
QII51006-13.1.0

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRI
are trademarks of Altera Corporation and registered in the U.S
trademarks or service marks are the property of their respectiv
semiconductor products to current specifications in accordance
services at any time without notice. Altera assumes no respons
described herein except as expressly agreed to in writing by Al
on any published information and before placing orders for pr

Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis
November 2013

November 2013
QII51006-13.1.0
12. Recommended Design Practices
This chapter provides design recommendations for Altera® devices and describes the
Quartus® II Design Assistant, which helps you check your design for violations of
Altera’s design recommendations.

Current FPGA applications have reached the complexity and performance
requirements of ASICs. In the development of complex system designs, good design
practices have an enormous impact on the timing performance, logic utilization, and
system reliability of a device. Well-coded designs behave in a predictable and reliable
manner even when retargeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and ASIC
implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when designing with
Altera devices, you should adhere to the following guidelines:

■ Understand the impact of synchronous design practices

■ Follow recommended design techniques, including hierarchical design
partitioning, and timing closure guidelines

■ Take advantage of the architectural features in the targeted device

This chapter contains the following sections:

■ “Synchronous FPGA Design Practices” on page 12–2

■ “Design Guidelines” on page 12–4

■ “Optimizing for Physical Implementation and Timing Closure” on page 12–12

■ “Checking Design Violations” on page 12–16

■ “Targeting Clock and Register-Control Architectural Features” on page 12–23

■ “Targeting Embedded RAM Architectural Features” on page 12–35

f For specific HDL coding examples and recommendations, including coding
guidelines for targeting dedicated device hardware, such as memory and digital
signal processing (DSP) blocks, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. For information about partitioning a hierarchical
design for incremental compilation, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.
A, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos
. Patent and Trademark Office and in other countries. All other words and logos identified as
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its
with Altera's standard warranty, but reserves the right to make changes to any products and

ibility or liability arising out of the application or use of any information, product, or service
tera. Altera customers are advised to obtain the latest version of device specifications before relying
oducts or services.

Feedback SubscribeTwitter

ISO
9001:2008
Registered

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
https://www.altera.com/servlets/subscriptions/alert?id=QII51006
http://www.altera.com/common/legal.html
mailto:TechDocFeedback@altera.com?subject=Feedback on QII51006-13.0 (QII HB, Vol 1, Ch13: Recommended Design Practices)
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://www.altera.com/support/reliability/certifications/rel-certifications.html
http://twitter.com/home/?status=Reccomended+Design+Practices+http://www.altera.com/literature/hb/qts/qts_qii51006.pdf?WT.mc

12–2 Chapter 12: Recommended Design Practices
Synchronous FPGA Design Practices
Synchronous FPGA Design Practices
The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines the benefits of optimal
synchronous design practices and the hazards involved in other techniques. Good
synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in
a device, which can lead to race conditions, incomplete timing analysis, and possible
glitches.

In a synchronous design, some clock signals trigger every event. As long as you
ensure that all the timing requirements of the registers are met, a synchronous design
behaves in a predictable and reliable manner for all process, voltage, and temperature
(PVT) conditions. You can easily target synchronous designs to different device
families or speed grades.

Fundamentals of Synchronous Design
In a synchronous design, the clock signal controls the activities of all inputs and
outputs. On every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active clock edge, the
outputs of combinational logic feeding the data inputs of registers change values. This
change triggers a period of instability due to propagation delays through the logic as
the signals go through several transitions and finally settle to new values. Changes
that occur on data inputs of registers do not affect the values of their outputs until
after the next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design as long as you
meet the following timing requirements:

■ Before an active clock edge, you must ensure that the data input has been stable
for at least the setup time of the register.

■ After an active clock edge, you must ensure that the data input remains stable for
at least the hold time of the register.

When you specify all of your clock frequencies and other timing requirements, the
Quartus II TimeQuest Timing Analyzer reports actual hardware requirements for the
setup times (tSU) and hold times (tH) for every pin in your design. By meeting these
external pin requirements and following synchronous design techniques, you ensure
that you satisfy the setup and hold times for all registers in your device.

1 To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feed a register should have a synchronous relationship with
the clock of the register. If signals are asynchronous, you can register the signals at the
inputs of the device to help prevent a violation of the required setup and hold times.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–3
Synchronous FPGA Design Practices
When you violate the setup or hold time of a register, you might oscillate the output,
or set the output to an intermediate voltage level between the high and low levels
called a metastable state. In this unstable state, small perturbations such as noise in
power rails can cause the register to assume either the high or low voltage level,
resulting in an unpredictable valid state. Various undesirable effects can occur,
including increased propagation delays and incorrect output states. In some cases, the
output can even oscillate between the two valid states for a relatively long period of
time.

h For information about timing requirements and analysis in the Quartus II software,
refer to About TimeQuest Timing Analysis in Quartus II Help.

Hazards of Asynchronous Design
In the past, designers have often used asynchronous techniques such as ripple
counters or pulse generators in programmable logic device (PLD) designs, enabling
them to take “short cuts” to save device resources. Asynchronous design techniques
have inherent problems such as relying on propagation delays in a device, which can
vary with temperature and voltage fluctuations, resulting in incomplete timing
constraints and possible glitches and spikes.

Some asynchronous design structures rely on the relative propagation delays of
signals to function correctly. In these cases, race conditions can arise where the order
of signal changes can affect the output of the logic. PLD designs can have varying
timing delays, depending on how the design is placed and routed in the device with
each compilation. Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices become faster due
to device process improvements, the delays in an asynchronous design may decrease,
resulting in a design that does not function as expected. Specific examples are
provided in “Design Guidelines” on page 12–4. Relying on a particular delay also
makes asynchronous designs difficult to migrate to different architectures, devices, or
speed grades.

The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms used by your synthesis and
place-and-route tools may not be able to perform the best optimizations, and the
reported results may not be complete.

Some asynchronous design structures can generate harmful glitches, which are pulses
that are very short compared with clock periods. Most glitches are generated by
combinational logic. When the inputs of combinational logic change, the outputs
exhibit several glitches before they settle to their new values. These glitches can
propagate through the combinational logic, leading to incorrect values on the outputs
in asynchronous designs. In a synchronous design, glitches on the data inputs of
registers are normal events that have no negative consequences because the data is
not processed until the clock edge.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

12–4 Chapter 12: Recommended Design Practices
Design Guidelines
Design Guidelines
When designing with HDL code, you should understand how a synthesis tool
interprets different HDL design techniques and what results to expect. Your design
techniques can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes basic design techniques that ensure optimal
synthesis results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Altera recommends that you design
your combinational logic carefully to avoid potential problems and pay attention to
your clocking schemes so that you can maintain synchronous functionality and avoid
timing problems.

Combinational Logic Structures
Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Altera FPGAs, these functions are implemented in the
look-up tables (LUTs) with either logic elements (LEs) or adaptive logic modules
(ALMs). For cases where combinational logic feeds registers, the register control
signals can implement part of the logic function to save LUT resources. By following
the recommendations in this section, you can improve the reliability of your
combinational design.

Combinational Loops
Combinational loops are among the most common causes of instability and
unreliability in digital designs. Combinational loops generally violate synchronous
design principles by establishing a direct feedback loop that contains no registers. You
should avoid combinational loops whenever possible. In a synchronous design,
feedback loops should include registers. For example, a combinational loop occurs
when the left-hand side of an arithmetic expression also appears on the right-hand
side in HDL code. A combinational loop also occurs when you feed back the output of
a register to an asynchronous pin of the same register through combinational logic, as
shown in Figure 12–1.

1 Use recovery and removal analysis to perform timing analysis on asynchronous ports,
such as clear or reset in the Quartus II software.

h If you are using the TimeQuest Timing Analyzer, refer to Specifying Timing Constraints
and Exceptions (TimeQuest Timing Analyzer) in Quartus II Help for details about how
TimeQuest analyzer performs recovery and removal analysis.

Figure 12–1. Combinational Loop Through Asynchronous Control Pin

D Q

CLRN

Logic
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm

Chapter 12: Recommended Design Practices 12–5
Design Guidelines
Combinational loops are inherently high-risk design structures for the following
reasons:

■ Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

■ Combinational loops can cause endless computation loops in many design tools.
Most tools break open combinational loops to process the design. The various
tools used in the design flow may open a given loop in a different manner,
processing it in a way that is inconsistent with the original design intent.

Latches
A latch is a small circuit with combinational feedback that holds a value until a new
value is assigned. You can implement latches with the Quartus II Text Editor or Block
Editor. It is common for mistakes in HDL code to cause unintended latch inference;
Quartus II Synthesis issues a warning message if this occurs.

Unlike other technologies, a latch in FPGA architecture is not significantly smaller
than a register. The architecture is not optimized for latch implementation and latches
generally have slower timing performance compared to equivalent registered
circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
negative latch). In transparent mode, glitches on the input can pass through to the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis cannot identify these safe
applications.

The TimeQuest analyzer analyzes latches as synchronous elements clocked on the
falling edge of the positive latch signal by default, and allows you to treat latches as
having nontransparent start and end points. Be aware that even an instantaneous
transition through transparent mode can lead to glitch propagation. The TimeQuest
analyzer cannot perform cycle-borrowing analysis.

Due to various timing complexities, latches have limited support in formal
verification tools. Therefore, you should not rely on formal verification for a design
that includes latches.

1 Avoid using latches to ensure that you can completely analyze the timing
performance and reliability of your design.

Delay Chains
You require delay chains when you use two or more consecutive nodes with a single
fan-in and a single fan-out to cause delay. Inverters are often chained together to add
delay. Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–6 Chapter 12: Recommended Design Practices
Design Guidelines
Delays in PLD designs can change with each placement and routing cycle. Effects
such as rise and fall time differences and on-chip variation mean that delay chains,
especially those placed on clock paths, can cause significant problems in your design.
Refer to “Hazards of Asynchronous Design” on page 12–3 for examples of the kinds
of problems that delay chains can cause. Avoid using delay chains to prevent these
kinds of problems.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

Pulse Generators and Multivibrators
You can use delay chains to generate either one pulse (pulse generators) or a series of
pulses (multivibrators). There are two common methods for pulse generation, as
shown in Figure 12–2. These techniques are purely asynchronous and must be
avoided.

In Figure 12–2, a trigger signal feeds both inputs of a 2-input AND gate, but the
design adds inverts to create a delay chain to one of the inputs. The width of the pulse
depends on the time differences between path that feeds the gate directly, and the
path that goes through the delay chain. This is the same mechanism responsible for
the generation of glitches in combinational logic following a change of input values.
This technique artificially increases the width of the glitch.

As also shown in Figure 12–2, a register’s output drives the same register’s
asynchronous reset signal through a delay chain. The register resets itself
asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route to determine, set, or verify. The actual pulse width can only be
determined after placement and routing, when routing and propagation delays are
known. You cannot reliably create a specific pulse width when creating HDL code,
and it cannot be set by EDA tools. The pulse may not be wide enough for the
application under all PVT conditions. Also, the pulse width changes if you change to
a different device. Additionally, verification is difficult because static timing analysis
cannot verify the pulse width.

Figure 12–2. Asynchronous Pulse Generators

D Q

Q

Pulse

PulseTrigger

Trigger

Clock

CLRN

Using an AND Gate

Using a Register
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–7
Design Guidelines
Multivibrators use a glitch generator to create pulses, together with a combinational
loop that turns the circuit into an oscillator. This creates additional problems because
of the number of pulses involved. Additionally, when the structures generate multiple
pulses, they also create a new artificial clock in the design must be analyzed by design
tools.

When you must use a pulse generator, use synchronous techniques, as shown in
Figure 12–3.

In Figure 12–3, the pulse width is always equal to the clock period. This pulse
generator is predictable, can be verified with timing analysis, and is easily moved to
other architectures, devices, or speed grades.

Clocking Schemes
Like combinational logic, clocking schemes have a large effect on the performance
and reliability of a design. Avoid using internally generated clocks (other than PLLs)
wherever possible because they can cause functional and timing problems in the
design. Clocks generated with combinational logic can introduce glitches that create
functional problems, and the delay inherent in combinational logic can lead to timing
problems.

1 Specify all clock relationships in the Quartus II software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their
relationship to the base clock.

Use global device-wide, low-skew dedicated routing for all internally-generated
clocks, instead of routing clocks on regular routing lines. For more information, refer
to “Clock Network Resources” on page 12–23.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Quartus II software to compensate for the variable delays between
clock domains. Consider setting a clock setup uncertainty and clock hold uncertainty
value of 10% to 15% of the clock delay.

The following sections provide specific examples and recommendations for avoiding
clocking scheme problems.

Figure 12–3. Recommended Pulse-Generation Technique

D QTrigger Signal

Clock

Pulse

D Q
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–8 Chapter 12: Recommended Design Practices
Design Guidelines
Internally Generated Clocks
If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, you can expect to see glitches in your design. In a synchronous design,
glitches on data inputs of registers are normal events that have no consequences.
However, a glitch or a spike on the clock input (or an asynchronous input) to a
register can have significant consequences. Narrow glitches can violate the register’s
minimum pulse width requirements. Setup and hold requirements might also be
violated if the data input of the register changes when a glitch reaches the clock input.
Even if the design does not violate timing requirements, the register output can
change value unexpectedly and cause functional hazards elsewhere in the design.

To avoid these problems, you should always register the output of combinational
logic before you use it as a clock signal (Figure 12–4).

Registering the output of combinational logic ensures that glitches generated by the
combinational logic are blocked at the data input of the register.

Divided Clocks
Designs often require clocks that you create by dividing a master clock. Most Altera
FPGAs provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you to avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. Additionally, create your design so that registers always directly
generate divided clock signals, as described in “Internally Generated Clocks”, and
route the clock on global clock resources. To avoid glitches, do not decode the outputs
of a counter or a state machine to generate clock signals.

Ripple Counters
To simplify verification, avoid ripple counters in your design. In the past, FPGA
designers implemented ripple counters to divide clocks by a power of two because
the counters are easy to design and may use fewer gates than their synchronous
counterparts. Ripple counters use cascaded registers, in which the output pin of one
register feeds the clock pin of the register in the next stage. This cascading can cause
problems because the counter creates a ripple clock at each stage. These ripple clocks
must be handled properly during timing analysis, which can be difficult and may
require you to make complicated timing assignments in your synthesis and placement
and routing tools.

Figure 12–4. Recommended Clock-Generation Technique

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q

Clock
Generation

Logic
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–9
Design Guidelines
You can often use ripple clock structures to make ripple counters out of the smallest
amount of logic possible. However, in all Altera devices supported by the Quartus II
software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. You should avoid using ripple counters completely.

Multiplexed Clocks
Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source, as shown in Figure 12–5. For
example, telecommunications applications that deal with multiple frequency
standards often use multiplexed clocks.

Adding multiplexing logic to the clock signal can create the problems addressed in
the previous sections, but requirements for multiplexed clocks vary widely,
depending on the application. Clock multiplexing is acceptable when the clock signal
uses global clock routing resources and if the following criteria are met:

■ The clock multiplexing logic does not change after initial configuration

■ The design uses multiplexing logic to select a clock for testing purposes

■ Registers are always reset when the clock switches

■ A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no race
conditions or other logical problems. By default, the Quartus II software optimizes
and analyzes all possible paths through the multiplexer and between both internal
clocks that may come from the multiplexer. This may lead to more restrictive analysis
than required if the multiplexer is always selecting one particular clock. If you do not
require the more complete analysis, you can assign the output of the multiplexer as a
base clock in the Quartus II software, so that all register-to-register paths are analyzed
using that clock.

Figure 12–5. Multiplexing Logic and Clock Sources

Clock 1

Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–10 Chapter 12: Recommended Design Practices
Design Guidelines
1 Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the clock-switchover feature or
clock control block available in certain Altera devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any possible hold
time problems on the device due to logic delay on the clock line.

f For device-specific information about clocking structures, refer to the appropriate
device data sheet or handbook on the Literature page of the Altera website.

Gated Clocks
Gated clocks turn a clock signal on and off using an enable signal that controls gating
circuitry, as shown in Figure 12–6. When a clock is turned off, the corresponding clock
domain is shut down and becomes functionally inactive.

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Use dedicated hardware to perform clock gating rather than an AND or OR gate. For
example, you can use the clock control block in newer Altera devices to shut down an
entire clock network. Dedicated hardware blocks ensure that you use global routing
with low skew, and avoid any possible hold time problems on the device due to logic
delay on the clock line.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using
a synchronous clock enable scheme, the clock network continues toggling. This
practice does not reduce power consumption as much as gating the clock at the source
does. In most cases, use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when gating clocks
with logic, refer to “Recommended Clock-Gating Methods” on page 12–11.

Figure 12–6. Gated Clock

Clock

Gated Clock

D Q D Q

Gating Signal
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-index.html

Chapter 12: Recommended Design Practices 12–11
Design Guidelines
Synchronous Clock Enables
To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers. This scheme does not reduce
power consumption as much as gating the clock at the source because the clock
network keeps toggling, and performs the same function as a gated clock by disabling
a set of registers. Insert a multiplexer in front of the data input of every register to
either load new data, or copy the output of the register (Figure 12–7).

Recommended Clock-Gating Methods
Use gated clocks only when your target application requires power reduction and
when gated clocks are able to provide the required reduction in your device
architecture. If you must use clocks gated by logic, implement these clocks using the
robust clock-gating technique shown in Figure 12–8 and ensure that the gated clock
signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Because the clock network contributes to switching power
consumption, gate the clock at the source whenever possible, so that you can shut
down the entire clock network instead of gating it further along the clock network at
the registers.

In the technique shown in Figure 12–8, a register generates the enable signal to ensure
that the signal is free of glitches and spikes. The register that generates the enable
signal is triggered on the inactive edge of the clock to be gated. Use the falling edge
when gating a clock that is active on the rising edge, as shown in Figure 12–8. Using
this technique, only one input of the gate that turns the clock on and off changes at a
time. This prevents glitches or spikes on the output. Use an AND gate to gate a clock
that is active on the rising edge. For a clock that is active on the falling edge, use an
OR gate to gate the clock and register the enable command with a positive
edge-triggered register.

Figure 12–7. Synchronous Clock Enable

Figure 12–8. Recommended Clock-Gating Technique

D Q

Enable

Data

D Q

Clock

Enable
Gated Clock Routed on
Global Clock Resources

D Q D Q

Gating Signal
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–12 Chapter 12: Recommended Design Practices
Design Guidelines
When using this technique, pay close attention to the duty cycle of the clock and the
delay through the logic that generates the enable signal because you must generate
the enable command in one-half the clock cycle. This situation might cause problems
if the logic that generates the enable command is particularly complex, or if the duty
cycle of the clock is severely unbalanced. However, careful management of the duty
cycle and logic delay may be an acceptable solution when compared with problems
created by other methods of gating clocks.

Ensure that you apply a clock setting to the gated clock in the TimeQuest analyzer. As
shown in Figure 12–8 on page 12–11, apply a clock setting to the output of the AND
gate. Otherwise, the timing analyzer might analyze the circuit using the clock path
through the register as the longest clock path and the path that skips the register as
the shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enables may help reduce glitch
and clock skew, and eventually produce a more accurate timing analysis. You can set
the Quartus II software to automatically convert gated clocks to clock enables by
turning on the Auto Gated Clock Conversion option. The conversion applies to two
types of gated clocking schemes: single-gated clock and cascaded-gated clock. The
TimeQuest analyzer supports this option for Arria® II, Arria II GX, Cyclone® II,
Cyclone III, Cyclone IV, Stratix® II, Stratix II GX, Stratix III, Stratix IV, and Stratix V
devices.

f For information about the settings and limitations of this option, refer to the “Auto
Gated Clock Conversion” section of the Quartus II Integrated Synthesis chapter in
volume 1 of the Quartus II Handbook.

Optimizing for Physical Implementation and Timing Closure
This section provides design and timing closure techniques for high speed or complex
core logic designs with challenging timing requirements. These techniques may also
be helpful for low or medium speed designs. Best practices for high-speed designs
include the following:

■ Planning Physical Implementation

■ Planning FPGA Resources

■ Optimizing for Timing Closure

Planning Physical Implementation
When planning a design, consider the following elements of physical
implementation:

■ The number of unique clock domains and their relationships

■ The amount of logic in each functional block

■ The location and direction of data flow between blocks

■ How data routes to the functional blocks between I/O interfaces
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 12: Recommended Design Practices 12–13
Design Guidelines
Interface-wide control or status signals may have competing or opposing constraints.
For example, when a functional block's control or status signals interface with
physical channels from both sides of the device. In such cases you must provide
enough pipeline register stages to allow these signals to traverse the width of the
device. In addition, you can structure the hierarchy of the design into separate logic
modules for each side of the device. The side modules can generate and use registered
control signals per side. This simplifies floorplanning, particularly in designs with
transceivers, by placing per-side logic near the transceivers.

When adding register stages to pipeline control signals, turn off the Auto Shift
Register Replacement option (Assignments > Settings > Analysis & Synthesis
Settings > More Settings) for these registers. By default, chains of registers can be
converted to a RAM-based implementation based on performance and resource
estimates. Since pipelining helps meet timing requirements over long distance, this
assignment ensures that control signals are not converted.

Planning FPGA Resources
The requirements of your design affect the use of FPGA resources. Plan functional
blocks with appropriate global, regional, and dual-regional network signals in mind.
In general, after allocating the clocks in a design, use global networks for the highest
fan-out control signals. When a global network signal distributes a high fan-out
control signal, the global signal can drive logic anywhere in the device. Similarly,
when using a regional network signal, the driven must be in one quadrant of the
device, or half the device for a dual-regional network signal. Depending on data flow
and physical locations of the data entry and exit between the I/Os and the device,
restricting a functional block to a quadrant or half the device may not be practical for
performance or resource requirements.

When floorplanning a design, consider the balance of different types of device
resources, such as memory, logic, and DSP blocks in the main functional blocks. For
example, if a design is memory intensive with a small amount of logic, it may be
difficult to develop an effective floorplan. Logic that interfaces with the memory
would have to spread across the chip to access the memory. In this case, it is important
to use enough register stages in the data and control paths to allow signals to traverse
the chip to access the physically disparate resources needed.

Optimizing for Timing Closure
You can make changes to your design and constraints that help you achieve timing
closure. Whenever you change the project settings, you must balance any
performance improvement of the setting against any potential increase in compilation
time associated with the setting. You can view the performance gain versus runtime
cost by reviewing the Fitter messages after design processing.

Physical Synthesis Optimization

You can use physical synthesis optimizations for combinational logic, register
retiming, and register duplication techniques to optimize your design for timing
closure. Click Assignments > Settings > Physical Synthesis Optimizations to turn
on physical synthesis options.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–14 Chapter 12: Recommended Design Practices
Design Guidelines
■ Physical synthesis for combinational logic—When the Perform physical synthesis
for combinational logic is turned on, the report panel identifies logic that physical
synthesis can modify. You can use this information to modify the design so that the
associated optimization can be turned off to save compile time.

■ Register duplication—This technique is most useful where registers have high fan-
out, or where the fan-out is in physically distant areas of the device. Review the
netlist optimizations report and consider manually duplicating registers
automatically added by physical synthesis. You can also locate the original and
duplicate registers in the Chip Planner. Compare their locations, and if the fan-out
is improved, modify the code and turn off register duplication to save compile
time.

■ Register retiming—This technique is particularly useful where some
combinatorial paths between registers exceed the timing goal while other paths
fall short. If a design is already heavily pipelined, register retiming is less likely to
provide significant performance gains since there should not be significantly
unbalanced levels of logic across pipeline stages.

Timing Constraint Optimization

The application of appropriate timing constraints is essential to timing closure. Use
the following general guidelines in applying timing constraints:

■ Apply multicycle constraints in your design wherever single-cycle timing analysis
is not required.

■ Apply False Path constraints to all asynchronous clock domain crossings or resets
in the design. This technique prevents overconstraining and the Fitter focuses only
on critical paths to reduce compile time. However, over constraining timing
critical clock domains can sometimes provide better timing results and lower
compile times than physical synthesis.

■ Overconstrain rather than using physical synthesis when the slack improvement
from physical synthesis is near zero. Overconstrain the frequency requirement on
timing critical clock domains by using setup uncertainty.

■ When evaluating the effect of constraint changes on performance and runtime,
compile the design with at least three different seeds to determine the average
performance and runtime effects. Different constraint combinations produce
various results. Three samples or more establishes a performance trend. Modify
your constraints based on performance improvement or decline.

■ Leave settings at the default value whenever possible. Increasing performance
constraints can increase the compile time significantly. While those increases may
be necessary to close timing on a design, using the default settings whenever
possible minimizes compile time.

Optimizing Critical Timing Paths
To close timing in high speed designs, review paths with the largest timing failures.
Correcting a single, large timing failure can result in a very significant timing
improvement. Review the register placement and routing paths by clicking Tools >
Chip Planner. Large timing failures on high fan-out control signals can be caused by
any of the following conditions:

■ Sub-optimal use of global networks
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–15
Design Guidelines
■ Signals that traverse the chip on local routing without pipelining

■ Failure to correct high fan-out by register duplication

For high-speed and high-bandwidth designs, optimize speed by reducing bus width
and wire usage. To reduce wire use, move the data as little as possible. For example, if
a block of logic functions on a few bits of a word, store inactive bits in a fifo or
memory. Memory is cheaper and denser than registers and reduces wire usage.

Power Optimization
The total FPGA power consumption is comprised of I/O power, core static power,
and core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption. You can use various
optimization techniques and tools to minimize power consumption when applied
during FPGA design implementation. The Quartus II software offers power-driven
compilation features to fully optimize device power consumption. Power-driven
compilation focuses on reducing your design’s total power consumption using
power-driven synthesis and power-driven placement and routing.

f For more information about power-driven compilation flow and low-power design
guidelines, refer to the Power Optimization chapter in volume 2 of the Quartus II
Handbook.

f For more information about power optimization techniques available for Stratix III
devices, refer to AN 437: Power Optimization in Stratix III FPGAs. For more information
about power optimization techniques available for Stratix IV devices, refer to AN 514:
Power Optimization in Stratix IV FPGAs. For more information about power
optimization techniques available for Stratix V devices, refer to Reducing Power
Consumption and Increasing Bandwidth on 28-nm FPGAs white paper.

h Additionally, you can use the Quartus II PowerPlay suite of power analysis and
optimization tools to help you during the design process by delivering fast and
accurate estimations of power consumption. For more information about the
Quartus II PowerPlay suite of power analysis and optimization tools, refer to About
Power Estimation and Analysis in Quartus II Help.

Metastability
Metastability in PLD designs can be caused by the synchronization of asynchronous
signals. You can use the Quartus II software to analyze the mean time between
failures (MTBF) due to metastability, thus optimizing the design to improve the
metastability MTBF. A high metastability MTBF indicates a more robust design.

f For more information about how to ensure complete and accurate metastability
analysis, refer to the Managing Metastability With the Quartus II Software chapter in
volume 1 of the Quartus II Handbook.

h For more information about viewing metastability reports, refer to Viewing
Metastability Reports in Quartus II Help.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://www.altera.com/literature/wp/wp-01148-stxv-power-consumption.pdf
http://www.altera.com/literature/wp/wp-01148-stxv-power-consumption.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf

12–16 Chapter 12: Recommended Design Practices
Checking Design Violations
Incremental Compilation
The incremental compilation feature in the Quartus II software allows you to partition
your design hierarchy, separately compile partitions, and reuse the results for
unchanged partitions. Incremental compilation flows require more up-front planning
than flat compilations, and generally require you to be more rigorous about following
good design practices than flat compilations.

f For more information about incremental compilation and floorplan assignments, refer
to the Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

h For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.

Checking Design Violations
To improve the reliability, timing performance, and logic utilization of your design,
you should practice good design methodology and understand how to avoid design
rule violations. The Quartus II software provides the Design Assistant tool that
automatically checks for design rule violations and reports their location.

The Design Assistant is a design rule checking tool that allows you to check for design
issues early in the design flow. The Design Assistant checks your design for adherence
to Altera-recommended design guidelines. You can specify which rules you want the
Design Assistant to apply to your design. This is useful if you know that your design
violates particular rules that are not critical and you can allow these rule violations.
The Design Assistant generates design violation reports with details about each
violation based on the settings that you specified.

This section provides an introduction to the Quartus II design flow with the Design
Assistant, message severity levels, and an explanation about how to set up the Design
Assistant. The last parts of the section describe the design rules and the reports
generated by the Design Assistant. The Design Assistant supports all Altera devices
supported by the Quartus II software.

Quartus II Design Flow with the Design Assistant
You can run the Design Assistant after Analysis and Elaboration, Analysis and
Synthesis, fitting, or a full compilation. If you set the Design Assistant to run
automatically during compilation, the Design Assistant performs a post-fitting netlist
analysis of your design. The default is to apply all of the rules to your project. If there
are some rules that are unimportant to your design, you can turn off the rules that you
do not want the Design Assistant to use.

h For more information about running the Design Assistant, refer to About the Design
Assistant in Quartus II Help.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 12: Recommended Design Practices 12–17
Checking Design Violations
Figure 12–9 shows the Quartus II software design flow with the Design Assistant.

The Design Assistant analyzes your design netlist at different stages of the
compilation flow and may yield different warnings or errors, even though the netlists
are functionally the same. Your pre-synthesis, post-synthesis, and post-fitting netlists
might be different due to optimizations performed by the Quartus II software. For
example, a warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

The exact operation of the Design Assistant depends on when you run it:

■ When you run the Design Assistant after running a full compilation or fitting, the
Design Assistant performs a post-fitting analysis on the design.

■ When you run the Design Assistant after performing Analysis and Synthesis, the
Design Assistant performs post-synthesis analysis on the design.

■ When you start the Design Assistant after performing Analysis and Elaboration,
the Design Assistant performs a pre-synthesis analysis on the design. You can also
perform pre-synthesis analysis with the Design Assistant using the command-line.
You can use the -rtl option with the quartus_drc executable, as shown in the
following example:

quartus_drc <project_name> --rtl=on r

h For more information about Design Assistant settings, refer to About the Design
Assistant and Design Assistant Page (Settings Dialog Box) in Quartus II Help.

Figure 12–9. Quartus II Design Flow with the Design Assistant

Notes to Figure 12–9:
(1) Database of the default rules for the Design Assistant.
(2) A file that contains the .xml codes of the custom rules for the Design Assistant. For more details about how to create

this file, refer to “Custom Rules” on page 12–18.

Design Files

Analysis & Elaboration

Synthesis
(Logic Synthesis &

Technology Mapping)

Fitter

Timing Analysis

Design Assistant

Pre-Synthesis
Netlist

Design Assistant
Golden Rules (1)

Rule Violation
Report

Custom
Rules (2)

Post-Fitting
Netlist

Post-Synthesis
Netlist
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm

12–18 Chapter 12: Recommended Design Practices
Checking Design Violations
Enabling and Disabling Design Assistant Rules

h For more information about enabling or disabling Design Assistant rules on
individual nodes by making an assignment in the Assignment Editor, in the
Quartus II Settings File (.qsf), with the altera_attribute synthesis attribute in Verilog
HDL or VHDL, or with a Tcl command, refer to Enabling Design Assistant Rules on
Nodes, Entities, or Instances, or Disabling Design Assistant Rules on Nodes, Entities, or
Instances in Quartus II Help.

Viewing Design Assistant Results
If your design violates a design rule, the Design Assistant generates warning
messages and information messages about the violated rule. The Design Assistant
displays these messages in the Messages window, in the Design Assistant Messages
report, and in the Design Assistant report files. You can find the Design Assistant
report files called <project_name>.drc.rpt in the <project_name> subdirectory of the
project directory.

h For information about the contents of the reports generated by the Design Assistant,
refer to Design Assistant Reports in Quartus II Help.

Custom Rules
In addition to the existing design rules that the Design Assistant offers, you can also
create your own rules and specify your own reporting format in a text file (with any
file extension) with the XML format. You then specify the path to that file in the
Design Assistant settings page and run the Design Assistant for violation checking.

Refer to the following location to locate the file that contains the default rules for the
Design Assistant:

<Quartus II install path>\quartus\libraries\design-assistant\da_golden_rule.xml

h For more information about how to set the file path to your custom rules, refer to
Custom Rules Settings Dialog Box in Quartus II Help. For more information about the
basics of writing custom rules, the Design Assistant settings, and coding examples on
how to check for clock relationship and node relationship in a design, refer to Creating
Custom Design Assistant Rules in Quartus II Help. To specify the rules that you want
the Design Assistant to use when checking for violations, refer to Design Assistant Page
(Settings Dialog Box) in Quartus II Help.

Custom Rules Coding Examples
The following examples of custom rules show how to check node relationships and
clock relationships in a design.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://quartushelp.altera.com/current/master.htm#mergedProjects/report/rpt/rpt_file_da_summary.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_create_custom_da_rules.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_create_custom_da_rules.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_enable_rules.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_enable_rules.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_rule_suppression.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_pro_rule_suppression.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/verify/da/da_db_custom_rules.htm

Chapter 12: Recommended Design Practices 12–19
Checking Design Violations
Checking SR Latch Structures In a Design

Example 12–1 shows the XML codes for checking SR latch structures in a design.

In Example 12–1, the possible SR latch structures are specified in the rule definition
section. Codes defined in the <AND></AND> block are tied together, meaning that each
statement in the block must be true for the block to be fulfilled (AND gate similarity).
In the <OR></OR> block, as long as one statement in the block is true, the block is
fulfilled (OR gate similarity). If no <AND></AND> or <OR></OR> blocks are specified, the
default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

The following examples are the undesired conditions from Example 12–1 with their
equivalent block diagrams (Figure 12–10 and Figure 12–11):

<AND>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"

TO_TYPE="NAND" />
<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"

TO_TYPE="NAND" />

Example 12–1. Detecting SR Latches in a Design

<DA_RULE ID="EX01" SEVERITY="CRITICAL" NAME="Checking Design for SR Latch"
DEFAULT_RUN="YES">
<RULE_DEFINITION>

<FORBID>
<OR>

<NODE NAME="NODE_1" TYPE="SRLATCH" />
<HAS_NODE NODE_LIST="NODE_1" />
<NODE NAME="NODE_1" TOTAL_FANIN="EQ2" />
<NODE NAME="NODE_2" TOTAL_FANIN="EQ2" />
<AND>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"
TO_TYPE="NAND" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"
TO_TYPE="NAND" />

</AND>
<AND>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2"
TO_TYPE="NOR" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1"
TO_TYPE="NOR" />

</AND>
</OR>

</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">

<MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
<MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />

</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–20 Chapter 12: Recommended Design Practices
Checking Design Violations
</AND>

<AND>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2" TO_TYPE="NOR" />
<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1" TO_TYPE="NOR" />

</AND>

Figure 12–10. Undesired Condition 1

Figure 12–11. Undesired Condition 2
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–21
Checking Design Violations
Relating Nodes to a Clock Domain

Example 12–2 shows how to use the CLOCK_RELATIONSHIP attribute to relate nodes to
clock domains. This example checks for correct synchronization in data transfer
between asynchronous clock domains. Synchronization is done with cascaded
registers, also called synchronizers, at the receiving clock domain. The code in
Example 12–2 checks for the synchronizer configuration based on the following
guidelines:

■ The cascading registers need to be triggered on the same clock edge

■ There is no logic between the register output of the transmitting clock domain and
the cascaded registers in the receiving asynchronous clock domain

The codes differentiate the clock domains. ASYN means asynchronous, and !ASYN means
non-asynchronous. This notation is useful for describing nodes that are in different
clock domains. The following lines from Example 12–2 state that NODE_2 and NODE_3 are
in the same clock domain, but NODE_1 is not.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

Example 12–2. Detecting Incorrect Synchronizer Configuration

<DA_RULE ID="EX02" SEVERITY="HIGH" NAME="Data Transfer Not Synch Correctly"
DEFAULT_RUN="YES">

<RULE_DEFINITION>
<DECLARE>

<NODE NAME="NODE_1" TYPE="REG" />
<NODE NAME="NODE_2" TYPE="REG" />
<NODE NAME="NODE_3" TYPE="REG" />

</DECLARE>
<FORBID>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<OR>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"

REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />
<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

</OR>
</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">

<MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
<MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />
<MESSAGE NAME="Source node(s): %ARG3%, Destination node(s): %ARG4%">

<MESSAGE_ARGUMENT NAME="ARG3" TYPE="NODE" VALUE="NODE_1" />
<MESSAGE_ARGUMENT NAME="ARG4" TYPE="NODE" VALUE="NODE_2" />

</MESSAGE>
</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–22 Chapter 12: Recommended Design Practices
Checking Design Violations
The next line of code states that NODE_2 and NODE_3 have a clock relationship of either
sequential edge or asynchronous.

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the undesired configuration of the synchronizer. If the condition
is fulfilled, the Design Assistant highlights a rule violation.

The following examples are the undesired conditions from Example 12–2 with their
equivalent block diagrams (Figure 12–12 and Figure 12–13):

Example 12–3.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />

Figure 12–12. Undesired Condition 3

Example 12–4.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

Figure 12–13. Undesired Condition 4
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–23
Targeting Clock and Register-Control Architectural Features
Targeting Clock and Register-Control Architectural Features
In addition to following general design guidelines, you must code your design with
the device architecture in mind. FPGAs provide device-wide clocks and register
control signals that can improve performance.

Clock Network Resources
Altera FPGAs provide device-wide global clock routing resources and dedicated
inputs. Use the FPGA’s low-skew, high fan-out dedicated routing where available. By
assigning a clock input to one of these dedicated clock pins or with a Quartus II logic
option to assign global routing, you can take advantage of the dedicated routing
available for clock signals.

In an ASIC design, you should balance the clock delay as it is distributed across the
device. Because Altera FPGAs provide device-wide global clock routing resources
and dedicated inputs, there is no need to manually balance delays on the clock
network.

You should limit the number of clocks in your design to the number of dedicated
global clock resources available in your FPGA. Clocks feeding multiple locations that
do not use global routing may exhibit clock skew across the device that could lead to
timing problems. In addition, when you use combinational logic to generate an
internal clock, it adds delays on the clock path. In some cases, delay on a clock line can
result in a clock skew greater than the data path length between two registers. If the
clock skew is greater than the data delay, you violate the timing parameters of the
register (such as hold time requirements) and the design does not function correctly.

FPGAs offer a number of low-skew global routing resources to distribute high fan-out
signals to help with the implementation of large designs with many clock domains.
Many large FPGA devices provide dedicated global clock networks, regional clock
networks, and dedicated fast regional clock networks. These clocks are organized into
a hierarchical clock structure that allows many clocks in each device region with low
skew and delay. There are typically several dedicated clock pins to drive either global
or regional clock networks, and both PLL outputs and internal clocks can drive
various clock networks.

To reduce clock skew in a given clock domain and ensure that hold times are met in
that clock domain, assign each clock signal to one of the global high fan-out, low-skew
clock networks in the FPGA device. The Quartus II software automatically uses global
routing for high fan-out control signals, PLL outputs, and signals feeding the global
clock pins on the device. You can make explicit Global Signal logic option settings by
turning on the Global Signal option setting. Use this option when it is necessary to
force the software to use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock signals in a
design (input clock pins or internally-generated clocks) need to drive only the clock
input ports of registers. In older Altera device families, if a clock signal feeds the data
ports of a register, the signal may not be able to use dedicated routing, which can lead
to decreased performance and clock skew problems. In general, allowing clock signals
to drive the data ports of registers is not considered synchronous design and can
complicate timing analysis.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–24 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Reset Resources
ASIC designs may use local resets to avoid long routing delays. Take advantage of the
device-wide asynchronous reset pin available on most FPGAs to eliminate these
problems. This reset signal provides low-skew routing across the device.

The following are three types of resets used in synchronous circuits:

■ Synchronous Reset

■ Asynchronous Reset

■ Synchronized Asynchronous Reset—preferred when designing an FPGA circuit

Synchronous Reset
The synchronous reset ensures that the circuit is fully synchronous. You can easily
time the circuit with the Quartus II TimeQuest analyzer. Because clocks that are
synchronous to each other launch and latch the reset signal, the data arrival and data
required times are easily determined for proper slack analysis. The synchronous reset
is easier to use with cycle-based simulators.

There are two methods by which a reset signal can reach a register; either by being
gated in with the data input, as shown in Figure 12–14, or by using an LAB-wide
control signal (synclr), as shown in Figure 12–15. If you use the first method, you risk
adding an additional gate delay to the circuit to accommodate the reset signal, which
causes increased data arrival times and negatively impacts setup slack. The second
method relies on dedicated routing in the LAB to each register, but this is slower than
an asynchronous reset to the same register.

Figure 12–14. Synchronous Reset

PRN

CLRN

D Q

DFF

inst

reset_n

data

clock
out

AND2

inst1
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–25
Targeting Clock and Register-Control Architectural Features
Consider two types of synchronous resets when you examine the timing analysis of
synchronous resets—externally synchronized resets and internally synchronized
resets. Externally synchronized resets are synchronized to the clock domain outside
the FPGA, and are not very common. A power-on asynchronous reset is dual-rank
synchronized externally to the system clock and then brought into the FPGA. Inside
the FPGA, gate this reset with the data input to the registers to implement a
synchronous reset.

Figure 12–15. LAB-Wide Control Signals

Dedicated Row LAB Clocks

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

There are two unique
clock signals per LAB

6

6

6

labclk0

labclkena0

labclk1 labclk2 syncload labclr1

labclkena1 labclkena2 labclr0 synclr
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–26 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Figure 12–16 shows the schematic for an externally synchronized reset.

Example 12–5 shows the Verilog equivalent of the schematic. When you use
synchronous resets, the reset signal is not put in the sensitivity list.

Figure 12–16. Externally Synchronized Reset

PRN

CLRN

D Q
PRN

CLRN

D Qpor_n

clock
reset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUTclock

VCC
INPUTdata_b

AND2

lc 1

AND2

lc 2

PRN

CLRN

D Q

PRN

CLRN

D Q

DFF

reg1

DFF

reg2

OUTPUT out_a

out_b
OUTPUT

FPGA

Example 12–5. Verilog Code for Externally Synchronized Reset

module sync_reset_ext (
input clock,
input reset_n,
input data_a,
input data_b,
output out_a,
output out_b
);

reg reg1, reg2

assign out_a = reg1;
assign out_b = reg2;

always @ (posedge clock)
begin

if (!reset_n)
begin

reg1 <= 1’bo;
reg2 <= 1;b0;

end
else
begin

reg1 <= data_a;
reg2 <= data_b;

end
end

endmodule // sync_reset_ext
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–27
Targeting Clock and Register-Control Architectural Features
Example 12–6 shows the constraints for the externally synchronous reset. Because the
external reset is synchronous, you only need to constrain the reset_n signal as a
normal input signal with set_input_delay constraint for -max and -min.

More often, resets coming into the device are asynchronous, and must be
synchronized internally before being sent to the registers. Figure 12–17 shows an
internally synchronized reset.

Example 12–6. SDC Constraints for Externally Synchronous Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \

-name {clock} \
-period 10.0 \
-waveform {0.0 5.0}

Input constraints on low-active reset
and data
set_input_delay 7.0 \

-max \
-clock [get_clocks {clock}] \
[get_ports {reset_n data_a data_b}]

set_input_delay 1.0 \
-min \
-clock [get_clocks {clock}] \
[get_ports {reset_n data_a data_b}]

Figure 12–17. Internally Synchronized Reset

PRN

CLRN

D Q
PRN

CLRN

D Qreset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUT

clock VCC
INPUT

data_b

AND2

lc 1

AND2

lc 2

PRN

CLRN

D Q

PRN

CLRN

D Q

DFF

reg1

DFF

reg2

OUTPUT out_a

out_bOUTPUT

DFF DFF

reg3 reg4
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–28 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Example 12–7 shows the Verilog equivalent of the schematic. Only the clock edge is in
the sensitivity list for a synchronous reset.

Example 12–7. Verilog Code for Internally Synchronous Reset

module sync_reset (
input clock,
input reset_n,
input data_a,
input data_b,
output out_a,
output out_b
);

reg reg1, reg2
reg reg3, reg4

assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;

always @ (posedge clock)
begin

if (!rst_n)
begin

reg1 <= 1’bo;
reg2 <= 1’b0;

end
else
begin

reg1 <= data_a;
reg2 <= data_b;

end
end

always @ (posedge clock)
begin

reg3 <= reset_n;
reg4 <= reg3;

end
endmodule // sync_reset
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–29
Targeting Clock and Register-Control Architectural Features
The SDC constraints are similar to the external synchronous reset, except that the
input reset cannot be constrained because it is asynchronous and should be cut with a
set_false_path statement (as shown in Example 12–8) to avoid these being
considered as unconstrained paths.

An issue with synchronous resets is their behavior with respect to short pulses (less
than a period) on the asynchronous input to the synchronizer flipflops. This can be a
disadvantage because the asynchronous reset requires a pulse width of at least one
period wide to guarantee that it is captured by the first flipflop. However, this can
also be viewed as an advantage in that this circuit increases noise immunity. Spurious
pulses on the asynchronous input have a lower chance of being captured by the first
flipflop, so the pulses do not trigger a synchronous reset. In some cases, you might
want to increase the noise immunity further and reject any asynchronous input reset
that is less than n periods wide to debounce an asynchronous input reset.

Example 12–8. SDC Constraints for Internally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \

-name {clock} \
-period 10.0 \
-waveform {0.0 5.0}

Input constraints on data
set_input_delay 7.0 \

-max \
-clock [get_clocks {clock}] \
[get_ports {data_a data_b}]

set_input_delay 1.0 \
-min \
-clock [get_clocks {clock}] \
[get_ports {data_a data_b}]

Cut the asynchronous reset input
set_false_path \

-from [get_ports {reset_n}] \
-to [all_registers]
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–30 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Figure 12–18 shows the necessary modifications that you should make to the
internally synchronized reset.

Many designs have more than one clock signal. In these cases, use a separate reset
synchronization circuit for each clock domain in the design. When you create
synchronizers for PLL output clocks, these clock domains are not reset until you lock
the PLL and the PLL output clocks are stable. If you use the reset to the PLL, this reset
does not have to be synchronous with the input clock of the PLL. You can use an
asynchronous reset for this. Using a reset to the PLL further delays the assertion of a
synchronous reset to the PLL output clock domains when using internally
synchronized resets.

Asynchronous Reset
Asynchronous resets are the most common form of reset in circuit designs, as well as
the easiest to implement. Typically, you can insert the asynchronous reset into the
device, turn on the global buffer, and connect to the asynchronous reset pin of every
register in the device. This method is only advantageous under certain
circumstances—you do not need to always reset the register. Unlike the synchronous
reset, the asynchronous reset is not inserted in the data path, and does not negatively
impact the data arrival times between registers. Reset takes effect immediately, and as
soon as the registers receive the reset pulse, the registers are reset. The asynchronous
reset is not dependent on the clock.

However, when the reset is deasserted and does not pass the recovery (µtSU) or
removal (µtH) time check (the TimeQuest analyzer recovery and removal analysis
checks both times), the edge is said to have fallen into the metastability zone.
Additional time is required to determine the correct state, and the delay can cause the
setup time to fail to register downstream, leading to system failure. To avoid this, add
a few follower registers after the register with the asynchronous reset and use the
output of these registers in the design. Use the follower registers to synchronize the

Figure 12–18. Internally Synchronized Reset with Pulse Extender

Note to Figure 12–18:
(1) Junction dots indicate the number of stages. You can have more flip flops to get a wider pulse that spans more clock cycles.

PRN

CLRN

D Q
PRN

CLRN

D Qreset_n

data_a

INPUT
VCC

VCC
INPUT

VCC
INPUT

clock VCC
INPUT

data_b

AND2

lc 1

AND2

lc 2

PRN

CLRN

D Q

PRN

CLRN

D Q

DFF

reg1

DFF

reg2

OUTPUT out_a

out_bOUTPUT

PRN

CLRN

D Q
PRN

CLRN

D Q

BNAND2

Synchronizer Flip-Flops n Pulse Extender Flip-Flops

lc 3

reg3 reg4 reg5 regn

DFF DFF DFF DFF
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–31
Targeting Clock and Register-Control Architectural Features
data to the clock to remove the metastability issues. You should place these registers
close to each other in the device to keep the routing delays to a minimum, which
decreases data arrival times and increases MTBF. Ensure that these follower registers
themselves are not reset, but are initialized over a period of several clock cycles by
“flushing out” their current or initial state.

Figure 12–19 shows a schematic example of this circuit.

Example 12–9 shows the equivalent Verilog code. The active edge of the reset is now
in the sensitivity list for the procedural block, which infers a clock enable on the
follower registers with the inverse of the reset signal tied to the clock enable. The
follower registers should be in a separate procedural block as shown using non-
blocking assignments.

Figure 12–19. Asynchronous Reset with Follower Registers

PRN

CLRN

D Q

DFF

reg1

PRN

CLRN

D Q

DFF

reg2

PRN

CLRN

D Q

DFF

reg3

data_a INPUT
VCC

VCC
INPUTreset_n

VCC
INPUTclock

out_aOUTPUT

Example 12–9. Verilog Code of Asynchronous Reset with Follower Registers

module async_reset (
input clock,
input reset_n,
input data_a,
output out_a,
);

reg reg1, reg2, reg3;

assign out_a = reg3;

always @ (posedge clock, negedge reset_n)
begin

if (!reset_n)
reg1 <= 1’b0;

else
reg1 <= data_a;

end

always @ (posedge clock)
begin

reg2 <= reg1;
reg3 <= reg2;

end
endmodule // async_reset
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–32 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
You can easily constrain an asynchronous reset. By definition, asynchronous resets
have a non-deterministic relationship to the clock domains of the registers they are
resetting. Therefore, static timing analysis of these resets is not possible and you can
use the set_false_path command to exclude the path from timing analysis (as shown
in Example 12–10). Because the relationship of the reset to the clock at the register is
not known, you cannot run recovery and removal analysis in the TimeQuest analyzer
for this path. Attempting to do so even without the false path statement results in no
paths reported for recovery and removal.

The asynchronous reset is susceptible to noise, and a noisy asynchronous reset can
cause a spurious reset. You must ensure that the asynchronous reset is debounced and
filtered. You can easily enter into a reset asynchronously, but releasing a reset
asynchronously can lead to potential problems (also referred to as “reset removal”)
with metastability, including the hazards of unwanted situations with synchronous
circuits involving feedback.

Synchronized Asynchronous Reset
To avoid potential problems associated with purely synchronous resets and purely
asynchronous resets, you can use synchronized asynchronous resets. Synchronized
asynchronous resets combine the advantages of synchronous and asynchronous
resets. These resets are asynchronously asserted and synchronously deasserted. This
takes effect almost instantaneously, and ensures that no data path for speed is
involved, and that the circuit is synchronous for timing analysis and is resistant to
noise.

Example 12–10. SDC Constraints for Asynchronous Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \

-name {clock} \
-period 10.0 \
-waveform {0.0 5.0}

Input constraints on data
set_input_delay 7.0 \

-max \
-clock [get_clocks {clock}]\
[get_ports {data_a}]

set_input_delay 1.0 \
-min \
-clock [get_clocks {clock}] \
[get_ports {data_a}]

Cut the asynchronous reset input
set_false_path \

-from [get_ports {reset_n}] \
-to [all_registers]
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–33
Targeting Clock and Register-Control Architectural Features
Figure 12–20 shows a method for implementing the synchronized asynchronous reset.
You should use synchronizer registers in a similar manner as synchronous resets.
However, the asynchronous reset input is gated directly to the CLRN pin of the
synchronizer registers and immediately asserts the resulting reset. When the reset is
deasserted, logic “1” is clocked through the synchronizers to synchronously deassert
the resulting reset.

Figure 12–20. Schematic of Synchronized Asynchronous Reset

PRN

CLRN

D Q

DFF

reg3

VCC

PRN

CLRN

D Q

DFF

reg4

PRN

CLRN

D Q

DFF

reg1

PRN

CLRN

D Q

DFF

reg2

data_a

clock

INPUT
VCC

VCC
INPUT

VCC
INPUTreset_n

VCC
INPUTdata_b

out_aOUTPUT

out_b
OUTPUT
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

12–34 Chapter 12: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Example 12–11 shows the equivalent Verilog code. Use the active edge of the reset in
the sensitivity list for the blocks in Figure 12–20.

To minimize the metastability effect between the two synchronization registers, and to
increase the MTBF, the registers should be located as close as possible in the device to
minimize routing delay. If possible, locate the registers in the same logic array block
(LAB). The input reset signal (reset_n) must be excluded with a set_false_path

command, so the reset that comes from the synchronization register (rst_n) can be
timed in the TimeQuest analyzer with recovery and removal Analysis.

Example 12–11. Verilog Code for Synchronized Asynchronous Reset

module sync_async_reset (
input clock,
input reset_n,
input data_a,
input data_b,
output out_a,
output out_b
);

reg reg1, reg2;
reg reg3, reg4;

assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;

always @ (posedge clock, negedge reset_n)
begin

if (!reset_n)
begin

reg3 <= 1’b0;
reg4 <= 1;b0;

end
else
begin

reg3 <= 1’b1;
reg4 <= reg3;

end
end

always @ (posedge clock, negedge rst_n)
begin

if (!rst_n)
begin

reg1 <= 1’b0;
reg2 <= 1;b0;

end
else
begin

reg1 <= data_a;
reg2 <= data_b;

end
end

endmodule // sync_async_reset
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

Chapter 12: Recommended Design Practices 12–35
Targeting Embedded RAM Architectural Features
The instantaneous assertion of synchronized asynchronous resets is susceptible to
noise and runt pulses. If possible, you should debounce the asynchronous reset and
filter the reset before it enters the device. The circuit in Figure 12–20 on page 12–33
ensures that the synchronized asynchronous reset is at least one full clock period in
length. To extend this time to n clock periods, you must increase the number of
synchronizer registers to n + 1. You must connect the asynchronous input reset
(reset_n) to the CLRN pin of all the synchronizer registers to maintain the asynchronous
assertion of the synchronized asynchronous reset.

f For more information about specifying the minimum routing delay, refer to the Best
Practices for the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Register Control Signals
Avoid using an asynchronous load signal if the design target device architecture does
not include registers with dedicated circuitry for asynchronous loads. Also, avoid
using both asynchronous clear and preset if the architecture provides only one of
these control signals. Stratix III devices, for example, directly support an
asynchronous clear function, but not a preset or load function. When the target device
does not directly support the signals, the synthesis or placement and routing software
must use combinational logic to implement the same functionality. In addition, if you
use signals in a priority other than the inherent priority in the device architecture,
combinational logic may be required to implement the necessary control signals.
Combinational logic is less efficient and can cause glitches and other problems; it is
best to avoid these implementations.

f For Verilog HDL and VHDL examples of registers with various control signals, and
information about the inherent priority order of register control signals in Altera
device architecture, refer to the Recommended HDL Coding Styles chapter in volume 1
of the Quartus II Handbook.

Targeting Embedded RAM Architectural Features
Altera’s dedicated memory architecture offers many advanced features that you can
target easily with the MegaWizard™ Plug-In Manager or with the recommended HDL
coding styles that infer the appropriate RAM megafunction (ALTSYNCRAM or
ALTDPRAM). Use synchronous memory blocks for your design, so that the blocks
can be mapped directly into the device dedicated memory blocks. You can use
single-port, dual-port, or three-port RAM with a single- or dual-clocking method. You
should not infer the asynchronous memory logic as a memory block or place the
asynchronous memory logic in the dedicated memory block, but implement the
asynchronous memory logic in regular logic cells.

Altera memory blocks have different read-during-write behaviors, depending on the
targeted device family, memory mode, and block type. Read-during-write behavior
refers to read and write from the same memory address in the same clock cycle; for
example, you read from the same address to which you write in the same clock cycle.
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53024.pdf
http://www.altera.com/literature/hb/qts/qts_qii53024.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

12–36 Chapter 12: Recommended Design Practices
Conclusion
You should check how you specify the memory in your HDL code when you use
read-during-write behavior. The HDL code that describes the read returns either the
old data stored at the memory location, or the new data being written to the memory
location.

In some cases, when the device architecture cannot implement the memory behavior
described in your HDL code, the memory block is not mapped to the dedicated RAM
blocks, or the memory block is implemented using extra logic in addition to the
dedicated RAM block. Implement the read-during-write behavior using single-port
RAM in Arria GX devices and the Cyclone and Stratix series of devices to avoid this
extra logic implementation.

f For Verilog HDL and VHDL examples and guidelines for inferring RAM functions
that match the dedicated memory architecture in Altera devices, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; if, for example, you never read and write from the same
address in the same clock cycle. For Quartus II integrated synthesis, add the synthesis
attribute ramstyle=”no_rw_check” to allow the software to choose the
read-during-write behavior of a RAM, rather than using the read-during-write
behavior specified in your HDL code. Using this type of attribute prevents the
synthesis tool from using extra logic to implement the memory block and, in some
cases, can allow memory inference when it would otherwise be impossible.

f For details about using the ramstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about the
synthesis attributes in other synthesis tools, refer to your synthesis tool
documentation, or to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus II Handbook.

Conclusion
Following the design practices described in this chapter can help you to consistently
meet your design goals. Asynchronous design techniques may result in incomplete
timing analysis, may cause glitches on data signals, and may rely on propagation
delays in a device leading to race conditions and unpredictable results. Taking
advantage of the architectural features in your FPGA device can also improve the
quality of your results.

Document Revision History
Table 12–1 shows the revision history for this chapter.

Table 12–1. Document Revision History (Part 1 of 2)

Date Version Changes

November 2013 13.1.0 Removed HardCopy device information.

May 2013 13.0.0
■ Added “Optimizing for Physical Implementation and Timing Closure” section.

■ Removed PrimeTime support.

June 2012 12.0.0 Removed survey link.
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 12: Recommended Design Practices 12–37
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Added information to “Reset Resources” on page 12–24.

December 2010 10.1.0

■ Title changed from Design Recommendations for Altera Devices and the Quartus II
Design Assistant.

■ Updated to new template.

■ Added references to Quartus II Help for “Metastability” on page 9–13 and
“Incremental Compilation” on page 9–13.

■ Removed duplicated content and added references to Quartus II Help for “Custom
Rules” on page 9–15.

July 2010 10.0.0

■ Removed duplicated content and added references to Quartus II Help for Design
Assistant settings, Design Assistant rules, Enabling and Disabling Design Assistant
Rules, and Viewing Design Assistant reports.

■ Removed information from “Combinational Logic Structures” on page 5–4

■ Changed heading from “Design Techniques to Save Power” to “Power
Optimization” on page 5–12

■ Added new “Metastability” section

■ Added new “Incremental Compilation” section

■ Added information to “Reset Resources” on page 5–23

■ Removed “Referenced Documents” section

November 2009 9.1.0 ■ Removed documentation of obsolete rules.

March 2009 9.0.0 ■ No change to content.

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size

■ Added new section “Custom Rules Coding Examples” on page 5–18

■ Added paragraph to “Recommended Clock-Gating Methods” on page 5–11

■ Added new section: “Design Techniques to Save Power” on page 5–12

May 2008 8.0.0

■ Updated Figure 5–9 on page 5–13; added custom rules file to the flow

■ Added notes to Figure 5–9 on page 5–13

■ Added new section: “Custom Rules Report” on page 5–34

■ Added new section: “Custom Rules” on page 5–34

■ Added new section: “Targeting Embedded RAM Architectural Features” on
page 5–38

■ Minor editorial updates throughout the chapter

■ Added hyperlinks to referenced documents throughout the chapter

Table 12–1. Document Revision History (Part 2 of 2)

Date Version Changes
November 2013 Altera Corporation Quartus II Handbook Version 13.1
Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

12–38 Chapter 12: Recommended Design Practices
Document Revision History
Quartus II Handbook Version 13.1 November 2013 Altera Corporation
Volume 1: Design and Synthesis

	12. Recommended Design Practices
	Synchronous FPGA Design Practices
	Fundamentals of Synchronous Design
	Hazards of Asynchronous Design

	Design Guidelines
	Combinational Logic Structures
	Combinational Loops
	Latches
	Delay Chains
	Pulse Generators and Multivibrators

	Clocking Schemes
	Internally Generated Clocks
	Divided Clocks
	Ripple Counters
	Multiplexed Clocks
	Gated Clocks
	Synchronous Clock Enables
	Recommended Clock-Gating Methods

	Optimizing for Physical Implementation and Timing Closure
	Planning Physical Implementation
	Planning FPGA Resources
	Optimizing for Timing Closure
	Optimizing Critical Timing Paths

	Power Optimization
	Metastability
	Incremental Compilation

	Checking Design Violations
	Quartus II Design Flow with the Design Assistant
	Enabling and Disabling Design Assistant Rules
	Viewing Design Assistant Results
	Custom Rules
	Custom Rules Coding Examples

	Targeting Clock and Register-Control Architectural Features
	Clock Network Resources
	Reset Resources
	Synchronous Reset
	Asynchronous Reset
	Synchronized Asynchronous Reset

	Register Control Signals

	Targeting Embedded RAM Architectural Features
	Conclusion
	Document Revision History

