A |:| 5 0)/) 3. Tcl Scripting

Q1152003-12.0.0

Introduction

Developing and running Tcl scripts to control the Altera® Quartus® II software allows
you to perform a wide range of functions, such as compiling a design or writing
procedures to automate common tasks.

You can use Tcl scripts to manage a Quartus II project, make assignments, define
design constraints, make device assignments, compile your design, perform timing
analysis, and access reports. Tcl scripts also facilitate project or assignment migration.
For example, when designing in different projects with the same prototype or
development board, you can automate reassignment of pin locations in each new
project. The Quartus II software can also generate a Tcl script based on all the current
assignments in the project, which aids in switching assignments to another project.

The Quartus II software Tcl commands follow the EDA industry Tcl application
programming interface (API) standards for command-line options. This simplifies
learning and using Tcl commands. If you encounter an error with a command
argument, the Tcl interpreter includes help information showing correct usage.

This chapter includes sample Tcl scripts for automating the Quartus II software. You
can modify these example scripts for use with your own designs. You can find more
Tcl scripts in the Design Examples section of the Support area on the Altera website.

This chapter includes the following topics:

m “Quartus II Tcl Packages” on page 3-2

m “Quartus II Tcl API Help” on page 3-3

m “Command-Line Options: -t, -s, and --tcl_eval” on page 3-5
m “End-to-End Design Flows” on page 3-7

m “Creating Projects and Making Assignments” on page 3-7

“Compiling Designs” on page 3-8
“Reporting” on page 3-9

“Timing Analysis” on page 3-10
“Automating Script Execution” on page 3-10

“Other Scripting Features” on page 3-13

“The Quartus II Tcl Shell in Interactive Mode” on page 3-17

©2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying
on any published information and gefore placing orders for products or services.

1SO
9001:2008
Registered

Quartus Il Handbook Version 13.1

Volume 2: Design Implementation and Optimization
June 2012

(= | I '

Twitter Feedback Subscribe

https://www.altera.com/servlets/subscriptions/alert?id=QII52003
http://www.altera.com/common/legal.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Tcl+Scripting+http://www.altera.com/literature/hb/qts/qts_qii52003.pdf?WT.mc_id=gc_so_tw_st_tx_a_011+(via @alteracorp)+%23Altera
mailto:TechDocFeedback@altera.com?subject=Feedback on qts_qii52003-13.1

3-2

Chapter 3: Tcl Scripting
Tool Command Language

“The tclsh Shell” on page 3-18
“Tcl Scripting Basics” on page 3-18

Tool Command Language

Tcl (pronounced “tickle”) stands for Tool Command Language, a popular scripting
language that is similar to many shell scripting and high-level programming
languages. It provides support for control structures, variables, network socket access,
and APIs. Tcl is the EDA industry-standard scripting language used by Synopsys,
Mentor Graphics®, and Altera software. It allows you to create custom commands and
works seamlessly across most development platforms. For a list of recommended

literature on Tcl, refer to “External References” on page 3-25.

You can create your own procedures by writing scripts containing basic Tcl
commands and Quartus II API functions. You can then automate your design flow,
run the Quartus II software in batch mode, or execute the individual Tcl commands
interactively in the Quartus II Tcl interactive shell.

If you are unfamiliar with Tcl scripting, or are a Tcl beginner, refer to “Icl Scripting
Basics” on page 3-18 for an introduction to Tcl scripting.

The Quartus II software supports Tcl/Tk version 8.5, supplied by the Tcl
DeveloperXchange at tcl.activestate.com.

Quartus Il Tcl Packages

The Quartus II Tcl commands are grouped in packages by function. Table 3-1
describes each Tcl package.

Tahle 3-1. Tcl Packages (Part 1 of 2)

Package Name

Package Description

backannotate

Back annotate assignments

chip_planner

Identify and modify resource usage and routing with the Chip Editor

database_manager

Manage version-compatible database files

device

Get device and family information from the device database

flow

Compile a project, run command-line executables and other common flows

incremental compilation

Manipulate design partitions and LogicLock regions, and settings related to incremental
compilation

insystem_memory_edit

Read and edit memory contents in Altera devices

insystem_source_probe

interact with the In-System Sources and Probes tool in an Altera device

jtag

Control the JTAG chain

logic_analyzer_interface

Query and modify the logic analyzer interface output pin state

misc

Perform miscellaneous tasks such as enabling natural bus naming, package loading, and
message posting

project

Create and manage projects and revisions, make any project assignments including timing
assignments

rapid_recompile

Manipulate Quartus 1l Rapid Recompile features

report

Get information from report tables, create custom reports

Quartus Il Handbook Version 13.1

June 2012 Altera Corporation

Volume 2: Design Implementation and Optimization

http://tcl.activestate.com/

Chapter 3: Tcl Scripting
Quartus I Tcl API Help

3-3

Table 3-1. Tcl Packages (Part 2 of 2)

Package Name

Package Description

il Traversing and querying the RTL netlist of your design

sdc Specifies constraints and exceptions to the TimeQuest Timing Analyzer

sdc_ext Altera-specific SDC commands

simulator Configure and perform simulations

sta Cpntains the.se.t of Tl functions for obtaining advanced information from the Quartus I
TimeQuest Timing Analyzer

stp Run the SignalTap® Il Logic Analyzer

By default, only the minimum number of packages is loaded automatically with each
Quartus II executable. This keeps the memory requirement for each executable as low
as possible. Because the minimum number of packages is automatically loaded, you
must load other packages before you can run commands in those packages.

Because different packages are available in different executables, you must run your
scripts with executables that include the packages you use in the scripts. For example,
if you use commands in the sdc_ext package, you must use the quartus_sta
executable to run the script because the quartus_sta executable is the only one with
support for the sdc_ext package.

The following command prints lists of the packages loaded or available to load for an
executable, to the console:

<executable name> --tcl_eval help ¢

For example, type the following command to list the packages loaded or available to
load by the quartus_fit executable:

quartus_fit --tcl eval help ¢

Loading Packages

To load a Quartus II Tcl package, use the 1load_package command as follows:
load package [-version <version number>] <package name>

This command is similar to the package require Tcl command (described in Table 3-2
on page 3—-4), but you can easily alternate between different versions of a Quartus II
Tcl package with the load_package command because of the -version option.

For additional information about these and other Quartus II command-line
executables, refer to the Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook.

Quartus Il Tcl API Help

Access the Quartus II Tcl API Help reference by typing the following command at a
system command prompt:

quartus_sh --ghelp

This command runs the Quartus II Command-Line and Tcl API help browser, which
documents all commands and options in the Quartus II Tcl APL

June 2012 Altera Corporation Quartus Il Handbook Version 13.1

Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3-4 Chapter 3: Tcl Scripting
Quartus I Tcl API Help

Quartus II Tcl help allows easy access to information about the Quartus II Tcl
commands. To access the help information, type help at a Tcl prompt, as shown in
Example 3-1.

Example 3-1. Help Output

tcl> help

Loaded Not Loaded
:quartus: :misc ::quartus: :device
::quartus::0ld api ::quartus: :backannotate
:quartus: :project ::quartus: :flow
::quartus::timing assignment ::quartus::logiclock
::quartus::timing report ::quartus: :report

* Type "help -tcl"
to get an overview on Quartus II Tcl usages.

Table 3-2 summarizes the help options available in the Tcl environment.

Table 3-2. Help Options Available in the Quartus Il Tcl Environment (Part 1 of 2)

Help Command Description
help To view a list of available Quartus Il Tcl packages, loaded and not loaded.
To view a list of commands used to load Tcl packages and access command-line
help -tcl help

To view help for a specified Quartus Il package that includes the list of available
Tcl commands. For convenience, you can omit the : :quartus: : package prefix,
and type help -pkg <package name> +.

If you do not specify the -version option, help for the currently loaded package

help -pkg <package name> is displayed by default. If the package for which you want help is not loaded, help
[-version <version numbers] for the latest version of the package is displayed by default.
Examples:

help -pkg ::quartus::project ¢

help -pkg project ¢

help -pkg project -version 1.0 ¢

To view short help for a Quartus Il Tcl command for which the package is loaded.

Examples:

<command name> -h

or
project open -h ¢
<command name> -help -
- project open -help ¢

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting
Quartus I Tcl API Help

3-5

Tahle 3-2. Help Options Available in the Quartus Il Tcl Environment (Part 2 of 2)

Help Command

Description

package require
::quartus: :<package name>
[<version>]

To load a Quartus Il Tcl package with the specified version. If <version> is not
specified, the latest version of the package is loaded by default.

Example:
package require ::quartus::project 1.0 ¢
This command is similar to the 1oad_package command.

The advantage of the 1oad package command is that you can alternate freely
between different versions of the same package.

Type load package <package name> [-version <version numbers]+ t0
load a Quartus Il Tcl package with the specified version. If the -version option is
not specified, the latest version of the package is loaded by default.

Example:

load package ::quartus::project -version 1.0+

help -cmd <command name>
[-version <versions]

or

<command name> -long help

To view complete help text for a Quartus Il Tcl command.

If you do not specify the -version option, help for the command in the currently
loaded package version is displayed by default.

If the package version for which you want help is not loaded, help for the latest
version of the package is displayed by default.

Examples:
project _open -long help ¢
help -cmd project open ¢

help -cmd project open -version 1.0+

help -examples

To view examples of Quartus Il Tcl usage.

help -quartus

To view help on the predefined global Tcl array that contains project information
and information about the Quartus Il executable that is currently running.

quartus_sh --ghelp

To launch the Tk viewer for Quartus 1l command-line help and display help for the
command-line executables and Tcl API packages.

For more information about this utility, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus Il Handbook.

(?) The Tcl API help is also available in Quartus II online help. Search for the command or
package name to find details about that command or package.

Command-Line Options: -, -s, and --tcl_eval

Table 3-3 lists three command-line options you can use with executables that support

Tcl.

Table 3-3. GCommand-Line Options Supporting Tcl Scripting (Part 1 of 2)

Command-Line Option

Description

--script=<script file> [<script args>] |Run the specified Tcl script with optional arguments.

-t <script file> [<script args>]

Run the specified Tcl script with optional arguments. The -t option is
the short form of the --script option.

--shell

Open the executable in the interactive Tcl shell mode.

June 2012 Altera Corporation

Quartus Il Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3-6

Chapter 3: Tcl Scripting
Quartus I Tcl API Help

Table 3-3. Command-Line Options Supporting Tcl Scripting (Part 2 of 2)

Command-Line Option Description

Open the executable in the interactive Tcl shell mode. The -s option is
the short form of the --shell option.

Evaluate the remaining command-line arguments as Tcl commands. For

--tcl eval <tcl command> example, the following command displays help for the project package:

quartus sh --tcl eval help -pkg project

Run a Tcl Script

Running an executable with the -t option runs the specified Tcl script. You can also
specify arguments to the script. Access the arguments through the argv variable, or
use a package such as cmdline, which supports arguments of the following form:

-<argument name> <argument values>

The cmdline package is included in the <Quartus II directory>/common/tcl/packages
directory.

For example, to run a script called myscript.tcl with one argument, Stratix, type the
following command at a system command prompt:

quartus_sh -t myscript.tcl Stratix ¢

Refer to “Accessing Command-Line Arguments” on page 3-15 for more information.

Interactive Shell Mode

Running an executable with the -s option starts an interactive Tcl shell. For example,
to open the Quartus II TimeQuest Timing Analyzer executable in interactive shell
mode, type the following command:

quartus_sta -s ¢

Commands you type in the Tcl shell are interpreted when you click Enter. You can run
a Tcl script in the interactive shell with the following command:

source <script name> ¢

If a command is not recognized by the shell, it is assumed to be an external command
and executed with the exec command.

Evaluate as Tcl

Running an executable with the --tcl_eval option causes the executable to
immediately evaluate the remaining command-line arguments as Tcl commands. This
can be useful if you want to run simple Tcl commands from other scripting languages.

For example, the following command runs the Tcl command that prints out the
commands available in the project package.

quartus_sh --tcl eval help -pkg project ¢

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3-7
End-to-End Design Flows

The Quartus Il Tcl Console Window

You can run Tcl commands directly in the Quartus II Tcl Console window. On the
View menu, click Utility Windows. By default, the Tcl Console window is docked in
the bottom-right corner of the Quartus II GUI All Tcl commands typed in the Tcl
Console are interpreted by the Quartus II Tcl shell.

I'=" Some shell commands such as cd, 1s, and others can be run in the Tcl Console
window, with the Tcl exec command. However, for best results, run shell commands
and Quartus II executables from a system command prompt outside of the Quartus II
software GUL

Tcl messages appear in the System tab (Messages window). Errors and messages
written to stdout and stderr also are shown in the Quartus II Tcl Console window.

End-to-End Design Flows

You can use Tcl scripts to control all aspects of the design flow, including controlling
other software, when the other software also includes a scripting interface.

Typically, EDA tools include their own script interpreters that extend core language
functionality with tool-specific commands. For example, the Quartus II Tcl interpreter
supports all core Tcl commands, and adds numerous commands specific to the
Quartus II software. You can include commands in one Tcl script to run another script,
which allows you to combine or chain together scripts to control different tools.
Because scripts for different tools must be executed with different Tcl interpreters, it is
difficult to pass information between the scripts unless one script writes information
into a file and another script reads it.

Within the Quartus II software, you can perform many different operations in a
design flow (such as synthesis, fitting, and timing analysis) from a single script,
making it easy to maintain global state information and pass data between the
operations. However, there are some limitations on the operations you can perform in
a single script due to the various packages supported by each executable.

There are no limitations on running flows from any executable. Flows include
operations found in the Start section of the Processing menu in the Quartus II GUI,
and are also documented as options for the execute flow Tcl command. If you can
make settings in the Quartus II software and run a flow to get your desired result, you
can make the same settings and run the same flow in a Tcl script.

Creating Projects and Making Assignments

You can easily create a script that makes all the assignments for an existing project,
and then use the script at any time to restore your project settings to a known state.
From the Project menu, click Generate Tcl File for Project to automatically generate a
.tcl file with all of your assignments. You can source this file to recreate your project,
and you can edit the file to add other commands, such as compiling the design. The
file is a good starting point to learn about project management commands and
assignment commands.

June 2012 Altera Corporation Quartus Il Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3-8 Chapter 3: Tcl Scripting
Compiling Designs

“ e Refer to “Interactive Shell Mode” on page 3-6 for information about sourcing a script.
Scripting information for all Quartus II project settings and assignments is located in
the QSF Reference Manual. Refer to the Constraining Designs chapter in volume 2 of the
Quartus II Handbook for more information on making assignments.

Example 3-2 shows how to create a project, make assignments, and compile the
project. It uses the fir_filter tutorial design files in the qdesigns installation directory.
Run this script in the fir_filter directory, with the quartus_sh executable.

Example 3-2. Create and Compile a Project

load package flow

Create the project and overwrite any settings

files that exist

project new fir filter -revision filtref -overwrite
Set the device, the name of the top-level BDF,

and the name of the top level entity

set _global assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6

set global assignment -name BDF FILE filtref.bdf
set_global_assignment -name TOP_LEVEL ENTITY filtref
Add other pin assignments here

set location assignment -to clk Pin G1

compile the project

execute flow -compile

project close

L= The assignments created or modified while a project is open are not committed to the
Quartus II Settings File (.qsf) unless you explicitly call export assignments or
project_close (unless -dont_export_assignments is specified). In some cases, such
as when running execute_flow, the Quartus II software automatically commits the
changes.

Compiling Designs

You can run the Quartus II command-line executables from Tcl scripts. Use the
included flow package to run various Quartus II compilation flows, or run each
executable directly.

The flow Package

The flow package includes two commands for running Quartus II command-line
executables, either individually or together in standard compilation sequence. The
execute_module command allows you to run an individual Quartus I command-line
executable. The execute flow command allows you to run some or all of the
executables in commonly-used combinations. Use the flow package instead of system
calls to run Quartus II executables from scripts or from the Quartus II Tcl Console.

Compile All Revisions

You can use a simple Tcl script to compile all revisions in your project. Save the script
shown in Example 3-3 in a file called compile_revisions.tcl and type the following to
run it:

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

Chapter 3: Tcl Scripting
Reporting

3-9

Reporting

quartus_sh -t compile revisions.tcl <project name> ¢

Example 3-3. Compile All Revisions

load package flow
project_open [lindex $quartus (args) 0]
set original revision [get current revision]
foreach revision [get project revisions] {
set_current revision S$revision
execute flow -compile
}
set_current revision S$original_ revision
project close

It is sometimes necessary to extract information from the Compilation Report to
evaluate results. The Quartus II Tcl API provides easy access to report data so you do
not have to write scripts to parse the text report files.

If you know the exact cell or cells you want to access, use the get_report panel data
command and specify the row and column names (or x and y coordinates) and the
name of the appropriate report panel. You can often search for data in a report panel.
To do this, use a loop that reads the report one row at a time with the

get_report panel row command.

Column headings in report panels are in row 0. If you use a loop that reads the report
one row at a time, you can start with row 1 to skip the row with column headings. The
get_number of rows command returns the number of rows in the report panel,
including the column heading row. Because the number of rows includes the column
heading row, continue your loop as long as the loop index is less than the number of
rOws.

Report panels are hierarchically arranged and each level of hierarchy is denoted by
the string “| | “ in the panel name. For example, the name of the Fitter Settings report
panel is Fitter| |Fitter Settings because it is in the Fitter folder. Panels at the
highest hierarchy level do not use the “| |” string. For example, the Flow Settings
report panel is named Flow Settings.

The code in Example 3—4 prints a list of all report panel names in your project. You can
run this code with any executable that includes support for the report package.

Example 3-4. Print All Report Panel Names

load package report

project open myproject

load report

set panel names [get report panel names]
foreach panel name S$panel names {
post_message "$panel name"

}

June 2012 Altera Corporation Quartus Il Handbook Version 13.1

Volume 2: Design Implementation and Optimization

3-10 Chapter 3: Tcl Scripting
Timing Analysis

Viewing Report Data in Excel

The Microsoft Excel software is sometimes used to view or manipulate timing
analysis results. You can create a Comma Separated Value (.csv) file from any
Quartus Il report to open with Excel. Example 3-5 shows a simple way to create a .csv
file with data from the Fitter panel in a report. You could modify the script to use
command-line arguments to pass in the name of the project, report panel, and output
file to use. You can run this script example with any executable that supports the
report package.

Example 3-5. Create .csv Files from Reports

load package report
project open my-project

load report

This is the name of the report panel to save as a CSV file
set panel name "Fitter||Fitter Settings"
set csv_file "output.csv"

set fh [open $csv_file w]
set num rows [get number of rows -name $panel name]

Go through all the rows in the report file, including the
row with headings, and write out the comma-separated data
for { set 1 0 } { $i < $num rows } { incr i } {
set row_data [get report panel row -name $panel name \
-row $i]
puts $fh [join S$row data ", "]

close $fh
unload report

Timing Analysis

The Quartus II TimeQuest Timing Analyzer includes support for industry-standard
SDC commands in the sdc package. The Quartus II software also includes
comprehensive Tcl APIs and SDC extensions for the TimeQuest Timing Analyzer in
the sta, and sdc_ext packages.
“ e Refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus I
Handbook for detailed information about how to perform timing analysis with the
Quartus II TimeQuest Timing Analyzer.

Automating Script Execution

You can configure scripts to run automatically at various points during compilation.
Use this capability to automatically run scripts that perform custom reporting, make
specific assignments, and perform many other tasks.

The following three global assignments control when a script is run automatically:
B PRE FLOW SCRIPT FILE —before a flow starts

m POST MODULE SCRIPT FILE —after a module finishes

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 3: Tcl Scripting 3-1
Automating Script Execution

B POST FLOW SCRIPT FILE —after a flow finishes

A module is another term for a Quartus II executable that performs one step in a flow.
For example, two modules are Analysis and Synthesis (quartus_map), and timing
analysis (quartus_sta).

A flow is a series of modules that the Quartus II software runs with predefined
options. For example, compiling a design is a flow that typically consists of the
following steps (performed by the indicated module):

1. Analysis and synthesis (quartus_map)
2. Fitter (quartus_fit)

3. Assembler (quartus_asm)

4. Timing Analyzer (quartus_sta)

Other flows are described in the help for the execute_flow Tcl command. In addition,
many commands in the Processing menu of the Quartus I GUI correspond to this
design flow.

To make an assignment automatically run a script, add an assignment with the
following form to the .qsf for your project:

set global assignment -name <assignment name> <executable>:<script
name>

The Quartus II software runs the scripts as shown in Example 3-6.

Example 3-6.

<executable> -t <script name> <flow or module name> <project name> <revision names>

The first argument passed in the argv variable (or quartus (args) variable) is the
name of the flow or module being executed, depending on the assignment you use.
The second argument is the name of the project and the third argument is the name of
the revision.

When you use the POST_MODULE_SCRIPT_ FILE assignment, the specified script is
automatically run after every executable in a flow. You can use a string comparison
with the module name (the first argument passed in to the script) to isolate script
processing to certain modules.

Execution Example

Example 3-7 illustrates how automatic script execution works in a complete flow,
assuming you have a project called top with a current revision called rev_1, and you
have the following assignments in the .qsf for your project.

Example 3-7.

set global assignment -name PRE FLOW SCRIPT FILE quartus sh:first.tcl
set_global_assignment -name POST MODULE_SCRIPT_FILE quartus_sh:next.tcl
set_global_assignment -name POST FLOW_SCRIPT FILE quartus_sh:last.tcl

When you compile your project, the PRE_FLOW_SCRIPT_FILE assignment causes the
following command to be run before compilation begins:

June 2012 Altera Corporation Quartus Il Handbook Version 13.1
Volume 2: Design Implementation and Optimization

312

Chapter 3: Tcl Scripting
Automating Script Execution

quartus_sh -t first.tcl compile top rev 1

Next, the Quartus II software starts compilation with analysis and synthesis,
performed by the quartus_map executable. After the analysis and synthesis finishes,
the POST MODULE_SCRIPT_FILE assignment causes the following command to run:

quartus_sh -t next.tcl quartus map top rev 1

Then, the Quartus II software continues compilation with the Fitter, performed by the
quartus_fit executable. After the Fitter finishes, the POST MODULE SCRIPT FILE
assignment runs the following command:

quartus_sh -t next.tcl quartus fit top rev 1

Corresponding commands are run after the other stages of the compilation. When the
compilation is over, the POST_FLOW_SCRIPT FILE assignment runs the following
command:

quartus_sh -t last.tcl compile top rev 1

Controlling Processing

The POST MODULE_SCRIPT FILE assignment causes a script to run after every module.
Because the same script is run after every module, you might have to include some
conditional statements that restrict processing in your script to certain modules.

For example, if you want a script to run only after timing analysis, use a conditional
test like the one shown in Example 3-8. It checks the flow or module name passed as
the first argument to the script and executes code when the module is quartus_sta.

Example 3-8. Restrict Processing to a Single Module

set module [lindex S$quartus(args) 0]
if [string match "quartus sta" $module]

Include commands here that are run

after timing analysis

Use the post-message command to display

messages

post_message "Running after timing analysis"

Displaying Messages

Because of the way the Quartus II software runs the scripts automatically, you must
use the post_message command to display messages, instead of the puts command.
This requirement applies only to scripts that are run by the three assignments listed in
“Automating Script Execution” on page 3-10.

Refer to “The post_message Command” on page 3-14 for more information about this
command.

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3-13
Other Scripting Features

Other Scripting Features

The Quartus II Tcl API includes other general-purpose commands and features
described in this section.

Natural Bus Naming

The Quartus II software supports natural bus naming. Natural bus naming allows
you to use square brackets to specify bus indexes in HDL without including escape
characters to prevent Tcl from interpreting the square brackets as containing
commands. For example, one signal in a bus named address can be identified as
address [0] instead of address\ [0\]. You can take advantage of natural bus naming
when making assignments, as in Example 3-9.

Example 3-9. Natural Bus Naming

set location assignment -to address[10] Pin M20

The Quartus II software defaults to natural bus naming. You can turn off natural bus
naming with the disable natural bus naming command. For more information
about natural bus naming, type the following at a Quartus II Tcl prompt:

enable natural bus naming -h +

Short Option Names

You can use short versions of command options, as long as they are unambiguous. For
example, the project_open command supports two options: -current_revision and
-revision. You can use any of the following abbreviations of the -revision option:
-1, -re, -rev, -revi, -revis, and -revisio. You can use an option as short as -r
because in the case of the project_open command no other option starts with the
letter r. However, the report_timing command includes the options -recovery and
-removal. You cannot use -r or -re to shorten either of those options, because the
abbreviation would not be unique to only one option.

Collection Commands

Some Quartus II Tcl functions return very large sets of data that would be inefficient
as Tcl lists. These data structures are referred to as collections. The Quartus II Tcl API
uses a collection ID to access the collection. There are two Quartus II Tcl commands
for working with collections, foreach_in collectionand get collection size.Use
the set command to assign a collection ID to a variable.

@ For information about which Quartus II Tcl commands return collection IDs, refer to
foreach_in_collection in Quartus II Help.

June 2012 Altera Corporation Quartus Il Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_misc_ver_1.0_cmd_foreach_in_collection.htm

3-14 Chapter 3: Tcl Scripting
Other Scripting Features

The foreach_in_collection Command

The foreach in collection command is similar to the foreach Tcl command. Use it
to iterate through all elements in a collection. Example 3-10 prints all instance
assignments in an open project.

Example 3-10. Collection Commands

set all instance_assignments [get_all instance_assignments -name *]
foreach in collection asgn $all instance assignments {

Information about each assignment is

returned in a list. For information

about the list elements, refer to Help

for the get-all-instance-assignments command.

set to [lindex S$asgn 2]

set name [lindex $asgn 3]

set value [lindex $Sasgn 4]

puts "Assignment to $to: S$name = Svalue"

The get_collection_size Command

Use the get_collection size command to get the number of elements in a collection.
Example 3-11 prints the number of global assignments in an open project.

Example 3-11. get_collection_size Command

set all global assignments [get all global assignments -name *]
set num global assignments [get collection size $all global assignments]
puts "There are $num global assignments global assignments in your project"

The post_message Command

To print messages that are formatted like Quartus II software messages, use the
post_message command. Messages printed by the post message command appear in
the System tab of the Messages window in the Quartus II GUI, and are written to
standard at when scripts are run. Arguments for the post_message command include
an optional message type and a required message string.

The message type can be one of the following:

info (default)

B extra_ info

B warning

B critical warning

B error

If you do not specify a type, Quartus II software defaults to info.

With the Quartus II software in Windows, you can color code messages displayed at
the system command prompt with the post _message command. Add the following
line to your quartus2.ini file:

DISPLAY COMMAND LINE MESSAGES IN COLOR = on

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting
Other Scripting Features

3-15

Example 3-12 shows how to use the post message command.

Example 3-12. post_message command

post _message -type warning "Design has gated clocks"

Accessing Command-Line Arguments

Many Tcl scripts are designed to accept command-line arguments, such as the name of
a project or revision. The global variable quartus (args) is a list of the arguments
typed on the command-line following the name of the Tcl script. Example 3-13 shows
code that prints all of the arguments in the quartus (args) variable.

Example 3-13. Simple Command-Line Argument Access

set i 0

foreach arg $quartus(args)
puts "The value at index $i is $arg"
incr i

If you copy the script in the previous example to a file named print_args.tcl, it
displays the following output when you type the command shown in Example 3-14
at a command prompt.

Example 3-14. Passing Command-Line Arguments to Scripts

quartus_sh -t print_args.tcl my_project 100MHz ¢
The value at index 0 is my project
The value at index 1 is 100MHz

The cmdline Package

You can use the cmdline package included with the Quartus II software for more
robust and self-documenting command-line argument passing. The cmdline package
supports command-line arguments with the form -<option> <value>.

Example 3-15 uses the cmdline package.

Example 3-15. cmdline Package

package require cmdline

variable ::argv0 $::quartus(args)

set options {
{ "project.arg" "" "Project name" }
{ "frequency.arg" "" "Frequency" }

}

set usage "You need to specify options and values"

array set optshash [::cmdline::getoptions ::argv $options $Susagel
puts "The project name is S$optshash(project)"
puts "The frequency is Soptshash (frequency)"

June 2012 Altera Corporation Quartus Il Handbook Version 13.1

Volume 2: Design Implementation and Optimization

3-16 Chapter 3: Tcl Scripting
Other Scripting Features

If you save those commands in a Tcl script called print_cmd_args.tcl you see the
following output when you type the command shown in Example 3-16 at a command
prompt.

Example 3-16. Passing Gommand-Line Arguments for Scripts

quartus_sh -t print cmd args.tcl -project my project -frequency 100MHz r
The project name is my project
The frequency is 100MHz

Virtually all Quartus II Tcl scripts must open a project. Example 3-17 opens a project,
and you can optionally specify a revision name. The example checks whether the
specified project exists. If it does, the example opens the current revision, or the
revision you specify.

Example 3-17. Full-Featured Method to Open Projects

package require cmdline
variable ::argv0 $::quartus (args)
set options { \

{ "project.arg" "" "Project Name" } \
{ "revision.arg" "" "Revision Name" } \
array set optshash [::cmdline::getoptions ::argv0 S$options]

Ensure the project exists before trying to open it
if {[project exists $optshash (project)]} {

if {[string equal "" $optshash(revision)]} ({

There is no revision name specified, so default

to the current revision

project open S$Soptshash(project) -current revision
} else {

There is a revision name specified, so open the
project with that revision
project open Soptshash(project) -revision \
Soptshash (revision)
}
} else {
puts "Project $optshash(project) does not exist"
exit 1

}

The rest of your script goes here

If you do not require this flexibility or error checking, you can use just the
project_open command, as shown in Example 3-18.

Example 3-18. Simple Method to Open Projects

set proj name [lindex $argv 0]
project_open $proj name

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3-17
The Quartus Il Tcl Shell in Interactive Mode

The quartus() Array

The scripts in the preceding examples parsed command line arguments found in
quartus(args). The global quartus() Tcl array includes other information about your
project and the current Quartus II executable that might be useful to your scripts. For
information on the other elements of the quartus() array, type the following command
at a Tcl prompt:

help -quartus +

The Quartus Il Tcl Shell in Interactive Mode

This section presents how to make project assignments and then compile the finite
impulse response (FIR) filter tutorial project with the quartus_sh interactive shell.
This example assumes that you already have the fir_filter tutorial design files in a
project directory.

To begin, type the following at the system command prompt to run the interactive Tcl
shell:

quartus_sh -s ¢

Create a new project called fir_filter, with a revision called filtref by typing the
following command at a Tcl prompt:

project new -revision filtref fir filter ¢

[l= TIfthe project file and project name are the same, the Quartus II software gives the
revision the same name as the project.

Because the revision named filtref matches the top-level file, all design files are
automatically picked up from the hierarchy tree.

Next, set a global assignment for the device with the following command:
set global assignment -name family Cyclone ¢

(@) To learn more about assignment names that you can use with the -name option, refer
to Quartus II Help.

Il=" For assignment values that contain spaces, enclose the value in quotation marks.

To quickly compile a design, use the : :quartus: : flow package, which properly
exports the new project assignments and compiles the design with the proper
sequence of the command-line executables. First, load the package:

load package flow ¢
It returns the following:
1.0

To perform a full compilation of the FIR filter design, use the execute_flow command
with the -compile option:

exectue flow -compile ¢

June 2012 Altera Corporation Quartus Il Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3-18

Chapter 3: Tcl Scripting
The tclsh Shell

This command compiles the FIR filter tutorial project, exporting the project
assignments and running quartus_map, quartus_fit, quartus_asm, and quartus_sta.
This sequence of events is the same as selecting Start Compilation from the
Processing menu in the Quartus II GUL

When you are finished with a project, close it with the project_close command as
shown in Example 3-19.

Example 3-19.

project_close «

To exit the interactive Tcl shell, type exit + at a Tcl prompt.

The tcish Shell

On the UNIX and Linux operating systems, the tclsh shell included with the

Quartus II software is initialized with a minimal PATH environment variable. As a
result, system commands might not be available within the tclsh shell because certain
directories are not in the PATH environment variable. To include other directories in
the path searched by the tclsh shell, set the QUARTUS INIT PATH environment variable
before running the tclsh shell. Directories in the QUARTUS INIT PATH environment
variable are searched by the tclsh shell when you execute a system command.

Tel Scripting Basics

The core Tcl commands support variables, control structures, and procedures.
Additionally, there are commands for accessing the file system and network sockets,
and running other programs. You can create platform-independent graphical
interfaces with the Tk widget set.

Tcl commands are executed immediately as they are typed in an interactive Tcl shell.
You can also create scripts (including the examples in this chapter) in files and run
them with the Quartus II executables or with the tclsh shell.

Hello World Example

The following shows the basic “Hello world” example in Tcl:
puts "Hello world" ¢

Use double quotation marks to group the words hello and world as one argument.
Double quotation marks allow substitutions to occur in the group. Substitutions can
be simple variable substitutions, or the result of running a nested command,
described in “Substitutions” on page 3-19. Use curly braces {} for grouping when you
want to prevent substitutions.

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3-19
Tcl Scripting Basics

Variables

Assign a value to a variable with the set command. You do not have to declare a
variable before using it. Tcl variable names are case-sensitive. Example 3-20 assigns
the value 1 to the variable named a.

Example 3-20. Assigning Variables

set a 1

To access the contents of a variable, use a dollar sign (“$”) before the variable name.
Example 3-21 prints "Hello world" in a different way.

Example 3-21. Accessing Variahles

set a Hello
set b world
puts "sSa Sb"

Substitutions
Tcl performs three types of substitution:
m Variable value substitution
® Nested command substitution

m Backslash substitution

Variable Value Substitution

Variable value substitution, as shown in Example 3-21, refers to accessing the value
stored in a variable with a dollar sign (“$”) before the variable name.

Nested Command Substitution

Nested command substitution refers to how the Tcl interpreter evaluates Tcl code in
square brackets. The Tcl interpreter evaluates nested commands, starting with the
innermost nested command, and commands nested at the same level from left to
right. Each nested command result is substituted in the outer command.

Example 3-22 sets a to the length of the string foo.

Example 3-22. Command Substitution

set a [string length foo]

June 2012 Altera Corporation Quartus Il Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3-20 Chapter 3: Tcl Scripting
Tcl Scripting Basics

Backlash Substitution

Backslash substitution allows you to quote reserved characters in Tcl, such as dollar
signs (“$”) and braces (“[1”). You can also specify other special ASCII characters like
tabs and new lines with backslash substitutions. The backslash character is the Tcl line
continuation character, used when a Tcl command wraps to more than one line.
Example 3-23 shows how to use the backslash character for line continuation.

Example 3-23. Backslash Substitution

set this is a long variable name [string length "Hello \
world. "]

Arithmetic

Use the expr command to perform arithmetic calculations. Use curly braces (“{ }”) to
group the arguments of this command for greater efficiency and numeric precision.
Example 3-24 sets b to the sum of the value in the variable a and the square root of 2.

Example 3-24. Arithmetic with the expr Command

set a 5
set b [expr { $a + sqgrt(2) }]

Tcl also supports boolean operators such as && (AND), | | (OR), ! (NOT), and
comparison operators such as < (less than), > (greater than), and == (equal to).

Lists

A Tcl list is a series of values. Supported list operations include creating lists,
appending lists, extracting list elements, computing the length of a list, sorting a list,
and more. Example 3-25 sets a to a list with three numbers in it.
Example 3-25. Creating Simple Lists
set a {123}
You can use the lindex command to extract information at a specific index in a list.
Indexes are zero-based. You can use the index end to specify the last element in the
list, or the index end-<n> to count from the end of the list. Example 3-26 prints the
second element (at index 1) in the list stored in a.
Example 3-26. Accessing List Elements
puts [lindex s$a 1]
The 11ength command returns the length of a list. Example 3-27 prints the length of
the list stored in a.
Example 3-27. List Length
puts [llength sal]

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation

Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3-21
Tcl Scripting Basics

The lappend command appends elements to a list. If a list does not already exist, the
list you specify is created. The list variable name is not specified with a dollar sign
(“$”). Example 3-28 appends some elements to the list stored in a.

Example 3-28. Appending to a List

lappend a 4 5 6

Arrays

Arrays are similar to lists except that they use a string-based index. Tcl arrays are
implemented as hash tables. You can create arrays by setting each element
individually or with the array set command. To set an element with an index of Mon
to a value of Monday in an array called days, use the following command:

set days (Mon) Monday

The array set command requires a list of index/value pairs. This example sets the
array called days:

array set days { Sun Sunday Mon Monday Tue Tuesday \
Wed Wednesday Thu Thursday Fri Friday Sat Saturday }

Example 3-29 shows how to access the value for a particular index.

Example 3-29. Accessing Array Elements

set day abbreviation Mon
puts $days (sday abbreviation)

Use the array names command to get a list of all the indexes in a particular array. The
index values are not returned in any specified order. Example 3-30 shows one way to
iterate over all the values in an array.

Example 3-30. Iterating Over Arrays

foreach day [array names days]
puts "The abbreviation $day corresponds to the day \
name $days (Sday)"

Arrays are a very flexible way of storing information in a Tcl script and are a good
way to build complex data structures.

June 2012 Altera Corporation Quartus Il Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3-22 Chapter 3: Tcl Scripting
Tcl Scripting Basics

Control Structures

Tel supports common control structures, including if-then-else conditions and for,
foreach, and while loops. The position of the curly braces as shown in the following
examples ensures the control structure commands are executed efficiently and
correctly. Example 3-31 prints whether the value of variable a positive, negative, or
Zero.

Example 3-31. If-Then-Else Structure

if { sa >0} {
puts "The value is positive"
} elseif { $a < 0 } {
puts "The value is negative"
} else {
puts "The value is zero"
}

Example 3-32 uses a for loop to print each element in a list.

Example 3-32. For Loop

set a { 1 2 3 }
for { set 1 0 } { 31 < [llength $al } { incr i } {

puts "The list element at index $i is [lindex Sa $il™"
}

Example 3-33 uses a foreach loop to print each element in a list.

Example 3-33. foreach Loop

set a { 1 2 3 }
foreach element $a ({

puts "The list element is Selement"
}

Example 3-34 uses a while loop to print each element in a list.

Example 3-34. while Loop

set a { 123 }

set 1 0

while { $i < [llength $al } {
puts "The list element at index $i is [lindex $Sa $il™"
incr i

You do not have to use the expr command in boolean expressions in control structure
commands because they invoke the expr command automatically.

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting 3-23
Tcl Scripting Basics

Procedures

Use the proc command to define a Tcl procedure (known as a subroutine or function
in other scripting and programming languages). The scope of variables in a procedure
is local to the procedure. If the procedure returns a value, use the return command to
return the value from the procedure. Example 3-35 defines a procedure that
multiplies two numbers and returns the result.

Example 3-35. Simple Procedure

proc multiply { x vy } {
set product [expr { $x * $y }]
return S$product

Example 3-36 shows how to use the multiply procedure in your code. You must
define a procedure before your script calls it.

Example 3-36. Using a Procedure

proc multiply { x vy } {
set product [expr { $x * $y }]
return S$Sproduct

!

set a 1

set b 2

puts [multiply S$a $b]

Define procedures near the beginning of a script. If you want to access global
variables in a procedure, use the global command in each procedure that uses a
global variable. Example 3-37 defines a procedure that prints an element in a global
list of numbers, then calls the procedure.

Example 3-37. Accessing Global Variables

proc print global list element { i } {
global my data
puts "The list element at index $i is [lindex $my data S$i]"
}
set my data { 1 2 3}
print _global list element 0

File 1/0

Tcl includes commands to read from and write to files. You must open a file before
you can read from or write to it, and close it when the read and write operations are
done. To open a file, use the open command; to close a file, use the close command.
When you open a file, specify its name and the mode in which to open it. If you do not
specify a mode, Tcl defaults to read mode. To write to a file, specify w for write mode
as shown in Example 3-38.

Example 3-38. Open a File for Writing

set output [open myfile.txt w]

June 2012 Altera Corporation Quartus Il Handbook Version 13.1
Volume 2: Design Implementation and Optimization

3-24 Chapter 3: Tcl Scripting
Tcl Scripting Basics

Tcl supports other modes, including appending to existing files and reading from and
writing to the same file.

The open command returns a file handle to use for read or write access. You can use
the puts command to write to a file by specifying a filehandle, as shown in
Example 3-39.

Example 3-39. Write to a File

set output [open myfile.txt w]
puts Soutput "This text is written to the file."
close $output

You can read a file one line at a time with the gets command. Example 3-40 uses the
gets command to read each line of the file and then prints it out with its line number.

Example 3-40. Read from a File

set input [open myfile.txt]

set line num 1

while { [gets $input line] >= 0 } {
Process the line of text here
puts "$line_num: $line"
incr line num

}

close $input

Syntax and Comments

Arguments to Tcl commands are separated by white space, and Tcl commands are
terminated by a newline character or a semicolon. As shown in “Substitutions” on
page 3-19, you must use backslashes when a Tcl command extends more than one
line.

Tcl uses the hash or pound character (#) to begin comments. The # character must
begin a comment. If you prefer to include comments on the same line as a command,
be sure to terminate the command with a semicolon before the # character.

Example 3-41 is a valid line of code that includes a set command and a comment.

Example 3-41. Comments

set a 1;# Initializes a

Without the semicolon, it would be an invalid command because the set command
would not terminate until the new line after the comment.

The Tcl interpreter counts curly braces inside comments, which can lead to errors that
are difficult to track down. Example 3-42 causes an error because of unbalanced curly
braces.

Example 3-42. Unbalanced Braces in Comments

if { $x > 0} {

if { sy >0} {
code here

}

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

Chapter 3: Tcl Scripting
Document Revision History

3-25

External References

- For more information about Tcl, refer to the following sources:

m Practical Programming in Tcl and Tk, Brent B. Welch
m Tcl and the TK Toolkit, John Ousterhout

m Effective Tcl/TK Programming, Michael McLennan and Mark Harrison

®m Quartus II Tcl example scripts at www.altera.com/support/examples/tcl/tcl.html

m Tcl Developer Xchange at tcl.activestate.com

Document Revision History
Table 3—4 shows the revision history for this chapter.

Tahle 3-4. Document Revision History

Date Version Changes

June 2012 12.0.0 [= Removed survey link.
m Template update

November 2011 11.0.1 | m Updated supported version of Tcl in the section “Tool Command Language” on page 3-2
m minor editoral changes

May 2011 11.0.0 | Minor updates throughout document.
Template update

December 2010 10.1.0 o
Updated to remove tcl packages used by the Classic Timing Analyzer

July 2010 10.0.0 | Minor updates throughout document.
m Removed LogicLock example.

November 2009 910 |™ ﬁ\(;(:]%d%:&;nsc_r;mental_compilation, insystem_source_probe, and rtl packages to Table 3-
m Added quartus_map to table 3-2.
m Removed the “EDA Tool Assignments” section

March 2009 9.0.0 |m Added the section “Compile All Revisions” on page 3-9
m Added the section “Using the tclsh Shell” on page 3-20

November 2008 8.1.0 | Changed to 8%2” x 11” page size. No change to content.

May 2008 8.0.0 | Updated references.

June 2012 Altera Corporation

- For previous versions of the Quartus II Handbook, refer to the Quartus I Handbook
Archive.

Quartus Il Handbook Version 13.1
Volume 2: Design Implementation and Optimization

http://tcl.activestate.com/
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/support/examples/tcl/tcl.html

3-26 Chapter 3: Tcl Scripting
Document Revision History

Quartus Il Handbook Version 13.1 June 2012 Altera Corporation
Volume 2: Design Implementation and Optimization

	3. Tcl Scripting
	Introduction
	Tool Command Language
	Quartus II Tcl Packages
	Loading Packages

	Quartus II Tcl API Help
	Command-Line Options: -t, -s, and --tcl_eval
	Run a Tcl Script
	Interactive Shell Mode
	Evaluate as Tcl

	The Quartus II Tcl Console Window

	End-to-End Design Flows
	Creating Projects and Making Assignments
	Compiling Designs
	The flow Package
	Compile All Revisions

	Reporting
	Viewing Report Data in Excel

	Timing Analysis
	Automating Script Execution
	Execution Example
	Controlling Processing
	Displaying Messages

	Other Scripting Features
	Natural Bus Naming
	Short Option Names
	Collection Commands
	The foreach_in_collection Command
	The get_collection_size Command

	The post_message Command
	Accessing Command-Line Arguments
	The cmdline Package

	The quartus() Array

	The Quartus II Tcl Shell in Interactive Mode
	The tclsh Shell
	Tcl Scripting Basics
	Hello World Example
	Variables
	Substitutions
	Variable Value Substitution
	Nested Command Substitution
	Backlash Substitution

	Arithmetic
	Lists
	Arrays
	Control Structures
	Procedures
	File I/O
	Syntax and Comments
	External References

	Document Revision History

