Altera’s 28-nm Stratix® V FPGAs include innovations such as an enhanced core architecture, integrated transceivers up to 28.05 gigabits per second (Gbps), and a unique array of integrated hard intellectual property (IP) blocks.

With these innovations, Stratix V FPGAs deliver a new class of application-targeted devices optimized for:

- Bandwidth-centric applications and protocols, including PCI Express® (PCIe®) Gen3
- Data-intensive applications for 40G/100G and beyond
- High-performance, high-precision digital signal processing (DSP) applications

Stratix V devices are available in four variants (GT, GX, GS, and E), each targeted for a different set of applications. For higher volume production, you can prototype with Stratix V FPGAs and use the low-risk, low-cost path to HardCopy® V ASICs.

Related Information

Stratix V Device Handbook: Known Issues
Lists the planned updates to the Stratix V Device Handbook chapters.

Stratix V Family Variants

The Stratix V device family contains the GT, GX, GS, and E variants.

Stratix V GT devices, with both 28.05-Gbps and 12.5-Gbps transceivers, are optimized for applications that require ultra-high bandwidth and performance in areas such as 40G/100G/400G optical communications systems and optical test systems. 28.05-Gbps and 12.5-Gbps transceivers are also known as GT and GX channels, respectively.

Stratix V GX devices offer up to 66 integrated transceivers with 14.1-Gbps data rate capability. These transceivers also support backplane and optical interface applications. These devices are optimized for high-performance, high-bandwidth applications such as 40G/100G optical transport, packet processing, and traffic management found in wireline, military communications, and network test equipment markets.

Stratix V GS devices have an abundance of variable precision DSP blocks, supporting up to 3,926 18x18 or 1,963 27x27 multipliers. In addition, Stratix V GS devices offer integrated transceivers with 14.1-Gbps data rate capability. These transceivers also support backplane and optical interface applications. These devices are optimized for transceiver-based DSP-centric applications found in wireline, military, broadcast, and high-performance computing markets.

Stratix V E devices offer the highest logic density within the Stratix V family with nearly one million logic elements (LEs) in the largest device. These devices are optimized for applications such as ASIC and system emulation, diagnostic imaging, and instrumentation.
Common to all Stratix V family variants are a rich set of high-performance building blocks, including a redesigned adaptive logic module (ALM), 20 Kbit (M20K) embedded memory blocks, variable precision DSP blocks, and fractional phase-locked loops (PLLs). All of these building blocks are interconnected by Altera’s superior multi-track routing architecture and comprehensive fabric clocking network.

Also common to Stratix V devices is the new Embedded HardCopy Block, which is a customizable hard IP block that leverages Altera’s unique HardCopy ASIC capabilities. The Embedded HardCopy Block in Stratix V FPGAs is used to harden IP instantiation of PCIe Gen3, Gen2, and Gen1.

Stratix V Features Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Technology** | • 28-nm TSMC process technology
• 0.85-V or 0.9-V core voltage |
| **Low-power serial transceivers** | • 28.05-Gbps transceivers on Stratix V GT devices
• Electronic dispersion compensation (EDC) for XFP, SFP+, QSFP, CFP optical module support
• Adaptive linear and decision feedback equalization
• Transmitter pre-emphasis and de-emphasis
• Dynamic reconfiguration of individual channels
• On-chip instrumentation (EyeQ non-intrusive data eye monitoring) |
| **Backplane capability** | • 600-Megabits per second (Mbps) to 12.5-Gbps data rate capability |
| **General-purpose I/Os (GPIOs)** | • 1.6-Gbps LVDS
• 1.066-MHz external memory interface
• On-chip termination (OCT)
• 1.2-V to 3.3-V interfacing for all Stratix V devices |
| **Embedded HardCopy Block** | • PCIe Gen3, Gen2, and Gen1 complete protocol stack, x1/x2/x4/x8 endpoint and root port |
| **Embedded transceiver hard IP** | • Interlaken physical coding sublayer (PCS)
• Gigabit Ethernet (GbE) and XAUI PCS
• 10G Ethernet PCS
• Serial RapidIO® (SRIO) PCS
• Common Public Radio Interface (CPRI) PCS
• Gigabit Passive Optical Networking (GPON) PCS |
| **Power management** | • Programmable Power Technology
• Quartus II integrated PowerPlay Power Analysis |
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| High-performance core fabric | • Enhanced ALM with four registers
• Improved routing architecture reduces congestion and improves compile times |
| Embedded memory blocks | • M20K: 20-Kbit with hard error correction code (ECC)
• MLAB: 640-bit |
| Variable precision DSP blocks | • Up to 600 MHz performance
• Natively support signal processing with precision ranging from 9x9 up to 54x54
• New native 27x27 multiply mode
• 64-bit accumulator and cascade for systolic finite impulse responses (FIRs)
• Embedded internal coefficient memory
• Pre-adder/subtractor improves efficiency
• Increased number of outputs allows more independent multipliers |
| Fractional PLLs | • Fractional mode with third-order delta-sigma modulation
• Integer mode
• Precision clock synthesis, clock delay compensation, and zero delay buffer (ZDB) |
| Clock networks | • 800-MHz fabric clocking
• Global, quadrant, and peripheral clock networks
• Unused clock networks can be powered down to reduce dynamic power |
| Device configuration | • Serial and parallel flash interface
• Enhanced advanced encryption standard (AES) design security features
• Tamper protection
• Partial and dynamic reconfiguration
• Configuration via Protocol (CvP) |
| High-performance packaging | • Multiple device densities with identical package footprints enables seamless migration between different FPGA densities
• FBGA packaging with on-package decoupling capacitors
• Lead and RoHS-compliant lead-free options |
| HardCopy V migration | — |

Stratix V Family Plan

The following tables list the features of the different Stratix V devices.

The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Altera Product Selector.
Table 2: Stratix V GT Device Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>5SGTC5</th>
<th>5SGTC7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Elements (K)</td>
<td>425</td>
<td>622</td>
</tr>
<tr>
<td>ALMs</td>
<td>160,400</td>
<td>234,720</td>
</tr>
<tr>
<td>Registers (K)</td>
<td>642</td>
<td>939</td>
</tr>
<tr>
<td>28.05/12.5-Gbps Transceivers</td>
<td>4/32</td>
<td>4/32</td>
</tr>
<tr>
<td>PCIe hard IP Blocks</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fractional PLLs</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>M20K Memory Blocks</td>
<td>2,304</td>
<td>2,560</td>
</tr>
<tr>
<td>M20K Memory (MBits)</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Variable Precision Multipliers (18x18)</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Variable Precision Multipliers (27x27)</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>DDR3 SDRAM x72 DIMM Interfaces</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

User I/Os\(^{(1)}\), Full-Duplex LVDS, 28.05/12.5-Gbps Transceivers

<table>
<thead>
<tr>
<th>Package (^{(2)})(^{(3)})</th>
<th>5SGTC5</th>
<th>5SGTC7</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF40-F1517 (^{(4)}) (40 mm)</td>
<td>600, 150, 36</td>
<td>600, 150, 36</td>
</tr>
</tbody>
</table>

\(^{(1)}\) The number of GPIOs does not include transceiver I/Os. In the Quartus II software, the number of user I/Os includes transceiver I/Os.

\(^{(2)}\) Packages are flipchip ball grid array (1.0-mm pitch).

\(^{(3)}\) Each package row offers pin migration (common board footprint) for all devices in the row.

\(^{(4)}\) Migration between select Stratix V GT devices and Stratix V GX devices is available. For more information, refer to Table 6 and to AN 644: Migration Between Stratix V GX and Stratix V GT Devices.
Table 3: Stratix V GX Device Features

<table>
<thead>
<tr>
<th>Features</th>
<th>5SGXA 3</th>
<th>5SGXA 4</th>
<th>5SGXA 5</th>
<th>5SGXA 7</th>
<th>5SGXA 9</th>
<th>5SGXB 5</th>
<th>5SGXB 6</th>
<th>5SGXB 9</th>
<th>5SGXBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Elements (K)</td>
<td>340</td>
<td>420</td>
<td>490</td>
<td>622</td>
<td>840</td>
<td>952</td>
<td>490</td>
<td>597</td>
<td>840</td>
</tr>
<tr>
<td>ALMs</td>
<td>128,300</td>
<td>158,500</td>
<td>185,000</td>
<td>234,720</td>
<td>317,000</td>
<td>359,200</td>
<td>185,000</td>
<td>225,400</td>
<td>317,000</td>
</tr>
<tr>
<td>Registers (K)</td>
<td>513</td>
<td>634</td>
<td>740</td>
<td>939</td>
<td>1,268</td>
<td>1,437</td>
<td>740</td>
<td>902</td>
<td>1,268</td>
</tr>
<tr>
<td>14.1-Gbps Transceivers</td>
<td>12, 24,</td>
<td>24 or 36</td>
<td>24, 36,</td>
<td>24, 36,</td>
<td>36 or 48</td>
<td>36 or 48</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>PCIe hard IP Blocks</td>
<td>1 or 2</td>
<td>1 or 2</td>
<td>1, 2, or 4</td>
<td>1, 2, or 4</td>
<td>1, 2, or 4</td>
<td>1 or 4</td>
<td>1 or 4</td>
<td>1 or 4</td>
<td>1 or 4</td>
</tr>
<tr>
<td>Fractional PLLs</td>
<td>20 (5)</td>
<td>24</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>24</td>
<td>24</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>M20K Memory Blocks</td>
<td>957</td>
<td>1,900</td>
<td>2,304</td>
<td>2,560</td>
<td>2,640</td>
<td>2,640</td>
<td>2,100</td>
<td>2,660</td>
<td>2,640</td>
</tr>
<tr>
<td>M20K Memory (MBits)</td>
<td>19</td>
<td>37</td>
<td>45</td>
<td>50</td>
<td>52</td>
<td>52</td>
<td>41</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Variable Precision Multipliers (18x18)</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>704</td>
<td>704</td>
<td>798</td>
<td>798</td>
<td>704</td>
</tr>
<tr>
<td>Variable Precision Multipliers (27x27)</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>352</td>
<td>352</td>
<td>399</td>
<td>399</td>
<td>352</td>
</tr>
<tr>
<td>DDR3 SDRAM x72 DIMM Interfaces (6)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

(5) The F1517 package contains 24 PLLs. The other packages with this device contain 20 PLLs.
(6) These are the maximum number of x72 interfaces available. The actual number of interfaces depends on the device package.
User I/Os

Full-Duplex LVDS, 14.1-Gbps Transceivers

<table>
<thead>
<tr>
<th>Package</th>
<th>5SGXA3</th>
<th>5SGXA4</th>
<th>5SGXA5</th>
<th>5SGXA7</th>
<th>5SGXA9</th>
<th>5SGXB</th>
<th>5SGXB6</th>
<th>5SGXB9</th>
<th>5SGXBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>EH29-H780 (33 mm)</td>
<td>360, 90, 12^H</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>KF40-F1517 (40 mm)</td>
<td>696, 174, 36</td>
<td>696, 174, 36^H</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>KH40-H1517 (45 mm)</td>
<td>—</td>
<td>—</td>
<td>600, 150, 48</td>
<td>600, 150, 48</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NF40-F1517 (40 mm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>432, 108, 66</td>
<td>432, 108, 66</td>
<td>—</td>
</tr>
<tr>
<td>RF40-F1517 (40 mm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(7) LVDS counts are full duplex channels. Each full duplex channel is one transmitter (TX) pair plus one receiver (RX) pair.

(8) A superscript H after the number of transceivers indicates that this device is only available in a hybrid package. Hybrid packages are slightly larger than conventional FBGAs. Refer to Altera’s packaging documentation for more information.

(9) Migration between select Stratix V GX devices and Stratix V GS devices is available. For more information, refer to Table 6.
User I/Os(1), Full-Duplex LVDS, 14.1-Gbps Transceivers

<table>
<thead>
<tr>
<th>Package (2) (3) (7) (8)</th>
<th>5SGXA3</th>
<th>5SGXA4</th>
<th>5SGXA5</th>
<th>5SGXA7</th>
<th>5SGXA9</th>
<th>5SGXAB</th>
<th>5SGXB5</th>
<th>5SGXB6</th>
<th>5SGXB9</th>
<th>5SGXBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF43-F1760 (42.5 mm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>600, 150, 66</td>
<td>600, 150, 66</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RH43-H1760 (45 mm)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>600, 150, 66H</td>
<td>600, 150, 66H</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NF45-F1932 (9) (45 mm)</td>
<td>—</td>
<td>—</td>
<td>840, 210, 48</td>
<td>840, 210, 48</td>
<td>840, 210, 48</td>
<td>840, 210, 48</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 4: Stratix V GS Device Features

<table>
<thead>
<tr>
<th>Features</th>
<th>5SGSD3</th>
<th>5SGSD4</th>
<th>5SGSD5</th>
<th>5SGSD6</th>
<th>5SGSD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Elements (K)</td>
<td>236</td>
<td>360</td>
<td>457</td>
<td>583</td>
<td>695</td>
</tr>
<tr>
<td>ALMs</td>
<td>89,000</td>
<td>135,840</td>
<td>172,600</td>
<td>220,000</td>
<td>262,400</td>
</tr>
<tr>
<td>Registers (K)</td>
<td>356</td>
<td>543</td>
<td>690</td>
<td>880</td>
<td>1,050</td>
</tr>
<tr>
<td>14.1-Gbps transceivers</td>
<td>12 or 24</td>
<td>12, 24, or 36</td>
<td>24 or 36</td>
<td>36 or 48</td>
<td>36 or 48</td>
</tr>
<tr>
<td>PCIe hard IP blocks</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1, 2, or 4</td>
<td>1, 2, or 4</td>
</tr>
<tr>
<td>Fractional PLLs</td>
<td>20</td>
<td>20 (5)</td>
<td>24</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>M20K Memory Blocks</td>
<td>688</td>
<td>957</td>
<td>2,014</td>
<td>2,320</td>
<td>2,567</td>
</tr>
<tr>
<td>M20K Memory (MBits)</td>
<td>13</td>
<td>19</td>
<td>39</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Variable Precision Multipliers (18x18)</td>
<td>1,200</td>
<td>2,088</td>
<td>3,180</td>
<td>3,550</td>
<td>3,926</td>
</tr>
<tr>
<td>Variable Precision Multipliers (27x27)</td>
<td>600</td>
<td>1,044</td>
<td>1,590</td>
<td>1,775</td>
<td>1,963</td>
</tr>
</tbody>
</table>
Table 5: Stratix V E Device Features

<table>
<thead>
<tr>
<th>Features</th>
<th>5SEE9</th>
<th>5SEEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Elements (K)</td>
<td>840</td>
<td>952</td>
</tr>
<tr>
<td>ALMs</td>
<td>317,000</td>
<td>359,200</td>
</tr>
<tr>
<td>Registers (K)</td>
<td>1,268</td>
<td>1,437</td>
</tr>
<tr>
<td>Fractional PLLs</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>M20K Memory Blocks</td>
<td>2,640</td>
<td>2,640</td>
</tr>
<tr>
<td>M20K Memory (MBits)</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Variable Precision Multipliers (18x18)</td>
<td>704</td>
<td>704</td>
</tr>
<tr>
<td>Variable Precision Multipliers (27x27)</td>
<td>352</td>
<td>352</td>
</tr>
<tr>
<td>DDR3 SDRAM x72 DIMM Interfaces</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Package</td>
<td>5SEE9</td>
<td>5SEE9</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H40-H1517</td>
<td>696, 174^H</td>
<td>696, 174^H</td>
</tr>
<tr>
<td>(45 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F45-F1932</td>
<td>840, 210</td>
<td>840, 210</td>
</tr>
<tr>
<td>(45 mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Device Migration List Across All Stratix V Device Variants

All devices in a specific column allow migration.

<table>
<thead>
<tr>
<th>Package</th>
<th>EH29-H780</th>
<th>HF35-F1152</th>
<th>KF35-F1152</th>
<th>KF40-F1517/H40-H1517</th>
<th>NF40/KF40-F1517</th>
<th>RF40-F1517</th>
<th>H40-H1517</th>
<th>RF43-F1760</th>
<th>NF45-F1932</th>
<th>F45-F1932</th>
<th>RH43-H1760</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratix V GX devices</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

(10) All devices in this column are in the HF35 package and have twenty-four 14.1-Gbps transceivers.
(11) Different devices within this column have small differences in the overall package height. When multiple Stratix V devices with different package heights are placed on a single board, a single-piece heatsink may not cover the devices evenly. Refer to AN 670: Thermal Solutions to Address Height Variation in Stratix V Packages.
(12) The 5SGTC5/7 devices in the KF40 package have four 28.05-Gbps transceivers and thirty-two 12.5-Gbps transceivers. Other devices in this column are in the NF40 package and have forty-eight 14.1-Gbps transceivers.
(13) For more information, refer to AN 644: Migration Between Stratix V GX and Stratix V GT Devices.
Low-Power Serial Transceivers

Stratix V FPGAs deliver the industry's most flexible transceivers with the highest bandwidth from 600 Mbps to 28.05 Gbps, low bit error ratio (BER), and low power. Stratix V transceivers have many enhancements to improve flexibility and robustness. These enhancements include robust analog receiver clock and data recovery (CDR), advanced pre-emphasis, and equalization. In addition, each channel provides full featured embedded PCS hard IP to simplify the design, lower the power, and save valuable core resources.

Stratix V transceivers are compliant with a wide range of standard protocols and data rates and are equipped with a variety of signal conditioning features to support backplane, optical module, and chip-to-chip applications.

Stratix V transceivers are located on the left and right sides of the device, as shown in the figure below. The transceivers are isolated from the rest of the chip to prevent core and I/O noise from coupling into the transceivers, thereby ensuring optimal signal integrity. The transceiver channels consist of the physical medium attachment (PMA), PCS, and high-speed clock networks. You can also configure unused transceiver PMA channels as additional transmitter PLLs.

<table>
<thead>
<tr>
<th>Package</th>
<th>Stratix V GT devices</th>
<th>Stratix V GS devices</th>
<th>Stratix V E devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>E9</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EB</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: To verify the pin migration compatibility, use the Pin Migration View window in the Quartus II software Pin Planner.

Related Information

- [Altera Product Selector](#)
 Provides the latest information about Altera products.

- [For more information about verifying the pin migration compatibility, refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.](#)

- [For full package details, refer to the Package information datasheet for Altera devices.](#)

- [AN 644: Migration Between Stratix V GX and Stratix V GT Devices](#)

- [AN 670: Thermal Solutions to Address Height Variation in Stratix V Packages](#)
This figure represents one variant of a Stratix V device with transceivers. Other variants may have a different floorplan than the one shown here.

Note:
(1) You can use the unused transceiver channels as additional transceiver transmitter PLLs.

The following table lists the PMA features for the Stratix V transceivers.

Table 7: Transceiver PMA Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip-to-chip support</td>
<td>28.05 Gbps and 12.5 Gbps (Stratix V GT devices) and</td>
</tr>
<tr>
<td></td>
<td>14.1 Gbps (Stratix V GX and GS devices)</td>
</tr>
<tr>
<td>Backplane support</td>
<td>12.5 Gbps (Stratix V GX, GS, and GT devices)</td>
</tr>
<tr>
<td>Cable driving support</td>
<td>PCIe cable and eSATA applications</td>
</tr>
</tbody>
</table>
Table 8: Transceiver PCS Features

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Data Rates (Gbps)</th>
<th>Transmitter Data Path</th>
<th>Receiver Data Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom PHY</td>
<td>0.6 to 8.5</td>
<td>Phase compensation FIFO, byte serializer, 8B/10B encoder, bit-slip, and channel bonding</td>
<td>Word aligner, de-skew FIFO, rate match FIFO, 8B/10B decoder, byte deserializer, and byte ordering</td>
</tr>
<tr>
<td>Protocol</td>
<td>Data Rates (Gbps)</td>
<td>Transmitter Data Path</td>
<td>Receiver Data Path</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Custom 10G PHY</td>
<td>9.98 to 14.1</td>
<td>TX FIFO, gear box, and bit-slip</td>
<td>RX FIFO and gear box</td>
</tr>
<tr>
<td>x1, x4, x8 PCIe Gen1 and Gen2</td>
<td>2.5 and 5.0</td>
<td>Same as custom PHY plus PIPE 2.0 interface to core logic</td>
<td>Same as custom PHY plus PIPE 2.0 interface to core logic</td>
</tr>
<tr>
<td>x1, x4, x8 PCIe Gen3</td>
<td>8</td>
<td>Phase compensation FIFO, encoder, scrambler, gear box, and bit-slip</td>
<td>Block synchronization, rate match FIFO, decoder, de-scrambler, and phase compensation FIFO</td>
</tr>
<tr>
<td>10G Ethernet</td>
<td>10.3125</td>
<td>TX FIFO, 64/66 encoder, scrambler, and gear box</td>
<td>RX FIFO, 64/66 decoder, de-scrambler, block synchronization, and gear box</td>
</tr>
<tr>
<td>Interlaken</td>
<td>4.9 to 14.1</td>
<td>TX FIFO, frame generator, CRC-32 generator, scrambler, disparity generator, and gear box</td>
<td>RX FIFO, frame generator, CRC-32 checker, frame decoder, descrambler, disparity checker, block synchronization, and gearbox</td>
</tr>
<tr>
<td>OTN 40 and 100</td>
<td>(4 +1) x 11.3</td>
<td>TX FIFO, channel bonding, and byte serializer</td>
<td>RX FIFO, lane deskelw, and byte de-serializer</td>
</tr>
<tr>
<td></td>
<td>(10 +1) x 11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GbE</td>
<td>1.25</td>
<td>Same as custom PHY plus GbE state machine</td>
<td>Same as custom PHY plus GbE state machine</td>
</tr>
<tr>
<td>XAUI</td>
<td>3.125 to 4.25</td>
<td>Same as custom PHY plus XAUI state machine for bonding four channels</td>
<td>Same as custom PHY plus XAUI state machine for re-aligning four channels</td>
</tr>
<tr>
<td>SRI0</td>
<td>1.25 to 6.25</td>
<td>Same as custom PHY plus SRO V2.1 compliant x2 and x4 channel bonding</td>
<td>Same as custom PHY plus SRO V2.1 compliant x2 and x4 deskew state machine</td>
</tr>
<tr>
<td>CPRI</td>
<td>0.6144 to 9.83</td>
<td>Same as custom PHY plus TX deterministic latency</td>
<td>Same as custom PHY plus RX deterministic latency</td>
</tr>
<tr>
<td>GPON</td>
<td>1.25, 2.5, and 10</td>
<td>Same as custom PHY</td>
<td>Same as custom PHY</td>
</tr>
</tbody>
</table>

PCIe Gen3, Gen2, and Gen1 Hard IP (Embedded HardCopy Block)

Stratix V devices have PCIe hard IP designed for performance, ease-of-use, and increased functionality. The PCIe hard IP consists of the PCS, data link, and transaction layers. The PCIe hard IP supports Gen3, Gen2, and Gen1 end point and root port up to x8 lane configurations.
The Stratix V PCIe hard IP operates independently from the core logic, which allows the PCIe link to wake up and complete link training in less than 100 ms while the Stratix V device completes loading the programming file for the rest of the FPGA. The PCIe hard IP also provides added functionality, which helps support emerging features such as Single Root I/O Virtualization (SR-IOV) or optional protocol extensions. In addition, the Stratix V device PCIe hard IP has improved end-to-end data path protection using ECC and enables device CvP.

In all Stratix V devices, the primary PCIe hard IP that supports CvP is always in the bottom left corner of the device (IOBANK_B0L) when viewing the die from the top.

External Memory and GPIO

Each Stratix V I/O block has a hard FIFO that improves the resynchronization margin as data is transferred from the external memory to the FPGA.

The hard FIFO also lowers PHY latency, resulting in higher random access performance. GPIOs include on-chip dynamic termination to reduce the number of external components and minimize reflections. On-package decoupling capacitors suppress noise on the power lines, which reduce noise coupling into the I/Os. Memory banks are isolated to prevent core noise from coupling to the output, thus reducing jitter and providing optimal signal integrity.

The external memory interface block uses advanced calibration algorithms to compensate for process, voltage and temperature (PVT) variations in the FPGA and external memory components. The advanced algorithms ensure maximum bandwidth and a robust timing margin across all conditions. Stratix V devices deliver a complete memory solution with the High Performance Memory Controller II (HPMC II) and UniPHY MegaCore® IP that simplifies a design for today’s advanced memory modules. The following table lists external memory interface block performance.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Performance (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR3</td>
<td>933</td>
</tr>
<tr>
<td>DDR2</td>
<td>400</td>
</tr>
<tr>
<td>QDR II</td>
<td>350</td>
</tr>
<tr>
<td>QDR II+</td>
<td>550</td>
</tr>
<tr>
<td>RLDRAM II</td>
<td>533</td>
</tr>
<tr>
<td>RLDRAM III</td>
<td>800</td>
</tr>
</tbody>
</table>

The specifications listed in this table are performance targets. For a current achievable performance, use the *External Memory Interface Spec Estimator*.

Related Information

External Memory Interface Spec Estimator
Adaptive Logic Module

Stratix V devices use an improved ALM to implement logic functions more efficiently. The Stratix V ALM has eight inputs with a fracturable look-up table (LUT), two dedicated embedded adders, and four dedicated registers.

The Stratix V ALM has the following enhancements:

- Packs 6% more logic when compared with the ALM found in Stratix IV devices.
- Implements select 7-input LUT-based functions, all 6-input logic functions, and two independent functions consisting of smaller LUT sizes (such as two independent 4-input LUTs) to optimize core usage.
- Adds more registers (four registers per 8-input fracturable LUT). More registers allow Stratix V devices to maximize core performance at a higher core logic usage and provides easier timing closure for register-rich and heavily pipelined designs.

The Quartus II software leverages the Stratix V ALM logic structure to deliver the highest performance, optimal logic usage, and lowest compile times. The Quartus II software simplifies design re-use because it automatically maps legacy Stratix designs into the new Stratix V ALM architecture.

Clocking

The Stratix V device core clock network is designed to support 800-MHz fabric operations and 1,066-MHz and 1,600-Mbps external memory interfaces.

The clock network architecture is based on Altera’s proven global, quadrant, and peripheral clock structure, which is supported by dedicated clock input pins and fractional clock synthesis PLLs. The Quartus II software identifies all unused sections of the clock network and powers them down, which reduces power consumption.

Fractional PLL

Stratix V devices contain up to 32 fractional PLLs.

You can use the fractional PLLs to reduce both the number of oscillators required on the board and the clock pins used in the FPGA by synthesizing multiple clock frequencies from a single reference clock source. In addition, you can use the fractional PLLs for clock network delay compensation, zero delay buffering, and transmitter clocking for transceivers. Fractional PLLs can be individually configured for integer mode or fractional mode with third-order delta-sigma modulation.

Embedded Memory

Stratix V devices contain two types of embedded memory blocks: MLAB (640-bit) and M20K (20-Kbit). MLAB blocks are ideal for wide and shallow memories. M20K blocks are useful for supporting larger memory configurations and include ECC.

Both types of memory blocks operate up to 600 MHz and can be configured to be a single- or dual-port RAM, FIFO, ROM, or shift register. These memory blocks are flexible and support a number of memory configurations, as shown in the following table.
<table>
<thead>
<tr>
<th>Multiplier Size</th>
<th>DSP Block Resources</th>
<th>Expected Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>9x9</td>
<td>1/3 of variable precision DSP block</td>
<td>Low precision fixed point</td>
</tr>
<tr>
<td>18x18</td>
<td>1/2 of variable precision DSP block</td>
<td>Medium precision fixed point</td>
</tr>
<tr>
<td>27x27</td>
<td>1 variable precision DSP block</td>
<td>High precision fixed or single precision floating point</td>
</tr>
<tr>
<td>36x36</td>
<td>2 variable precision DSP blocks</td>
<td>Very high precision fixed point</td>
</tr>
</tbody>
</table>

Complex multiplication is common in DSP algorithms. One of the most popular applications of complex multipliers is the fast Fourier transform (FFT) algorithm, which increases precision requirements on only one side of the multiplier. The variable precision DSP block is designed to support the FFT algorithm with a proportional increase in DSP resources with precision growth. The following table lists complex multiplication with variable precision DSP blocks.
Table 12: Complex Multiplication with Variable Precision DSP Blocks

<table>
<thead>
<tr>
<th>Multiplier Size (bits)</th>
<th>DSP Block Resources</th>
<th>Expected Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>18x18</td>
<td>2 variable precision DSP blocks</td>
<td>Resource optimized FFTs</td>
</tr>
<tr>
<td>18x25</td>
<td>3 variable precision DSP blocks</td>
<td>Accommodate bit growth through FFT stages</td>
</tr>
<tr>
<td>18x36</td>
<td>4 variable precision DSP blocks</td>
<td>Highest precision FFT stages</td>
</tr>
<tr>
<td>27x27</td>
<td>4 variable precision DSP blocks</td>
<td>Single precision floating point</td>
</tr>
</tbody>
</table>

For FFT applications with high dynamic range requirements, only the Altera® FFT MegaCore offers an option of single precision floating point implementation, with the resource usage and performance similar to high-precision fixed point implementations.

Other new features include:
- 64-bit accumulator, the largest in the industry
- Hard pre-adder, available in both 18- and 27-bit modes
- Cascaded output adders for efficient systolic FIR filters
- Internal coefficient register banks
- Enhanced independent multiplier operation
- Efficient support for single- and double-precision floating point arithmetic
- Ability to infer all the DSP block modes through HDL code using the Altera Complete Design Suite

The variable precision DSP block is ideal for higher bit precision in high-performance DSP applications. At the same time, the variable precision DSP block can efficiently support the many existing 18-bit DSP applications, such as high definition video processing and remote radio heads. Stratix V FPGAs, with the variable precision DSP block architecture, are the only FPGA family that can efficiently support many different precision levels, up to and including floating point implementations. This flexibility results in increased system performance, reduced power consumption, and reduced architecture constraints for system algorithm designers.

Power Management

Stratix V devices leverage FPGA architectural features and process technology advancements to reduce total power consumption by up to 30% when compared with Stratix IV devices at the same performance level.

Stratix V devices continue to provide programmable power technology, introduced in earlier generations of Stratix FPGA families. The Quartus II software PowerPlay feature identifies critical timing paths in a design and biases core logic in that path for high performance. PowerPlay also identifies non-critical timing paths and biases core logic in that path for low power instead of high performance. PowerPlay automatically biases core logic to meet performance and optimize power consumption.

Additionally, Stratix V devices have a number of hard IP blocks that reduce logic resources and deliver substantial power savings when compared with soft implementations. The list includes PCIe Gen1/Gen2/Gen3, Interlaken PCS, hard I/O FIFOs, and transceivers. Hard IP blocks consume up to 50% less power than equivalent soft implementations.
Stratix V transceivers are designed for power efficiency. The transceiver channels consume 50% less power than Stratix IV FPGAs. The transceiver PMA consumes approximately 90 mW at 6.5 Gbps and 170 mW at 12.5 Gbps.

Incremental Compilation

The Quartus II software incremental compilation feature reduces compilation time by up to 70% and preserves performance to ease timing closure.

Incremental compilation supports top-down, bottom-up, and team-based design flows. Incremental compilation facilitates modular hierarchical and team-based design flows where a team of designers work in parallel on a design. Different designers or IP providers can develop and optimize different blocks of the design independently, which you can then import into the top-level project.

Enhanced Configuration and CvP

Stratix V device configuration is enhanced for ease-of-use, speed, and cost.

Stratix V devices support a new 4-bit bus active serial mode (ASx4). ASx4 supports up to a 400Mbps data rate using small low-cost quad interface Flash devices. ASx4 mode is easy to use and offers an ideal balance between cost and speed. Finally, the fast passive parallel (FPP) interface is enhanced to support 8-, 16-, and 32-bit data widths to meet a wide range of performance and cost goals.

You can configure Stratix V FPGAs using CvP with PCIe. CvP with PCIe divides the configuration process into two parts: the PCIe hard IP and periphery and the core logic fabric. CvP uses a much smaller amount of external memory (flash or ROM) because CvP has to store only the configuration file for the PCIe hard IP and periphery. The 100-ms power-up to active time (for PCIe) is much easier to achieve when only the PCIe hard IP and periphery are loaded. After the PCIe hard IP and periphery are loaded and the root port is booted up, application software running on the root port can send the configuration file for the FPGA fabric across the PCIe link where the file is loaded into the FPGA. The FPGA is then fully configured and functional.

The following table lists the configuration modes available for Stratix V devices.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fast or Slow POR</th>
<th>Compression</th>
<th>Encryption</th>
<th>Remote Update</th>
<th>Data Width</th>
<th>Max Clock Rate (MHz)</th>
<th>Max Data Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Serial (AS)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1, 4</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>Passive Serial (PS)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>1</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Fast Passive Parallel (FPP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (¹⁴)</td>
<td>8, 16, 32</td>
<td>125 (¹⁵)</td>
<td>3,000</td>
</tr>
</tbody>
</table>

¹⁴ Remote update support with the Parallel Flash Loader.

¹⁵ The maximum clock rate is 125 MHz for x8 and x16 FPP, but only 100 MHz for x32 FPP.
Partial Reconfiguration

Partial reconfiguration allows you to reconfigure part of the FPGA while other sections continue to operate.

This capability is required in systems where uptime is critical because partial reconfiguration allows you to make updates or adjust functionality without disrupting services. While lowering power and cost, partial reconfiguration also increases the effective logic density by removing the necessity to place FPGA functions that do not operate simultaneously. Instead, you can store these functions in external memory and load them as required. This capability reduces the size of the FPGA by allowing multiple applications on a single FPGA, saving board space and reducing power.

You no longer need to know all the details of the FPGA architecture to perform partial reconfiguration. Altera simplifies the process by extending the power of incremental compilation used in earlier versions of the Quartus II software.

Partial reconfiguration is supported in the following configurations:

- Partial reconfiguration through the FPP x16 I/O interface
- CvP
- Soft internal core, such as the Nios® II processor.

Automatic Single Event Upset Error Detection and Correction

Stratix V devices offer single event upset (SEU) error detection and correction circuitry that is robust and easy to use.

The correction circuitry includes protection for configuration RAM (CRAM) programming bits and user memories. The CRAM is protected by a continuously running cyclical redundancy check (CRC) error detection circuit with integrated ECC that automatically corrects one or double-adjacent bit errors and detects higher order multi-bit errors. When more than two errors occur, correction is available through a core programming file reload that refreshes a design while the FPGA is operating.

The physical layout of the FPGA is optimized to make the majority of multi-bit upsets appear as independent single- or double-adjacent bit errors, which are automatically corrected by the integrated CRAM ECC circuitry. In addition to the CRAM protection in Stratix V devices, user memories include integrated ECC circuitry and are layout-optimized to enable error detection of 3-bit errors and correction for 2-bit errors.
HardCopy V Devices

HardCopy V ASICs offer the lowest risk and lowest total cost in ASIC designs with embedded high-speed transceivers. You can prototype and debug with Stratix V FPGAs, then use HardCopy V ASICs for volume production. The proven turnkey process creates a functionally equivalent HardCopy V ASIC with or without embedded transceivers to meet all timing constraints in as little as 12 weeks.

The powerful combination of Stratix V FPGAs and HardCopy V ASICs can help you meet your design requirements. Whether you plan for ASIC production and require the lowest-risk, lowest-cost path from specification to production or require a cost reduction path for your FPGA-based systems, Altera provides the optimal solution for power, performance, and device bandwidth.

Ordering Information

This section describes ordering information for Stratix V GT, GX, GS, and E devices.

The following figure shows the ordering codes for Stratix V devices.

Figure 2: Ordering Information for Stratix V Devices

<table>
<thead>
<tr>
<th>Family Signature</th>
<th>Family Variant</th>
<th>Transceiver Count</th>
<th>Operating Temperature</th>
<th>Transceiver PCS and FPGA Fabric Speed Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS : Stratix V</td>
<td>GX : 14.1-Gbps transceivers</td>
<td>E : 12</td>
<td>Commercial (0 to 85°C)</td>
<td>1 (fastest)</td>
</tr>
<tr>
<td></td>
<td>GT : 28.05-Gbps transceivers</td>
<td>H : 24</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GS : DSP-Oriented</td>
<td>K : 36</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>E : Highest logic density, no transceivers</td>
<td>N : 48</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R : 66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(1) Stratix V mainstream “M” devices have exactly one instantiation of PCI Express hard IP. Extended “E” devices have either two or four instantiations of PCI Express hard IP, depending on the device and package combination. For non-transceiver Stratix V devices, this character does not appear in the part number.
(2) You can select one or two of these options, or you can ignore these options.
(3) YY parts can support transceiver operations up to 10.3125 Gbps.
Table 14: Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2015</td>
<td>2015.10.01</td>
<td>Changed heading in the "Ordering Information for Stratix V Devices" figure to "Embedded Hard IP Block Variant".</td>
</tr>
</tbody>
</table>
| January 2015 | 2015.01.15 | • Added ALM counts and device package sizes to the four device family features tables.
• In the "Stratix V GX Device Features" table, changed the number of DDR3 SDRAM x72 DIMM Interfaces for the 5SGXA3 and 5SGXA4 devices to 6. Also added footnote to this row.
• Deleted listings for 40GBASE-R and 100GBASE-R Ethernet from the "Transceiver PCS Features" table in the "Low-Power Serial Transceivers" section.
• Added YY code to the Optional Suffix category in the "Ordering Information for Stratix V Devices" figure. |
| April 2014 | 2014.04.08 | Updated "Variable precision DSP blocks" section of the "Features Summary" table to 600 MHz performance. |
| April 2014 | 2014.04.03 | • Updated GPIOs section of the "Features Summary" table to 1.6 Gbps LVDS.
• Changed clocking speed to 800 MHz in the "Features Summary" and the "Clocking" sections. |
| January 2014 | 2014.01.10 | • Added link to Altera Product Selector in the "Stratix V Family Plan" section.
• Corrected DDR2 performance from 533 MHz to 400 MHz.
• Updated "Device Migration List Across All Stratix V Device Variants" table. |
| May 2013 | 2013.05.06 | • Added link to the known document issues in the Knowledge Base.
• Updated backplane support information.
• Added a note about the number of I/Os to each table in the "Stratix V Family Plan" section.
• Updated the "Ordering Information for Stratix V Devices" figure. |
| December 2012 | 3.1 | • Updated Table 6 and Table 13.
• Updated Figure 2. |
<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes Made</th>
</tr>
</thead>
</table>
| June 2012 | 3.0 | • Converted chapter to stand-alone format and removed from the Stratix V handbook.
<p>| | | • Changed title of document to Stratix V Device Overview |
| | | • Updated Figure 1. |
| | | • Minor text edits. |
| February 2012 | 2.3 | • Updated Table 1–2, Table 1–3, Table 1–4, and Table 1–5. |
| | | • Updated Figure 1–2. |
| | | • Updated “Automatic Single Event Upset Error Detection and Correction” on page 18. |
| | | • Minor text edits. |
| December 2011 | 2.2 | Updated Table 1–2 and Table 1–3. |
| November 2011 | 2.1 | • Changed Stratix V GT transceiver speed from 28 Gbps to 28.05 Gbps. |
| | | • Updated Figure 1–2. |
| November 2011 | 2.0 | • Revised Figure 1–2. |
| | | • Updated Table 1–5. |
| | | • Minor text edits. |
| September 2011| 1.10 | Updated Table 1–2, Table 1–3, and Table 1–4. |
| September 2011| 1.9 | • Updated Table 1–1, Table 1–2, Table 1–3, Table 1–4, and Table 1–5. |
| | | • Updated Figure 1–2. |
| | | • Minor text edits. |
| June 2011 | 1.8 | Changed 800 MHz to 1,066 MHz for DDR3 in Table 1–8 and in text. |
| May 2011 | 1.7 | • For Stratix V GT devices, changed 14.1 Gbps to 12.5 Gbps. |
| | | • Changed Configuration via PCIe to Configuration via Protocol |
| | | • Updated Table 1–1, Table 1–2, Table 1–3, Table 1–4, Table 1–5, Table 1–6. |
| | | • Chapter moved to Volume 1. |
| January 2011 | 1.6 | • Added Stratix V GS information. |
| | | • Updated tables listing device features. |
| | | • Added device migration information. |
| | | • Updated 12.5-Gbps transceivers to 14.1-Gbps transceivers |
| December 2010 | 1.5 | Updated Table 1-1. |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2010</td>
<td>1.4</td>
<td>• Updated Table 1-1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Figure 1-2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Converted to the new template.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Minor text edits.</td>
</tr>
<tr>
<td>July 2010</td>
<td>1.3</td>
<td>Updated Table 1–5</td>
</tr>
<tr>
<td>July 2010</td>
<td>1.2</td>
<td>• Updated “Features Summary” on page 1–2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated resource counts in Table 1–1 and Table 1–2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Removed “Interlaken PCS Hard IP” and “10G Ethernet Hard IP”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added “40G and 100G Ethernet Hard IP (Embedded HardCopy Block)” on page 1–7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added information about Configuration via PCIe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added “Partial Reconfiguration” on page 1–12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added “Ordering Information” on page 1–14</td>
</tr>
<tr>
<td>May 2010</td>
<td>1.1</td>
<td>Updated part numbers in Table 1–1 and Table 1–2</td>
</tr>
<tr>
<td>April 2010</td>
<td>1.0</td>
<td>Initial release</td>
</tr>
</tbody>
</table>