_54
• RADP_DFE_FXTAP1_55
• RADP_DFE_FXTAP1_56
• RADP_DFE_FXTAP1_57
• RADP_DFE_FXTAP1_58
• RADP_DFE_FXTAP1_59
• RADP_DFE_FXTAP1_6
• RADP_DFE_FXTAP1_60
• RADP_DFE_FXTAP1_61
• RADP_DFE_FXTAP1_62
• RADP_DFE_FXTAP1_63
• RADP_DFE_FXTAP1_64
• RADP_DFE_FXTAP1_65
• RADP_DFE_FXTAP1_66
• RADP_DFE_FXTAP1_67
• RADP_DFE_FXTAP1_68
• RADP_DFE_FXTAP1_69
• RADP_DFE_FXTAP1_7
• RADP_DFE_FXTAP1_70
• RADP_DFE_FXTAP1_71
• RADP_DFE_FXTAP1_72
• RADP_DFE_FXTAP1_73
• RADP_DFE_FXTAP1_74
• RADP_DFE_FXTAP1_75
• RADP_DFE_FXTAP1_76
• RADP_DFE_FXTAP1_77
• RADP_DFE_FXTAP1_78
• RADP_DFE_FXTAP1_79
• RADP_DFE_FXTAP1_8
• RADP_DFE_FXTAP1_80
• RADP_DFE_FXTAP1_81
• RADP_DFE_FXTAP1_82
• RADP_DFE_FXTAP1_83
• RADP_DFE_FXTAP1_84
• RADP_DFE_FXTAP1_85
• RADP_DFE_FXTAP1_86
• RADP_DFE_FXTAP1_87
• RADP_DFE_FXTAP1_88
• RADP_DFE_FXTAP1_89
• RADP_DFE_FXTAP1_9
• RADP_DFE_FXTAP1_90
• RADP_DFE_FXTAP1_91
• RADP_DFE_FXTAP1_92
• RADP_DFE_FXTAP1_93
• RADP_DFE_FXTAP1_94
• RADP_DFE_FXTAP1_95
• RADP_DFE_FXTAP1_96
• RADP_DFE_FXTAP1_97
• RADP_DFE_FXTAP1_98
• RADP_DFE_FXTAP1_99

**Device Support**
- Intel Cyclone 10 GX

**Notes**

**Syntax**

```text
set_instance_assignment -name XCVR_C10_RX_ADPRX_FXTAP1 -to <to> -
entity <entity name> <value>
```
1.10.223. XCVR_C10_RX_ADП_DFE_FXTAP10

A logic option that allows you to specify the coefficient setting for fix tap ten in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

Type

Enumeration

Values

- RADP_DFE_FXTAP10_0
- RADP_DFE_FXTAP10_1
- RADP_DFE_FXTAP10_10
- RADP_DFE_FXTAP10_11
- RADP_DFE_FXTAP10_12
- RADP_DFE_FXTAP10_13
- RADP_DFE_FXTAP10_14
- RADP_DFE_FXTAP10_15
- RADP_DFE_FXTAP10_16
- RADP_DFE_FXTAP10_17
- RADP_DFE_FXTAP10_18
- RADP_DFE_FXTAP10_19
- RADP_DFE_FXTAP10_2
- RADP_DFE_FXTAP10_20
- RADP_DFE_FXTAP10_21
- RADP_DFE_FXTAP10_22
- RADP_DFE_FXTAP10_23
- RADP_DFE_FXTAP10_24
- RADP_DFE_FXTAP10_25
- RADP_DFE_FXTAP10_26
- RADP_DFE_FXTAP10_27
- RADP_DFE_FXTAP10_28
- RADP_DFE_FXTAP10_29
- RADP_DFE_FXTAP10_3
- RADP_DFE_FXTAP10_30
- RADP_DFE_FXTAP10_31
- RADP_DFE_FXTAP10_32
- RADP_DFE_FXTAP10_33
- RADP_DFE_FXTAP10_34
- RADP_DFE_FXTAP10_35
• RADP_DFE_FXTAP10_36
• RADP_DFE_FXTAP10_37
• RADP_DFE_FXTAP10_38
• RADP_DFE_FXTAP10_39
• RADP_DFE_FXTAP10_4
• RADP_DFE_FXTAP10_40
• RADP_DFE_FXTAP10_41
• RADP_DFE_FXTAP10_42
• RADP_DFE_FXTAP10_43
• RADP_DFE_FXTAP10_44
• RADP_DFE_FXTAP10_45
• RADP_DFE_FXTAP10_46
• RADP_DFE_FXTAP10_47
• RADP_DFE_FXTAP10_48
• RADP_DFE_FXTAP10_49
• RADP_DFE_FXTAP10_5
• RADP_DFE_FXTAP10_50
• RADP_DFE_FXTAP10_51
• RADP_DFE_FXTAP10_52
• RADP_DFE_FXTAP10_53
• RADP_DFE_FXTAP10_54
• RADP_DFE_FXTAP10_55
• RADP_DFE_FXTAP10_56
• RADP_DFE_FXTAP10_57
• RADP_DFE_FXTAP10_58
• RADP_DFE_FXTAP10_59
• RADP_DFE_FXTAP10_6
• RADP_DFE_FXTAP10_60
• RADP_DFE_FXTAP10_61
• RADP_DFE_FXTAP10_62
• RADP_DFE_FXTAP10_63
• RADP_DFE_FXTAP10_7
• RADP_DFE_FXTAP10_8
• RADP_DFE_FXTAP10_9

**Device Support**

• Intel Cyclone 10 GX
### Notes

### Syntax

```
set_instance_assignment -name XCVR_C10_RX_ADP_DFE_FXTAP10 -to <to> -
entity <entity name> <value>
```
1.10.224. XCVR_C10_RX_ADG_DFE_FXTAP10_SGN

**Type**

Enumeration

**Values**

- RAPD_DFE_FXTAP10_SGN_0
- RAPD_DFE_FXTAP10_SGN_1

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_RX_ADG_DFE_FXTAP10_SGN -to <to> -
entity <entity name> <value>
```
1.10.225. XCVR_C10_RX_ADJ_DFE_FXTAP11

A logic option that allows you to specify the coefficient setting for fix tap eleven in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP11_0
- RADP_DFE_FXTAP11_1
- RADP_DFE_FXTAP11_10
- RADP_DFE_FXTAP11_11
- RADP_DFE_FXTAP11_12
- RADP_DFE_FXTAP11_13
- RADP_DFE_FXTAP11_14
- RADP_DFE_FXTAP11_15
- RADP_DFE_FXTAP11_16
- RADP_DFE_FXTAP11_17
- RADP_DFE_FXTAP11_18
- RADP_DFE_FXTAP11_19
- RADP_DFE_FXTAP11_2
- RADP_DFE_FXTAP11_20
- RADP_DFE_FXTAP11_21
- RADP_DFE_FXTAP11_22
- RADP_DFE_FXTAP11_23
- RADP_DFE_FXTAP11_24
- RADP_DFE_FXTAP11_25
- RADP_DFE_FXTAP11_26
- RADP_DFE_FXTAP11_27
- RADP_DFE_FXTAP11_28
- RADP_DFE_FXTAP11_29
- RADP_DFE_FXTAP11_3
- RADP_DFE_FXTAP11_30
- RADP_DFE_FXTAP11_31
- RADP_DFE_FXTAP11_32
- RADP_DFE_FXTAP11_33
- RADP_DFE_FXTAP11_34
- RADP_DFE_FXTAP11_35
• RADP_DFE_FXTAP11_36
• RADP_DFE_FXTAP11_37
• RADP_DFE_FXTAP11_38
• RADP_DFE_FXTAP11_39
• RADP_DFE_FXTAP11_4
• RADP_DFE_FXTAP11_40
• RADP_DFE_FXTAP11_41
• RADP_DFE_FXTAP11_42
• RADP_DFE_FXTAP11_43
• RADP_DFE_FXTAP11_44
• RADP_DFE_FXTAP11_45
• RADP_DFE_FXTAP11_46
• RADP_DFE_FXTAP11_47
• RADP_DFE_FXTAP11_48
• RADP_DFE_FXTAP11_49
• RADP_DFE_FXTAP11_5
• RADP_DFE_FXTAP11_50
• RADP_DFE_FXTAP11_51
• RADP_DFE_FXTAP11_52
• RADP_DFE_FXTAP11_53
• RADP_DFE_FXTAP11_54
• RADP_DFE_FXTAP11_55
• RADP_DFE_FXTAP11_56
• RADP_DFE_FXTAP11_57
• RADP_DFE_FXTAP11_58
• RADP_DFE_FXTAP11_59
• RADP_DFE_FXTAP11_6
• RADP_DFE_FXTAP11_60
• RADP_DFE_FXTAP11_61
• RADP_DFE_FXTAP11_62
• RADP_DFE_FXTAP11_63
• RADP_DFE_FXTAP11_7
• RADP_DFE_FXTAP11_8
• RADP_DFE_FXTAP11_9

**Device Support**

• Intel Cyclone 10 GX
Notes

Syntax

    set_instance_assignment -name XCVR_C10_RX_ADP_DFE_FXTAP11 -to <to> -
    entity <entity name> <value>
1.10.226. XCVR_C10_RX_ADPA_DFEXFXTAP11_SGN

Type
Enumeration

Values
• RADP_DFE_FXTAP11_SGN_0
• RADP_DFE_FXTAP11_SGN_1

Device Support
• Intel Cyclone 10 GX

Notes

Syntax

```
set_instance_assignment -name XCVR_C10_RX_ADPA_DFEXFXTAP11_SGN -to <to> -entity <entity name> <value>
```
1.10.227. XCVR_C10_RX_ADJ_DFE_FXTAP2

A logic option that allows you to specify the coefficient setting for fix tap two in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP2_0
- RADP_DFE_FXTAP2_1
- RADP_DFE_FXTAP2_10
- RADP_DFE_FXTAP2_100
- RADP_DFE_FXTAP2_101
- RADP_DFE_FXTAP2_102
- RADP_DFE_FXTAP2_103
- RADP_DFE_FXTAP2_104
- RADP_DFE_FXTAP2_105
- RADP_DFE_FXTAP2_106
- RADP_DFE_FXTAP2_107
- RADP_DFE_FXTAP2_108
- RADP_DFE_FXTAP2_109
- RADP_DFE_FXTAP2_11
- RADP_DFE_FXTAP2_110
- RADP_DFE_FXTAP2_111
- RADP_DFE_FXTAP2_112
- RADP_DFE_FXTAP2_113
- RADP_DFE_FXTAP2_114
- RADP_DFE_FXTAP2_115
- RADP_DFE_FXTAP2_116
- RADP_DFE_FXTAP2_117
- RADP_DFE_FXTAP2_118
- RADP_DFE_FXTAP2_119
- RADP_DFE_FXTAP2_12
- RADP_DFE_FXTAP2_120
- RADP_DFE_FXTAP2_121
- RADP_DFE_FXTAP2_122
- RADP_DFE_FXTAP2_123
- RADP_DFE_FXTAP2_124
• RADP_DFE_FXTAP2_125
• RADP_DFE_FXTAP2_126
• RADP_DFE_FXTAP2_127
• RADP_DFE_FXTAP2_13
• RADP_DFE_FXTAP2_14
• RADP_DFE_FXTAP2_15
• RADP_DFE_FXTAP2_16
• RADP_DFE_FXTAP2_17
• RADP_DFE_FXTAP2_18
• RADP_DFE_FXTAP2_19
• RADP_DFE_FXTAP2_2
• RADP_DFE_FXTAP2_20
• RADP_DFE_FXTAP2_21
• RADP_DFE_FXTAP2_22
• RADP_DFE_FXTAP2_23
• RADP_DFE_FXTAP2_24
• RADP_DFE_FXTAP2_25
• RADP_DFE_FXTAP2_26
• RADP_DFE_FXTAP2_27
• RADP_DFE_FXTAP2_28
• RADP_DFE_FXTAP2_29
• RADP_DFE_FXTAP2_3
• RADP_DFE_FXTAP2_30
• RADP_DFE_FXTAP2_31
• RADP_DFE_FXTAP2_32
• RADP_DFE_FXTAP2_33
• RADP_DFE_FXTAP2_34
• RADP_DFE_FXTAP2_35
• RADP_DFE_FXTAP2_36
• RADP_DFE_FXTAP2_37
• RADP_DFE_FXTAP2_38
• RADP_DFE_FXTAP2_39
• RADP_DFE_FXTAP2_4
• RADP_DFE_FXTAP2_40
• RADP_DFE_FXTAP2_41
• RADP_DFE_FXTAP2_42
• RADP_DFE_FXTAP2_43
• RADP_DFE_FXTAP2_44
• RADP_DFE_FXTAP2_45
• RADP_DFE_FXTAP2_46
• RADP_DFE_FXTAP2_47
• RADP_DFE_FXTAP2_48
• RADP_DFE_FXTAP2_49
• RADP_DFE_FXTAP2_5
• RADP_DFE_FXTAP2_50
• RADP_DFE_FXTAP2_51
• RADP_DFE_FXTAP2_52
• RADP_DFE_FXTAP2_53
• RADP_DFE_FXTAP2_54
• RADP_DFE_FXTAP2_55
• RADP_DFE_FXTAP2_56
• RADP_DFE_FXTAP2_57
• RADP_DFE_FXTAP2_58
• RADP_DFE_FXTAP2_59
• RADP_DFE_FXTAP2_6
• RADP_DFE_FXTAP2_60
• RADP_DFE_FXTAP2_61
• RADP_DFE_FXTAP2_62
• RADP_DFE_FXTAP2_63
• RADP_DFE_FXTAP2_64
• RADP_DFE_FXTAP2_65
• RADP_DFE_FXTAP2_66
• RADP_DFE_FXTAP2_67
• RADP_DFE_FXTAP2_68
• RADP_DFE_FXTAP2_69
• RADP_DFE_FXTAP2_7
• RADP_DFE_FXTAP2_70
• RADP_DFE_FXTAP2_71
• RADP_DFE_FXTAP2_72
• RADP_DFE_FXTAP2_73
• RADP_DFE_FXTAP2_74
• RADP_DFE_FXTAP2_75
• RADP_DFE_FXTAP2_76
• RADP_DFE_FXTAP2_77
• RADP_DFE_FXTAP2_78
• RADP_DFE_FXTAP2_79
• RADP_DFE_FXTAP2_8
• RADP_DFE_FXTAP2_80
• RADP_DFE_FXTAP2_81
• RADP_DFE_FXTAP2_82
• RADP_DFE_FXTAP2_83
• RADP_DFE_FXTAP2_84
• RADP_DFE_FXTAP2_85
• RADP_DFE_FXTAP2_86
• RADP_DFE_FXTAP2_87
• RADP_DFE_FXTAP2_88
• RADP_DFE_FXTAP2_89
• RADP_DFE_FXTAP2_9
• RADP_DFE_FXTAP2_90
• RADP_DFE_FXTAP2_91
• RADP_DFE_FXTAP2_92
• RADP_DFE_FXTAP2_93
• RADP_DFE_FXTAP2_94
• RADP_DFE_FXTAP2_95
• RADP_DFE_FXTAP2_96
• RADP_DFE_FXTAP2_97
• RADP_DFE_FXTAP2_98
• RADP_DFE_FXTAP2_99

**Device Support**

• Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_RX_ADJ_DFE_FXTAP2 -to <to> -entity <entity name> <value>
```
1.10.228. XCVR_C10_RX_AD catholic DFE FXTAP2_SGN

Type
Enumeration

Values
- RADP_DFE_FXTAP2_SGN_0
- RADP_DFE_FXTAP2_SGN_1

Device Support
- Intel Cyclone 10 GX

Notes

Syntax

set_instance_assignment -name XCVR_C10_RX_AD catholic DFE_FXTAP2_SGN -to <to> -entity <entity name> <value>
1.10.229. XCVR_C10_RX_ADpDFE_FXTAP3

A logic option that allows you to specify the coefficient setting for fix tap three in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP3_0
- RADP_DFE_FXTAP3_1
- RADP_DFE_FXTAP3_10
- RADP_DFE_FXTAP3_100
- RADP_DFE_FXTAP3_101
- RADP_DFE_FXTAP3_102
- RADP_DFE_FXTAP3_103
- RADP_DFE_FXTAP3_104
- RADP_DFE_FXTAP3_105
- RADP_DFE_FXTAP3_106
- RADP_DFE_FXTAP3_107
- RADP_DFE_FXTAP3_108
- RADP_DFE_FXTAP3_109
- RADP_DFE_FXTAP3_11
- RADP_DFE_FXTAP3_110
- RADP_DFE_FXTAP3_111
- RADP_DFE_FXTAP3_112
- RADP_DFE_FXTAP3_113
- RADP_DFE_FXTAP3_114
- RADP_DFE_FXTAP3_115
- RADP_DFE_FXTAP3_116
- RADP_DFE_FXTAP3_117
- RADP_DFE_FXTAP3_118
- RADP_DFE_FXTAP3_119
- RADP_DFE_FXTAP3_12
- RADP_DFE_FXTAP3_120
- RADP_DFE_FXTAP3_121
- RADP_DFE_FXTAP3_122
- RADP_DFE_FXTAP3_123
- RADP_DFE_FXTAP3_124
• RADP_DFE_FXTAP3_125
• RADP_DFE_FXTAP3_126
• RADP_DFE_FXTAP3_127
• RADP_DFE_FXTAP3_13
• RADP_DFE_FXTAP3_14
• RADP_DFE_FXTAP3_15
• RADP_DFE_FXTAP3_16
• RADP_DFE_FXTAP3_17
• RADP_DFE_FXTAP3_18
• RADP_DFE_FXTAP3_19
• RADP_DFE_FXTAP3_2
• RADP_DFE_FXTAP3_20
• RADP_DFE_FXTAP3_21
• RADP_DFE_FXTAP3_22
• RADP_DFE_FXTAP3_23
• RADP_DFE_FXTAP3_24
• RADP_DFE_FXTAP3_25
• RADP_DFE_FXTAP3_26
• RADP_DFE_FXTAP3_27
• RADP_DFE_FXTAP3_28
• RADP_DFE_FXTAP3_29
• RADP_DFE_FXTAP3_3
• RADP_DFE_FXTAP3_30
• RADP_DFE_FXTAP3_31
• RADP_DFE_FXTAP3_32
• RADP_DFE_FXTAP3_33
• RADP_DFE_FXTAP3_34
• RADP_DFE_FXTAP3_35
• RADP_DFE_FXTAP3_36
• RADP_DFE_FXTAP3_37
• RADP_DFE_FXTAP3_38
• RADP_DFE_FXTAP3_39
• RADP_DFE_FXTAP3_4
• RADP_DFE_FXTAP3_40
• RADP_DFE_FXTAP3_41
• RADP_DFE_FXTAP3_42
• RADP_DFE_FXTAP3_43
• RADP_DFE_FXTAP3_44
• RADP_DFE_FXTAP3_45
• RADP_DFE_FXTAP3_46
• RADP_DFE_FXTAP3_47
• RADP_DFE_FXTAP3_48
• RADP_DFE_FXTAP3_49
• RADP_DFE_FXTAP3_5
• RADP_DFE_FXTAP3_50
• RADP_DFE_FXTAP3_51
• RADP_DFE_FXTAP3_52
• RADP_DFE_FXTAP3_53
• RADP_DFE_FXTAP3_54
• RADP_DFE_FXTAP3_55
• RADP_DFE_FXTAP3_56
• RADP_DFE_FXTAP3_57
• RADP_DFE_FXTAP3_58
• RADP_DFE_FXTAP3_59
• RADP_DFE_FXTAP3_6
• RADP_DFE_FXTAP3_60
• RADP_DFE_FXTAP3_61
• RADP_DFE_FXTAP3_62
• RADP_DFE_FXTAP3_63
• RADP_DFE_FXTAP3_64
• RADP_DFE_FXTAP3_65
• RADP_DFE_FXTAP3_66
• RADP_DFE_FXTAP3_67
• RADP_DFE_FXTAP3_68
• RADP_DFE_FXTAP3_69
• RADP_DFE_FXTAP3_7
• RADP_DFE_FXTAP3_70
• RADP_DFE_FXTAP3_71
• RADP_DFE_FXTAP3_72
• RADP_DFE_FXTAP3_73
• RADP_DFE_FXTAP3_74
• RADP_DFE_FXTAP3_75
• RADP_DFE_FXTAP3_76
• RADP_DFE_FXTAP3_77
• RADP_DFE_FXTAP3_78
• RADP_DFE_FXTAP3_79
• RADP_DFE_FXTAP3_8
• RADP_DFE_FXTAP3_80
• RADP_DFE_FXTAP3_81
• RADP_DFE_FXTAP3_82
• RADP_DFE_FXTAP3_83
• RADP_DFE_FXTAP3_84
• RADP_DFE_FXTAP3_85
• RADP_DFE_FXTAP3_86
• RADP_DFE_FXTAP3_87
• RADP_DFE_FXTAP3_88
• RADP_DFE_FXTAP3_89
• RADP_DFE_FXTAP3_9
• RADP_DFE_FXTAP3_90
• RADP_DFE_FXTAP3_91
• RADP_DFE_FXTAP3_92
• RADP_DFE_FXTAP3_93
• RADP_DFE_FXTAP3_94
• RADP_DFE_FXTAP3_95
• RADP_DFE_FXTAP3_96
• RADP_DFE_FXTAP3_97
• RADP_DFE_FXTAP3_98
• RADP_DFE_FXTAP3_99

**Device Support**

• Intel Cyclone 10 GX

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_C10_RX_ADPI_DFE_FXTAP3 -to <to> -
entity <entity name> <value>
```
1.10.230. XCVR_C10_RX_ADP_DFE_FXTAP3_SGN

**Type**

**Enumeration**

**Values**

- RADP_DFE_FXTAP3_SGN_0
- RADP_DFE_FXTAP3_SGN_1

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_RX_ADP_DFE_FXTAP3_SGN -to <to> -entity <entity name> <value>
```
1.10.231. XCVR_C10_RX_ADPS_DFE_FXTAP4

A logic option that allows you to specify the coefficient setting for floating tap four in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

Type

Enumeration

Values

- RADP_DFE_FXTAP4_0
- RADP_DFE_FXTAP4_1
- RADP_DFE_FXTAP4_10
- RADP_DFE_FXTAP4_11
- RADP_DFE_FXTAP4_12
- RADP_DFE_FXTAP4_13
- RADP_DFE_FXTAP4_14
- RADP_DFE_FXTAP4_15
- RADP_DFE_FXTAP4_16
- RADP_DFE_FXTAP4_17
- RADP_DFE_FXTAP4_18
- RADP_DFE_FXTAP4_19
- RADP_DFE_FXTAP4_2
- RADP_DFE_FXTAP4_20
- RADP_DFE_FXTAP4_21
- RADP_DFE_FXTAP4_22
- RADP_DFE_FXTAP4_23
- RADP_DFE_FXTAP4_24
- RADP_DFE_FXTAP4_25
- RADP_DFE_FXTAP4_26
- RADP_DFE_FXTAP4_27
- RADP_DFE_FXTAP4_28
- RADP_DFE_FXTAP4_29
- RADP_DFE_FXTAP4_3
- RADP_DFE_FXTAP4_30
- RADP_DFE_FXTAP4_31
- RADP_DFE_FXTAP4_32
- RADP_DFE_FXTAP4_33
- RADP_DFE_FXTAP4_34
- RADP_DFE_FXTAP4_35
Device Support

- Intel Cyclone 10 GX
Notes

Syntax

```
set_instance_assignment -name XCVR_C10_RX_ADJ_DFE_FXTAP4 -to <to> -
entity <entity name> <value>
```
1.10.232. XCVR_C10_RX_ADAP_DFE_FXTAP4_SGN

Type
Enumeration

Values
• RADP_DFE_FXTAP4_SGN_0
• RADP_DFE_FXTAP4_SGN_1

Device Support
• Intel Cyclone 10 GX

Notes

Syntax

```plaintext
set_instance_assignment -name XCVR_C10_RX_ADAP_DFE_FXTAP4_SGN -to <to> -
entity <entity name> <value>
```
1.10.233. **XCVR_C10_RX_ADП_DFE_FXTAP5**

A logic option that allows you to specify the coefficient setting for fix tap five in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP5_0
- RADP_DFE_FXTAP5_1
- RADP_DFE_FXTAP5_10
- RADP_DFE_FXTAP5_11
- RADP_DFE_FXTAP5_12
- RADP_DFE_FXTAP5_13
- RADP_DFE_FXTAP5_14
- RADP_DFE_FXTAP5_15
- RADP_DFE_FXTAP5_16
- RADP_DFE_FXTAP5_17
- RADP_DFE_FXTAP5_18
- RADP_DFE_FXTAP5_19
- RADP_DFE_FXTAP5_2
- RADP_DFE_FXTAP5_20
- RADP_DFE_FXTAP5_21
- RADP_DFE_FXTAP5_22
- RADP_DFE_FXTAP5_23
- RADP_DFE_FXTAP5_24
- RADP_DFE_FXTAP5_25
- RADP_DFE_FXTAP5_26
- RADP_DFE_FXTAP5_27
- RADP_DFE_FXTAP5_28
- RADP_DFE_FXTAP5_29
- RADP_DFE_FXTAP5_3
- RADP_DFE_FXTAP5_30
- RADP_DFE_FXTAP5_31
- RADP_DFE_FXTAP5_32
- RADP_DFE_FXTAP5_33
- RADP_DFE_FXTAP5_34
- RADP_DFE_FXTAP5_35
Device Support

- Intel Cyclone 10 GX
Notes

Syntax

```
set_instance_assignment -name XCVR_C10_RX_ADP_DFE_FXTAP5 -to <to> -
entity <entity name> <value>
```
1.10.234. XCVR_C10_RX_ADPS_DFE_FXTAP5_SGN

Type

Enumeration

Values

- RADP_DFE_FXTAP5_SGN_0
- RADP_DFE_FXTAP5_SGN_1

Device Support

- Intel Cyclone 10 GX

Notes

Syntax

```
set_instance_assignment -name XCVR_C10_RX_ADPS_DFE_FXTAP5_SGN -to <to> -entity <entity name> <value>
```
1.10.235. XCVR_C10_RX_ADП_DFE_FXTAP6

A logic option that allows you to specify the coefficient setting for fix tap six in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

Type

Enumeration

Values

- RADP_DFE_FXTAP6_0
- RADP_DFE_FXTAP6_1
- RADP_DFE_FXTAP6_10
- RADP_DFE_FXTAP6_11
- RADP_DFE_FXTAP6_12
- RADP_DFE_FXTAP6_13
- RADP_DFE_FXTAP6_14
- RADP_DFE_FXTAP6_15
- RADP_DFE_FXTAP6_16
- RADP_DFE_FXTAP6_17
- RADP_DFE_FXTAP6_18
- RADP_DFE_FXTAP6_19
- RADP_DFE_FXTAP6_2
- RADP_DFE_FXTAP6_20
- RADP_DFE_FXTAP6_21
- RADP_DFE_FXTAP6_22
- RADP_DFE_FXTAP6_23
- RADP_DFE_FXTAP6_24
- RADP_DFE_FXTAP6_25
- RADP_DFE_FXTAP6_26
- RADP_DFE_FXTAP6_27
- RADP_DFE_FXTAP6_28
- RADP_DFE_FXTAP6_29
- RADP_DFE_FXTAP6_3
- RADP_DFE_FXTAP6_30
- RADP_DFE_FXTAP6_31
- RADP_DFE_FXTAP6_4
- RADP_DFE_FXTAP6_5
- RADP_DFE_FXTAP6_6
• RADP_DFE_FXTAP6_7
• RADP_DFE_FXTAP6_8
• RADP_DFE_FXTAP6_9

**Device Support**
- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_RX_ADP_DFE_FXTAP6 -to <to> -entity <entity name> <value>
```
1.10.236. XCVR_C10_RX_ADP_DFE_FXTAP6_SGN

Type
Enumeration

Values
• RADP_DFE_FXTAP6_SGN_0
• RADP_DFE_FXTAP6_SGN_1

Device Support
• Intel Cyclone 10 GX

Notes

Syntax

```
set_instance_assignment -name XCVR_C10_RX_ADP_DFE_FXTAP6_SGN -to <to> -entity <entity name> <value>
```
### 1.10.237. XCVR_C10_RX_ADH_DFE_FXTAP7

A logic option that allows you to specify the coefficient setting for fix tap seven in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP7_0
- RADP_DFE_FXTAP7_1
- RADP_DFE_FXTAP7_10
- RADP_DFE_FXTAP7_11
- RADP_DFE_FXTAP7_12
- RADP_DFE_FXTAP7_13
- RADP_DFE_FXTAP7_14
- RADP_DFE_FXTAP7_15
- RADP_DFE_FXTAP7_16
- RADP_DFE_FXTAP7_17
- RADP_DFE_FXTAP7_18
- RADP_DFE_FXTAP7_19
- RADP_DFE_FXTAP7_2
- RADP_DFE_FXTAP7_20
- RADP_DFE_FXTAP7_21
- RADP_DFE_FXTAP7_22
- RADP_DFE_FXTAP7_23
- RADP_DFE_FXTAP7_24
- RADP_DFE_FXTAP7_25
- RADP_DFE_FXTAP7_26
- RADP_DFE_FXTAP7_27
- RADP_DFE_FXTAP7_28
- RADP_DFE_FXTAP7_29
- RADP_DFE_FXTAP7_3
- RADP_DFE_FXTAP7_30
- RADP_DFE_FXTAP7_31
- RADP_DFE_FXTAP7_4
- RADP_DFE_FXTAP7_5
- RADP_DFE_FXTAP7_6
• RADP_DFE_FXTAP7_7
• RADP_DFE_FXTAP7_8
• RADP_DFE_FXTAP7_9

Device Support
• Intel Cyclone 10 GX

Notes

Syntax

```plaintext
set_instance_assignment -name XCVR_C10_RX_ADP_DFE_FXTAP7 -to <to> -
entity <entity name> <value>
```
1.10.238. XCVR_C10_RX_AD.P_DFE_FXTAP7_SGN

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP7_SGN_0
- RADP_DFE_FXTAP7_SGN_1

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_RX_AD.P_DFE_FXTAP7_SGN -to <to> -entity <entity name> <value>
```
A logic option that allows you to specify the coefficient setting for fix tap eight in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**
Enumeration

**Values**
- RADP_DFE_FXTAP8_0
- RADP_DFE_FXTAP8_1
- RADP_DFE_FXTAP8_10
- RADP_DFE_FXTAP8_11
- RADP_DFE_FXTAP8_12
- RADP_DFE_FXTAP8_13
- RADP_DFE_FXTAP8_14
- RADP_DFE_FXTAP8_15
- RADP_DFE_FXTAP8_16
- RADP_DFE_FXTAP8_17
- RADP_DFE_FXTAP8_18
- RADP_DFE_FXTAP8_19
- RADP_DFE_FXTAP8_2
- RADP_DFE_FXTAP8_20
- RADP_DFE_FXTAP8_21
- RADP_DFE_FXTAP8_22
- RADP_DFE_FXTAP8_23
- RADP_DFE_FXTAP8_24
- RADP_DFE_FXTAP8_25
- RADP_DFE_FXTAP8_26
- RADP_DFE_FXTAP8_27
- RADP_DFE_FXTAP8_28
- RADP_DFE_FXTAP8_29
- RADP_DFE_FXTAP8_3
- RADP_DFE_FXTAP8_30
- RADP_DFE_FXTAP8_31
- RADP_DFE_FXTAP8_32
- RADP_DFE_FXTAP8_33
- RADP_DFE_FXTAP8_34
- RADP_DFE_FXTAP8_35
Device Support

- Intel Cyclone 10 GX
Notes

Syntax

```bash
set_instance_assignment -name XCVR_C10_RX_ADP_DFE_FXTAP8 -to <to> -
entity <entity name> <value>
```
1.10.240. XCVR_C10_RX_ADП_DFE_FXTAP8_SGN

Type

Enumeration

Values

• RADP_DFE_FXTAP8_SGN_0
• RADP_DFE_FXTAP8_SGN_1

Device Support

• Intel Cyclone 10 GX

Notes

Syntax

```
set_instance_assignment -name XCVR_C10_RX_ADП_DFE_FXTAP8_SGN -to <to> -
entity <entity name> <value>
```
1.10.241. XCVR_C10_RX_ADPA_DFE_FXTAP9

A logic option that allows you to specify the coefficient setting for fix tap nine in the receiver decision feedback equalizer. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP9_0
- RADP_DFE_FXTAP9_1
- RADP_DFE_FXTAP9_10
- RADP_DFE_FXTAP9_11
- RADP_DFE_FXTAP9_12
- RADP_DFE_FXTAP9_13
- RADP_DFE_FXTAP9_14
- RADP_DFE_FXTAP9_15
- RADP_DFE_FXTAP9_16
- RADP_DFE_FXTAP9_17
- RADP_DFE_FXTAP9_18
- RADP_DFE_FXTAP9_19
- RADP_DFE_FXTAP9_2
- RADP_DFE_FXTAP9_20
- RADP_DFE_FXTAP9_21
- RADP_DFE_FXTAP9_22
- RADP_DFE_FXTAP9_23
- RADP_DFE_FXTAP9_24
- RADP_DFE_FXTAP9_25
- RADP_DFE_FXTAP9_26
- RADP_DFE_FXTAP9_27
- RADP_DFE_FXTAP9_28
- RADP_DFE_FXTAP9_29
- RADP_DFE_FXTAP9_3
- RADP_DFE_FXTAP9_30
- RADP_DFE_FXTAP9_31
- RADP_DFE_FXTAP9_32
- RADP_DFE_FXTAP9_33
- RADP_DFE_FXTAP9_34
- RADP_DFE_FXTAP9_35
Device Support

- Intel Cyclone 10 GX
Notes

Syntax

```
set_instance_assignment -name XCVR_C10_RX_ADP_DFE_FXTAP9 -to <to> -
entity <entity name> <value>
```
1.10.242. XCVR_C10_RX_ADU_DFE_FXTAP9_SGN

**Type**

Enumeration

**Values**

- RADP_DFE_FXTAP9_SGN_0
- RADP_DFE_FXTAP9_SGN_1

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_C10_RX_ADU_DFE_FXTAP9_SGN -to <to> -entity <entity name> <value>
```
1.10.243. XCVR_C10_RX_ADJP_VGA_SEL

A logic option that allows you to control the amount of output voltage swing on the variable gain amplifier. The amount of voltage swing is proportional to the setting where '0' gives the lowest swing and '4' gives the largest swing. This option is only valid when equalizer operates in manual mode.

**Type**

Enumeration

**Values**

- RADP_VGA_SEL_0
- RADP_VGA_SEL_1
- RADP_VGA_SEL_2
- RADP_VGA_SEL_3
- RADP_VGA_SEL_4

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```text
set_instance_assignment -name XCVR_C10_RX_ADJP_VGA_SEL -to <to> -entity <entity name> <value>
```
1.10.244. XCVR_C10_RX_EQ_BW_SEL

**Type**

Enumeration

**Values**

- EQ_BW_1
- EQ_BW_2
- EQ_BW_3
- EQ_BW_4

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```bash
set_instance_assignment -name XCVR_C10_RX_EQ_BW_SEL -to <to> -entity <entity name> <value>
```
1.10.245. XCVR_C10_RX_EQ_DC_GAIN_TRIM

A logic option that allows you to control the amount of DC gain on equalizer in high gain mode. The amount of DC gain is proportional to the setting where '0' gives the lowest DC gain and '28' gives the largest DC gain.

**Type**

Enumeration

**Values**

- NO_DC_GAIN
- STG1_GAIN7
- STG2_GAIN7
- STG3_GAIN7
- STG4_GAIN7

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_RX_EQ_DC_GAIN_TRIM -to <to> -
entity <entity name> <value>
```
1.10.246. **XCVR_C10_RX_LINK**

A logic option that allows you to specify the type of communication for the receiver link. Quartus Prime will use this option to determine the legal data rate and power mode for the link.

**Type**

Enumeration

**Values**

- LR
- SR

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_RX_LINK -to <to> -entity <entity name> <value>
```
1.10.247. XCVR_C10_RX_ONE_STAGE_ENABLE

Type
Enumeration

Values
- NON_S1_MODE
- S1_MODE

Device Support
- Intel Cyclone 10 GX

Notes

Syntax

```
set_instance_assignment -name XCVR_C10_RX_ONE_STAGE_ENABLE -to <to> -
entity <entity name> <value>
```
1.10.248. **XCVR_C10_RX_TERM_SEL**

A logic option that allows you to specify the termination value of a transceiver Rx pin.

**Type**

Enumeration

**Values**

- R_EXT0
- R_R1
- R_R2

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_RX_TERM_SEL -to <to> -entity
<entity name> <value>
```
1.10.249. **XCVR_C10_TX_COMPENSATION_EN**

A logic option that allows you to turn on the compensation for transmitter data rate above 9 Gbps. Turning on this option draws more power on the transmitter buffer.

**Type**

Enumeration

**Values**

- DISABLE
- ENABLE

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_TX_COMPENSATION_EN -to <to> -entity <entity name> <value>
```
1.10.250. XCVR_C10_TX_LINK

A logic option that allows you to specify the type of communication for the transmitter link. Quartus Prime will use this option to determine the legal data rate and power mode for the link.

**Type**

Enumerated

**Values**

- LR
- SR

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_C10_TX_LINK -to <to> -entity <entity name> <value>
```
1.10.251. XCVR_C10_TX_PRE_EMP_SIGN_1ST_POST_TAP

A logic option that allows you to specify the output polarity of the transmitter pre-emphasis first post-tap.

**Type**
Enumeration

**Values**
- FIR_POST_1T_NEG
- FIR_POST_1T_POS

**Device Support**
- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_TX_PRE_EMP_SIGN_1ST_POST_TAP -to <to> -entity <entity name> <value>
```
1.10.252. **XCVR_C10_TX_PRE_EMP_SIGN_2ND_POST_TAP**

A logic option that allows you to specify the output polarity of the transmitter pre-emphasis second post-tap.

**Type**

Enumeration

**Values**

- FIR_POST_2T_NEG
- FIR_POST_2T_POS

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_TX_PRE_EMP_SIGN_2ND_POST_TAP -to <to> -entity <entity name> <value>
```
1.10.253. **XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_1T**

A logic option that allows you to specify the output polarity of the transmitter pre-emphasis first pre-tap.

**Type**

Enumeration

**Values**

- FIR_PRE_1T_NEG
- FIR_PRE_1T_POS

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_1T -to <to> -entity <entity name> <value>
```
1.10.254. XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_2T

A logic option that allows you to specify the output polarity of the transmitter pre-emphasis second pre-tap.

**Type**

Enumeration

**Values**

- FIR_PRE_2T_NEG
- FIR_PRE_2T_POS

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_2T -to <to> -entity <entity name> <value>
```
1.10.255. **XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP**

A logic option that allows you to control the magnitude of transmitter pre-emphasis first post-tap. Legal values are: 0 to 25.

**Type**
Integer

**Device Support**
- Intel Cyclone 10 GX

**INTEGER_RANGE**
0, 25

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP -to <to> -entity <entity name> <value>
```
1.10.256. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP

A logic option that allows you to control the magnitude of transmitter pre-emphasis second post-tap. Legal values are: 0 to 12.

**Type**

Integer

**Device Support**

- Intel Cyclone 10 GX

**INTEGER_RANGE**

0, 12

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP -to <to> -entity <entity name> <value>
```
1.10.257. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T

A logic option that allows you to control the magnitude of transmitter pre-emphasis first pre-tap. Legal values are: 0 to 16.

**Type**

Integer

**Device Support**

- Intel Cyclone 10 GX

**INTEGER_RANGE**

0, 16

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T -to <to> -entity <entity name> <value>
```
1.10.258. **XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T**

A logic option that allows you to control the magnitude of transmitter pre-emphasis second pre-tap. Legal values are: 0 to 7.

**Type**

Integer

**Device Support**

- Intel Cyclone 10 GX

**INTEGER_RANGE**

0, 7

**Notes**

**Syntax**

```
set_instance_assignment
 XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T
-to <to> -entity <entity name>
-value <value>
```
1.10.259. XCVR_C10_TX_SLEW_RATE_CTRL

Type
Enumeration

Values
• SLEW_R0
• SLEW_R1
• SLEW_R2
• SLEW_R3
• SLEW_R4
• SLEW_R5
• SLEW_R6
• SLEW_R7

Device Support
• Intel Cyclone 10 GX

Notes

Syntax

```
set_instance_assignment -name XCVR_C10_TX_SLEW_RATE_CTRL -to <to> -
entity <entity name> <value>
```
1.10.260. **XCVR_C10_TX_TERM_SEL**

A logic option that allows you to specify the termination value of a transceiver Tx pin.

**Type**

Enumeration

**Values**

- R_R1
- R_R2

**Device Support**

- Intel Cyclone 10 GX

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_C10_TX_TERM_SEL -to <to> -entity <entity name> <value>
```
1.10.261. XCVR_C10_TX_VOD_OUTPUT_SWING_CTRL

A logic option that allows you to control the transmitter output swing level. Legal values are: 0 to 31.

Type
Integer

Device Support
- Intel Cyclone 10 GX

INTEGER_RANGE
0, 31

Notes

Syntax

    set_instance_assignment -name XCVR_C10_TX_VOD_OUTPUT_SWING_CTRL -to <to> -entity <entity name> <value>
1.10.262. XCVR_C10_TX_XTX_PATH_ANALOG_MODE

<table>
<thead>
<tr>
<th>Type</th>
<th>Enumeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td></td>
</tr>
<tr>
<td>• CEI_11100_LR</td>
<td></td>
</tr>
<tr>
<td>• CEI_11100_SR</td>
<td></td>
</tr>
<tr>
<td>• CEI_4976_LR</td>
<td></td>
</tr>
<tr>
<td>• CEI_4976_SR</td>
<td></td>
</tr>
<tr>
<td>• CEI_6375_LR</td>
<td></td>
</tr>
<tr>
<td>• CEI_6375_SR</td>
<td></td>
</tr>
<tr>
<td>• CEI_9950_LR</td>
<td></td>
</tr>
<tr>
<td>• CEI_9950_SR</td>
<td></td>
</tr>
<tr>
<td>• CPRI_12500</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E12LVII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E12LVIII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E24LVII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E24LVIII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E30LVII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E30LVIII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E48LVII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E48LVIII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E60LVII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E60LVIII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E6LVII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E6LVIII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E96LVIII</td>
<td></td>
</tr>
<tr>
<td>• CPRI_E99LVIII</td>
<td></td>
</tr>
<tr>
<td>• HIGIG_4062</td>
<td></td>
</tr>
<tr>
<td>• HIGIG_5000</td>
<td></td>
</tr>
<tr>
<td>• HIGIG_6250</td>
<td></td>
</tr>
<tr>
<td>• HIGIG_6562</td>
<td></td>
</tr>
<tr>
<td>• IEEE_10G_BASE_CR_10312</td>
<td></td>
</tr>
<tr>
<td>• IEEE_10G_KR_10312</td>
<td></td>
</tr>
<tr>
<td>• IEEE_40G_BASE_KR_10312</td>
<td></td>
</tr>
<tr>
<td>• INTERLAKEN_11100</td>
<td></td>
</tr>
<tr>
<td>• INTERLAKEN_12500</td>
<td></td>
</tr>
</tbody>
</table>
• INTERLAKEN_6375
• JESD204_A_B_12500
• JESD204_A_B_6375
• QSGMII_5000
• SFI_S_6250
• SRI0_5000_LR
• SRI0_5000_MR
• SRI0_5000_SR
• SRI0_6250_LR
• SRI0_6250_MR
• SRI0_6250_SR
• USER_CUSTOM

Device Support
• Intel Cyclone 10 GX

Notes

Syntax

```plaintext
set_instance_assignment -name XCVR_C10_TX_XTX_PATH_ANALOG_MODE -to <to>
-entity <entity name> <value>
```
1.10.263. XCVR_RECONFIG_GROUP

Assigns the node you specify to a transceiver Avalon Memory-Mapped interface group. The Avalon Memory-Mapped interfaces of an RX-only channel and a TX-only channel, or a CDR PLL and a TX-only channel, can be merged and placed into one transceiver channel. You can assign this option to the instance names of the transceiver Avalon Memory-Mapped interfaces you want the Fitter to merge. You can also assign this to option to a CDR PLL instance name and the transceiver TX (or RX) positive pin name of a TX-only (or RX-only) channel, instead of the corresponding transceiver Avalon Memory-Mapped interface instance name. Assigning this option to two nodes directs the Fitter to view the specified nodes as single group. The Fitter does not automatically merge the transceiver Avalon Memory-Mapped interfaces; by default a CDR PLL, RX-only channel, and a TX-only channel map to three different transceiver channels. If the Avalon Memory-Mapped interfaces of the transceiver channels can be merged into one Avalon Memory-Mapped interface, the Fitter merges and places them in the same transceiver channel. If the Fitter cannot merge the transceiver channels, your compilation will result in an error.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports wildcards.

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name XCVR_RECONFIG_GROUP -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name XCVR_RECONFIG_GROUP myChannel -to output_pin[0]
set_instance_assignment -name XCVR_RECONFIG_GROUP myChannel -to input_pin[1]
```
1.10.264. XCVR_S10_REFCLK_TERM_TRISTATE

A logic option that directs the Compiler to enable the internal termination of the dedicated reference clock pin.

**Type**

Enumeration

**Values**

- TRISTATE_OFF
- TRISTATE_ON

**Device Support**

- Intel Stratix 10

**Notes**

**Syntax**

```
set_instance_assignment -name XCVR_S10_REFCLK_TERM_TRISTATE -to <to> -entity <entity name> <value>
```
1.10.265. **XCVR_USE_HQ_REFCLK**

Instructs the Fitter to use high quality reference clock lines for the specified transceiver TX channel.

**Type**

Boolean

**Device Support**

- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_instance_assignment -name XCVR_USE_HQ_REFCLK -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name XCVR_USE_HQ_REFCLK ON -to tx_pin
```
1.10.266. XCVR_USE_SKEW_BALANCED

Instructs the Fitter to use low skew balanced reference clock for the specified transceiver channel.

**Type**

Boolean

**Device Support**

- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_instance_assignment -name XCVR_USE_SKEW_BALANCED -to <to> -entity <entity name> <value>
```

**Example**

```
set_instance_assignment -name XCVR_USE_SKEW_BALANCED ON -to tx_pin
```
1.10.267. XCVR_VCCR_VCCT_VOLTAGE

Configure the VCCR_GXB and VCCT_GXB voltage for a GXB I/O pin by specifying the intended supply voltages for a GXB I/O pin. If this is not set, the compiler automatically sets the correct VCCR_GXB and VCCT_GXB voltage.

Old Name
GXB_VCCR_VCCT_VOLTAGE

Type
Enumeration

Values
- 0.85V
- 0.9V
- 1.0V
- 1.15V
- 1.1V
- 1.2V

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX

Notes
This assignment supports Fitter wildcards.

Syntax

```bash
set_instance_assignment -name XCVR_VCCR_VCCT_VOLTAGE -to <to> -entity <entity name> <value>
```
1.11. Netlist Viewer Assignments

1.11.1. RTLV_GROUP_COMB_LOGIC_IN_CLOUD

Allow RTL Viewer to group combinational logic in logic cloud

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name RTLV_GROUP_COMB_LOGIC_IN_CLOUD <value>
```

**Default Value**

Off
1.11.2. RTLV_GROUP_COMB_LOGIC_IN_CLOUD_TMV

Allow Technology Map Viewer to group combinational logic in logic cloud

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name RTLV_GROUP_COMB_LOGIC_IN_CLOUD_TMV <value>
```

**Default Value**
Off
1.11.3. RTLV_GROUPRELATED_NODES

Allow RTL Viewer to group all related nodes into a single bus node

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name RTLV_GROUPRELATED_NODES <value>
```

**Default Value**

On
1.11.4. RTLV_GROUP_RELATED_NODES_TMV

Allow Technology Map Viewer to group all related nodes into a single bus node

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name RTLV_GROUP_RELATED_NODES_TMV <value>
```

**Default Value**

On
1.11.5. RTLV_REMOVE_FANOUT_FREE_REGISTERS

Allow RTL Viewer to remove fanout free registers

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name RTLV_REMOVE_FANOUT_FREE_REGISTERS <value>
```

**Default Value**

On
1.11.6. RTLV_SIMPLIFIED_LOGIC

Allow RTL Viewer to remove wire nodes and merge chain of equivalent combinatorial gates

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name RTLV_SIMPLIFIED_LOGIC <value>
```

**Default Value**

On
1.12. Pin & Location Assignments

1.12.1. FAST_INPUT_REGISTER

Implements an input register in a cell that has a fast, direct connection from an I/O pin. If such a fast, direct connection from the I/O pin is not available on the I/O cell hardware, this option instructs the Fitter to lock the input register in the LAB adjacent to the I/O cell feeding it. Turning on the Fast Input Register option can help maximize I/O timing performance, for example, by permitting fast setup times. Turning this option off for a particular signal prevents the Fitter from implementing the signal automatically in an I/O cell or locking down the input register in the LAB adjacent to the I/O cell. This option is ignored if it is applied to anything other than a register or an input or bidirectional pin that feeds a register.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_instance_assignment -name FAST_INPUT_REGISTER -to <to> -entity <entity name> <value>
```
1.12.2. FAST_OUTPUT_ENABLE_REGISTER

Implements an output enable register in a cell that has a fast, direct connection to an I/O pin. If such a fast, direct connection to the I/O pin is not available in the I/O cell hardware, this option instructs the Fitter to lock the output enable register in the LAB adjacent to the I/O cell it is feeding. Turning on the Fast Output Enable Register option can help maximize I/O timing performance, for example, by permitting fast clock-to-output times. Turning this option off for a particular signal prevents the Fitter from implementing the signal automatically in an I/O cell or locking down the output enable register in the LAB adjacent to the I/O cell. This option is ignored if it is applied to anything other than a register or an output or bidirectional pin fed by a register.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```plaintext
set_instance_assignment -name FAST_OUTPUT_ENABLE_REGISTER -to <to> -entity <entity name> <value>
```
1.12.3. FAST_OUTPUT_REGISTER

Implements an output register in a cell that has a fast, direct connection to an I/O pin. If such a fast, direct connection to the I/O pin is not available in the I/O cell hardware, this option instructs the Fitter to lock the output register in the LAB adjacent to the I/O cell it is feeding. Turning on the Fast Output Register option can help maximize I/O timing performance, for example, by permitting fast clock-to-output times. Turning this option off for a particular signal prevents the Fitter from implementing the signal automatically in an I/O cell or locking down the output register in the LAB adjacent to the I/O cell. This option is ignored if it is applied to anything other than a register or an output or bidirectional pin fed by a register.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```bash
set_instance_assignment -name FAST_OUTPUT_REGISTER -to <to> -entity <entity name> <value>
```
1.12.4. IP_DEBUG_VISIBLE

When assigned to an Encrypted IP node this option directs Quartus Prime to display the node in the Node Finder.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_instance_assignment -name IP_DEBUG_VISIBLE -to <to> -entity <entity name> <value>
```
1.12.5. LOCATION

Assigns a location on the device for the current node(s) and/or pin(s).

**Type**

Location

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment supports Fitter wildcards.

**Syntax**

```
set_location_assignment -to <to> <value>
```
1.12.6. PIN_CONNECT_FROM_NODE

Directs the Compiler to generate a device pin with the specified name and connect the device pin to an internal signal.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```bash
set_instance_assignment -name PIN_CONNECT_FROM_NODE -to <to> <value>
```
1.12.7. RESERVE_PIN

Reserves the pin in one of seven states: as an input that is tri-stated; as an output that drives ground; as an output that drives VCC; as an output that drives an unspecified signal; as Signal Probe output; as a voltage reference (VREF); or as bidirectional. Note: The 'As VREF' setting is not appropriate for all device families. Please refer to the device data sheet for information on VREF support.

Old Name

RESERVED_PIN

Type

Enumeration

Values

- As SignalProbe output
- As VREF
- As bidirectional
- As input tri-stated
- As output driving VCC
- As output driving an unspecified signal
- As output driving ground

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

None

Syntax

```
set_instance_assignment -name RESERVE_PIN -to <to> <value>
set_global_assignment -name RESERVE_PIN <value>
```
1.12.8. SUBCLIQUE_OF

Specifies that the current clique is a member of another clique.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_instance_assignment -name SUBCLIQUE_OF -to <to> -entity <entity name> -section_id <section identifier> <value>
```
1.12.9. VIRTUAL_PIN

Specifies whether an I/O element in a lower-level design entity can be temporarily mapped to a logic element and not to a pin during compilation. The virtual pin is then implemented as a LUT. This option should be specified only for I/O elements that become nodes when imported to the top-level design.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment supports synthesis wildcards.

**Syntax**

```
set_instance_assignment -name VIRTUAL_PIN -to <to> -entity <entity name> <value>
```
1.13. Power Estimation Assignments

1.13.1. ENABLE_SMART_VOLTAGE_ID

Specifies whether smart voltage ID feature is used.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ENABLE_SMART_VOLTAGE_ID <value>
```

**Default Value**

Off
1.13.2. POWER_APPLY_THERMAL_MARGIN

Specifies whether to apply recommended margins to power estimates for thermal analysis. These margins apply only to thermal analysis results.

**Type**

Enumeration

**Values**

- OFF
- RECOMMENDED

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_APPLY_THERMAL_MARGIN <value>
```
1.13.3. POWER_AUTO_COMPUTE_TJ

Specifies whether the junction temperature is auto-computed during power estimation. If the junction temperature is not auto-computed, you must specify the junction temperature.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_AUTO_COMPUTE_TJ <value>
```
1.13.4. POWER_BOARD_TEMPERATURE

Specifies the board temperature, in degrees Celsius, used during power estimation.

**Type**

Integer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_BOARD_TEMPERATURE <value>
```

**Default Value**

25
1.13.5. POWER_BOARD_THERMAL_MODEL

Specifies the board thermal model used during power estimation.

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_BOARD_THERMAL_MODEL <value>
```
1.13.6. POWER_COOLING_FOR_MAX_TJ

Specifies that the power estimator should find cooling solution required to not exceed specified maximum junction temperature. Junction temperatures used for power estimation of different parts of the chip will be actual temperatures resulting from using the found cooling solution and will typically vary across the chip.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name POWER_COOLING_FOR_MAX_TJ <value>
```
1.13.7. POWER_DEFAULT_INPUT_IO_TOGGLE_RATE

Specifies the default toggle rate to be used on input I/O pins during power estimation. This value is only used if a toggle rate has not been specified for a node either through a Signal Activity File, VCD file or user assignment.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_DEFAULT_INPUT_IO_TOGGLE_RATE <value>
```

**Default Value**

12.5%
1.13.8. POWER_DEFAULT_TOGGLE_RATE

Specifies the default toggle rate to be used on all nodes except input I/O pins during power estimation. This value is only used if a toggle rate has not been specified for a node either through a Signal Activity File, VCD file or user assignment.

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name POWER_DEFAULT_TOGGLE_RATE <value>
```

**Default Value**
12.5%
1.13.9. POWER_GLITCH_FACTOR

Specifies the multiplication factor to the toggle rates used for power estimation for part of design hierarchy. This is useful to adjust toggle rates of parts of the design with high number of glitches. The value must be positive.

**Type**
Double

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

**Syntax**

```
set_global_assignment -name POWER_GLITCH_FACTOR -entity <entity name> <value>
set_instance_assignment -name POWER_GLITCH_FACTOR -to <to> -entity <entity name> <value>
```
1.13.10. POWER_HPS_DYNAMIC_POWER_DUAL

Dynamic Power of dual processor core when HPS is active.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_HPS_DYNAMIC_POWER_DUAL <value>
```
1.13.11. **POWER_HPS_DYNAMIC_POWER_SINGLE**

Dynamic power of single processor core when HPS is active.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_HPS_DYNAMIC_POWER_SINGLE <value>
```
1.13.12. POWER_HPS_ENABLE

Specifies whether or not you must include the HPS processor subsystem for SoC power estimation.

**Type**
Boolean

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_HPS_ENABLE <value>
```

**Default Value**
Off
1.13.13. POWER_HPS_JUNCTION_TEMPERATURE

Junction Temperature when HPS is active.

Type
String

Device Support
• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

set_global_assignment -name POWER_HPS_JUNCTION_TEMPERATURE <value>
1.13.14. POWER_HPS_PROC_FREQ

Specifies the processor frequency of the HPS assumed by power estimation. The units for this value are MHz and the value must be positive. The value provided should be within 0 to 1000.

**Type**
Double

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**
This assignment is included in the Fitter report.

**Syntax**
```
set_global_assignment -name POWER_HPS_PROC_FREQ <value>
```

**Default Value**
0.0
1.13.15. POWER_HPS_STATIC_POWER

Static Power when HPS is active.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name POWER_HPS_STATIC_POWER <value>
```
1.13.16. **POWER_HPS_TOTAL_POWER**

Total power when HPS is active.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_HPS_TOTAL_POWER <value>
```
1.13.17. POWER_HSSI

If the transceivers are unused, setting this option to "Opportunistically power off" directs the Quartus Prime software to consider the transceivers as powered down. Setting this option to "Power on" directs the Quartus Prime software to consider the transceivers powered regardless of their use. This setting affects the VCCA, VCCH_GXB, and VCCL_GXB power rails.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_HSSI <value>
```
1.13.18. **POWER_HSSI_LEFT**

If the transceivers on the left side of the device are unused, setting this option to "Opportunistically power off" directs the Quartus Prime software to consider the transceivers on the left side of the device powered down. Setting this option to "Power on" directs the Quartus Prime software to consider the transceivers on the left side powered regardless of their use. This setting affects the VCCA_L, VCCH_GXBL, VCCL_GXBL, VCCR_L, and VCCT_L power rails.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_HSSI_LEFT <value>
```
1.13.19. POWER_HSSI_RIGHT

If the transceivers on the right side of the device are unused, setting this option to "Opportunistically power off" directs the Quartus Prime software to consider the transceivers on the right side of the device powered down. Setting this option to "Power on" directs the Quartus Prime software to consider the transceivers on the right side powered regardless of their use. This setting affects the VCCA_R, VCCH_GXB, VCCL_GXB, VCCR_R, and VCCT_R power rails.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_HSSI_RIGHT <value>
```
1.13.20. POWER_HSSI_VCCHIP_LEFT

If the PCI Express hard IP blocks on the left side of the device are unused, setting this option to "Opportunistically power off" directs the Quartus Prime software to consider the PCI Express hard IP blocks on the left side of the device powered down. Setting this option to "Power on" directs the Quartus Prime software to consider the PCI Express hard IP blocks on the left side powered regardless of their use.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_HSSI_VCCHIP_LEFT <value>
```
1.13.21. POWER_HSSI_VCCHIP_RIGHT

If the PCI Express hard IP blocks on the right side of the device are unused, setting this option to "Opportunistically power off" directs the Quartus Prime software to consider the PCI Express hard IP blocks on the right side of the device powered down. Setting this option to "Power on" directs the Quartus Prime software to consider the PCI Express hard IP blocks on the right side powered regardless of their use.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name POWER_HSSI_VCCHIP_RIGHT <value>
```
1.13.22. POWER_INPUT_FILE_NAME

Specifies the name of the VCD File or Signal Activity File which should be used to initialize the toggle rates and static probabilities that will be used during power estimation.

**Type**

File name

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name POWER_INPUT_FILE_NAME -entity <entity name> -section_id <section identifier> <value>
```
1.13.23. POWER_INPUT_FILE_TYPE

Specifies whether the input power file is a VCD file or SAF file.

**Type**

Enumeration

**Values**

- SAF
- VCD

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

**Syntax**

```
set_global_assignment -name POWER_INPUT_FILE_TYPE -entity <entity name> -section_id <section identifier> <value>
```
1.13.24. POWER_MAX_TJ_VALUE

Specifies the maximum junction temperature that no part of any die in the package should exceed.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_MAX_TJ_VALUE <value>
```

**Default Value**

25
1.13.25. **POWER_OCS_VALUE**

Specifies the case-to-heat sink thermal resistance, in degrees Celsius per Watt, used during power estimation.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_OCS_VALUE <value>
```
1.13.26. POWER_OJB_VALUE

Specifies the junction-to-board thermal resistance, in degrees Celsius per Watt, used during power estimation.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_OJB_VALUE <value>
```
1.13.27. POWER_OJC_VALUE

Specifies the junction-to-case-sink thermal resistance, in degrees Celsius per Watt, used during power estimation.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name POWER_OJC_VALUE <value>
```
1.13.28. POWER_OSA_VALUE

Specifies the heat sink-to-ambient thermal resistance, in degrees Celsius per Watt, used during power estimation.

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_OSA_VALUE <value>
```
1.13.29. POWER_OUTPUT_SAF_NAME

Specifies the name the Signal Activity File should be written to containing the toggle rates and static probabilities used during power estimation.

**Type**

File name

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_OUTPUT_SAF_NAME <value>
```
1.13.30. POWER_PRESET_COOLING_SOLUTION

Specifies the preset cooling solution used during power estimation.

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION <value>
```
1.13.31. POWER_READ_INPUT_FILE

Assigns user-defined power input file characteristics to an entity. To specify a power input file, you must define a named group of 'power input file settings' and assign them to an entity with this option. You can create these settings using the Power Analyzer Settings page.

Type
String

Device Support
• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes
The value of this assignment is case sensitive.

Syntax

```
set_instance_assignment -name POWER_READ_INPUT_FILE -to <to> -entity <entity name> <value>
```
1.13.32. POWER_REPORT_POWER_DISSIPATION

Specifies whether the Power Analyzer should report the thermal power dissipation calculated during power analysis in the Thermal Power Dissipation By Block report panel.

Type

Boolean

Device Support

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

This assignment is included in the Fitter report.

Syntax

```plaintext
set_global_assignment -name POWER_REPORT_POWER_DISSIPATION <value>
set_instance_assignment -name POWER_REPORT_POWER_DISSIPATION -to <to> -entity <entity name> <value>
```

Default Value

Off
1.13.33. POWER_REPORT_SIGNAL_ACTIVITY

Specifies whether the Power Analyzer should report the signal activities assumed for power analysis, and the sources for those activities. Signal activity consists of both the static probability and the toggle rate for the signals generated by the node or entity.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```python
set_global_assignment -name POWER_REPORT_SIGNAL_ACTIVITY <value>
set_instance_assignment -name POWER_REPORT_SIGNAL_ACTIVITY -to <to> -entity <entity name> <value>
```

**Default Value**

Off
1.13.34. POWER_STATIC_PROBABILITY

Specifies the fraction of time the signals generated by the node or entity are expected to be at VCC. Allowable values range from and include 0.0 through 1.0.

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

**Syntax**

```plaintext
set_instance_assignment -name POWER_STATIC_PROBABILITY -to <to> <value>
```
1.13.35. **POWER_TJ_VALUE**

Specifies the junction temperature value, in degrees Celsius, used during power estimation.

**Type**

Integer

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name POWER_TJ_VALUE <value>
```

**Default Value**

25
1.13.36. POWER_TOGGLE_RATE

Specifies the toggle rate assumed by power estimation for the signals generated by this node or entity. The units for this value are transitions per second and the value must be positive. The value provided should be the expected time-averaged toggle rate, rather than worst case (highest possible) toggle rate. A different assignment, Toggle Rate, applies to I/O pins only and is used by the Fitter and by I/O Assignment Analysis to verify signal integrity under worst case conditions (highest possible toggle rate). Use the Synchronizer Toggle Rate if you want to configure the data rates used for Metastability Reporting in the Timing Analyzer.

Type
Double

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes

Syntax

```
set_instance_assignment -name POWER_TOGGLE_RATE -to <to> <value>
```
1.13.37. POWER_TOGGLE_RATE_PERCENTAGE

Specifies the toggle rate, as a percentage of clock domain frequency, assumed by power estimation for the signals generated by this node or entity. This percentage acts as a multiplier for the clock domain frequency of the given node. For example, a toggle rate percentage of 12.5 on a node with a clock domain frequency of 96 MHz would result in a toggle rate of 12 million transitions per second. The percentage value must be positive and can take on values greater than 100. The value provided should be representative of the expected time-averaged toggle rate, rather than worst case (highest possible) toggle rate.

**Type**
String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

**Syntax**

```
set_instance_assignment -name POWER_TOGGLE_RATE_PERCENTAGE -to <to> <value>
```
1.13.38. POWER_USE_CUSTOM_COOLING_SOLUTION

Specifies whether a custom cooling solution is used during power estimation. For a custom cooling solution, you must specify the case-to-heat sink, junction-to-case and heat sink-to-ambient thermal resistances.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_USE_CUSTOM_COOLING_SOLUTION <value>
```

**Default Value**

Off
1.13.39. POWER_USE_DEVICE_CHARACTERISTICS

Specifies the device characteristics to be used during power estimation. Estimates are based on average power consumed by typical silicon at nominal operating conditions. For FPGA board power supply design, change to MAXIMUM to get worst-case values.

**Type**

Enumeration

**Values**

- MAXIMUM
- TYPICAL

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_USE_DEVICE_CHARACTERISTICS <value>
```

**Default Value**

TYPICAL
1.13.40. POWER_USE_INPUT_FILES

Specifies whether or not Signal Activity Files or VCD files should be used to initialize the toggle rates and static probabilities that will be used during power estimation.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```text
set_global_assignment -name POWER_USE_INPUT_FILES <value>
```

**Default Value**

Off
1.13.41. POWER_USE_PVA

Specifies whether or not Power Vectorless Activity should be used to fill in undefined toggle rates and static probabilities.

Type
Boolean

Device Support
- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

Notes
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name POWER_USE_PVA <value>
```

Default Value

On
1.13.42. POWER_USE_TA_VALUE

Specifies the ambient temperature value, in degrees Celsius, used during power estimation.

Type
Integer

Device Support
• Intel Arria 10
• Intel Cyclone 10 GX

Notes
This assignment is included in the Fitter report.

Syntax

set_global_assignment -name POWER_USE_TA_VALUE <value>

Default Value
25
1.13.43. POWER_VCCAUX_USER_OPTION

Allows you to specify settings for the VCCAUX power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name POWER_VCCAUX_USER_OPTION <value>
```
1.13.44. POWER_VCCA_GXBL_USER_OPTION

Allows you to specify settings for the VCCA_GXBL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCA_GXBL_USER_OPTION <value>
```
1.13.45. **POWER_VCCA_GXBR_USER_OPTION**

Allows you to specify settings for the VCCA_GXBR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCA_GXBR_USER_OPTION <value>
```
1.13.46. POWER_VCCA_GXB_USER_OPTION

Allows you to specify settings for the VCCA_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCA_GXB_USER_OPTION <value>
```
1.13.47. POWER_VCCA_L_USER_OPTION

Allows you to specify settings for the VCCA_L power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCA_L_USER_OPTION <value>
```
1.13.48. POWER_VCCA_R_USER_OPTION

Allows you to specify settings for the VCCA_R power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name POWER_VCCA_R_USER_OPTION <value>
```
1.13.49. POWER_VCCCB_USER_OPTION

Allows you to specify settings for the VCCCB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCCB_USER_OPTION <value>
```
1.13.50. POWER_VCCH_GXBL_USER_OPTION

Allows you to specify settings for the VCCH_GXBL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name POWER_VCCH_GXBL_USER_OPTION <value>
```
1.13.51. POWER_VCCH_GXBR_USER_OPTION

Allows you to specify settings for the VCCH_GXBR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name POWER_VCCH_GXBR_USER_OPTION <value>
```
1.13.52. POWER_VCCH_GXB_USER_OPTION

Allows you to specify settings for the VCCH_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCH_GXB_USER_OPTION <value>
```
1.13.53. **POWER_VCCIO_USER_OPTION**

Allows you to specify settings for the VCCIO power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCIO_USER_OPTION <value>
```
1.13.54. POWER_VCCL_GXB_USER_OPTION

Allows you to specify settings for the VCCL_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

set_global_assignment -name POWER_VCCL_GXB_USER_OPTION <value>
1.13.55. POWER_VCCPD_USEROPTION

Allows you to specify settings for the VCCPD power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCPD_USEROPTION <value>
```
1.13.56. **POWER_VCCR_GXBL_USER_OPTION**

Allows you to specify settings for the VCCR_GXBL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCR_GXBL_USER_OPTION <value>
```
1.13.57. POWER_VCCR_GXBR_USER_OPTION

Allows you to specify settings for the VCCG_GXBR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCR_GXBR_USER_OPTION <value>
```
1.13.58. POWER_VCCR_GXB_USER_OPTION

Allows you to specify settings for the VCCR_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCR_GXB_USER_OPTION <value>
```
1.13.59. **POWER_VCCT_GXBL_USER_OPTION**

Allows you to specify settings for the VCCT_GXBL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name POWER_VCCT_GXBL_USER_OPTION <value>
```
1.13.60. POWER_VCCT_GXBR_USER_OPTION

Allows you to specify settings for the VCCT_GXBR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCCT_GXBR_USER_OPTION <value>
```
1.13.61. POWER_VCCT_GXB_USER_OPTION

Allows you to specify settings for the VCCT_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name POWER_VCCT_GXB_USER_OPTION <value>
```
1.13.62. POWER_VCD_FILE_END_TIME

Specifies the time at which toggle rates and static probabilities should stop being calculated for the output signals contained in the VCD files.

**Type**

Time

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

**Syntax**

```
set_global_assignment -name POWER_VCD_FILE_END_TIME -entity <entity name> -section_id <section identifier> <value>
```
1.13.63. POWER_VCD_FILE_START_TIME

Specifies the time at which toggle rates and static probabilities should start to be calculated for the output signals contained in the VCD files.

Type
Time

Device Support
• Intel Arria 10
• Intel Cyclone 10 GX
• Intel Stratix 10

Notes

Syntax

```bash
set_global_assignment -name POWER_VCD_FILE_START_TIME -entity <entity name> -section_id <section identifier> <value>
```
1.13.64. POWER_VCD_FILTER_GLITCHES

Specifies whether or not glitch filtering should be used when reading in VCD files.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name POWER_VCD_FILTER_GLITCHES <value>
```

**Default Value**

On
1.13.65. VCCAUX_SHARED_USER_VOLTAGE

Specifies the voltage of the VCCAUX_SHARED power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCAUX_SHARED_USER_VOLTAGE <value>
```
1.13.66. VCCAUX_USER_VOLTAGE

Specifies the voltage of the VCCAUX power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCAUX_USER_VOLTAGE <value>
```
1.13.67. VCCA_FPLL_USER_VOLTAGE

Specifies the voltage of the VCCA_FPLL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCA_FPLL_USER_VOLTAGE <value>
```
1.13.68. VCCA_GTBR_USER_VOLTAGE

Specifies the voltage of the VCCA_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCA_GTBR_USER_VOLTAGE <value>
```
1.13.69. VCCA_GTB_USER_VOLTAGE

Specifies the voltage of the VCCA_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCA_GTB_USER_VOLTAGE <value>
```
1.13.70. VCCA_GXBL_USER_VOLTAGE

Specifies the voltage of the VCCA_GXBL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name VCCA_GXBL_USER_VOLTAGE <value>
```
1.13.71. VCCA_GXBR_USER_VOLTAGE

Specifies the voltage of the VCCA_GXBR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCA_GXBR_USER_VOLTAGE <value>
```
1.13.72. VCCA_GXB_USER_VOLTAGE

Specifies the voltage of the VCCA_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCA_GXB_USER_VOLTAGE <value>
```
1.13.73. VCCA_L_USER_VOLTAGE

Specifies the default voltage of the VCCA_L power rail supply, which is applied if all transceivers on the left side of the device are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name VCCA_L_USER_VOLTAGE <value>
```
1.13.74. VCCA_PLL_USER_VOLTAGE

Specifies the voltage of the VCCA_PLL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCA_PLL_USER_VOLTAGE <value>
```
1.13.75. VCCA_R_USER_VOLTAGE

Specifies the default voltage of the VCCA_R power rail supply, which is applied if all transceivers on the right side of the device are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCA_R_USER_VOLTAGE <value>
```
1.13.76. VCCA_USER_VOLTAGE

Specifies the voltage of the VCCA power rail supply. For devices in the Arria II family, this voltage is applied if the transceivers are powered. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCA_USER_VOLTAGE <value>
```
1.13.77. VCCBAT_USER_VOLTAGE

Specifies the voltage of the VCCBAT power rail supply. Refer to the device datasheet for the current device family for more details.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name VCCBAT_USER_VOLTAGE <value>
```
1.13.78. VCCCB_USER_VOLTAGE

Specifies the voltage of the VCCCB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name VCCCB_USER_VOLTAGE <value>
```
1.13.79. **VCCD_FPLL_USER_VOLTAGE**

Specifies the voltage of the VCCD_FPLL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name VCCD_FPLL_USER_VOLTAGE <value>
```
1.13.80. VCCD_PLL_USER_VOLTAGE

Specifies the voltage of the VCCD_PLL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCD_PLL_USER_VOLTAGE <value>
```
1.13.81. VCCD_USER_VOLTAGE

Specifies the voltage of the VCCD power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCD_USER_VOLTAGE <value>
```
1.13.82. VCCEH_GXBL_USER_VOLTAGE

Specifies the default voltage of the VCCEH_GXBL power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCEH_GXBL_USER_VOLTAGE <value>
```
1.13.83. VCCEH_GXBR_USER_VOLTAGE

Specifies the default voltage of the VCCEH_GXBR power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

Syntax

```bash
set_global_assignment -name VCCEH_GXBR_USER_VOLTAGE <value>
```
1.13.84. VCCEH_GXB_USER_VOLTAGE

Specifies the default voltage of the VCCEH_GXB power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCEH_GXB_USER_VOLTAGE <value>
```
1.13.85. VCCERAM_USER_VOLTAGE

Specifies the voltage of the VCCERAM power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCERAM_USER_VOLTAGE <value>
```
1.13.86. VCCE_GXBL_USER_VOLTAGE

Specifies the default voltage of the VCCE_GXBL power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCE_GXBL_USER_VOLTAGE <value>
```
1.13.87. VCCE_GXBR_USER_VOLTAGE

Specifies the default voltage of the VCCE_GXBR power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name VCCE_GXBR_USER_VOLTAGE <value>
```
1.13.88. VCCE_GXB_USER_VOLTAGE

Specifies the default voltage of the VCCE_GXB power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCE_GXB_USER_VOLTAGE <value>
```
1.13.89. VCCE_USER_VOLTAGE

Specifies the voltage of the VCCE power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name VCCE_USER_VOLTAGE <value>
```
1.13.90. VCCHIP_L_USER_VOLTAGE

Specifies the voltage of the VCCHIP_L power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCHIP_L_USER_VOLTAGE <value>
```
1.13.91. VCCHIP_R_USER_VOLTAGE

Specifies the voltage of the VCCHIP_R power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCHIP_R_USER_VOLTAGE <value>
```
1.13.92. VCCHIP_USER_VOLTAGE

Specifies the voltage of the VCCHIP power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCHIP_USER_VOLTAGE <value>
```
1.13.93. **VCCHSSI_L_USER_VOLTAGE**

Specifies the voltage of the VCCHSSI_L power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCHSSI_L_USER_VOLTAGE <value>
```
1.13.94. VCCHSSI_R_USER_VOLTAGE

Specifies the voltage of the VCCHSSI_R power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCHSSI_R_USER_VOLTAGE <value>
```
1.13.95. VCCH_GTBR_USER_VOLTAGE

Specifies the voltage of the VCCH_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCH_GTBR_USER_VOLTAGE <value>
```
1.13.96. VCCH_GTB_USER_VOLTAGE

Specifies the voltage of the VCCH_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name VCCH_GTB_USER_VOLTAGE <value>
```
1.13.97. VCCH_GXBL_USER_VOLTAGE

Specifies the default voltage of the VCCH_GXBL power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name VCCH_GXBL_USER_VOLTAGE <value>
```
1.13.98. VCCH_GXBR_USER_VOLTAGE

Specifies the default voltage of the VCCH_GXBR power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCH_GXBR_USER_VOLTAGE <value>
```
1.13.99. VCCH_GXB_USER_VOLTAGE

Specifies the voltage of the VCCH_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCH_GXB_USER_VOLTAGE <value>
```
1.13.100. VCCH_L_USER_VOLTAGE

Specifies the default voltage of the VCCH_L power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCH_L_USER_VOLTAGE <value>
```
1.13.101. VCCH_R_USER_VOLTAGE

Specifies the default voltage of the VCCH_R power rail supplies, which is applied if all transceivers in the corresponding transceiver block are powered and unused. To configure a transceiver for your intended protocol, use the ALTGX MegaWizard. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCH_R_USER_VOLTAGE <value>
```
1.13.102. VCCINT_USER_VOLTAGE

Specifies the voltage of the VCCINT power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCINT_USER_VOLTAGE <value>
```
1.13.103. VCCIOREF_HPS_USER_VOLTAGE

Specifies the voltage of the VCCIOREF_HPS power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCIOREF_HPS_USER_VOLTAGE <value>
```
1.13.104. **VCCIO_HPS_USER_VOLTAGE**

Specifies the voltage of the VCCIO_HPS power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCIO_HPS_USER_VOLTAGE <value>
```
1.13.105. VCCIO_USER_VOLTAGE

Specifies the voltage of the VCCIO power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCIO_USER_VOLTAGE <value>
```
1.13.106. VCCL_GTBL_USER_VOLTAGE

Specifies the voltage of the VCCL_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCL_GTBL_USER_VOLTAGE <value>
```
1.13.107. VCCL_GTBR_USER_VOLTAGE

Specifies the voltage of the VCCL_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name VCCL_GTBR_USER_VOLTAGE <value>
```
1.13.108. VCCL_GTB_USER_VOLTAGE

Specifies the voltage of the VCCL_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCL_GTB_USER_VOLTAGE <value>
```
1.13.109. VCCL_GXBL_USER_VOLTAGE

Specifies the voltage of the VCCL_GXBL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCL_GXBL_USER_VOLTAGE <value>
```
1.13.110. VCCL_GXBR_USER_VOLTAGE

Specifies the voltage of the VCCL_GXBR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCL_GXBR_USER_VOLTAGE <value>
```
1.13.111. VCCL_GXB_USER_VOLTAGE

Specifies the voltage of the VCCL_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCL_GXB_USER_VOLTAGE <value>
```
1.13.112. **VCCL_HPS_USER_VOLTAGE**

Specifies the voltage of the VCCL_HPS power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCL_HPS_USER_VOLTAGE <value>
```
1.13.113. VCCL_USER_VOLTAGE

Specifies the voltage of the VCCL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCL_USER_VOLTAGE <value>
```
1.13.114. **VCCPD_USER_VOLTAGE**

Specifies the voltage of the VCCPD power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCPD_USER_VOLTAGE <value>
```
1.13.115. VCCPGM_USER_VOLTAGE

Specifies the voltage of the VCCPGM power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCPGM_USER_VOLTAGE <value>
```
1.13.116. **VCCPLL_HPS_USER_VOLTAGE**

Specifies the voltage of the VCCPLL_HPS power rail supply. For more information, refer to the respective device datasheet.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCPLL_HPS_USER_VOLTAGE <value>
```
1.13.117. VCCPT_USER_VOLTAGE

Specifies the voltage of the VCCPT power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCPT_USER_VOLTAGE <value>
```
1.13.118. **VCCP_USER_VOLTAGE**

Specifies the voltage of the VCCP power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCP_USER_VOLTAGE <value>
```
1.13.119. **VCCRSTCLK_HPS_USER_VOLTAGE**

Specifies the voltage of the VCCRSTCLK_HPS power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCRSTCLK_HPS_USER_VOLTAGE <value>
```
1.13.120. VCCR_GTBL_USER_VOLTAGE

 Specifies the voltage of the VCCR_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

 Type
 String

 Device Support
 • This setting can be used in projects targeting any Intel FPGA device family.

 Notes
 The value of this assignment is case sensitive.
 This assignment is included in the Fitter report.

 Syntax

 set_global_assignment -name VCCR_GTBL_USER_VOLTAGE <value>
1.13.121. VCCR_GTBR_USER_VOLTAGE

Specifies the voltage of the VCCR_GTBR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCR_GTBR_USER_VOLTAGE <value>
```
1.13.122. VCCR_GTB_USER_VOLTAGE

Specifies the voltage of the VCCR_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCR_GTB_USER_VOLTAGE <value>
```
1.13.123. VCCR_GXBL_USER_VOLTAGE

Specifies the voltage of the VCCR_GXBL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCR_GXBL_USER_VOLTAGE <value>
```
1.13.124. **VCCR_GXBR_USER_VOLTAGE**

Specifies the voltage of the VCCR_GXBR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCR_GXBR_USER_VOLTAGE <value>
```
1.13.125. **VCCR_GXB_USER_VOLTAGE**

Specifies the voltage of the VCCR_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCR_GXB_USER_VOLTAGE <value>
```
### 1.13.126. VCCR_L_USER_VOLTAGE

Specifies the voltage of the VCCR_L power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCR_L_USER_VOLTAGE <value>
```
1.13.127. VCCR_R_USER_VOLTAGE

Specifies the voltage of the VCCR_R power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCR_R_USER_VOLTAGE <value>
```
### 1.13.128. VCCR_USER_VOLTAGE

Specifies the voltage of the VCCR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name VCCR_USER_VOLTAGE <value>
```
1.13.129. VCCT_GTBL_USER_VOLTAGE

Specifies the voltage of the VCCT_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCT_GTBL_USER_VOLTAGE <value>
```
1.13.130. VCCT_GTBR_USER_VOLTAGE

Specifies the voltage of the VCCT_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCT_GTBR_USER_VOLTAGE <value>
```
1.13.131. VCCT_GTB_USER_VOLTAGE

Specifies the voltage of the VCCT_GTB power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCT_GTB_USER_VOLTAGE <value>
```
1.13.132. VCCT_GXBL_USER_VOLTAGE

Specifies the voltage of the VCCT_GXBL power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCT_GXBL_USER_VOLTAGE <value>
```
1.13.133. VCCT_GXBR_USER_VOLTAGE

Specifies the voltage of the VCCT_GXBR power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```python
set_global_assignment -name VCCT_GXBR_USER_VOLTAGE <value>
```
1.13.134. VCCT_GXB_USER_VOLTAGE

Specifies the voltage of the VCCT_GXB power rail supply. Refer to the device datasheet for the current device family for more details.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name VCCT_GXB_USER_VOLTAGE <value>
```
1.13.135. VCCT_L_USER_VOLTAGE

Specifies the voltage of the VCCT_L power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCCT_L_USER_VOLTAGE <value>
```
1.13.136. VCCT_R_USER_VOLTAGE

Specifies the voltage of the VCCT_R power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name VCCT_R_USER_VOLTAGE <value>
```
1.13.137. VCCT_USER_VOLTAGE

Specifies the voltage of the VCCT power rail supply. Refer to the device datasheet for the current device family for more details.

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name VCCT_USER_VOLTAGE <value>
```
1.13.138. VCC_HPS_USER_VOLTAGE

Specifies the voltage of the VCC_HPS power rail supply. For more information, refer to the respective device datasheet.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCC_HPS_USER_VOLTAGE <value>
```
1.13.139. VCC_USER_VOLTAGE

Specifies the voltage of the VCC power rail supply. Refer to the device datasheet for the current device family for more details.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name VCC_USER_VOLTAGE <value>
```
1.14. Programmer Assignments

1.14.1. GENERATE_CONFIG_HEXOUT_FILE

Generates a Hexadecimal (Intel-format) Output File (.hexout) containing configuration data that can be programmed into a parallel data source, such as an EPROM or a mass storage device, which then in turn configures the target device.

**Type**
Boolean

**Device Support**
- Enhanced Configuration Devices

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name GENERATE_CONFIG_HEXOUT_FILE <value>
```

**Default Value**
Off
1.14.2. GENERATE_CONFIG_ISC_FILE

Generates an In System Configuration File (.isc) containing configuration data that an intelligent external controller can use to configure the target device.

**Type**

Boolean

**Device Support**

- Enhanced Configuration Devices

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name GENERATE_CONFIG_ISC_FILE <value>
```

**Default Value**

Off
1.14.3. GENERATE_CONFIG_JAM_FILE

Generate a JEDEC STAPL Format File (.jam) containing configuration data that an intelligent external controller can use to configure the target device.

**Type**
Boolean

**Device Support**
- EPC2
- Enhanced Configuration Devices

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name GENERATE_CONFIG_JAM_FILE <value>
```

**Default Value**
Off
1.14.4. GENERATE_CONFIG_JBC_FILE

Generate a compressed Jam STAPL Byte Code 2.0 File (.jbc) containing configuration data that an intelligent external controller can use to configure the target device.

**Type**

Boolean

**Device Support**

- EPC2
- Enhanced Configuration Devices

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```bash
set_global_assignment -name GENERATE_CONFIG_JBC_FILE <value>
```

**Default Value**

Off
1.14.5. GENERATE_CONFIG_JBC_FILE_COMPRESSED

Generate a compressed Jam STAPL Byte Code 2.0 File (.jbc) containing configuration data that an intelligent external controller can use to configure the target device.

**Type**

Boolean

**Device Support**

- EPC2
- Enhanced Configuration Devices

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name GENERATE_CONFIG_JBC_FILE_COMPRESSED <value>
```

**Default Value**

On
1.14.6. GENERATE_CONFIG_SVF_FILE

Generates a Serial Vector Format File (.svf) containing configuration data that an intelligent external controller can use to configure the target device.

**Type**

Boolean

**Device Support**

- EPC2
- Enhanced Configuration Devices

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name GENERATE_CONFIG_SVF_FILE <value>
```

**Default Value**

Off
1.14.7. GENERATE_JAM_FILE

Directs the programmer to generate a JEDEC JESD71 STAPL Format File (.jam) containing configuration data that an intelligent external controller can use to configure the target device.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name GENERATE_JAM_FILE <value>
```

**Default Value**

Off
1.14.8. GENERATE_JBC_FILE

Directs the programmer to generate a compressed JAM Byte Code File (.jbc) containing configuration data that an intelligent external controller can use to configure the target device.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name GENERATE_JBC_FILE <value>
```

**Default Value**

Off
1.14.9. GENERATE_JBC_FILE_COMPRESSED

 Generate a compressed JAM Byte Code File (.jbc) containing configuration data that an intelligent external controller can use to configure the target device.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name GENERATE_JBC_FILE_COMPRESSED <value>
```

**Default Value**

On
1.14.10. GENERATE_SVF_FILE

Directs the programmer to generate a Serial Vector Format File (.svf) containing configuration data that an intelligent external controller can use to configure the target device.

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name GENERATE_SVF_FILE <value>
```

**Default Value**

Off
1.14.11. HPS_EARLY_IO_RELEASE

Release the HPS shared I/O bank after the IOCSR programming

**Type**

Boolean

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name HPS_EARLY_IO_RELEASE <value>
```

**Default Value**

Off
1.14.12. MERGE_HEX_FILE

Uses the Hexadecimal (Intel-Format) File (.hex) and the programmable logic Partial SRAM Object File (.psof) to create passive programming files.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name MERGE_HEX_FILE <value>
```

Default Value
Off
1.15. **Project-Wide Assignments**

1.15.1. **AGGREGATE_REVISION**

Specifies an AGGREGATE revision type.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name AGGREGATE_REVISION <value>
```
1.15.2. AHDL_FILE

Associates an AHDL source file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name AHDL_FILE <value>
```
1.15.3. AHDL_TEXT_DESIGN_OUTPUT_FILE

Associates an AHDL Text Design Output File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name AHDL_TEXT_DESIGN_OUTPUT_FILE <value>
```
1.15.4. ALLOW_DSP_RETIMING

Allow retiming through DSP blocks.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name ALLOW_DSP_RETIMING <value>
```

Default Value

Off
1.15.5. ALLOW_RAM_RETIMING

Allow retiming through RAM blocks.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ALLOW_RAM_RETIMING <value>
```

**Default Value**

Off
1.15.6. ASM_FILE

Associates an Assembly source file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name ASM_FILE <value>
```
1.15.7. AUTO_EXPORT_VER_COMPATIBLE_DB

Automatically exports version-compatible database files when compilation completes.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is not copied when you create a companion revision for HardCopy II devices.

Syntax

```
set_global_assignment -name AUTO_EXPORT_VER_COMPATIBLE_DB <value>
```

Default Value

Off
1.15.8. BASE_REVISION_PROJECT_OUTPUTDIRECTORY

Specifies the directory where project output files such as the Text-Format Report Files (.rpt) and Equation Files (.eqn) were saved for the base revision. By default, all project output files are saved in the project directory.

Type
File name

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name BASE_REVISION_PROJECT_OUTPUTDIRECTORY
<value>
```
1.15.9. BDF_FILE

Associates a Block Design File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name BDF_FILE <value>
```
1.15.10. **BINARY_FILE**

Associates a binary file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name BINARY_FILE <value>
```
1.15.11. BSF_FILE

This setting associates a Block Symbol File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name BSF_FILE <value>
```
1.15.12. CDF_FILE

Associates a Chain Description File with this project.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name CDF_FILE <value>
```
1.15.13. COMMAND_MACRO_FILE

Associates a script file or ModelSim Macro File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name COMMAND_MACRO_FILE <value>
```
1.15.14. CPP_FILE

Associates a C++ source file with this project.

Type

File name

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name CPP_FILE <value>
```
1.15.15. CPP_INCLUDE_FILE

Associates a C++ include file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```bash
set_global_assignment -name CPP_INCLUDE_FILE <value>
```
1.15.16. CUSP_FILE

Associates a C++ source file with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name CUSP_FILE <value>
```
1.15.17. CVP_REVISION

Specifies a CVP revision type.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name CVP_REVISION <value>
```
1.15.18. **C_FILE**

Associates a C source file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name C_FILE <value>
```
1.15.19. DEPENDENCY_FILE

Associates a Dependency file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name DEPENDENCY_FILE <value>
```
1.15.20. DSPBUILDER_FILE

 Associates a DSPBuilder source file with this project.

 **Type**

 File name

 **Device Support**

 - This setting can be used in projects targeting any Intel FPGA device family.

 **Notes**

 The value of this assignment is case sensitive.

 **Syntax**

 set_global_assignment -name DSPBUILDER_FILE <value>
1.15.21. EDIF_FILE

Associates an EDIF source file with this project.

Type

File name

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name EDIF_FILE <value>
```
1.15.22. ELF_FILE

Associates an ELF file with this project.

Type

File name

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name ELF_FILE <value>
```
1.15.23. ENABLE_COMPACT_REPORT_TABLE

Allows you to view the report table in compact format.

Type

Boolean

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment is included in the Fitter report.

Syntax

```
set_global_assignment -name ENABLE_COMPACT_REPORT_TABLE <value>
```

Default Value

Off
1.15.24. ENABLE_REDUCED_MEMORY_MODE

Determines whether to enable compiler to run in reduced memory mode. This assignment controls a small number of memory-intensive fitter optimizations. Therefore, enabling the reduced memory mode may slightly impact the performance of your design.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name ENABLE_REDUCED_MEMORY_MODE <value>
```

**Default Value**

Off
1. **EQUATION_FILE**

   Associates an Equation File with this project.

   **Type**

   File name

   **Device Support**

   - This setting can be used in projects targeting any Intel FPGA device family.

   **Notes**

   The value of this assignment is case sensitive.

   **Syntax**

   ```
 set_global_assignment -name EQUATION_FILE <value>
   ```
1.15.26. FLOW_DISABLE_ASSEMBLER

Allows you to turn on or turn off the Assembler during compilation.

Type
Boolean

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

```
set_global_assignment -name FLOW_DISABLE_ASSEMBLER <value>
```

Default Value
Off
1.15.27. FLOW_ENABLE_IO_ASSIGNMENT_ANALYSIS

Allows you to run I/O assignment analysis before compilation

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name FLOW_ENABLE_IO_ASSIGNMENT_ANALYSIS <value>
```

**Default Value**
Off
1.15.28. FLOW_ENABLE_PARALLEL_MODULES

Allows you to run Assembler and the Timing Analyzer in parallel during compilation.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name FLOW_ENABLE_PARALLEL_MODULES <value>
```

**Default Value**
On
1.15.29. **FLOW_ENABLE_POWER_ANALYZER**

Allows you to turn on or turn off the Power Analyzer during compilation.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
None

**Syntax**

```
set_global_assignment -name FLOW_ENABLE_POWER_ANALYZER <value>
```

**Default Value**

Off
1.15.30. FLOW_ENABLE_RTL_VIEWER

Allows the Netlist Viewers to process the schematic during design compilation. Turning on this option reduces the time required to open the Netlist Viewers at the expense of increased compilation time.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name FLOW_ENABLE_RTL_VIEWER <value>
```

**Default Value**

Off

MNL-1088 | 2020.07.20

### 1.15.31. GDF_FILE

Associates a GDF source file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name GDF_FILE <value>
```
1.15.32. HEX_FILE

Associates a Hexadecimal source file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name HEX_FILE <value>
```
1.15.33. HEX_OUTPUT_FILE

Associates a Hexadecimal Output File with this project.

Type
File name

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name HEX_OUTPUT_FILE <value>
```
1.15.34. HPS_ISW_DATA

Hard processor system (HPS) software configuration data.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name HPS_ISW_DATA -entity <entity name> <value>
set_instance_assignment -name HPS_ISW_DATA -to <to> -entity <entity name> <value>
```
1.15.35. HPS_ISW_EMIF

Hard processor system (HPS) EMIF configuration data.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

set_global_assignment -name HPS_ISW_EMIF -entity <entity name> <value>
set_instance_assignment -name HPS_ISW_EMIF -to <to> -entity <entity name> <value>
1.15.36. HPS_ISW_FILE

Associates a hard processor system (HPS) initial software configuration file with an HPS entity.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name HPS_ISW_FILE -entity <entity name> <value>
set_instance_assignment -name HPS_ISW_FILE -to <to> -entity <entity name> <value>
```
1.15.37. **HTML_FILE**

Associates an HTML file with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name HTML_FILE <value>
```
1.15.38. HTML_REPORT_FILE

Associates an HTML Report File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name HTML_REPORT_FILE <value>
```
1.15.39. INCLUDE_FILE

Associates an Include File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name INCLUDE_FILE <value>
```
1.15.40. INVALID_DESIGN_SOURCE

Design source files contain invalid settings. Assembler and database export are disallowed.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name INVALID_DESIGN_SOURCE <value>
```

**Default Value**

Off
1.15.41. IPX_FILE

Associates a Quartus Prime IP-XACT description file with this project.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name IPX_FILE <value>
```
1.15.42. **IP_COMPONENT_AUTHOR**

Specifies the IP component author

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_COMPONENT_AUTHOR <value>
set_global_assignment -name IP_COMPONENT_AUTHOR -entity <entity name> <value>
set_instance_assignment -name IP_COMPONENT_AUTHOR -to <to> -entity <entity name> <value>
```
1.15.43. IP_COMPONENT_DESCRIPTION

Specifies the IP component description

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_COMPONENT_DESCRIPTION <value>
set_global_assignment -name IP_COMPONENT_DESCRIPTION -entity <entity name> <value>
set_instance_assignment -name IP_COMPONENT_DESCRIPTION -to <to> -entity <entity name> <value>
```
1.15.44. IP_COMPONENT_DISPLAY_NAME

Specifies the IP component display name

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

- `set_global_assignment -name IP_COMPONENT_DISPLAY_NAME <value>`
- `set_global_assignment -name IP_COMPONENT_DISPLAY_NAME -entity <entity name> <value>`
- `set_instance_assignment -name IP_COMPONENT_DISPLAY_NAME -to <to> -entity <entity name> <value>`
1.15.45. IP_COMPONENT_DOCUMENTATION_LINK

Specifies a documentation link for the IP component

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_COMPONENT_DOCUMENTATION_LINK <value>
set_global_assignment -name IP_COMPONENT_DOCUMENTATION_LINK -entity <entity name> <value>
set_instance_assignment -name IP_COMPONENT_DOCUMENTATION_LINK -to <to> -entity <entity name> <value>
```
1.15.46. IP_COMPONENT_GROUP

Specifies the group in the Component Library that includes this IP component

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_COMPONENT_GROUP <value>
set_global_assignment -name IP_COMPONENT_GROUP -entity <entity name> <value>
set_instance_assignment -name IP_COMPONENT_GROUP -to <to> -entity <entity name> <value>
```
1.15.47. IP_COMPONENT_INTERNAL

Specifies the if the IP is an internal component.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

**Syntax**

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_global_assignment -name IP_COMPONENT_INTERNAL &lt;value&gt;</td>
</tr>
<tr>
<td>set_global_assignment -name IP_COMPONENT_INTERNAL -entity &lt;entity name&gt;</td>
</tr>
<tr>
<td>&lt;value&gt;</td>
</tr>
<tr>
<td>set_instance_assignment -name IP_COMPONENT_INTERNAL -to &lt;to&gt; -entity</td>
</tr>
<tr>
<td>&lt;entity name&gt; &lt;value&gt;</td>
</tr>
</tbody>
</table>

**Default Value**

Off
1.15.48. **IP_COMPONENT_NAME**

Specifies the IP component name

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_COMPONENT_NAME <value>
set_global_assignment -name IP_COMPONENT_NAME -entity <entity name> <value>
set_instance_assignment -name IP_COMPONENT_NAME -to <to> -entity <entity name> <value>
```
1.15.49. IP_COMPONENT_PARAMETER

Specifies the parameter, value, and display name of an IP component parameter

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

set_global_assignment -name IP_COMPONENT_PARAMETER <value>
set_global_assignment -name IP_COMPONENT_PARAMETER -entity <entity name> <value>
set_instance_assignment -name IP_COMPONENT_PARAMETER -to <to> -entity <entity name> <value>
**1.15.50. IP_COMPONENT_REPORT_HIERARCHY**

Specifies if the IP component should report its hierarchy

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

**Syntax**

```plaintext
set_global_assignment -name IP_COMPONENT_REPORT_HIERARCHY <value>
set_global_assignment -name IP_COMPONENT_REPORT_HIERARCHY -entity <entity name> <value>
set_instance_assignment -name IP_COMPONENT_REPORT_HIERARCHY -to <to> -entity <entity name> <value>
```

**Default Value**

Off
1.15.51. IP_COMPONENT_VERSION

Specifies the IP component version

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name IP_COMPONENT_VERSION <value>
set_global_assignment -name IP_COMPONENT_VERSION -entity <entity name> <value>
set_instance_assignment -name IP_COMPONENT_VERSION -to <to> -entity <entity name> <value>
```
1.15.52. IP_FILE

Associates a Qsys IP file (.ip) with this project.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name IP_FILE <value>
```
1.15.53. **IP_GENERATED_DEVICE_FAMILY**

Specifies the device families for which the IP core was generated for.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_GENERATED_DEVICE_FAMILY <value>
set_global_assignment -name IP_GENERATED_DEVICE_FAMILY -entity <entity name> <value>
set_instance_assignment -name IP_GENERATED_DEVICE_FAMILY -to <to> - entity <entity name> <value>
```
1.15.54. IP_QSYS_MODE

Mode used to generate a QIP

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name IP_QSYS_MODE <value>
set_global_assignment -name IP_QSYS_MODE -entity <entity name> <value>
set_instance_assignment -name IP_QSYS_MODE -to <to> -entity <entity name> <value>
```
1.15.55. IP_TARGETED_DEVICE_FAMILY

Specifies the device family for which the IP core was targeted.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name IP_TARGETED_DEVICE_FAMILY <value>
set_global_assignment -name IP_TARGETED_DEVICE_FAMILY -entity <entity name> <value>
set_instance_assignment -name IP_TARGETED_DEVICE_FAMILY -to <to> -entity <entity name> <value>
```
1.15.56. IP_TARGETED_PART_TRAIT

Specifies a part trait for which IP core was targeted.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_TARGETED_PART_TRAIT <value>
set_global_assignment -name IP_TARGETED_PART_TRAIT -entity <entity name> <value>
set_instance_assignment -name IP_TARGETED_PART_TRAIT -to <to> -entity <entity name> <value>
```
1.15.57. IP_TOOL_ENV

Specifies the tool which generated the IP core.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_TOOL_ENV <value>
set_global_assignment -name IP_TOOL_ENV -entity <entity name> <value>
set_instance_assignment -name IP_TOOL_ENV -to <to> -entity <entity name> <value>
```
1.15.58. **IP_TOOL_HIERARCHY_LEVELS**

Specifies the number of levels of hierarchy from the IP root.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```ruby
set_global_assignment -name IP_TOOL_HIERARCHY_LEVELS <value>
set_global_assignment -name IP_TOOL_HIERARCHY_LEVELS -entity <entity name> <value>
set_instance_assignment -name IP_TOOL_HIERARCHY_LEVELS -to <to> -entity <entity name> <value>
```
1.15.59. IP_TOOL_NAME

Specifies the IP core name.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_TOOL_NAME <value>
set_global_assignment -name IP_TOOL_NAME -entity <entity name> <value>
set_instance_assignment -name IP_TOOL_NAME -to <to> -entity <entity name> <value>
```
1.15.60. **IP_TOOL_VENDOR_NAME**

Specifies the IP core vendor name

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_TOOL_VENDOR_NAME <value>
set_global_assignment -name IP_TOOL_VENDOR_NAME -entity <entity name> <value>
set_instance_assignment -name IP_TOOL_VENDOR_NAME -to <to> -entity <entity name> <value>
```
1.15.61. IP_TOOL_VERSION

Specifies the IP core version

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name IP_TOOL_VERSION <value>
set_global_assignment -name IP_TOOL_VERSION -entity <entity name> <value>
set_instance_assignment -name IP_TOOL_VERSION -to <to> -entity <entity name> <value>
```
1.15.62. **IP_TOOL_VERSION_CREATED**

Specifies the IP core version used when created

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_TOOL_VERSION_CREATED <value>
set_global_assignment -name IP_TOOL_VERSION_CREATED -entity <entity name> <value>
set_instance_assignment -name IP_TOOL_VERSION_CREATED -to <to> -entity <entity name> <value>
```
1.15.63. **IP_TOP_LEVEL_COMPONENT_NAME**

Specifies the top-level component name in a QIP or SIP file

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IP_TOP_LEVEL_COMPONENT_NAME <value>
set_global_assignment -name IP_TOP_LEVEL_COMPONENT_NAME -entity <entity name> <value>
set_instance_assignment -name IP_TOP_LEVEL_COMPONENT_NAME -to <to> -entity <entity name> <value>
```
1.15.64. IP_TOP_LEVEL_ENTITY_NAME

Specifies the top-level entity name in a QIP or SIP file

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name IP_TOP_LEVEL_ENTITY_NAME <value>
set_global_assignment -name IP_TOP_LEVEL_ENTITY_NAME -entity <entity name> <value>
set_instance_assignment -name IP_TOP_LEVEL_ENTITY_NAME -to <to> -entity <entity name> <value>
```
1.15.65. JAM_FILE

Associates a Jam File with this project.

Type

File name

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name JAM_FILE <value>
```
1.15.66. JBC_FILE

Associates a Jam Byte-Code File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name JBC_FILE <value>
```
1.15.67. LICENSE_FILE

Associates a License File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name LICENSE_FILE <value>
```
1.15.68. LMF_FILE

Associates a Library Mapping File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name LMF_FILE <value>
```
1.15.69. **LOGIC_ANALYZER_INTERFACE_FILE**

Associates a Logic Analyzer Interface file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name LOGIC_ANALYZER_INTERFACE_FILE <value>
```
1.15.70. MAP_FILE

EPC16 addresses used

Type

File name

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name MAP_FILE <value>
```
1.15.71. MASK_REVISION

Specifies a MASK revision type.

**Type**

String

**Device Support**
- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name MASK_REVISION <value>
```
1.15.72. MAX_IGNORED_ASGN_MSG

Allows you to specify the maximum number of ignored assignment info messages in read-only partitions. Use -1 for unlimited.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name MAX_IGNORED_ASGN_MSG <value>
```

**Default Value**

10
1.15.73. MESSAGE_DISABLE

Tells the compiler to suppress the specified user message(s).

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment supports Fitter wildcards.
This assignment supports synthesis wildcards.

**Syntax**

```
set_global_assignment -name MESSAGE_DISABLE <value>
set_global_assignment -name MESSAGE_DISABLE -entity <entity name> <value>
set_instance_assignment -name MESSAGE_DISABLE -to <to> -entity <entity name> <value>
```
1.15.74. MESSAGE_ENABLE

Tells the compiler to enable the specified user message(s).

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment supports Fitter wildcards.

This assignment supports synthesis wildcards.

**Syntax**

```plaintext
set_global_assignment -name MESSAGE_ENABLE <value>
set_global_assignment -name MESSAGE_ENABLE -entity <entity name> <value>
set_instance_assignment -name MESSAGE_ENABLE -to <to> -entity <entity name> <value>
```
1.15.75. MIF_FILE

Associates a Memory Initialization File with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```bash
set_global_assignment -name MIF_FILE <value>
```
1.15.76. MISC_FILE

Associates a file with this project. Files assigned to this assignment will be archived by the Project Archive command if the 'Project source and settings files' file subset is selected.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name MISC_FILE <value>
```
1.15.77. NUM_PARALLEL_PROCESSORS

Specifies the maximum number of processors allocated for parallel compilation on a single machine. For parallel compilation you can use all available processors on your machine, or specify the number of processors you want to use. For example, if you have a quad-core processor machine and want to leave one processor free for other tasks, you specify '3' as the setting of this option. A setting of '1' disables parallel compilation.

**Old Name**

MAX_PROCESSORS_USED_FOR_MULTITHREADING

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX
- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name NUM_PARALLEL_PROCESSORS <value>
```
1.15.78. OBJECT_FILE

Associates an Object file with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name OBJECT_FILE <value>
```
1.15.79. OCP_FILE

Specifies the Intel FPGA IP Evaluation Mode file generated by the MegaWizard. This file is used by Quartus to allow compilation and sof generation of the core without a license.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name OCP_FILE <value>
```
1.15.80. PARTIAL_SRAM_OBJECT_FILE

Associates a Partial SRAM Object File with this project.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name PARTIAL_SRAM_OBJECT_FILE <value>
```
1.15.81. PIN_FILE

Associates a Pin-Out File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name PIN_FILE <value>
```
1.15.82. POWER_INPUT_FILE

Associates a Power Input File (.pwf) with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name POWER_INPUT_FILE <value>
```
1.15.83. PPF_FILE

Specifies the name of the MegaWizard generated .ppf file containing core specific pin assignments. This file will be loaded by Pin Planner.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name PPF_FILE <value>
```
1. **PROGRAMMER_OBJECT_FILE**

   Associates a Programmer Object File with this project.

   **Type**
   
   File name

   **Device Support**
   
   • This setting can be used in projects targeting any Intel FPGA device family.

   **Notes**
   
   The value of this assignment is case sensitive.

   **Syntax**
   
   ```
 set_global_assignment -name PROGRAMMER_OBJECT_FILE <value>
   ```
1.15.85. PROJECT_OUTPUT_DIRECTORY

Specifies the directory in which to save all project output files such as the Text-Format Report Files (.rpt) and Equation Files (.eqn). By default, all project output files are saved in the project directory.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY <value>
```
1.15.86. PROJECT_USE_SIMPLIFIED_NAMES

Determines whether to use the simplified naming scheme.

Type
Boolean

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
None

Syntax

```
set_global_assignment -name PROJECT_USE_SIMPLIFIED_NAMES <value>
```

Default Value
Off
1.15.87. QARLOG_FILE

Associates an Archive Log file with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name QARLOG_FILE <value>
```
1.15.88. QAR_FILE

Associates an Archive file with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name QAR_FILE <value>
```
1.15.89. QIP_FILE

Associates a Quartus Prime IP file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name QIP_FILE <value>
```
1.15.90. QSYS_FILE

Associates a Qsys file (.qsys) with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name QSYS_FILE <value>
```
1.15.91. QUARTUS_PTF_FILE

 Associates a Peripheral Template File with this project.

 **Type**

 File name

 **Device Support**

 - This setting can be used in projects targeting any Intel FPGA device family.

 **Notes**

 The value of this assignment is case sensitive.

 **Syntax**

 ```
 set_global_assignment -name QUARTUS_PTF_FILE <value>
 ```
1.15.92. QUARTUS_SBD_FILE

Associates a Quartus Prime System Build Descriptor File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name QUARTUS_SBD_FILE <value>
```
1.15.93. QUARTUS_STANDARD_DELAY_FILE

Associates a Quartus Prime Standard Delay Format File with this project.

**Type**
- File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
- The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name QUARTUS_STANDARD_DELAY_FILE <value>
```
1.15.94. RAW_BINARY_FILE

Associates a Raw Binary File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name RAW_BINARY_FILE <value>
```
1.15.95. READ_OR_WRITE_IN_BYTE_ADDRESS

Determines whether to read or write Hexadecimal(.hex) File in byte addressable mode for this project.

**Type**

Enumeration

**Values**

- Off
- On
- Use global settings

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name READ_OR_WRITE_IN_BYTE_ADDRESS <value>
```

**Default Value**

Use global settings
1.15.96. RECONFIGURABLE_REVISION

Specifies a RECONFIGURABLE revision type.

**Type**

String

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name RECONFIGURABLE_REVISION <value>
```
1.15.97. REVISION_TYPE

Describes the type of revision. The possible revision types are BASE, RECONFIGURABLE, AGGREGATE, CVP, and MASK. The default type is BASE.

**Type**

Enumeration

**Values**

- Aggregate
- Base
- CVP
- Mask
- PR_Base
- PR_Impl
- PR_Syn
- Reconfigurable

**Device Support**

- Intel Arria 10
- Intel Cyclone 10 GX

**Notes**

None

**Syntax**

```
set_global_assignment -name REVISION_TYPE <value>
```
1.15.98. RUN_FULL_COMPILE_ON_DEVICE_CHANGE

Run Full Compilation when the device changes

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name RUN_FULL_COMPILE_ON_DEVICE_CHANGE <value>
```

**Default Value**

On
1.15.99. SBI_FILE

Associates a Slave Binary Image File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name SBI_FILE <value>
```
1.15.100. SDC_ENTITY_FILE

Associates a Synopsys Design Constraint File (.sdc) with an entity.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SDC_ENTITY_FILE -entity <entity name> <value>
set_instance_assignment -name SDC_ENTITY_FILE -to <to> -entity <entity name> <value>
set_global_assignment -name SDC_ENTITY_FILE <value>
```
1.15.101. SDC_ENTITY_HELPER_FILE

Associates a file "sourced" into a Synopsys Design Constraint File (.sdc) with an entity. Helper files are usually TCL (.tcl) files.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name SDC_ENTITY_HELPER_FILE -entity <entity name> <value>
set_instance_assignment -name SDC_ENTITY_HELPER_FILE -to <to> -entity <entity name> <value>
set_global_assignment -name SDC_ENTITY_HELPER_FILE <value>
```
1.15.102. SDC_FILE

Associates a Synopsys Design Constraint File (.sdc) with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SDC_FILE <value>
```
1.15.103. **SDF_OUTPUT_FILE**

Associates a Standard Delay Format Output File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SDF_OUTPUT_FILE <value>
```
1.15.104. SERIAL_BITSTREAM_FILE

Associates a Serial Bitstream File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name SERIAL_BITSTREAM_FILE <value>
```
1.15.105. SIGNALTAP_FILE

Associates a Signal Tap file with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name SIGNALTAP_FILE <value>
```
1.15.106. SIP_FILE

Associates a Simulation IP File with this project.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name SIP_FILE <value>
```

1.15.107. SLD_FILE

 Associates a file with this project. Files assigned to this assignment will be archived by the Project Archive command if the 'Project source and settings files' file subset is selected.

 **Type**

 File name

 **Device Support**

 - This setting can be used in projects targeting any Intel FPGA device family.

 **Notes**

 The value of this assignment is case sensitive.

 **Syntax**

 set_global_assignment -name SLD_FILE <value>
1.15.108. SMF_FILE

Associates a State Machine file (.smf) with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SMF_FILE <value>
```
1.15.109. SOFTWARE_LIBRARY_FILE

Associates a Software library file with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SOFTWARE_LIBRARY_FILE <value>
```
1.15.110. SOPCINFO_FILE

Associates a Qsys or SOPC Builder report file with this project. If you select the Project source and settings files option, the Project Archive command will archive the files assigned to this assignment.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SOPCINFO_FILE <value>
```
1.15.111. SOPC_FILE

Associates a SOPC Builder file (.sopc) with this project.

**Type**
- File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
- The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SOPC_FILE <value>
```
1.15.112. SOURCE_TCL_SCRIPT_FILE

Runs Tcl script file. This assignment has the same effect as 'source <filename>'.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SOURCE_TCL_SCRIPT_FILE <value>
```
1.15.113. SPD_FILE

Associates a Simulation Package Descriptor File with this project.

**Type**

File name

**Device Support**

• This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name SPD_FILE <value>
```
1.15.114. SRAM_OBJECT_FILE

Associates an SRAM Object File with this project.

Type

File name

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name SRAM_OBJECT_FILE <value>
```
1.15.115. SRECORDS_FILE

Associates a Motorola S-Record file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SRECORDS_FILE <value>
```
1.15.116. SVF_FILE

Associates a Serial Vector Format File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SVF_FILE <value>
```
1.15.117. SYM_FILE

Associates a Symbol File with this project.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```shell
set_global_assignment -name SYM_FILE <value>
```
1.15.118. SYNTHESIS_ONLY_QIP

Determines whether a Quartus Prime IP File is not for simulation.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SYNTHESISONLYQIP <value>
```
1.15.119. SYSTEMVERILOG_FILE

Associates a SystemVerilog HDL source file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name SYSTEMVERILOG_FILE <value>
```
1.15.120. TCL_ENTITY_FILE

Associates a TCL File (.tcl) with an entity. These files are often \"sourced\" into Synopsys Design Constraint Files (.sdc) that were also associated with the same entity.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

- `set_global_assignment -name TCL_ENTITY_FILE -entity <entity name> <value>`
- `set_instance_assignment -name TCL_ENTITY_FILE -to <to> -entity <entity name> <value>`
- `set_global_assignment -name TCL_ENTITY_FILE <value>`
1.15.121. TCL_SCRIPT_FILE

Associates a Tcl script file with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name TCL_SCRIPT_FILE <value>
```
1.15.122. TEMPLATE_FILE

Associates a Template File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name TEMPLATE_FILE <value>
```
### 1.15.123. TEXT_FILE

Associates a text file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name TEXT_FILE <value>
```
1.15.124. TEXT_FORMAT_REPORT_FILE

Associates a text-format Report File with this project.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name TEXT_FORMAT_REPORT_FILE <value>
```
1.15.125. TIMING_ANALYSIS_OUTPUT_FILE

Associates a Timing Analysis Output File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name TIMING_ANALYSIS_OUTPUT_FILE <value>
```
1.15.126. VCD_FILE

 Associates a Verilog Value Change Dump File with this project.

 **Type**

 File name

 **Device Support**

 - This setting can be used in projects targeting any Intel FPGA device family.

 **Notes**

 The value of this assignment is case sensitive.

 **Syntax**

 ```
 set_global_assignment -name VCD_FILE <value>
 ```
1.15.127. VECTOR_TABLE_OUTPUT_FILE

Associates a Vector Table Output File with this project.

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VECTOR_TABLE_OUTPUT_FILE <value>
```
1.15.128. VECTOR_TEXT_FILE

Associates a text-format Vector File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VECTOR_TEXT_FILE <value>
```
1.15.129. VECTOR_WAVEFORM_FILE

Associates a Vector Waveform File with this project.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name VECTOR_WAVEFORM_FILE <value>
```
1.15.130. VERILOG_FILE

Associates a Verilog HDL source file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VERILOG_FILE <value>
```
1.15.131. VERILOG_INCLUDE_FILE

Associates a Verilog Include file with this project.

**Old Name**
VERILOG_VH_FILE

**Type**
File name

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VERILOG_INCLUDE_FILE <value>
```
1.15.132. VERILOG_OUTPUT_FILE

Associates a Verilog Output File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VERILOG_OUTPUT_FILE <value>
```
1.15.133. VERILOG_TEST_BENCH_FILE

Associates a Verilog HDL Test Bench File (.vt) with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VERILOG_TEST_BENCH_FILE <value>
```
1.15.134. VER_COMPATIBLE_DB_DIR

Specifies the directory to which version-compatible database files should be saved.

Type
File name

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.
This assignment is not copied when you create a companion revision for HardCopy II devices.

Syntax

```
set_global_assignment -name VER_COMPATIBLE_DB_DIR <value>
```

Default Value
export_db
1.15.135. VHDL_FILE

Associates a VHDL source file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VHDL_FILE <value>
```
1.15.136. **VHDL_OUTPUT_FILE**

Associates a VHDL Output File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VHDL_OUTPUT_FILE <value>
```
1.15.137. VHDL_TEST_BENCH_FILE

Associates a VHDL Test Bench File (.vht) with this project.

Type

File name

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name VHDL_TEST_BENCH_FILE <value>
```
1.15.138. VQM_FILE

Associates a structural Verilog HDL source file with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VQM_FILE <value>
```
1.15.139. ZIP_VECTOR_WAVEFORM_FILE

Associates a Compressed Vector Waveform File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```plaintext
set_global_assignment -name ZIP_VECTOR_WAVEFORM_FILE <value>
```
1.16. Retimer Assignments

1.16.1. HYPER_RETIMER_FAST_FORWARD_ADD_PIPELINING_MAX

Set the maximum number of additional pipeline stages that the Fast Forward Compilation flow may explore.

**Type**

Integer

**Device Support**

- Intel Stratix 10

**Notes**

This assignment supports wildcards.

This assignment is included in the Fitter report.

**Syntax**

```sh
set_global_assignment -name HYPER_RETIMER_FAST_FORWARD_ADD_PIPELINING_MAX <value>
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_ADD_PIPELINING_MAX -to <to> -entity <entity name> <value>
```

**Default Value**

-1
1.16.2. HYPER RETIMER_FAST_FORWARDASYNCH_CLEAR

Control how Fast Forward Compile handles registers with asynchronous clear signals.

**Type**

Enumeration

**Values**

- Auto
- Preserve

**Device Support**

- Intel Stratix 10

**Notes**

This assignment supports wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name HYPER RETIMER_FAST_FORWARDASYNCH_CLEAR
<value>
set_instance_assignment -name HYPER RETIMER_FAST_FORWARDASYNCH_CLEAR -
to <to> -entity <entity name> <value>
```

**Default Value**

Auto
1.16.3. HYPER_RETIMER_FAST_FORWARD_DSP_BLOCKS

Fast Forward Compile will analyze DSP blocks that are limiting performance and assume that they can be fully registered.

**Type**

Boolean

**Device Support**

- Intel Stratix 10

**Notes**

This assignment supports wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name HYPER_RETIMER_FAST_FORWARD_DSP_BLOCKS <value>
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_DSP_BLOCKS -to <to> -entity <entity name> <value>
```

**Default Value**

On
1.16.4. HYPER_RETIMER_FAST_FORWARD_RAM_BLOCKS

Fast Forward Compile will analyze RAM blocks that are limiting performance and assume that they can be fully registered.

**Type**
Boolean

**Device Support**
- Intel Stratix 10

**Notes**
This assignment supports wildcards.
This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name HYPER_RETIMER_FAST_FORWARD_RAM_BLOCKS <value>
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_RAM_BLOCKS -to <to> -entity <entity name> <value>
```

**Default Value**
On
1.16.5. HYPER_RETIMER_FAST_FORWARD_USER_PRESERVE_RESTRICTION

Controls how Fast Forward Compile handles restrictions due to user-preserve directives.

**Type**

Enumeration

**Values**

- Auto
- Preserve

**Device Support**

- Intel Stratix 10

**Notes**

This assignment supports wildcards.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name HYPER_RETIMER_FAST_FORWARD_USER_PRESERVE_RESTRICTION <value>
set_instance_assignment -name HYPER_RETIMER_FAST_FORWARD_USER_PRESERVE_RESTRICTION -to <to> -entity <entity name> <value>
```

**Default Value**

Auto
1.17. Retimer Fast Forward Assignments

1.17.1. CRITICAL_CHAIN_VIEWER

Enable Critical Chain visualization in the Fast Forward Timing Closure Recommendations report

**Type**

Boolean

**Device Support**

- Intel Stratix 10

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name CRITICAL_CHAIN_VIEWER <value>
```

**Default Value**

On
1.17.2. FLOW_ENABLE_HYPER_RETIMER_FAST_FORWARD

Allows you to turn on or turn off Fast Forward analysis during compilation.

**Old Name**
HYPER_RETIMER_FAST_FORWARD

**Type**
Boolean

**Device Support**
- Intel Stratix 10

**Notes**
This assignment is included in the Fitter report.

**Syntax**

```plaintext
set_global_assignment -name FLOW_ENABLE_HYPER_RETIMER_FAST_FORWARD <value>
```
1.18. Signal Tap Assignments

1.18.1. CREATE_PARTITION_BOUNDARY_PORTS

Creates boundary ports on ancestor partition(s) by the specified name

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_instance_assignment -name CREATE_PARTITION_BOUNDARY_PORTS -to <to>
<value>
```
1.18.2. ENABLE_LOGIC_ANALYZER_INTERFACE

Enables Logic Analyzer Interface for compilation

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name ENABLE_LOGIC_ANALYZER_INTERFACE <value>
```
1.18.3. ENABLE_SIGNALTAP

Enables the Signal Tap Logic Analyzer for compilation

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Notes
This assignment is included in the Fitter report.

Syntax

```bash
set_global_assignment -name ENABLE_SIGNALTAP <value>
```
1.18.4. STP_FILE

Associates a Signal Tap Logic Analyzer File with this project.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name STP_FILE <value>
```
1.18.5. USE_LOGIC_ANALYZER_INTERFACE_FILE

Specifies the Logic Analyzer Interface File to be used for compilation.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_LOGIC_ANALYZER_INTERFACE_FILE <value>
```
1.18.6. USE_SIGNALTAP_FILE

Specifies the Signal Tap Logic Analyzer File to be used for compilation.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

This assignment is included in the Fitter report.

**Syntax**

```
set_global_assignment -name USE_SIGNALTAP_FILE <value>
```
1.19. Simulator Assignments

1.19.1. ACTION

Specifies the breakpoint's action when triggered.

**Type**

Enumeration

**Values**

- Give Error
- Give Info
- Give Warning
- Stop

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name ACTION -section_id <section identifier> <value>
```
1.19.2. ADD_DEFAULT_PINS_TO_SIMULATION_OUTPUT_WAVEFORMS

Adds output pins to the simulation vector output waveforms automatically.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name ADD_DEFAULT_PINS_TO_SIMULATION_OUTPUT_WAVEFORMS <value>
```

**Default Value**

On
1.19.3. ADD_TO_SIMULATION_OUTPUT_WAVEFORMS

Adds the signal to the list of signals for which output waveforms are shown in the simulation report. This option makes a node observable during simulation.

Type
Boolean

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_instance_assignment -name ADD_TO_SIMULATION_OUTPUT_WAVEFORMS -to <to> -entity <entity name> <value>
```
1.19.4. ALIAS

Specifies an alias for the full hierarchical name of the node.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_instance_assignment -name ALIAS -to <to> -entity <entity name> <value>
```
1.19.5. AUTO_USE_SIMULATION_PDB_NETLIST

Automatically saves/loads simulation netlist to/from external file

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name AUTO_USE_SIMULATION_PDB_NETLIST <value>
```

**Default Value**

Off
1.19.6. BREAKPOINT_STATE

Specifies the state of a breakpoint as either enabled or disabled.

**Type**

Enumeration

**Values**

- Disabled
- Enabled

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name BREAKPOINT_STATE -section_id <section_identifier> <value>
```
1.19.7. CHECK_OUTPUTS

Checks expected outputs vs. actual outputs in the simulation report.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name CHECK_OUTPUTS <value>
```

**Default Value**

Off
1.19.8. END_TIME

Specifies the end time for simulation.

Type

Time

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

None

Syntax

```
set_global_assignment -name END_TIME <value>
```
1.19.9. EXTERNAL_PIN_CONNECTION

Specifies an external pin connection between an output pin and an input pin. This option is used during simulations only.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_instance_assignment -name EXTERNAL_PIN_CONNECTION -to <to> -entity <entity name> <value>
```
1.19.10. GLITCH_DETECTION

Monitors the design for user-defined glitches (spikes).

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name GLITCH_DETECTION <value>
```

**Default Value**

Off
1.19.11. GLITCH_INTERVAL

Allows you to detect glitches and specify the time interval that defines a glitch. If two logic level transitions occur in a period shorter than the specified time period, the resulting glitch is detected and reported in the Processing tab of the Messages window.

**Type**

Time

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name GLITCH_INTERVAL <value>
```

**Default Value**

1ns
1.19.12. IMMEDIATE_ASSERTION_FAIL_ACTION

Specifies the immediate assertion's action when the assertion fails.

Type

Enumeration

Values

• Give Error
• Give Info
• Give Warning
• Stop

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name IMMEDIATE_ASSERTION_FAIL_ACTION -section_id <section identifier> <value>
```
1.19.13. IMMEDIATE_ASSERTION_FAIL_MESSAGE

Specifies the immediate assertion's message when the assertion fails.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IMMEDIATE_ASSERTION_FAIL_MESSAGE -
section_id <section identifier> <value>
```
1.19.14. IMMEDIATE_ASSERTION_PASS_MESSAGE

Specifies the immediate assertion's message when the assertion passes.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name IMMEDIATE_ASSERTION_PASS_MESSAGE -
section_id <section identifier> <value>
```
1.19.15. IMMEDIATE_ASSERTION_STATE

Specifies the state of an immediate assertion as either enabled or disabled.

**Type**

Enumeration

**Values**

- Disabled
- Enabled

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name IMMEDIATE_ASSERTION_STATE -section_id <section_identifier> <value>
```
1.19.16. IMMEDIATE_ASSERTION_TEST_CONDITION

Specifies the immediate assertion's test condition.

Type
String

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Notes
The value of this assignment is case sensitive.

Syntax

```plaintext
set_global_assignment -name IMMEDIATE_ASSERTION_TEST_CONDITION -
section_id <section identifier> <value>
```
1.19.17. INCREMENTAL_VECTOR_INPUT_SOURCE

Specifies the source of input vectors to be used for simulation.

Type

File name

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

The value of this assignment is case sensitive.

Syntax

```
set_global_assignment -name INCREMENTAL_VECTOR_INPUT_SOURCE <value>
```
1.19.18. PASSIVE_RESISTOR

Specifies whether an output or bidirectional pin has a pull-up or pull-down resistor. This option is used in functional simulations only.

Type

Enumeration

Values

- Pull-down
- Pull-up

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_instance_assignment -name PASSIVE_RESISTOR -to <to> -entity <entity name> <value>
```
1.19.19. SETUP_HOLD_DETECTION

Detects setup and hold time violations.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
None

**Syntax**

```bash
set_global_assignment -name SETUP_HOLD_DETECTION <value>
```

**Default Value**
Off
1.19.20. SETUP_HOLD_DETECTION_INPUT_REGISTERS_BIDIR_PINS_DISABLED

Disables setup and hold time violations detection in input registers of bi-directional pins.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name
SETUP_HOLD_DETECTION_INPUT_REGISTERS_BIDIR_PINS_DISABLED <value>
```

**Default Value**

Off
1.19.21. SETUP_HOLD_TIME_VIOLATION_DETECTION

Enables setup and hold time violation detection during simulation.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_instance_assignment -name SETUP_HOLD_TIME_VIOLATION_DETECTION -to <to> -entity <entity name> <value>
```
1.19.22. SIMULATION_BUS_CHANNEL_GROUPING

Automatically groups bus channels in the output waveforms which are shown in the simulation report.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_BUS_CHANNEL_GROUPING <value>
```

**Default Value**

Off
1.19.23. SIMULATION_COMPARE_SIGNAL

Specifies the signal to be compared in a waveform comparison.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_instance_assignment -name SIMULATION_COMPARE_SIGNAL -to <to> -
entity <entity name> <value>
```
1.19.24. SIMULATION_COMPLETE_COVERAGE_REPORT_PANEL

Display report on output ports that toggle between 1 and 0 during simulation.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_COMPLETE_COVERAGE_REPORT PANEL <value>
```

**Default Value**

On
1.19.25. SIMULATION_COVERAGE

Reports 'coverage,' that is, the ratio of output ports that toggle between 1 and 0 during simulation, compared to the total number of output ports present in the netlist, expressed as a percentage.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_COVERAGE <value>
```

**Default Value**

On
1.19.26. SIMULATION_DEFAULT_VECTORCOMPARE_TOLERANCE

Specifies the default comparison timing tolerance to be used in a waveform comparison.

**Type**

Time

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_DEFAULT_VECTORCOMPARE_TOLERANCE <value>
```
1.19.27. SIMULATION_MISSING_0_VALUE_COVERAGE_REPORT_PANEL

Display report on output ports that do not toggle to 0 during simulation.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name
SIMULATION_MISSING_0_VALUE_COVERAGE_REPORT_PANEL <value>
```

**Default Value**

On
1.19.28. SIMULATION_MISSING_1_VALUE_COVERAGE_REPORT_PANEL

Display report on output ports that do not toggle to 1 during simulation.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_MISSING_1_VALUE_COVERAGE_REPORT PANEL <value>
```

**Default Value**

On
1.19.29. SIMULATION_MODE

Specifies the type of simulation to perform for the current Simulation focus.

Type

Enumeration

Values

- Functional
- Timing
- Timing using Fast Timing Model

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Notes

None

Syntax

```
set_global_assignment -name SIMULATION_MODE <value>
```

Default Value

TIMING
1.19.30. SIMULATION_NETLIST_VIEWER

Enables the Simulation Netlist Viewer.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_NETLIST_VIEWER <value>
```

**Default Value**

Off
1.19.3.1. SIMULATION_SIGNAL_COMPARE_TOLERANCE

Specifies the comparison timing tolerance to be used for each signal in a waveform comparison.

**Type**
Time

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_instance_assignment -name SIMULATION_SIGNAL_COMPARE_TOLERANCE -to <to> -entity <entity name> <value>
```
1.19.32. SIMULATION_VDB_RESULT_FLUSH

Flushes signal transitions from memory to disk for memory optimization

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

None

**Syntax**

```
set_global_assignment -name SIMULATION_VDB_RESULT_FLUSH <value>
```

**Default Value**

On
1.19.33. SIMULATION_VECTOR_COMPARE_BEGIN_TIME

Specifies the begin time at which waveform comparison on simulation results should start.

Type
Time

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name SIMULATION_VECTOR_COMPARE_BEGIN_TIME <value>
```
1.19.34. SIMULATION_VECTOR_COMPARE_END_TIME

Specifies the end time at which waveform comparison on simulation results should stop.

**Type**
Time

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION VECTOR_COMPARE_END_TIME <value>
```
### 1.19.35. SIMULATION VECTORCOMPARE RULE FOR 0

Specifies vector values that match with expected strong low value (0) in the waveform file.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name SIMULATION VECTORCOMPARE RULE FOR 0 <value>
```
1.19.36. SIMULATION_VECTORCOMPARE_RULE_FOR_1

Specifies vector values that match with expected strong high value (1) in the waveform file.

Type

String

Device Support

- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name SIMULATION_VECTOR_COMPARE_RULE_FOR_1 <value>
```
1.19.37. SIMULATION_VECTOR_COMPARE_RULE_FOR_DC

Specifies vector values that match with expected don't care value (DC) in the waveform file

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name SIMULATION_VECTOR_COMPARE_RULE_FOR_DC <value>
```
1.19.38. SIMULATION_VECTORCOMPARE_RULE_FOR_H

Specifies vector values that match with expected weak high value (H) in the waveform file

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_VECTORCOMPARE_RULE_FOR_H <value>
```
1.19.39. SIMULATION VECTOR_COMPARE_RULE_FOR_L

Specifies vector values that match with expected weak low value (L) in the waveform file

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```bash
set_global_assignment -name SIMULATION_VECTOR_COMPARE_RULE_FOR_L <value>
```
1.19.40. SIMULATION_VECTOR_COMPARE_RULE_FOR_U

Specifies vector values that match with expected uninitialized value (U) in the waveform file

Type
String

Device Support
- This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```plaintext
set_global_assignment -name SIMULATION_VECTOR_COMPARE_RULE_FOR_U <value>
```
1.19.41. SIMULATION_VECTORCOMPARE_RULE_FOR_W

Specifies vector values that match with expected weak unknown value (W) in the waveform file

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_VECTOR_COMPARE_RULE_FOR_W <value>
```
1.19.42. SIMULATION_VECTORCOMPARE_RULE_FOR_X

Specifies vector values that match with expected unknown value (X) in the waveform file

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_VECTOR_COMPARE_RULE_FOR_X <value>
```
1.19.43. SIMULATION_VECTORCOMPARE_RULE_FOR_Z

Specifies vector values that match with expected high impedance value (Z) in the waveform file

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIMULATION_VECTOR_COMPARE_RULE_FOR_Z <value>
```
1.19.44. SIM_BEHAVIOR_SIMULATION

Perform QUASAR Behavior simulation to simulate a verilog design

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name SIM_BEHAVIOR_SIMULATION <value>
```
1.19.45. SIM_COMPILE_HDL_FILES

Collect a list of HDL files for compilation in QUASAR

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIM_COMPILE_HDL_FILES <value>
```
1.19.46. SIM_HDL_TOP_MODULE_NAME

Top level module name provided from user to determine starting point of simulation

Type

String

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name SIM_HDL_TOP_MODULE_NAME <value>
```
1.19.47. SIM_OVERWRITE_WAVEFORM_INPUTS

Overwrite simulation input file with simulation results.

**Type**
Boolean

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIM_OVERWRITE_WAVEFORM_INPUTS <value>
```
1.19.48. SIM_TAP_REGISTER_D_Q_PORTS

Adds the D and Q ports of a register node to the list of signals for which output waveforms are shown in the simulation report. This option makes the D and Q ports of a register node observable during Functional Simulation.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_instance_assignment -name SIM_TAP_REGISTER_D_Q_PORTS -to <to> -entity <entity name> <value>
```
1.19.49. SIM_VECTOR_COMPARED_CLOCK_DUTY_CYCLE

Specifies the duty cycle of compared clock used to trigger waveform comparison.

**Type**

Integer

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIM_VECTOR_COMPARED_CLOCK_DUTY_CYCLE -
section_id <section identifier> <value>
```

**Default Value**

50, requires section identifier
1.19.50. SIM_VECTOR_COMPARED_CLOCK_OFFSET

Specifies the offset of compared clock used to trigger waveform comparison.

**Type**

Time

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name SIM_VECTOR_COMPARED_CLOCK_OFFSET -
section_id <section identifier> <value>
```

**Default Value**

0ns, requires section identifier
1.19.51. SIM_VECTOR_COMPARED_CLOCK_PERIOD

Specifies the period of compared clock used to trigger waveform comparison.

Type
Time

Device Support
• This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name SIM_VECTOR_COMPARED_CLOCK_PERIOD -
section_id <section identifier> <value>
```
1.19.52. START_TIME

Specifies the start time for simulation.

**Type**

Time

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```
set_global_assignment -name START_TIME <value>
```

**Default Value**

0ns
1.19.53. TRIGGER_EQUATION

Specifies the breakpoint’s trigger equation.

**Type**
String

**Device Support**
- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**
The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name TRIGGER_EQUATION -section_id <section_identifier> <value>
```
1.19.54. TRIGGER_VECTORCOMPARE_ON_SIGNAL

Trigger vector comparison with the specified signal.

**Type**

Boolean

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_instance_assignment -name TRIGGER_VECTOR_COMPARE_ON_SIGNAL -to <to>
-entity <entity name> <value>
```
1.19.55. USER MESSAGE

Specifies the breakpoint’s message when triggered.

**Type**

String

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name USER_MESSAGE -section_id <section_identifier> <value>
```
1.19.56. VECTOR_COMPARE_TRIGGER_MODE

Specifies the comparison mode to trigger vector comparison.

Type

Enumeration

Values

• ALL_EDGE
• INPUT_EDGE
• SELECTED_EDGE

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Syntax

```
set_global_assignment -name VECTOR_COMPARE_TRIGGER_MODE <value>
```

Default Value

INPUT_EDGE
1.19.57. VECTOR_INPUT_SOURCE

Specifies the source of input vectors to be used for simulation.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VECTOR_INPUT_SOURCE <value>
```
1.19.58. VECTOR_OUTPUT_DESTINATION

Specifies the output vector file for the current simulation.

**Type**

File name

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Notes**

The value of this assignment is case sensitive.

**Syntax**

```
set_global_assignment -name VECTOR_OUTPUT_DESTINATION <value>
```
1.19.59. VECTOR_OUTPUT_FORMAT

Specifies the format of simulation results.

**Type**

Enumeration

**Values**

- CVWF
- VCD
- VWF

**Device Support**

- This setting can be used in projects targeting any Intel FPGA device family.

**Syntax**

```plaintext
set_global_assignment -name VECTOR_OUTPUT_FORMAT <value>
```
1.19.60. X_ON_VIOLATION_OPTION

Gives user the option to see 'X' or valid data at the output of registers in the event of a timing violation during simulation.

Type

Boolean

Device Support

• This setting can be used in projects targeting any Intel FPGA device family.

Notes

This assignment supports wildcards.

Syntax

```
set_instance_assignment -name X_ON_VIOLATION_OPTION -to <to> -entity <entity name> <value>
```


<table>
<thead>
<tr>
<th>Document Version</th>
<th>Intel Quartus Prime Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020.07.20</td>
<td>18.0</td>
<td>• Only added ACDS version reference to cover and added Revision History topic. Content is not updated and reflects Intel Quartus Prime Pro Edition software version 18.0.</td>
</tr>
<tr>
<td>2018.06.20</td>
<td>18.0</td>
<td>• First release for Pro Edition</td>
</tr>
</tbody>
</table>