1 Intel® Stratix® 10 Clocking and PLL Overview ... 4
 1.1 Clock Networks Overview ... 4
 1.2 PLLs Overview .. 4

2 Intel Stratix 10 Clocking and PLL Architecture and Features ... 5
 2.1 Clock Networks Architecture and Features .. 5
 2.1.1 Clock Network Architecture .. 5
 2.1.2 Clock Resources .. 7
 2.1.3 Programmable Clock Routing Sources .. 9
 2.1.4 Clock Control Features ... 9
 2.2 PLLs Architecture and Features ... 12
 2.2.1 PLL Features .. 12
 2.2.2 PLL Usage .. 13
 2.2.3 PLL Architecture .. 14
 2.2.4 PLL Control Signals ... 14
 2.2.5 Clock Feedback Modes ... 15
 2.2.6 Clock Multiplication and Division .. 21
 2.2.7 Programmable Phase Shift ... 22
 2.2.8 Programmable Duty Cycle ... 22
 2.2.9 PLL Cascading .. 23
 2.2.10 Clock Switchover ... 23
 2.2.11 PLL Reconfiguration and Dynamic Phase Shift .. 27
 2.2.12 PLL Calibration .. 28

3 Intel Stratix 10 Clocking and PLL Design Considerations ... 29
 3.1 Guideline: Clock Switchover ... 29
 3.2 fPLL IP Core Constraints .. 30
 3.3 Guideline: Resetting the PLL ... 30
 3.4 Guideline: Configuration Constraints .. 30
 3.5 Guideline: Timing Closure .. 31
 3.6 Guideline: I/O PLL Reconfiguration .. 31

4 Intel Stratix 10 Clocking and PLL Implementation Guides ... 32
 4.1 Stratix 10 Clock Control IP Core .. 32
 4.2 Intel FPGA IOPPL IP Core ... 32
 4.2.1 .mif File Generation ... 32
 4.2.2 Implementing I/O PLL Dynamic Phase Shift in the Intel FPGA IOPPL IP Core .. 33
 4.2.3 Design Example .. 34
 4.3 Intel FPGA IOPPL Reconfig IP Core .. 35
 4.3.1 Implementing I/O PLL Reconfiguration in the Intel FPGA IOPPL Reconfig IP Core .. 35
 4.3.2 Design Examples .. 39

5 Stratix 10 Clock Control IP Core References .. 42
 5.1 Stratix 10 Clock Control Parameters .. 42
 5.2 Stratix 10 Clock Control Ports and Signals ... 42

6 Intel FPGA IOPPL IP Core References .. 44
 6.1 Intel FPGA IOPPL Parameters .. 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1 Intel FPGA IOPLL Parameters - PLL Tab</td>
<td>44</td>
</tr>
<tr>
<td>6.1.2 Intel FPGA IOPLL Parameters - Settings Tab</td>
<td>46</td>
</tr>
<tr>
<td>6.1.3 Intel FPGA IOPLL Parameters - Cascading Tab</td>
<td>47</td>
</tr>
<tr>
<td>6.1.4 Intel FPGA IOPLL Parameters - Dynamic Reconfiguration Tab</td>
<td>48</td>
</tr>
<tr>
<td>6.1.5 Intel FPGA IOPLL Parameters - Advanced Parameters Tab</td>
<td>48</td>
</tr>
<tr>
<td>6.2 Intel FPGA IOPLL Ports and Signals</td>
<td>48</td>
</tr>
<tr>
<td>6.3 Dynamic Phase Shift Ports in the Intel FPGA IOPLL IP Core</td>
<td>49</td>
</tr>
<tr>
<td>7 Intel FPGA IOPLL Reconfig IP Core References</td>
<td>51</td>
</tr>
<tr>
<td>7.1 Avalon-MM Interface Ports in the Intel FPGA IOPLL Reconfig IP Core</td>
<td>51</td>
</tr>
<tr>
<td>7.2 Address Bus and Data Bus Settings</td>
<td>51</td>
</tr>
<tr>
<td>7.2.1 Output Clock and the Corresponding Data Bit Setting for Clock Gating Reconfiguration</td>
<td>51</td>
</tr>
<tr>
<td>7.2.2 Data Bus Setting for Dynamic Phase Shift for Intel FPGA IOPLL Reconfig IP Core</td>
<td>52</td>
</tr>
<tr>
<td>A Document Revision History for Intel Stratix 10 Clocking and PLL User Guide</td>
<td>53</td>
</tr>
</tbody>
</table>
1 Intel® Stratix® 10 Clocking and PLL Overview

1.1 Clock Networks Overview

Intel® Stratix® 10 devices contain dedicated resources for distributing signals throughout the fabric with balanced delay. These resources are typically used for clock signals. You can also use these resources for other signals with low-skew requirements. In Intel Stratix 10 devices, these resources are implemented as a programmable clock routing network, which allows for the implementation of low-skew clock trees of various size.

1.2 PLLs Overview

Phase-locked loops (PLLs) provide robust clock management and synthesis for device clock management, external system clock management, and high-speed I/O interfaces.

The Intel Stratix 10 device family contains the following PLLs for core applications:
- fPLLs—can function as fractional PLLs or integer PLLs
- I/O PLLs—can only function as integer PLLs

The fPLLs are located adjacent to the transceiver blocks in the transceiver banks. Each transceiver bank contains two fPLLs. You can configure each fPLL independently in either conventional integer mode, or fractional mode. In fractional mode, the fPLL can operate with third-order delta-sigma modulation. You can configure each fPLL to generate either a transmitter (TX) clock for a transceiver or to provide a single clock to the core.

The I/O PLLs are located adjacent to the hard memory controllers and LVDS serializer/deserializer (SERDES) blocks in the I/O banks. Each I/O bank contains one I/O PLL. The I/O PLLs can operate in conventional integer mode. Each I/O PLL has nine counter outputs.

Intel Stratix 10 devices have up to 48 fPLLs and 42 I/O PLLs in the largest densities devices.
2 Intel Stratix 10 Clocking and PLL Architecture and Features

2.1 Clock Networks Architecture and Features

2.1.1 Clock Network Architecture

Each Intel Stratix 10 device is divided into a number of evenly sized clock sectors.

Figure 1. Clock Sector Floorplan for Intel Stratix 10 Devices

This figure shows an example of the clock sectors in an Intel Stratix 10 device, which is implemented as an array of sectors—12 rows and 9 columns in this example. Clock sectors are vertically aligned to match the height of transceiver and I/O banks. I/O banks are contained within the clock sectors. Transceiver bank interfaces are always located beside the clock sectors, at the left or right side of the device.

2.1.1.1 Clock Network Hierarchy

The Intel Stratix 10 clock network can be organized in a hierarchy with 3 levels.
2.1.1.2 Clock Sector

Each clock sector has dedicated sector clock (SCLK) and row clock network resources that can be accessed by the programmable clock network. Each clock sector is also surrounded by programmable clock network resources. On each side, there is a channel that contains 32 independent bidirectional clock wires. At each corner, there is a set of programmable clock switch multiplexers which can route between these clocks wires.

A signal on a vertical clock wire can enter the sector to its left or right via clock tap multiplexers. The clock tap multiplexer drives a sector clock, which distributes the signal to each row in the clock sector. In each row, there are six row clock resources which connect to all core functional blocks, PLLs, and I/O interfaces in the sector, and to adjacent transceivers.

2.1.1.3 Programmable Clock Routing

The Intel Quartus® Prime software automatically configures the clock switch, clock tap, SCLK, and row clock multiplexers to generate skew-balanced clock trees. The resulting routing path distributes the signal from the clock source to all target destinations in one or more clock sectors.
The Intel Quartus Prime software creates efficiently balanced clock trees of various sizes, ranging from a single clock sector to the entire device, as shown in the example in the following figure. By default, the Intel Quartus Prime Software automatically determines the size and location of the clock tree. Alternatively, you can directly constrain the clock tree size and location either with a Clock Region assignment or by Logic Lock Regions.

The total insertion delay for the clock network depends on the number of clock resources needed to implement the clock tree, increasing with the number of clock sectors reached and the distance of the furthest clock destination from the signal source. As delay increases, the worst-case skew for crossing clock sectors using different clock tree branches grows, potentially impacting the maximum performance. For very high-speed clock signals, it is advantageous to reduce the number of clock sectors driven, which reduces the clock skew, and to reduce the distance between the clock source and the furthest destination, which will reduce both clock skew and total clock insertion delay.

Figure 4. Examples of Clock Networks Sizes Using Intel Stratix 10 Programmable Clock Routing

2.1.2 Clock Resources

Table 1. Intel Stratix 10 Clock Input Pins Resources

<table>
<thead>
<tr>
<th>Device</th>
<th>Number of Resources Available</th>
<th>Source of Clock Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>• GX 400</td>
<td>Transceiver: 24 differential I/O: 32 single-ended or 16 differential</td>
<td>For Transceiver pins: REFCLK_GXB [L, R] [1, 4] [C, D, E, F, G, H, I, J, K, L, M, N]_CH[B, T] [p, n]</td>
</tr>
<tr>
<td>• SX 400</td>
<td></td>
<td>For I/O pins: CLK_2,3 [A..N]_0,1 [p, n]</td>
</tr>
<tr>
<td>• GX 650</td>
<td>Transceiver: 48 differential I/O: 32 single-ended or 16 differential</td>
<td></td>
</tr>
<tr>
<td>• SX 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>Number of Resources Available</td>
<td>Source of Clock Resource</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| • GX 850
• GX 1100
• SX 850
• SX 1100 | Transceiver: 32 differential
I/O: 60 single-ended or 30 differential | |
| MX 1100 | Transceiver: 16 differential
I/O: 36 single-ended or 18 differential | |
| • GX 1650
• GX 2100
• SX 1650
• SX 2100 | Transceiver: 32 differential
I/O: 56 single-ended or 32 differential | |
| • MX 1650
• MX 2100 | Transceiver: 32 differential
I/O: 52 single-ended or 26 differential | |
| • TX 1650
• TX 2100 | Transceiver: 32 differential
I/O: 64 single-ended or 32 differential | |
| • GX 2500
• GX 2800
• SX 2500
• SX 2800 | Transceiver: 32 differential
I/O: 96 single-ended or 48 differential | |
| • TX 2500
• TX 2800 | Transceiver: 53 differential
I/O: 36 single-ended or 18 differential | |
| • GX 4500
• GX 5500
• SX 4500
• SX 5500 | Transceiver: 24 differential
I/O: 96 single-ended or 48 differential | |

Table 2. Intel Stratix 10 Programmable Clock Routing Resources

<table>
<thead>
<tr>
<th>Device</th>
<th>Number of Resources Available</th>
<th>Source of Clock Resource</th>
</tr>
</thead>
</table>
| All Intel Stratix 10 devices | 32 bidirectional programmable clock routing at the boundary of each clock sector | For transceiver bank:
• Physical medium attachment (PMA) and physical coding sublayer (PCS) TX and RX clocks per channel
• PMA and PCS TX and RX divide clocks per channel
• Hard IP core clock output signals
• Fractional PLL (fPLL) C counter outputs
• REFCLK pins
• Core signals (1)
For I/O bank:
• I/O PLL C counter outputs
• I/O PLL M counter outputs for feedback
• Clock input pins
• Core signals (1)
• Dynamic phase alignment (DPA) clock output
• Phase aligner counter outputs |

For more information about the clock input pins connections, refer to the pin connection guidelines.

(1) Core signals drive directly to programmable clock routing through clock switch multiplexers in the clock sector instead of the periphery DCM block.
2.1.3 Programmable Clock Routing Sources

This section describes the sources that can drive the programmable clock routing.

2.1.3.1 Dedicated Clock Input Pins

The sources of dedicated clock input pins are as follows:

- **fPLL**: REFCLK_GXB[L,R][1,4][C,D,E,F,G,H,I,J,K,L,M,N]_CH[B,T][p,n] from transceiver column
- **I/O PLL**: CLK_[2,3][A..N]_[0,1][p,n] from I/O column

You can use the dedicated clock input pins for high fan-out control signals, such as asynchronous clears, presets, and clock enables, for protocol signals through the programmable clock routing.

The dedicated clock input pins for an I/O PLL can be either differential clocks or single-ended clocks. The dedicated clock input pins for fPLL only support differential clocks and do not support single-ended clocks.

Driving a PLL over programmable clock routing can lead to higher jitter at the PLL input, and the PLL will not be able to fully compensate for the programmable clock routing. Intel recommends using the dedicated clock input pins for optimal performance to drive the PLLs.

2.1.3.2 Internal Logic

You can route up to eight core signals to each clock switch multiplexer, except the clock switch multiplexers at the right and left edge of the device, and the clock switch multiplexers next to the I/O banks.

2.1.3.3 DPA Clock Outputs

Each DPA clock output can drive the programmable clock routing.

2.1.3.4 Transceiver Clock Outputs

PMA and PCS TX and RX clock outputs can drive the programmable clock routing.

2.1.3.5 PLL Clock Outputs

The fPLL and I/O PLL clock outputs can drive the programmable clock routing.

2.1.4 Clock Control Features

The following figure shows the high level description of the Intel Stratix 10 clock control features—clock gating and clock divider. The clock from the I/O PLL output can be gated dynamically. These clock signals along with other clock sources go to the periphery distributed clock multiplexer (DCM). In the periphery DCM, the clock signal can either pass straight through, be gated by the root clock gate, or be divided by the clock divider.
The Intel Quartus Prime software routes the clock signal on the programmable clock routing to reach each clock sector. The clock signal can be gated in each sector by the SCLK gates. The clock enters the SCLK network followed by the row clock network, and eventually reaches the registers in the core. The LAB registers have a built-in functional clock enable feature, as shown in the following figure.

Figure 5. Clock Gating and Clock Divider in Intel Stratix 10 Clock Network

![Clock Gating and Clock Divider in Intel Stratix 10 Clock Network](image)

2.1.4.1 Clock Gating

2.1.4.1.1 Root Clock Gate

There is one root clock gate per I/O bank and transceiver bank. This gate is a part of the periphery DCM and is located close to the clock buffer.

The Intel Stratix 10 root clock gate is intended for limited clock gating scenarios where high insertion delay can be tolerated. When you use a root clock gate, expect a delay of several clock cycles between the assertion of the clock gate and the corresponding change on the output clock signal. For high frequency clocks, use sector clock gates.

Related Links

Stratix 10 Clock Control Parameters on page 42

Select Clock Enable Type ➤ Root Level in the Stratix 10 Clock Control IP core.

2.1.4.1.2 Sector Clock Gate

There are 32 SCLKs in every sector of the device. Each SCLK has a clock gate and bypassable clock gate path. The SCLK gates are controlled by clock enable inputs from the core logic. The Intel Quartus Prime software can route up to eight unique clock enable signals to the 32 SCLKs in a sector.

Intel recommends using the clock gate with a negative latch to provide glitch free gating on the output clock signal (outclk). The clock gate captures the enable signal (clkena) on the next rising edge of the input clock signal (inclk). The following timing diagram shows the relationship of the outclk with respect to inclk and clkena.
The clock signal going into the SCLK network in a sector can only reach the core logic in that sector. When you instantiate a SCLK gate in your design, the Intel Quartus Prime software automatically duplicates the SCLK gate to create a clock gate in every sector to which the clock signal is routed.

The SCLK gate is suitable for cycle-specific clock gating for high-frequency clocks. The timing of the enable path to the SCLK gate is analyzed by the Intel Quartus Prime software.

Related Links
- Clock Sector on page 6
 Provides a diagram that shows the dedicated clock resources within a clock sector.
- Clock Control Features on page 9
 Provides a diagram that shows the resources within a SCLK.
- Stratix 10 Clock Control Parameters on page 42
 Select Clock Enable Type ➤ Distributed Sector Level in the Stratix 10 Clock Control IP core.

2.1.4.1.3 I/O PLL Clock Gate

Each output counter of the Intel Stratix 10 I/O PLL can be dynamically gated. This provides a useful alternative to the root clock gate because the root clock gate can gate only 1 of the 9 output counters.

However, the I/O PLL clock gate is not cycle-specific. When you use I/O PLL clock gate, expect a delay of several clock cycles between the assertion or deassertion of the clock gate and the corresponding change to the clock signal. The number of delay cycles is non-deterministic because the enable signal must be synchronized into the clock domain of the output clock. This ensures a glitch-free gate.

2.1.4.1.4 LAB Clock Gate

The Intel Stratix 10 LAB register has built-in clock gating functionality. The register clock enable mechanism is a hardened data feedback, as shown in the Clock Gating and Clock Divider in Intel Stratix 10 Clock Network diagram. The LAB clock gate offers no associated power savings because this is a purely functional clock enable.

The analysis and synthesis phases of the Intel Quartus Prime software infer a LAB clock gate from a behavioral description of clock gating in the register transfer level (RTL). If a physical clock gate is desired, it must be explicitly instantiated.
2.1.4.2 Clock Divider

There is one clock divider per I/O bank and transceiver bank. The clock divider is a part of the periphery DCM block and is located close to the root clock gate. The outputs of the clock divider cannot be gated by the root clock gate in the same periphery DCM block. However, this limitation does not apply to the SCLK gate. The clock divider output in the periphery DCM block can drive a SCLK gate after going through the programmable clock routing.

The clock divider has three outputs as follows:
- First output—Passes through the input clock
- Second output—Divides the input clock by two
- Third output—Divides the input clock by four

These three clocks are edge-aligned at the output of the clock divider.

2.1.4.3 Dynamic Clock Switchover

Intel Stratix 10 devices do not have hard clock multiplexer blocks for dynamic clock switchover. Thus, the dynamic clock switchover logic is implemented using the soft logic in the core. The dynamic clock switchover can be optionally made glitch free using additional soft logic.

2.2 PLLs Architecture and Features

2.2.1 PLL Features

Table 3. PLL Features in Intel Stratix 10 Devices—Preliminary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Fractional PLL</th>
<th>I/O PLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer PLL</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fractional PLL</td>
<td>Yes</td>
<td>—</td>
</tr>
</tbody>
</table>

continued...
<table>
<thead>
<tr>
<th>Feature</th>
<th>Fractional PLL</th>
<th>I/O PLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of C output counter</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>M counter divide factor range</td>
<td>In integer mode: 8 to 127</td>
<td>4 to 160</td>
</tr>
<tr>
<td></td>
<td>In fractional mode: 11 to 123</td>
<td></td>
</tr>
<tr>
<td>N counter divide factor range</td>
<td>1 to 32</td>
<td>1 to 110</td>
</tr>
<tr>
<td>C counter divide factor range</td>
<td>1 to 512</td>
<td>1 to 510</td>
</tr>
<tr>
<td>L counter divide factors</td>
<td>1, 2, 4, and 8</td>
<td></td>
</tr>
<tr>
<td>Dedicated external clock outputs</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Dedicated clock input pins</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External feedback input pin</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Spread-spectrum input clock tracking (2)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Source synchronous compensation</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Direct compensation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Normal compensation</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Zero-delay buffer compensation</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>External feedback compensation</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>LVDS compensation</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Voltage-controlled oscillator (VCO) output drives the DPA clock</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Phase shift resolution (3)</td>
<td>71.428 ps</td>
<td>78.125 ps</td>
</tr>
<tr>
<td>Programmable duty cycle</td>
<td>Fixed 50% duty cycle</td>
<td>Yes</td>
</tr>
<tr>
<td>Power down mode</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

2.2.2 PLL Usage

fPLLs are optimized for use as transceiver transmit PLLs and for synthesizing reference clock frequencies. You can use the fPLLs as follows:

- Transmit clocking for transceivers
- Reduce the number of required oscillators on the board

(2) Provided input clock jitter is within input jitter tolerance specifications.

(3) The smallest phase shift is determined by the VCO period (for fPLL) or VCO period divided by eight (for I/O PLL). For degree increments, the Intel Stratix 10 device can shift all output frequencies in increments of at least 45° (for I/O PLL) or 90° (for fPLL). Smaller degree increments are possible depending on the frequency and divide parameters.
I/O PLLs are optimized for use with memory interfaces and LVDS SERDES. You can use the I/O PLLs as follows:

- Reduce the number of required oscillators on the board
- Reduce the clock pins used in the FPGA by synthesizing multiple clock frequencies from a single reference clock source
- Simplify the design of external memory interfaces and high-speed LVDS interfaces
- Ease timing closure because the I/O PLLs are tightly coupled with the I/Os
- Compensate for clock network delay
- Zero delay buffering

2.2.3 PLL Architecture

Figure 8. Fractional PLL High-Level Block Diagram for Intel Stratix 10 Devices

- Dedicated Reference Clock Pin
- Receiver Input Pin
- Reference Clock Network
- Cascade Input from Adjacent PLL
- Programmable Clock Routing
- Lock Circuit
- N Counter
- L Counter
- PFD
- VCO
- M Counter
- DSM
- PLL Output Multiplexer
- Cascade Output to Other PLL
- HIP Clock
- To Core
- PMA Clocks
- PMA Clocks
- FBOUT
- FBIN
- LVDS RX/TX Clock
- Programmable clock routing
- Source Synchronous, Normal Modes
- Direct Compensation Mode
- Zero Delay Buffer, External Feedback Modes
- LDPLL Compensation Mode
- Source Synchronous, Normal Modes
- Programmable clock routing
- PMA: Physical medium attachment
- PLL: Phase frequency detector
- CP: Charge pump
- LF: Loop filter
- DSM: Delta-sigma modulator
- PMA: Physical medium attachment
- CP: Charge pump
- LF: Loop filter
- DSM: Delta-sigma modulator
- PMA: Physical medium attachment

2.2.4 PLL Control Signals

You can use the reset signal to control PLL operation and resynchronization, and use the locked signal to observe the status of the PLL.

2.2.4.1 Reset

The reset signal port of the IP core for I/O PLL is `reset`.

The reset signal is the reset or resynchronization input for each I/O PLL. The device input pins or internal logic can drive these input signals.
When the reset signal is driven high, the I/O PLL counters reset, clearing the I/O PLL output and placing the I/O PLL out-of-lock. The VCO is then set back to its nominal setting. When the reset signal is driven low again, the I/O PLL resynchronizes to its input clock source as it re-locks.

You must assert the reset signal every time the I/O PLL loses lock to guarantee the correct phase relationship between the I/O PLL input and output clocks. You can set up the I/O PLL to automatically reset (self-reset) after a loss-of-lock condition using the Intel Quartus Prime parameter editor.

You must include the reset signal if either of the following conditions is true:
- I/O PLL reconfiguration or clock switchover is enabled in the design
- Phase relationships between the I/O PLL input and output clocks must be maintained after a loss-of-lock condition

Note:
Reset the I/O PLL after the input clock is stable and within specifications, even when the self-reset feature is enabled, if either one of the following conditions occur:
- The input clock to the I/O PLL is not toggling or is unstable when the FPGA transitions into user mode.
- The I/O PLL is not able to lock to the reference clock after reconfiguring the I/O PLL.

Related Links
PLL Calibration on page 28

2.2.4.2 Locked

The locked signal port of the IP core for each PLL is as follows:
- \(f_{PLL} \) — \(\text{pll_locked} \)
- I/O PLL — \(\text{locked} \)

The lock detection circuit provides a signal to the core logic. The signal indicates when the feedback clock has locked onto the reference clock both in phase and frequency.

When PLL loses lock, the output of the PLL starts drifting out of the desired frequency. The downstream logic must be held inactive once PLL has lost lock.

2.2.5 Clock Feedback Modes

Clock feedback modes compensate for clock network delays to align the rising edge of the output clock with the rising edge of the PLL's reference clock. Select the appropriate type of compensation for the timing critical clock path in your design.

PLL compensation is not always needed. A PLL should be configured in direct (no compensation) mode unless a need for compensation is identified. Direct mode provides the best PLL jitter performance and avoids expending compensation clocking resources unnecessarily.

The default clock feedback mode is direct compensation mode.

fPLLs support only the direct compensation mode.
I/O PLLs support the following clock feedback modes:

- Direct compensation
- LVDS compensation
- Source synchronous compensation
- Normal compensation
- Zero delay buffer (ZDB) compensation
- External feedback (EFB) compensation

Normal and source synchronous compensation modes compensate for the insertion delay of a routed core clock. For Intel Stratix 10 devices, you can achieve core clock compensation with the following methods:

- You can route a dedicated feedback clock from the M counter in I/O PLL to emulate the insertion delay of the compensated C counter output clock network.
- You can use a non-dedicated feedback clock by routing the compensated C counter output clock back to the I/O PLL.

Intel recommends the non-dedicated feedback mechanism because the clock resources are utilized most efficiently. The default is dedicated feedback when you choose normal or source synchronous compensation mode in the Intel FPGA IOPLL IP core.

2.2.5.1 Direct Compensation Mode

In direct mode, the PLL does not compensate for any clock network delays. This mode provides better jitter performance because the clock feedback into the phase frequency detector (PFD) passes through less circuitry. Both the PLL internal- and external-clock outputs are phase-shifted with respect to the PLL clock input.

Figure 10. Example of Phase Relationship Between the PLL Clocks in Direct Mode

Phase Aligned

The PLL clock outputs lag the PLL input clocks depending on routing delays.
2.2.5.2 LVDS Compensation Mode

The purpose of LVDS compensation mode is to maintain the same data and clock timing relationship seen at the pins of the internal serializer/deserializer (SERDES) capture register, except that the clock is inverted (180° phase shift). Thus, LVDS compensation mode ideally compensates for the delay of the LVDS clock network, including the difference in delay between the following two paths:

- Data pin-to-SERDES capture register
- Clock input pin-to-SERDES capture register

The output counter must provide the 180° phase shift.

Figure 11. Example of Phase Relationship Between the Clock and Data in LVDS Compensation Mode

2.2.5.3 Source Synchronous Compensation Mode

If the data and clock arrive at the same time on the input pins, the same phase relationship is maintained at the clock and data ports of any IOE input register. Data and clock signals at the IOE experience similar buffer delays as long as you use the same I/O standard. Only one output clock can be compensated in source synchronous compensation mode.

Intel recommends source synchronous mode for source synchronous data transfers.
The source synchronous mode compensates for the delay of the clock network used and any difference in the delay between the following two paths:

- Data pin to the IOE register input
- Clock input pin to the PLL PFD input

The Intel Stratix 10 PLL can compensate multiple pad-to-input-register paths, such as a data bus when it is set to use source synchronous compensation mode.

2.2.5.4 Normal Compensation Mode

An internal clock in normal compensation mode is phase-aligned to the input clock pin. The external clock output pin has a phase delay relative to the clock input pin if connected in this mode. The Intel Quartus Prime Timing Analyzer reports any phase difference between the two. In normal compensation mode, the delay introduced by the clock network is fully compensated. Only one output clock can be compensated in normal compensation mode.
Figure 13. Example of Phase Relationship Between the PLL Clocks in Normal Compensation Mode

The external clock output can lead or lag the PLL internal clock signals.

2.2.5.5 Zero-Delay Buffer Mode

In ZDB mode, the external clock output pin is phase-aligned with the clock input pin for zero delay through the device.

When using this mode, you must use the same I/O standard on the input clocks and clock outputs to guarantee clock alignment at the input and output pins. You cannot use differential I/O standards on the PLL clock input or output pins.

To ensure phase alignment between the clk pin and the external clock output (CLKOUT) pin in ZDB mode, instantiate a bidirectional I/O pin in the design. The bidirectional I/O pin serves as the feedback path connecting the fbout and fbin ports of the PLL. The bidirectional I/O pin must always be assigned a single-ended I/O standard. The PLL uses this bidirectional I/O pin to mimic and compensate for the output delay from the clock output port of the PLL to the external clock output pin.

Note: To avoid signal reflection when using ZDB mode, do not place board traces on the bidirectional I/O pin.
2.2.5.6 External Feedback Mode

In EFB mode, the output of the M counter ($fbout$) feeds back to the PLL $fbin$ input (using a trace on the board) and becomes part of the feedback loop.

One of the dual-purpose external clock outputs becomes the $fbin$ input pin in this mode. The external feedback input pin, $fbin$ is phase-aligned with the clock input pin. Aligning these clocks allows you to remove clock delay and skew between devices.

When using EFB mode, you must use the same I/O standard on the input clock, feedback input, and clock outputs.
2.2.6 Clock Multiplication and Division

An Intel Stratix 10 PLL output frequency is related to its input reference clock source by the following scale factors:

- \(\frac{M}{(N \times C)} \) for I/O PLL
- \(\frac{M}{(N \times C \times 2)} \) for fPLL core applications

The input clock is divided by a pre-scale factor, \(N \), and is then multiplied by the \(M \) feedback factor. The control loop drives the VCO to match \(f_{\text{in}} \times (M/N) \). The Intel Quartus Prime software automatically chooses the appropriate scale factors according to the input frequency, multiplication, and division values entered into the Intel FPGA IP cores for I/O PLL and fPLL.

Pre-Scale Counter, \(N \) and Multiply Counter, \(M \)

Each PLL has one pre-scale counter, \(N \), and one multiply counter, \(M \). The \(M \) and \(N \) counters do not use duty-cycle control because the only purpose of these counters is to calculate frequency division.

Post-Scale Counter, \(C \)

Each output port has a unique post-scale counter, \(C \). For multiple \(C \) counter outputs with different frequencies, the VCO is set to the least common multiple of the output frequencies that meets its frequency specifications. For example, if the output frequencies required from one I/O PLL are 55 MHz and 100 MHz, the Intel Quartus
Prime software sets the VCO frequency to 1.1 GHz (the least common multiple of 55 MHz and 100 MHz within the VCO operating frequency range). Then the post-scale counters, C, scale down the VCO frequency for each output port.

Post-Scale Counter, L

The fPLL has an additional post-scale counter, L. The L counter synthesizes the frequency from its clock source using the $M/(N \times L)$ scale factor. The L counter generates a differential clock pair (0 degree and 180 degree) and drives the transceiver clock network.

Delta-Sigma Modulator

The delta-sigma modulator (DSM) is used together with the M multiply counter to enable the fPLL to operate in fractional mode. The DSM dynamically changes the M counter factor on a cycle-to-cycle basis. The changes in M counter factors result an average M counter factor that is non-integer.

Fractional Mode

In fractional mode, the M counter value equals to the sum of the M feedback factor and the fractional value. The fractional value is equal to $K/2^X$, where K is an integer between 0 and $(2^X - 1)$, and $X = 32$.

Integer Mode

For a fPLL operating in integer mode, M is an integer value and DSM is disabled.

The I/O PLL can only operate in integer mode.

2.2.7 Programmable Phase Shift

The programmable phase shift feature allows both fPLLs and I/O PLLs to generate output clocks with a fixed phase offset.

The VCO frequency of the PLL determines the precision of the phase shift. The minimum phase shift increment is 1/8 of the VCO period (for I/O PLL) or a full VCO period (for fPLL). For example, if an I/O PLL operates with a VCO frequency of 1000 MHz, phase shift steps of 125 ps are possible.

The Intel Quartus Prime software automatically adjusts the VCO frequency according to the user-specified phase shift values entered into the IP core.

2.2.8 Programmable Duty Cycle

The programmable duty cycle feature allows I/O PLLs to generate clock outputs with a variable duty cycle. This feature is only supported by the I/O PLL post-scale counters, C. fPLLs do not support the programmable duty cycle feature and only have fixed 50% duty cycle.

The I/O PLL C counter value determines the precision of the duty cycle. The precision is 50% divided by the post-scale counter value. For example, if the $C0$ counter is 10, steps of 5% are possible for duty-cycle options from 5% to 90%. If the I/O PLL is in external feedback mode, set the duty cycle for the counter driving the $fbin$ pin to 50%.
The Intel Quartus Prime software automatically adjusts the VCO frequency according to the user's desired duty cycle entered into the IP core.

Combining the programmable duty cycle with programmable phase shift allows the generation of precise non-overlapping clocks.

2.2.9 PLL Cascading

Intel Stratix 10 devices support PLL-to-PLL cascading. You can only cascade a maximum of two PLLs. PLL cascading synthesizes more output clock frequencies than a single PLL.

If you cascade PLLs in your design, the source (upstream) PLL must have a low-bandwidth setting and the destination (downstream) PLL must have a high-bandwidth setting. During cascading, the output of the source PLL serves as the reference clock (input) of the destination PLL. The bandwidth settings of cascaded PLLs must be different. If the bandwidth settings of the cascaded PLLs are the same, the cascaded PLLs may amplify phase noise at certain frequencies.

Intel Stratix 10 devices support the following PLL-to-PLL cascading modes:

- I/O-PLL-to-I/O-PLL cascading via dedicated cascade path—Upstream I/O PLL and downstream I/O PLL must be in the same I/O column.
- I/O-PLL-to-I/O-PLL cascading via core clock fabric—No restriction on locations of upstream and downstream I/O PLL.

2.2.10 Clock Switchover

The clock switchover feature allows the I/O PLL to switch between two reference input clocks. Use this feature for clock redundancy or for a dual-clock domain application where a system turns to the redundant clock if the previous clock stops running. The design can perform clock switchover automatically when the clock is no longer toggling or based on a user control signal, extswitch.

Intel Stratix 10 I/O PLLs support the following clock switchover modes:

- Automatic switchover—The clock sense circuit monitors the current reference clock. If the current reference clock stops toggling, the reference clock automatically switches to inclk0 or inclk1 clock.
- Manual clock switchover—Clock switchover is controlled using the extswitch signal. When the extswitch signal goes from logic high to logic low, and stays low for at least three clock cycles for the inclk being switched to, the reference clock to the I/O PLL is switched from inclk0 to inclk1, or vice-versa.
- Automatic switchover with manual override—This mode combines automatic switchover and manual clock switchover. When the extswitch signal goes low, it overrides the automatic clock switchover function. As long as the extswitch signal is low, further switchover action is blocked.

2.2.10.1 Automatic Switchover

Intel Stratix 10 I/O PLLs support a fully configurable clock switchover capability.
When the current reference clock is not present, the clock sense block automatically switches to the backup clock for I/O PLL reference. You can select a clock source as the backup clock by connecting it to the `inclk1` port of the I/O PLL in your design.

The clock switchover circuit sends out three status signals—`clkbad0`, `clkbad1`, and `activeclock`—from the I/O PLL to implement a custom switchover circuit in the logic array.

In automatic switchover mode, the `clkbad0` and `clkbad1` signals indicate the status of the two clock inputs. When they are asserted, the clock sense block detects that the corresponding clock input has stopped toggling. These two signals are not valid if the frequency difference between `inclk0` and `inclk1` is greater than 20%.

The `activeclock` signal indicates which of the two clock inputs (`inclk0` or `inclk1`) is being selected as the reference clock to the I/O PLL. When the frequency difference between the two clock inputs is more than 20%, the `activeclock` signal is the only valid status signal.

Use the switchover circuitry to automatically switch between `inclk0` and `inclk1` when the current reference clock to the I/O PLL stops toggling. You can switch back and forth between `inclk0` and `inclk1` any number of times when one of the two clocks fails and the other clock is available.

For example, in applications that require a redundant clock with the same frequency as the reference clock, the switchover state machine generates a signal (`clksw`) that controls the multiplexer select input. In this case, `inclk1` becomes the reference clock for the I/O PLL.
When using automatic clock switchover mode, the following requirements must be satisfied:

- Both clock inputs must be running when the FPGA is configured.
- The period of the two clock inputs can differ by no more than 20%.
- The input clocks must meet the input jitter specifications and I/O standard specifications.

Glitches in the input clock may be seen as a greater than 20% difference in frequency between the input clocks.

If the current clock input stops toggling while the other clock is also not toggling, switchover is not initiated and the clkbad[0..1] signals are not valid. If both clock inputs are not the same frequency, but their period difference is within 20%, the clock sense block detects when a clock stops toggling. However, the I/O PLL may lose lock after the switchover is completed and needs time to relock.

Note: You must reset the I/O PLL using the reset signal to maintain the phase relationships between the I/O PLL input and output clocks when using clock switchover.

Figure 17. Automatic Switchover After Loss of Clock Detection

This figure shows an example waveform of the switchover feature in automatic switchover mode. In this example, the inclk0 signal is held low. After the inclk0 signal is held low for approximately two clock cycles, the clock sense circuitry drives the clkbad0 signal high. As the reference clock signal (inclk0) is not toggling, the switchover state machine controls the multiplexer through the extswitch signal to switch to the backup clock, inclk1.

![Waveform Diagram]

Switcher is enabled on the falling edge of inclk0 or inclk1, depending on which clock is available. In this figure, switchover is enabled on the falling edge of inclk1.

2.2.10.2 Automatic Switchover with Manual Override

In automatic switchover with manual override mode, you can use the extswitch signal for user- or system-controlled switch conditions. You can use this mode for same-frequency switchover, or to switch between inputs of different frequencies.
For example, if \texttt{inclk0} is 66 MHz and \texttt{inclk1} is 200 MHz, you must control switchover using the \texttt{extswitch} signal. The automatic clock-sense circuitry cannot monitor clock input (\texttt{inclk0} and \texttt{inclk1}) frequencies with a frequency difference of more than 100\% (2\times).

This feature is useful when the clock sources originate from multiple cards on the backplane, requiring a system-controlled switchover between the frequencies of operation.

You must choose the backup clock frequency and set the \texttt{M}, \texttt{N}, \texttt{C}, \texttt{L}, and \texttt{K} counters so that the VCO operates within the recommended operating frequency range. The Intel Quartus Prime software notifies you if a given combination of \texttt{inclk0} and \texttt{inclk1} frequencies cannot meet this requirement.

\textbf{Figure 18. Clock Switchover Using the extswitch (Manual) Control}

This figure shows a clock switchover waveform controlled by the \texttt{extswitch} signal. In this case, both clock sources are functional and \texttt{inclk0} is selected as the reference clock. The switchover sequence starts when the \texttt{extswitch} signal goes low. On the falling edge of \texttt{inclk0}, the counter's reference clock, \texttt{muxout}, is gated off to prevent clock glitching. On the falling edge of \texttt{inclk1}, the reference clock multiplexer switches from \texttt{inclk0} to \texttt{inclk1} as the I/O PLL reference. The \texttt{activeclock} signal changes to indicate the clock which is currently feeding the I/O PLL.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{clock_swich.png}
\caption{Clock Switchover Using the extswitch (Manual) Control}
\end{figure}

To initiate a manual clock switchover event, both \texttt{inclk0} and \texttt{inclk1} must be running when the \texttt{extswitch} signal goes low.

In automatic override with manual switchover mode, the \texttt{activeclock} signal inverts after the \texttt{extswitch} signal transitions from logic high to logic low. Since both clocks are still functional during the manual switch, neither \texttt{clkbad} signal goes high. Because the switchover circuit is negative-edge sensitive, the rising edge of the \texttt{extswitch} signal does not cause the circuit to switch back from \texttt{inclk1} to \texttt{inclk0}. When the \texttt{extswitch} signal goes low again, the process repeats.

The \texttt{extswitch} signal and automatic switch work only if the clock being switched to is available. If the clock is not available, the state machine waits until the clock is available.
2.2.10.3 Manual Clock Switchover

In manual clock switchover mode, the extswitch signal controls whether inclk0 or inclk1 is selected as the input clock to the I/O PLL. By default, inclk0 is selected.

A clock switchover event is initiated when the extswitch signal transitions from logic high to logic low, and being held low for at least three inclk cycles for the inclk being switched to.

You must bring the extswitch signal back high again to perform another switchover event. If you do not require another switchover event, you can leave the extswitch signal in a logic low state after the initial switch.

If inclk0 and inclk1 are different frequencies and are always running, the extswitch signal minimum low time must be greater than or equal to three of the slower frequency inclk0 and inclk1 cycles.

Figure 19. Manual Clock Switchover Circuitry in Intel Stratix 10 I/O PLLs

You can delay the clock switchover action by specifying the switchover delay in the Intel FPGA IP cores for I/O PLL. When you specify the switchover delay, the extswitch signal must be held low for at least three inclk cycles for the inclk being switched to plus the number of the delay cycles that has been specified to initiate a clock switchover.

2.2.11 PLL Reconfiguration and Dynamic Phase Shift

fPLLs and I/O PLLs support PLL reconfiguration and dynamic phase shift with the following features:

- PLL reconfiguration—Reconfigure the M, N, and C counters. Able to reconfigure the fractional settings (for fPLL).
- Dynamic phase shift—Perform positive or negative phase shift. Able to shift multiple phase steps each time, where one phase step is equal to 1/8 of the VCO period (for I/O PLL) or a full VCO period (for fPLL).

Related Links

- Intel FPGA IOPLL Reconfig IP Core References on page 51
- Reconfiguration Interface and Dynamic Reconfiguration chapter, Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide
 Provides more information about the fPLL reconfiguration.
2.2.12 PLL Calibration

I/O PLLs include both analog and digital blocks that require calibration to compensate for process, voltage, and temperature (PVT) variations. Intel Stratix 10 uses the I/O manager to perform calibration routines.

There are two main types of calibration.

- **Power-up calibration**—Initiates automatically at device power-up and runs during device configuration.
- **User calibration**—If you perform dynamic reconfiguration or change the reference clock frequency of the I/O PLL, you must perform user recalibration. You must enable the required calibration sequence.

To successfully complete the calibration process, OSC_CLK_1 clocks and all reference clocks driving the I/O PLLs must be stable and free running at start of FPGA configuration. If clock switchover is enabled, both reference clocks must be present for calibration. During user mode, when I/O PLL does not detect a reference clock during configuration, calibration attempts will be continued periodically. After calibration has completed, I/O PLL is locked automatically.

Related Links

Calibration chapter, Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide

Provides more information about the fPLL calibration.

2.2.12.1 Power-Up Calibration

After device power-up, I/O manager automatically initiates the calibration process. The process continues during device programming.

2.2.12.2 User Calibration

The I/O PLL needs to be recalibrated for any of the following conditions after device power up:

- Dynamic I/O PLL reconfiguration that changes the M or N counter settings is performed.
- Change of the reference clock frequency to the I/O PLL.

Recalibration is not necessary when using clock switchover to a secondary reference clock with a different frequency than the primary reference clock. The I/O PLL stores the calibration settings for both reference clocks after power-up calibration.

To perform the recalibration of I/O PLL, you must enable the Intel FPGA IOPLL Reconfig IP core to enable the recalibration mode.

Related Links

- Recalibration Using .mif on page 37
 Provides more information about the fPLL calibration.
3 Intel Stratix 10 Clocking and PLL Design Considerations

3.1 Guideline: Clock Switchover

When implementing clock switchover in Intel Stratix 10 I/O PLLs, use the following guidelines:

- **Automatic clock switchover** requires that the `inclk0` and `inclk1` frequencies be within 20% of each other. Failing to meet this requirement causes the `clkbad0` and `clkbad1` signals to not function properly.

- When using manual clock switchover, the difference between `inclk0` and `inclk1` can be more than 100% (2×). However, differences in frequency, phase, or both, of the two clock sources will likely cause the I/O PLL to lose lock. Resetting the I/O PLL ensures that you maintain the correct phase relationships between the input and output clocks.

- Both `inclk0` and `inclk1` must be running when the `extswitch` signal goes low to initiate the manual clock switchover event. Failing to meet this requirement causes the clock switchover to not function properly.

- Applications that require a clock switchover feature and a small frequency drift must use a low-bandwidth I/O PLL. When referencing input clock changes, the low-bandwidth I/O PLL reacts more slowly than a high-bandwidth I/O PLL. When switchover happens, a low-bandwidth I/O PLL propagates the stopping of the clock to the output more slowly than a high-bandwidth I/O PLL. However, be aware that the low-bandwidth I/O PLL also increases lock time.

- After a switchover occurs, there may be a finite resynchronization period for the I/O PLL to lock onto a new clock. The time it takes for the I/O PLL to relock depends on the I/O PLL configuration.

- If the phase relationship between the input clock to the I/O PLL and the output clock from the I/O PLL is important in your design, assert the reset signal for at least 10 ns after performing a clock switchover. Wait for the locked signal to go high and be stable before re-enabling the output clocks from the I/O PLL.

- The VCO frequency gradually decreases when the current clock is lost and then increases as the VCO locks on to the backup clock, as shown in the following figure.
3.2 fPLL IP Core Constraints

To implement the fPLL IP core, you must adhere to the following constraints:

- You must use `create_clock` constraints on fPLL reference clocks on the project's top-level SDC file.
- Any SDC design constraints referring to transceiver clocks must be listed after the transceiver Native PHY SDC file constraints.
- fPLL output clocks have no phase relationship to the reference clock when utilizing the fPLL output clocks for core usage. The fPLL output clocks of the clock divider are still in phase with each other, however.

3.3 Guideline: Resetting the PLL

- When changing the M counter, N counter, or loop filter settings, the I/O PLL may lose and regain lock. To maintain the appropriate phase relationship between the reference clock and output clocks, assert the `areset` signal to reset the I/O PLL after reconfiguration is complete. Intel recommends always resetting the I/O PLL after any reconfiguration operation to the M counter, N counter, or loop filter settings.
- When changing the C counter settings, you may lose the expected phase relationship between the C counters. Assert the `areset` signal after reconfiguration is complete to restore the expected phase relationship. Reset is not required if the phase relationships are not important to your application.
- Resetting the I/O PLL does not modify the counter or loop filter settings. However, resetting the I/O PLL undoes any dynamic phase shift operations that were performed. After the I/O PLL is reset, the phase shift on the C counters is restored to the originally programmed settings.

3.4 Guideline: Configuration Constraints

The I/O PLL configuration must obey the following constraints:

- The phase frequency detector (PFD) and VCO each have a legal frequency range of operation.
- The loop filter settings must be appropriate for the M counter value and user-selected bandwidth mode.

If any of these configuration constraints are violated, the I/O PLL may fail to lock or may exhibit poor jitter performance.
3.5 Guideline: Timing Closure

- Reconfiguring a PLL's counter and loop filter settings changes both the output frequency and the clock uncertainty of that I/O PLL. Dynamic phase shift only affects the output clock phase.
- The Timing Analyzer in the Intel Quartus Prime software performs timing analysis for the initial PLL settings only. You must verify that your design closes timing after dynamic reconfiguration or dynamic phase shift.
- Intel recommends compiling I/O PLL designs with each intended configuration setting to determine the variation in the clock with I/O PLL settings.

3.6 Guideline: I/O PLL Reconfiguration

- If the reference clock frequency changes, you must recalibrate the I/O PLL using the Intel FPGA IOPLL IP core.
- I/O PLL reconfiguration interface supports a free running mgmt_clk signal. I/O PLL dynamic phase shift interface supports a free running scanclk signal. These interfaces eliminate the need to precisely control the start and stop of mgmt_clk and scanclk signals.
- I/O PLL can only be reconfigured with .mif streaming mode using Intel FPGA IOPLL Reconfig IP core.
- Use caution when reconfiguring an I/O PLL with a non-zero phase shift setting. Modifying the M counter or N counter settings does not change the relative phase shift (in percent), but alters the absolute phase shift (in picoseconds). Modifying the C counter settings does not change the absolute phase shift, but modifies the relative phase shift.
4 Intel Stratix 10 Clocking and PLL Implementation Guides

Related Links
Instantiating the fPLL IP Core, Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide
Provides more information about the fPLL IP core.

4.1 Stratix 10 Clock Control IP Core

The Stratix 10 Clock Control IP core provides clock control features such as enabling entry to the clock network, clock multiplexing, clock gating, and clock division for the Intel Stratix 10 devices.

4.2 Intel FPGA IOPLL IP Core

The Intel FPGA IOPLL IP core allows you to configure the settings of Intel Stratix 10 I/O PLL.

Intel FPGA IOPLL IP core supports the following features:

• Supports six different clock feedback modes: direct, external feedback, normal, source synchronous, zero delay buffer, and LVDS mode.
• Generates up to nine clock output signals for the Intel Stratix 10 device.
• Switches between two reference input clocks.
• Supports adjacent PLL (adjpllin) input to connect with an upstream PLL in PLL cascading mode.
• Generates the Memory Initialization File (.mif) and allows PLL dynamic reconfiguration.
• Supports PLL dynamic phase shift.

4.2.1 .mif File Generation

You can generate the .mif files in the Intel FPGA IOPLL IP core parameter editor.
4.2.1.1 Generating a New .mif File

To generate a new .mif file containing a single I/O PLL configuration, follow these steps:

1. At the Dynamic Reconfiguration tab, select Enable dynamic reconfiguration of PLL.
2. For MIF Generation Options, select Generate New MIF File.
3. For Path of New MIF file, specify a file name.
4. For Name of Current Configuration, specify the name of the current configuration of the I/O PLL.
5. Click Create MIF File.

Related Links
.mif Streaming Reconfiguration on page 37

4.2.1.2 Adding Configurations to Existing .mif File

You can append new configurations to an existing .mif file. To store more configurations in a .mif file, follow these steps:

1. At the Dynamic Reconfiguration tab, select Enable dynamic reconfiguration of PLL.
2. For MIF Generation Options, select Add Configuration to Existing MIF File.
3. For Path of New MIF file, specify a file name.
4. For Name of Current Configuration, specify the name of the new configuration of the I/O PLL.
5. Click Append to MIF File.

Related Links
.mif Streaming Reconfiguration on page 37

4.2.2 Implementing I/O PLL Dynamic Phase Shift in the Intel FPGA IOPLL IP Core

You can use the Intel FPGA IOPLL IP core to perform phase shifting directly through the dynamic phase shift ports.

4.2.2.1 I/O PLL Dynamic Phase Shift Operation

To perform dynamic phase shift operation for an I/O PLL in the Intel FPGA IOPLL IP core, follow these steps:

1. Set the value for updn, cntsel[4..0], and num_phase_shift[2..0] ports.
2. Assert phase_en port for at least two scanclk cycles.

Each phase_en pulse indicates one dynamic phase shift operation. The phase_done output goes low to indicate that dynamic phase shift is in progress. You can only assert the phase_en signal after the phase_done signal goes from low to high.
The updn, cntsel[4..0], and num_phase_shift[2..0] ports are synchronous to the scanclk cycle.

When the phase_done signal transitions from high to low, the phase_done signal is synchronous to the rising edge of the scanclk signal. The transition from low to high is asynchronous to the scanclk signal.

Depending on the VCO and scanclk frequency, the low time of the phase_done signal may be greater than or less than one scanclk cycle.

Related Links
Dynamic Phase Shift Ports in the Intel FPGA IOPLL IP Core on page 49

4.2.3 Design Example

You must install the Intel Quartus Prime software version 17.1 or later. The software must be installed on a Windows* or Linux* computer that meets the Intel Quartus Prime software minimum requirements.

4.2.3.1 Design Example: Dynamic Phase Shift Using Intel FPGA IOPLL IP Core

This design example uses the same design as "Design Example 3: Dynamic Phase Shift Using Intel FPGA IOPLL Reconfig IP Core" without using the Intel FPGA IOPLL Reconfig IP core. This design example demonstrates the implementation of the I/O PLL dynamic phase shift directly through the Intel FPGA IOPLL IP core.

To run the test with this design example, perform these steps:

1. Download and restore the iopll-dynamic-phase-shift.qar file.
2. Change the device and pin assignments of the design example to match your hardware.
3. Recompile the design example. Ensure that the design example does not contain any timing violation after recompilation.
4. Open the AN.stp file and program the device with top.sof.
5. Assert a high pulse on reset_SM signal to start the I/O PLL dynamic phase shift reconfiguration operation.

Figure 21. Waveform Example for Dynamic Phase Shift Using Intel FPGA IOPLL IP Core Design Example

![Waveform](image)

Related Links
Design Example: Dynamic Phase Shift Using Intel FPGA IOPLL IP Core
Provides the design file for this design example.
4.3 Intel FPGA IOPLL Reconfig IP Core

You can use Intel Stratix 10 devices to implement phase-locked loop (PLL) reconfiguration and dynamic phase shift for I/O PLLs.

Intel Stratix 10 I/O PLL supports dynamic reconfiguration when the device is in user mode. With the dynamic reconfiguration feature, you can reconfigure I/O PLL settings in real time. You can change the divide settings of the PLL counters and the PLL bandwidth settings (loop filter setting and charge pump setting) through an Avalon® Memory-Mapped (Avalon-MM) interface in the Intel FPGA IOPLL Reconfig IP core, without the need to reconfigure the entire FPGA. Intel Stratix 10 I/O PLL uses divide counters \((N, M, \text{ and } C)\) counters and a voltage-controlled oscillator (VCO) to synthesize the desired phase and frequency output.

You can use Intel FPGA IOPLL Reconfig IP core as follows:

- **Memory Initialization File (.mif)** streaming reconfiguration
 - Allows I/O PLL reconfiguration using predefined settings saved in an on-chip ROM. You can store many unique PLL configurations in a single ROM.
 - The .mif file is generated automatically by the Intel FPGA IOPLL IP core. Using the generated .mif file during .mif streaming reconfiguration ensures the legality of the new configuration.
 - Intel recommends using this reconfiguration method.

- **Recalibration of I/O PLL using .mif**
 - Perform recalibration of the I/O PLL without any reconfiguration.
 - Trigger recalibration if the reference clock frequency changes.

- **I/O PLL clock gating**
 - Gate and un-gate I/O PLL output clock 0 to output clock 7 of the I/O PLL.

You can perform dynamic phase shift using the Intel FPGA IOPLL Reconfig IP core.

4.3.1 Implementing I/O PLL Reconfiguration in the Intel FPGA IOPLL Reconfig IP Core

You can enable PLL reconfiguration circuitry for I/O PLL through the Avalon-MM interface in the Intel FPGA IOPLL Reconfig IP core.
4.3.1.1 Connectivity between the Intel FPGA IOPLL and Intel FPGA IOPLL Reconfig IP Cores

Figure 22. Connectivity between the Intel FPGA IOPLL and Intel FPGA IOPLL Reconfig IP Cores in the Intel Quartus Prime Software

To connect the Intel FPGA IOPLL and Intel FPGA IOPLL Reconfig IP cores in your design, follow these steps:

2. Connect the reconfig_from_pll[10..0] bus on the Intel FPGA IOPLL Reconfig IP core to the reconfig_from_pll[10..0] bus on the Intel FPGA IOPLL IP core.
3. Connect the mgmt_clk port to a valid clock source.
4. Connect the mgmt_reset port, mgmt_waitrequest port, mgmt_read port, mgmt_write port, mgmt_readdata[7..0] bus, mgmt_writedata[7..0] bus, and mgmt_address[9..0] bus to user control logic to perform read and write operations.

Related Links
Avalon-MM Interface Ports in the Intel FPGA IOPLL Reconfig IP Core on page 51

4.3.1.2 Connecting the Intel FPGA IOPLL and Intel FPGA IOPLL Reconfig IP Cores

To connect the Intel FPGA IOPLL and Intel FPGA IOPLL Reconfig IP cores in your design, follow these steps:

2. Connect the reconfig_from_pll[10..0] bus on the Intel FPGA IOPLL Reconfig IP core to the reconfig_from_pll[10..0] bus on the Intel FPGA IOPLL IP core.
3. Connect the mgmt_clk port to a valid clock source.
4. Connect the mgmt_reset port, mgmt_waitrequest port, mgmt_read port, mgmt_write port, mgmt_readdata[7..0] bus, mgmt_writedata[7..0] bus, and mgmt_address[9..0] bus to user control logic to perform read and write operations.

Related Links
Avalon-MM Interface Ports in the Intel FPGA IOPLL Reconfig IP Core on page 51
4.3.1.3 Intel FPGA IOPLL Reconfig IP Core Reconfiguration Modes

The Intel FPGA IOPLL Reconfig IP core has four functional reconfiguration modes. The reconfiguration operation mode is based on the setting in `mgmt_address[9:8]` bit.

<table>
<thead>
<tr>
<th>Reconfiguration Mode</th>
<th><code>mgmt_address[9:8]</code> (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.mif streaming reconfiguration</td>
<td>2'b 00</td>
</tr>
<tr>
<td>Clock gating reconfiguration</td>
<td>2'b 10</td>
</tr>
<tr>
<td>Dynamic phase shift reconfiguration</td>
<td>2'b 11</td>
</tr>
</tbody>
</table>

After performing dynamic reconfiguration on I/O PLL that changes the M counter, N counter, bandwidth setting, or charge pump current, the I/O PLL must be recalibrated. For .mif streaming reconfiguration, the re-calibration is done automatically. Recalibration is not needed for clock gating and dynamic phase shift reconfiguration.

4.3.1.3.1 .mif Streaming Reconfiguration

.mif streaming allows you to dynamically reconfigure I/O PLL through Intel FPGA IOPLL Reconfig IP core using predefined settings saved in an on-chip RAM. You must generate a .mif file containing these pre-defined configurations, up to 32 I/O PLL configurations, from the Intel FPGA IOPLL IP core parameter editor.

To perform .mif streaming reconfiguration, follow these steps:

1. Set `mgmt_address[9:8]=2'b00` to choose the .mif streaming mode and set `mgmt_writedata[4:0]` to the index of the desired configuration in the .mif file.

2. To start the .mif streaming reconfiguration on I/O PLL, assert the `mgmt_write` signal for one `mgmt_clk` cycle. `mgmt_waitrequest` is asserted by the Intel FPGA IOPLL Reconfig IP core while .mif streaming is in progress.

3. After the reconfiguration is complete, the `mgmt_waitrequest` signal is de-asserted.

4. In the Intel FPGA IOPLL Reconfig parameter editor, select the Assert waitrequest until IOPLL has locked option for the I/O PLL to lock . Otherwise, you can wait for the I/O PLL to lock to ensure the I/O PLL reconfiguration is complete.

Related Links

- Generating a New .mif File on page 33
- Adding Configurations to Existing .mif File on page 33

4.3.1.3.2 Recalibration Using .mif

Recalibration using .mif only allows you to recalibrate the I/O PLL but not to reconfigure the I/O PLL. In Intel FPGA IOPLL Reconfig IP core, enable Recalibration Mode. When the recalibration is selected, a recalibration.mif file is generated automatically for the recalibration operation.

(4) 2'b 01 is reserved.
To perform I/O PLL recalibration using .mif, follow these steps:

1. Set `mgmt_address[9:8] = 2'b00` to choose the .mif mode and set `mgmt_writedata[4:0] = 2'b00`.
2. To start the recalibration using .mif on I/O PLL, assert the `mgmt_write` signal for one `mgmt_clk` cycle. `mgmt_waitrequest` is asserted by the Intel FPGA IOPLL Reconfig IP core while recalibration is in progress.
3. After the recalibration is complete, the `mgmt_waitrequest` signal is deasserted.

4.3.1.3.3 Clock Gating Reconfiguration

You can gate (disable) and un-gate (enable) I/O PLL output clock 0 to output clock 7 of the I/O PLL. It is easily done by writing one byte to the Intel FPGA IOPLL Reconfig IP core, with one bit corresponding to each of the I/O PLL output clocks.

To perform clock gating reconfiguration, follow these steps:

1. Set `mgmt_address[9:8]` to `2'b10` to select clock gating mode and set `mgmt_writedata[7:0]` to indicate desired output clock to be gated.
2. To start the clock gating reconfiguration on I/O PLL, assert the `mgmt_write` signal for one `mgmt_clk` cycle.
3. The gating changes may not come into effect for multiple clock cycles after `mgmt_waitrequest` has been de-asserted.

Related Links

Output Clock and the Corresponding Data Bit Setting for Clock Gating Reconfiguration on page 51

4.3.1.3.4 Dynamic Phase Shift Reconfiguration

The dynamic phase shifts reconfiguration can determine the number of shifts, the direction of the phase shift and the output clock to be shifted.

To perform dynamic phase shift reconfiguration through Intel FPGA IOPLL Reconfig IP core, follow these steps:

1. Set `mgmt_address[9:8]` to `2'b11` to select dynamic phase shift reconfiguration mode.
2. Set `mgmt_writedata[7:0]` to indicate the desired number of phase shift, the direction of phase shift, and the desired counter to be shifted.
3. To start the clock gating reconfiguration on I/O PLL, assert the `mgmt_write` signal for one `mgmt_clk` cycle. This signal is the equivalent of the `phase_en` signal on the I/O PLL.
4. After the dynamic phase shift is complete, the `mgmt_waitrequest` signal is de-asserted.

Related Links

Data Bus Setting for Dynamic Phase Shift for Intel FPGA IOPLL Reconfig IP Core on page 52
4.3.2 Design Examples

You must install the Intel Quartus Prime software version 17.1 or later. The software must be installed on a Windows or Linux computer that meets the Intel Quartus Prime software minimum requirements.

4.3.2.1 Design Example 1: .mif Streaming Reconfiguration Using Intel FPGA IOPLL Reconfig IP Core

This design example uses a 1SG280LU3F50E2VGS1 device to demonstrate the implementation of the I/O PLL reconfiguration through .mif streaming using the Intel FPGA IOPLL Reconfig IP core. This design example consists of the Intel FPGA IOPLL IP core, Intel FPGA IOPLL Reconfig IP core, and In-System Sources & Probes IP core.

The I/O PLL synthesizes two output clocks of 400 MHz with 0 ps phase shift and 200 MHz with 0 ps phase shift on counter C0 output and counter C1 output respectively at medium bandwidth. The input reference clock is 50 MHz.

The Intel FPGA IOPLL Reconfig IP core connects to a state machine to perform I/O PLL .mif streaming reconfiguration operation. A high pulse on the reset_SM input through the In-System Sources & Probes IP core triggers the I/O PLL reconfiguration operation. After I/O PLL reconfiguration operation has completed, the I/O PLL operates in the following configuration at medium bandwidth:

- 100 MHz with 0 ps phase shift on counter C0 output
- 100 MHz with 0 ps phase shift on counter C1 output

To run the test with this design example, perform these steps:

1. Download and restore the iopll-reconfig-mif-streaming.qar file.
2. Change the device and pin assignments of the design example to match your hardware.
3. Recompile the design example. Ensure that the design example does not contain any timing violation after recompilation.
4. Open the AN.stp file and program the device with top.sof.
5. Assert a high pulse on reset_SM signal to start the I/O PLL reconfiguration operation.

Figure 23. Waveform Example for .mif Streaming Reconfiguration Design Example

Related Links

Design Example 1: .mif Streaming Reconfiguration Using Intel FPGA IOPLL Reconfig IP Core

Provides the design file for this design example.
4.3.2.2 Design Example 2: Clock Gating Reconfiguration Using Intel FPGA IOPLL Reconfig IP Core

This design example uses a 1SG280LU3F50E2VGS1 device to demonstrate the implementation of the I/O PLL clock gating reconfiguration using the Intel FPGA IOPLL Reconfig IP core. This design example consists of the Intel FPGA IOPLL IP core, Intel FPGA IOPLL Reconfig IP core, and In-System Sources & Probes IP core.

The I/O PLL synthesizes eight output clocks of 200 MHz each. The input reference clock is 50 MHz.

The Intel FPGA IOPLL Reconfig IP core connects to a state machine to perform I/O PLL clock output gating. A high pulse on the reset_SM input through the In-System Sources & Probes IP core triggers the I/O PLL reconfiguration operation. After I/O PLL reconfiguration operation has completed, outclk0 is ungated and outclk1 is gated.

To run the test with this design example, perform these steps:

1. Download and restore the iopll-reconfig-clock-gating.qar file.
2. Change the device and pin assignments of the design example to match your hardware.
3. Recompile the design example. Ensure that the design example does not contain any timing violation after recompilation.
4. Open the AN.stp file and program the device with top.sof.
5. Assert a high pulse on reset_SM signal to start the I/O PLL clock gating reconfiguration operation.

Related Links

Design Example 2: Clock Gating Reconfiguration Using Intel FPGA IOPLL Reconfig IP Core

Provides the design file for this design example.

4.3.2.3 Design Example 3: Dynamic Phase Shift Using Intel FPGA IOPLL Reconfig IP Core

This design example uses a 1SG280LU3F50E2VGS1 device to demonstrate the implementation of the I/O PLL dynamic phase shift reconfiguration using the Intel FPGA IOPLL Reconfig IP core. This design example consists of the Intel FPGA IOPLL IP core, Intel FPGA IOPLL Reconfig IP core, and In-System Sources & Probes IP core.

The I/O PLL synthesizes two output clocks of 200 MHz with 0 ps phase shift on counter C0 output and counter C1 output at medium bandwidth. The input reference clock is 50 MHz.
The Intel FPGA IOPLL Reconfig IP core connect to a state machine to perform I/O PLL dynamic phase shift operation. A high pulse on the reset_SM input through the In-System Sources & Probes IP core triggers the I/O PLL dynamic phase shift operation. After I/O PLL dynamic phase shift operation has completed, counter C1 is phase shifted 89 ps for one positive phase shift step.

To run the test with this design example, perform these steps:
1. Download and restore the iopll-reconfig-dynamic-phase-shift.qar file.
2. Change the device and pin assignments of the design example to match your hardware.
3. Recompile the design example. Ensure that the design example does not contain any timing violation after recompilation.
4. Open the AN.stp file and program the device with top.sof.
5. Assert a high pulse on reset_SM signal to start the I/O PLL dynamic phase shift reconfiguration operation.

Figure 25. Waveform Example for Dynamic Phase Shift Using Intel FPGA IOPLL Reconfig IP Core Design Example

Related Links
Design Example 3: Dynamic Phase Shift Using Intel FPGA IOPLL Reconfig IP Core Provides the design file for this design example.
5 Stratix 10 Clock Control IP Core References

5.1 Stratix 10 Clock Control Parameters

Table 5. Stratix 10 Clock Control IP Core Parameters for Intel Stratix 10 Devices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Clock Inputs</td>
<td>1, 2, or 4</td>
<td>Specify the number of input clock sources for the clock control block.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can specify up to four clock inputs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clock multiplexing in Intel Stratix 10 devices is implemented using soft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>logic in the core.</td>
</tr>
<tr>
<td>Ensure glitch free clock</td>
<td>On or Off</td>
<td>Turn on this option to implement a glitch-free switchover when you use</td>
</tr>
<tr>
<td>switchover</td>
<td></td>
<td>multiple clock inputs. You must ensure the currently selected clock is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>running before switching to another source.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the selected clock is not running, you cannot switch to the new clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>source using the glitch-free switchover implementation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, the clkselect port is set to 00. You must apply a clock to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inclk0x to read the values on the clkselect ports.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature will be available in a future release.</td>
</tr>
<tr>
<td>Clock Enable</td>
<td>On or Off</td>
<td>Turn on this option if you want to gate your clock output with an enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>signal. This option disables the option to use clock division.</td>
</tr>
<tr>
<td>Clock Enable Type</td>
<td>Root Level</td>
<td>Select the clock gates located in the periphery or the gates located in</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>the sector. For more information about the clock gates, refer to the Clock</td>
</tr>
<tr>
<td>Distributed Sector Level</td>
<td></td>
<td>Gating section.</td>
</tr>
<tr>
<td>Enable Register Mode</td>
<td>Negative Latch or None</td>
<td>Specify if the enable signal should be latched.</td>
</tr>
<tr>
<td>Clock Divider</td>
<td>On or Off</td>
<td>Turn on this option if you want to use the clock division block in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>periphery.</td>
</tr>
<tr>
<td>Clock Divider Output Ports</td>
<td>Divide 1x,</td>
<td>Specify the combination of passing your clock through, dividing your clock</td>
</tr>
<tr>
<td></td>
<td>Divide 1x and 2x, or Divide 1x, 2x and 4x</td>
<td>by 2, or dividing your clock by 4.</td>
</tr>
</tbody>
</table>

Related Links

Clock Gating on page 10

5.2 Stratix 10 Clock Control Ports and Signals

Table 6. Stratix 10 Clock Control Ports for Intel Stratix 10 Devices

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclk</td>
<td>Input signal to the clock network.</td>
</tr>
<tr>
<td>inclk0x, inclk1x, inclk2x, inclk3x</td>
<td>Input signals to the clock network based on the value selected for the Number of Clock Inputs parameter.</td>
</tr>
</tbody>
</table>

*Other names and brands may be claimed as the property of others.
<table>
<thead>
<tr>
<th>Port Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clkselect[]</td>
<td>Input that dynamically selects the clock source to drive the clock network that is driven by the clock buffer. Input port [1 DOWNTO 0] wide. The following list shows the signal selection for the clkselect[] value:</td>
</tr>
<tr>
<td></td>
<td>2'b00 selects inclk0x</td>
</tr>
<tr>
<td></td>
<td>2'b01 selects inclk1x</td>
</tr>
<tr>
<td></td>
<td>2'b10 selects inclk2x</td>
</tr>
<tr>
<td></td>
<td>2'b11 selects inclk3x</td>
</tr>
<tr>
<td>outclk</td>
<td>Output of the Stratix 10 Clock Control IP core when Clock Divider option is not selected.</td>
</tr>
<tr>
<td>ena</td>
<td>Clock enable of the clock gate block. This signal is active-high.</td>
</tr>
<tr>
<td>clock_div1x, clock_div2x, clock_div4x</td>
<td>Outputs of the Stratix 10 Clock Control IP core when the Clock Divider option is selected. The exact combination of ports exposed depends on the value specified for the Clock Divider Output Ports parameter.</td>
</tr>
<tr>
<td></td>
<td>clock_div1x is the same as inclk</td>
</tr>
<tr>
<td></td>
<td>clock_div2x divides inclk by 2</td>
</tr>
<tr>
<td></td>
<td>clock_div4x divides inclk by 4</td>
</tr>
</tbody>
</table>
6 Intel FPGA IOPLL IP Core References

6.1 Intel FPGA IOPLL Parameters

The Intel FPGA IOPLL IP core parameter editor appears in the PLL category of the IP Catalog.

6.1.1 Intel FPGA IOPLL Parameters - PLL Tab

Table 7. Intel FPGA IOPLL IP Core Parameters - PLL Tab for Intel Stratix 10 Devices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Legal Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Family</td>
<td>Intel Stratix 10</td>
<td>Specifies the device family.</td>
</tr>
<tr>
<td>Component</td>
<td>—</td>
<td>Specifies the targeted device.</td>
</tr>
<tr>
<td>Speed Grade</td>
<td>—</td>
<td>Specifies the speed grade for targeted device.</td>
</tr>
<tr>
<td>PLL Mode</td>
<td>Integer-N PLL</td>
<td>Specifies the mode used for the Intel FPGA IOPLL IP core. The only legal selection is Integer-N PLL.</td>
</tr>
<tr>
<td>Reference Clock Frequency</td>
<td>—</td>
<td>Specifies the input frequency for the input clock, refclk, in MHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default value is 100.0 MHz. The minimum and maximum value is dependent on the selected device.</td>
</tr>
<tr>
<td>My reference clock frequency might change</td>
<td>Turn on or Turn off</td>
<td>Select this option if you expect the reference clock frequency to change at runtime.</td>
</tr>
<tr>
<td>Enable Locked Output Port</td>
<td>Turn on or Turn off</td>
<td>Turn on to enable the locked port.</td>
</tr>
<tr>
<td>Enable physical output clock parameters</td>
<td>Turn on or Turn off</td>
<td>Turn on to enter physical PLL counter parameters instead of specifying a desired output clock frequency.</td>
</tr>
<tr>
<td>Operation Mode</td>
<td>direct, external feedback, normal, source synchronous, zero delay buffer, or lvds</td>
<td>Specifies the operation of the PLL. The default operation is direct mode.</td>
</tr>
</tbody>
</table>

continued...
If you select the **direct** mode, the PLL minimizes the length of the feedback path to produce the smallest possible jitter at the PLL output. The internal-clock and external-clock outputs of the PLL are phase-shifted with respect to the PLL clock input. In this mode, the PLL does not compensate for any clock networks.

If you select the **external feedback** mode, you must connect the `fbclk` input port to an input pin. A board-level connection must connect both the input pin and external clock output port, `fboutclk`. The `fbclk` port is aligned with the input clock.

If you select the **normal** mode, the PLL compensates for the delay of the internal clock network used by the clock output. If the PLL is also used to drive an external clock output pin, a corresponding phase shift of the signal on the output pin occurs.

If you select the **source synchronous** mode, the clock delay from pin to I/O input register matches the data delay from pin to I/O input register.

If you select the **zero delay buffer** mode, the PLL must feed an external clock output pin and compensate for the delay introduced by that pin. The signal observed on the pin is synchronized to the input clock. The PLL clock output connects to the `altbidir` port and drives `zdbfbclk` as an output port. If the PLL also drives the internal clock network, a corresponding phase shift of that network occurs.

If you select the **lvds** mode, the same data and clock timing relationship of the pins at the internal SERDES capture register is maintained. The mode compensates for the delays in LVDS clock network, and between the data pin and clock input pin to the SERDES capture register paths.

Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Legal Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Clocks</td>
<td>1–9</td>
<td>Specifies the number of output clocks required for each device in the PLL design. The requested settings for output frequency, phase shift, and duty cycle are shown based on the number of clocks selected.</td>
</tr>
<tr>
<td>Multiply Factor (M-Counter)</td>
<td>4–160</td>
<td>Specifies the multiply factor of M-counter.</td>
</tr>
<tr>
<td>Divide Factor (N-Counter)</td>
<td>1–110</td>
<td>Specifies the divide factor of N-counter.</td>
</tr>
<tr>
<td>Specify VCO Frequency</td>
<td>Turn on or Turn off</td>
<td>Allows you to restrict the VCO frequency to the specified value. This is useful when creating a PLL for LVDS external mode, or if a specific dynamic phase shift step size is desired.</td>
</tr>
<tr>
<td>VCO Frequency</td>
<td>—</td>
<td>• When Enable physical output clock parameters is turned on—displays the VCO frequency based on the values for Reference Clock Frequency, Multiply Factor (M-Counter), and Divide Factor (N-Counter).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• When Enable physical output clock parameters is turned off—allows you to specify the requested value for the VCO frequency. The default value is 600.0 MHz.</td>
</tr>
<tr>
<td>Give clock global name</td>
<td>Turn on or Turn off</td>
<td>Allows you to rename the output clock name.</td>
</tr>
<tr>
<td>Clock Name</td>
<td>—</td>
<td>The user clock name for Synopsis Design Constraints (SDC).</td>
</tr>
<tr>
<td>Divide Factor (C-Counter)</td>
<td>1–510</td>
<td>Specifies the divide factor for the output clock (C-counter).</td>
</tr>
</tbody>
</table>

(5) This parameter is only available when Enable physical output clock parameters is turned on.

(6) This parameter is only available when Enable physical output clock parameters is turned off.
6.1.2 Intel FPGA IOPLL Parameters - Settings Tab

Table 8. Intel FPGA IOPLL IP Core Parameters - Settings Tab for Intel Stratix 10 Devices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Legal Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired Frequency</td>
<td>—</td>
<td>Specifies the output clock frequency of the corresponding output clock port, <code>outclk[0]</code>, in MHz. The default value is 100.0 MHz. The minimum and maximum values depend on the device used. The PLL only reads the numerals in the first six decimal places.</td>
</tr>
<tr>
<td>Actual Frequency</td>
<td>—</td>
<td>Allows you to select the actual output clock frequency from a list of achievable frequencies. The default value is the closest achievable frequency to the desired frequency.</td>
</tr>
<tr>
<td>Phase Shift units</td>
<td>ps or degrees</td>
<td>Specifies the phase shift unit for the corresponding output clock port, <code>outclk[0]</code>, in picoseconds (ps) or degrees.</td>
</tr>
<tr>
<td>Desired Phase Shift</td>
<td>—</td>
<td>Specifies the requested value for the phase shift. The default value is 0 ps.</td>
</tr>
<tr>
<td>Actual Phase Shift</td>
<td>—</td>
<td>Allows you to select the actual phase shift from a list of achievable phase shift values. The default value is the closest achievable phase shift to the desired phase shift.</td>
</tr>
<tr>
<td>Desired Duty Cycle</td>
<td>0.0–100.0</td>
<td>Specifies the requested value for the duty cycle. The default value is 50.0%.</td>
</tr>
<tr>
<td>Actual Duty Cycle</td>
<td>—</td>
<td>Allows you to select the actual duty cycle from a list of achievable duty cycle values. The default value is the closest achievable duty cycle to the desired duty cycle.</td>
</tr>
</tbody>
</table>

(7) This parameter is only available when **Create a second input clk 'refclk1'** is turned on.
6.1.3 Intel FPGA IOPLL Parameters - Cascading Tab

Table 9. Intel FPGA IOPLL IP Core Parameters - Cascading Tab

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Legal Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a 'cascade out' signal to connect with a downstream PLL</td>
<td>Turn on or Turn off</td>
<td>Turn on to create the <code>cascade_out</code> port, which indicates that this PLL is a source and connects with a destination (downstream) PLL.</td>
</tr>
<tr>
<td>Specifies which outclk to be used as cascading source</td>
<td>0–8</td>
<td>Specifies the cascading source.</td>
</tr>
<tr>
<td>Create an adplin or cclk signal to connect with an upstream PLL</td>
<td>Turn on or Turn off</td>
<td>Turn on to create an input port, which indicates that this PLL is a destination and connects with a source (upstream) PLL.</td>
</tr>
</tbody>
</table>
6.1.4 Intel FPGA IOPLL Parameters - Dynamic Reconfiguration Tab

Table 10. Intel FPGA IOPLL IP Core Parameters - Dynamic Reconfiguration Tab for Intel Stratix 10 Devices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Legal Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable dynamic reconfiguration of PLL</td>
<td>Turn on or Turn off</td>
<td>Turn on to enable the dynamic reconfiguration of this PLL (in conjunction with the Intel FPGA IOPLL Reconfig IP core).</td>
</tr>
<tr>
<td>Enable access to dynamic phase shift ports</td>
<td>Turn on or Turn off</td>
<td>Turn on to enable the dynamic phase shift interface with the PLL.</td>
</tr>
<tr>
<td>MIF Generation Option (8)</td>
<td>Generate New MIF File, Add Configuration to Existing MIF File, or Create MIF File during IP Generation</td>
<td>Either create a new .mif file containing the current configuration of the I/O PLL by clicking Create MIF File or add this configuration to an existing .mif file by clicking Append to MIF File. A .mif file also can be opted to be generated during IP generation. The generated .mif file contains current PLL profile and a collection of physical parameters—such as M, N, C, K, bandwidth, and charge pump—that defines that PLL. You can use this .mif file during dynamic reconfiguration to reconfigure the I/O PLL to its current settings.</td>
</tr>
<tr>
<td>Path to New/Existing MIF file (8)</td>
<td>—</td>
<td>Enter location and file name of the new .mif file to be created or existing .mif file to be appended.</td>
</tr>
<tr>
<td>Name of Current Configuration (8)</td>
<td>—</td>
<td>Enter the file name of the existing .mif file you intend to add to.</td>
</tr>
</tbody>
</table>

6.1.5 Intel FPGA IOPLL Parameters - Advanced Parameters Tab

Table 11. Intel FPGA IOPLL IP Core Parameters - Advanced Parameters Tab for Intel Stratix 10 Devices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Legal Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Parameters</td>
<td>—</td>
<td>Displays a table of physical PLL settings that will be implemented based on your input.</td>
</tr>
</tbody>
</table>

6.2 Intel FPGA IOPLL Ports and Signals

Table 12. Intel FPGA IOPLL Ports for Intel Stratix 10 Devices

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Type</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>refclk</td>
<td>Input</td>
<td>Required</td>
<td>The reference clock source that drives the I/O PLL.</td>
</tr>
<tr>
<td>rst</td>
<td>Input</td>
<td>Required</td>
<td>The asynchronous reset port for the output clocks. Drive this port high to reset all output clocks to the value of 0.</td>
</tr>
<tr>
<td>fbclk</td>
<td>Input</td>
<td>Optional</td>
<td>The external feedback input port for the I/O PLL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Intel FPGA IOPLL IP core creates this port when the I/O PLL is operating in external feedback mode or zero-delay buffer mode. To complete the feedback loop, a board-level connection must connect the fbclk port and the external clock output port of the I/O PLL.</td>
</tr>
<tr>
<td>fboutclk</td>
<td>Output</td>
<td>Optional</td>
<td>The port that feeds the fbclk port through the mimic circuitry.</td>
</tr>
</tbody>
</table>

(8) This parameter is only available when Enable dynamic reconfiguration of PLL is turned on.
6.3 Dynamic Phase Shift Ports in the Intel FPGA IOPLL IP Core

Figure 26. Dynamic Phase Shift Port Ports in the Intel FPGA IOPLL IP Core

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Type</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fboutclk</td>
<td></td>
<td></td>
<td>The fboutclk port is available only if the I/O PLL is in external feedback mode.</td>
</tr>
<tr>
<td>zdbfbclk</td>
<td>Bidirectional</td>
<td>Optional</td>
<td>The bidirectional port that connects to the mimic circuitry. This port must connect to a bidirectional pin that is placed on the positive feedback dedicated output pin of the I/O PLL. The zdbfbclk port is available only if the I/O PLL is in zero-delay buffer mode.</td>
</tr>
<tr>
<td>locked</td>
<td>Output</td>
<td>Optional</td>
<td>The Intel FPGA IOPLL IP core drives this port high when the PLL acquires lock. The port remains high as long as the I/O PLL is locked. The I/O PLL asserts the locked port when the phases and frequencies of the reference clock and feedback clock are the same or within the lock circuit tolerance. When the difference between the two clock signals exceeds the lock circuit tolerance, the I/O PLL loses lock.</td>
</tr>
<tr>
<td>refclk1</td>
<td>Input</td>
<td>Optional</td>
<td>Second reference clock source that drives the I/O PLL for clock switchover feature.</td>
</tr>
<tr>
<td>extswitch</td>
<td>Input</td>
<td>Optional</td>
<td>Active low signal. Assert the extswitch signal low (1'b0) for at least three clock cycles to manually switch the clock.</td>
</tr>
<tr>
<td>activeclk</td>
<td>Output</td>
<td>Optional</td>
<td>Output signal to indicate which reference clock source is in use by I/O PLL.</td>
</tr>
<tr>
<td>clkbad</td>
<td>Output</td>
<td>Optional</td>
<td>Output signal that indicates the status of reference clock source is good or bad.</td>
</tr>
<tr>
<td>cascade_out</td>
<td>Output</td>
<td>Optional</td>
<td>Output signal that feeds into downstream I/O PLL.</td>
</tr>
<tr>
<td>adjpllin</td>
<td>Input</td>
<td>Optional</td>
<td>Input signal that feeds from upstream I/O PLL.</td>
</tr>
<tr>
<td>outclk_[]</td>
<td>Output</td>
<td>Optional</td>
<td>Output clock from I/O PLL.</td>
</tr>
</tbody>
</table>
Table 13. Dynamic Phase Shift Ports in the Intel FPGA IOPLL IP Core

<table>
<thead>
<tr>
<th>Port</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scanclk</td>
<td>Input</td>
<td>Dynamic phase shift clock that drives the Intel FPGA IOPLL IP core dynamic phase shift operation. This port must be connected to a valid clock source. The maximum input clock frequency is 100 MHz.</td>
</tr>
<tr>
<td>phase_en</td>
<td>Input</td>
<td>Active high signal. Asserts to start the dynamic phase shift operation. phase_en can only be asserted 4 clocks after phase_done assertion.</td>
</tr>
<tr>
<td>updn</td>
<td>Input</td>
<td>Determines the direction of dynamic phase shift. When updn = 0, phase shift is in negative direction. When updn = 1, phase shift is in positive direction.</td>
</tr>
<tr>
<td>cntsel[4..0]</td>
<td>Input</td>
<td>Determines the counter to be selected to perform dynamic phase shift operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Counter Name</th>
<th>cntsel[4..0] (Binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>5'b00000</td>
</tr>
<tr>
<td>C1</td>
<td>5'b00001</td>
</tr>
<tr>
<td>C2</td>
<td>5'b00010</td>
</tr>
<tr>
<td>C3</td>
<td>5'b00011</td>
</tr>
<tr>
<td>C4</td>
<td>5'b00100</td>
</tr>
<tr>
<td>C5</td>
<td>5'b00101</td>
</tr>
<tr>
<td>C6</td>
<td>5'b00110</td>
</tr>
<tr>
<td>C7</td>
<td>5'b00111</td>
</tr>
<tr>
<td>C8</td>
<td>5'b01000</td>
</tr>
<tr>
<td>All C counters</td>
<td>5'b01111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>num_phase_shift[2..0]</th>
<th>Input</th>
<th>Determines the number of phase shifts per dynamic phase shift operation. Up to seven phase shifts per operation are possible. Each phase shift step is equal to 1/8 of I/O PLL VCO period. num_phase_shift must never be set to 0 in DPS mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>phase_done</td>
<td>Output</td>
<td>The Intel FPGA IOPLL IP core drives this port high for one scanclk cycle after dynamic phase shift operation is complete.</td>
</tr>
</tbody>
</table>
7 Intel FPGA IOPLL Reconfig IP Core References

7.1 Avalon-MM Interface Ports in the Intel FPGA IOPLL Reconfig IP Core

Table 14. Avalon-MM Interface Ports in the Intel FPGA IOPLL Reconfig IP Core for Intel Stratix 10 Devices

<table>
<thead>
<tr>
<th>Port</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mgmt_clk</td>
<td>Input</td>
<td>Dynamic reconfiguration clock that drives the Intel FPGA IOPLL Reconfig IP core. This port must be connected to a valid clock source. The maximum input clock frequency is 100 MHz. This clock can be an independent clock source.</td>
</tr>
<tr>
<td>mgmt_reset</td>
<td>Input</td>
<td>Active high signal. Synchronous reset input to clear all the data in the Intel FPGA IOPLL Reconfig IP core.</td>
</tr>
<tr>
<td>mgmt_waitrequest</td>
<td>Output</td>
<td>This port goes high when PLL reconfiguration process started and remains high during PLL reconfiguration. After PLL reconfiguration process completed, this port goes low.</td>
</tr>
<tr>
<td>mgmt_write</td>
<td>Input</td>
<td>Active high signal. Asserts to indicate a write operation.</td>
</tr>
<tr>
<td>mgmt_read</td>
<td>Input</td>
<td>Active high signal. Asserts to indicate a read operation.</td>
</tr>
<tr>
<td>mgmt_writedata[7..0]</td>
<td>Input</td>
<td>Writes data to this port when mgmt_write signal is asserted.</td>
</tr>
<tr>
<td>mgmt_readdata[7..0]</td>
<td>Output</td>
<td>Reads data from this port when mgmt_read signal is asserted.</td>
</tr>
<tr>
<td>mgmt_address[9..0]</td>
<td>Input</td>
<td>Specifies the address of the data bus for a read or write operation.</td>
</tr>
<tr>
<td>reconfig_from_pll[10..0]</td>
<td>Input</td>
<td>Bus that connects to reconfig_from_pll[10..0] bus in the Intel FPGA IOPLL IP core.</td>
</tr>
<tr>
<td>reconfig_to_pll[29..0]</td>
<td>Output</td>
<td>Bus that connects to reconfig_to_pll[29..0] bus in the Intel FPGA IOPLL IP core.</td>
</tr>
</tbody>
</table>

7.2 Address Bus and Data Bus Settings

Assign a value of “0” for all the unused bits in the address bus and the data bus during reconfiguration operations.

7.2.1 Output Clock and the Corresponding Data Bit Setting for Clock Gating Reconfiguration

Table 15. Output Clock and the Corresponding Data Bit Setting for Clock Gating Reconfiguration

<table>
<thead>
<tr>
<th>Output Clock</th>
<th>Data Bus Bit Setting (Binary)</th>
<th>Gated = 1'b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>data[0]</td>
<td></td>
</tr>
</tbody>
</table>

continued...
Data Bus Setting for Dynamic Phase Shift for Intel FPGA IOPLL Reconfig IP Core

Table 16. Data Bus Setting for Dynamic Phase Shift for Intel FPGA IOPLL Reconfig IP Core

<table>
<thead>
<tr>
<th>Data Bus Bit Setting (Binary)</th>
<th>Description</th>
<th>Counter Name</th>
<th>data[7:4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ungated = 1'b1</td>
<td></td>
<td>C0</td>
<td>4'b0000</td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td>C1</td>
<td>4'b0001</td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>C2</td>
<td>4'b0010</td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td>C3</td>
<td>4'b0011</td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td>C4</td>
<td>4'b0100</td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td>C5</td>
<td>4'b0101</td>
</tr>
<tr>
<td>C6</td>
<td></td>
<td>C6</td>
<td>4'b0110</td>
</tr>
<tr>
<td>C7</td>
<td></td>
<td>C7</td>
<td>4'b0111</td>
</tr>
<tr>
<td>C8</td>
<td></td>
<td>All C counters</td>
<td>4'b1111</td>
</tr>
</tbody>
</table>
A Document Revision History for Intel Stratix 10 Clocking and PLL User Guide

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
</table>
| December 2017 | 2017.12.07 | • Updated the Dedicated Clock Resources Within a Clock Sector diagram. *
• Updated description in the Programmable Clock Routing section. *
• Updated Intel Stratix 10 Clock Input Pins Resources table. *
 — Added resources for Intel Stratix 10 TX and MX devices. *
 — Updated resources for the following devices: *
 • GX 1650 *
 • GX 2100 *
 • SX 1650 *
 • SX 2100 *
 • GX 2500 *
 • GX 2800 *
 • SX 2500 *
 • SX 2800 *
• Added note to core signals in Intel Stratix 10 Programmable Clock Routing Resources table. *
• Updated Clock Gating and Clock Divider in Intel Stratix 10 Clock Network diagram. *
• Added links and updated description in the Root Clock Gate section. *
• Added links and updated description in the Sector Clock Gate section. *
• Updated the Clock Gating Timing Diagram. *
• Updated description in the Clock Divider section. *
• Updated PLL Features in Intel Stratix 10 Devices table. *
 — Updated counter divide factors for I/O PLL. *
 — Updated the note to phase shift resolution and updated the phase shift resolution for PLL. *
• Updated the Reset section. *
 — Updated the note about the conditions to reset the I/O PLL. *
 — Removed description on PLL reset signal (pll_powerdown). *
• Updated the description in the following sections. *
 — Clock Feedback Modes *
 — Direct Compensation Mode *
 — Source Synchronous Compensation Mode *
 — Normal Compensation Mode *
• Updated the description in the PLL Cascading section. *
• Added a requirement for automatic clock switchover mode. *
• Updated description in the Manual Clock Switchover section. *
• Removed the guidelines on PLL reconfiguration using .mif streaming in the Guideline: Configuration Constraints section. *
• Added design examples for Intel FPGA IOPLL and Intel FPGA IOPLL Reconfig IP cores. *
• Updated port names in the Connectivity between the Intel FPGA IOPLL and Intel FPGA IOPLL Reconfig IP Cores in the Intel Quartus Prime Software diagram. *

continued...
<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2017</td>
<td>2017.05.26</td>
<td>• Updated the following sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clock Sector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Programmable Clock Routing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Internal Logic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Zero-Delay Buffer Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• External Feedback Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• User Calibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated the default feedback mode for normal and source synchronous compensation modes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated scale factor for Post-Scale Counter, (L) in Clock Multiplication and Division section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated minimum phase shift increment for fPLL in the following sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Programmable Phase Shift</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PLL Reconfiguration and Dynamic Phase Shift</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changed (\text{CLKUSR}) to (\text{OSC_CLK_1}) in PLL Calibration section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Intel FPGA IOPLL IP core.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added Intel Stratix 10 Clocking and PLL Design Considerations chapter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added Intel FPGA IOPLL Reconfig IP core.</td>
</tr>
<tr>
<td>October 2016</td>
<td>2016.10.31</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>