Creating Qsys Components

2013.11.4

Q151022 B< Subscribe (] Send Feedback

In order to describe and package IP components for use in a Qsys system, you must create a Hardware
Component Definition File (_hw.tcl) which will describes your component, its interfaces and HDL files.
Qsys provides the Component Editor to help you create a simple _hw.tcl file.

The Demo AXI Memory example on the Qsys Design Examples page of the Altera” web site provides the
full code examples that appear in the following topics.

Qsys supports standard Avalon®, AMBA"” AXI3" (version 1.0), AMBA AXI4 (version 2.0), and AMBA
APB 3 (version 1.0) interface specifications.

Related Information
o Avalon Interface Specifications
o AMBA Protocol Specifications

« Demo AXI Memory Example

Qsys Components

A Qsys component includes the following elements:

 Information about the component type, such as name, version, and author.
« HDL description of the component’s hardware, including SystemVerilog, Verilog HDL, or VHDL files

+ Constraint files (Synopsys Design Constraints File (.sdc) and/or Quartus II IP File (.qip)) that define the
component for synthesis and simulation.

« A component’s interfaces, including I/O signals.
o The parameters that configure the operation of the component.

Component Interface Support

Components can have any number of interfaces in any combination. Each interface represents a set of signals
that you can connect within a Qsys system, or export outside of a Qsys system.

©2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words

and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other

words and logos identified as trademarks or service marks are the property of their respective holders as described at ISO
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with 900?:2008
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes Registered
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly

agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51022
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51022%202013.11.4)%20Creating%20Qsys%20Components&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

QlI51022
7-2 Component Structure 2013.11.4

Qsys components can include the following types of interfaces:

o Memory-Mapped—Implements a partial crossbar interconnect structure (Avalon-MM, AXI, and APB)
that provides concurrent paths between master and slaves. Interconnect consists of synchronous logic
and routing resources inside the FPGA, and implementation is based on a network-on-chip architecture.

+ Streaming—Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirectional data,
as well as high-bandwidth, low-latency components. Streaming creates datapaths for unidirectional traffic,
including multichannel streams, packets, and DSP data. The Avalon-ST interconnect is flexible and can
implement on-chip interfaces for industry standard telecommunications and data communications cores,
such as Ethernet, Interlaken, and video. You can define bus widths, packets, and error conditions.

 Interrupts—Connects interrupt senders and the interrupt receivers of the component that serves them.
Qsys supports individual, single-bit interrupt requests (IRQs). In the event that multiple senders assert
their IRQs simultaneously, the receiver logic (typically under software control) determines which IRQ
has highest priority, then responds appropriately.

o Clocks—Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source connects
internally to more than one source.

+ Resets—Connects reset sources with reset input interfaces. If your system requires a particular positive-
edge or negative-edge synchronized reset, Qsys inserts a reset controller to create the appropriate reset
signal. If you design a system with multiple reset inputs, the reset controller ORs all reset inputs and
generates a single reset output.

+ Conduits—Connects point-to-point conduit interfaces, or represent signals that are exported from the
Qsys system. Qsys uses conduits for component I/O signals that are not part of any supported standard
interface. You can connect two conduits directly within a Qsys system as a point-to-point connection,
or conduit interfaces can be exported and brought to the top-level of the system as top-level system I/O.
You can use conduits to connect to external devices, for example external DDR SDRAM memory, and
to FPGA logic defined outside of the Qsys system.

Component Structure

Altera provides components automatically installed with the Quartus” II software. You can obtain a list of
Qsys-compliant components provided by third-party IP developers on Altera's Intellectual Property &
Reference Designs page by typing: qsys certified in the Search box, and then selecting IP Core & Reference
Designs. Components are also provided with Altera development kits, which are listed on the All
Development Kits page.

Every component is defined with a < component_name >_hw.tcl file, a text file written in the Tcl scripting
language that describes the component to Qsys. When you design your own custom component, you can
create the _hw.tcl file manually, or by using the Qsys Component Editor.

The Component Editor simplifies the process of creating _hw.tcl files by creating a file that you can edit
outside of the Component Editor to add advanced procedures. When you edit a previously saved _hw.tcl
tile, Qsys automatically backs up the earlier version as _hw.tcl~.

You can move component files into a new directory, such as a network location, so that other users can use
the component in their systems. The _hw.tcl file contains relative paths to the other files, so if you move an
_hw.tcl file, you should also move all the HDL and other files associated with it.

Altera Corporation Creating Qsys Components

(] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022 . s
3013.11.4 Component File Organization 7-3

There are three component types:

« Static— Static components always generate the same output, regardless of their parameterization.
Components that instantiate static components must have only static children.

+ Generated—A generated component's fileset callback allows an instance of the component to create
unique HDL design files based on the instance's parameter values.

« Composed—Composed components are subsystems constructed from instances of other components.
You can use a composition callback to manage the subsystem in a composed component.

Related Information
 Intellectual Property & Reference Designs
+ Creating a Composed Component or Subsystem on page 7-28

o Adding Component Instances to a Static or Generated Component on page 7-32

Component File Organization

A typical component uses the following directory structure where the names of the directories are not
significant:

<component_directory>/

o <hdl>/—Contains the component HDL design files, for example .v, .sv, or .vhd files that contain the
top-level module, along with any required constraint files.

o <component_name> _hw.tcl—The component description file.

o <component_name> _sw.tcl—The software driver configuration file. This file specifies the paths for the
.cand .h files associated with the component, when required.

» <software>/—Contains software drivers or libraries related to the component.

Note: Refer to the Nios II Software Developer’s Handbook for information about writing a device driver or
software package suitable for use with the Nios II processor.

Related Information
o Hardware Abstraction LayerTool Reference (Nios II Software Developer’s Handbook)

o Nios II Software Build Tool Reference (Nios II Software Developer’s Handbook)

Component Versions

Qsys systems support multiple versions of the same component within the same system; you can create and
maintain multiple versions of the same component.

If you have multiple _hw.tcl files for components with the same NAME module properties and different
VERSION module properties, both versions of the component are available.

If multiple versions of the component are available in the Qsys Library, you can add a specific version of a
component by right-clicking the component, and then selecting Add version <version_number>.

Upgrading IP Components to the Latest Version
When you open a Qsys design, if Qsys detects IP components that require regeneration, the Upgrade IP
Cores dialog box appears and allows you to upgrade outdated components.

Creating Qsys Components Altera Corporation

() send Feedback

http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7-4 Life Cycle of a Component 2%2‘2_11012.2
Components that you must upgrade in order to successfully compile your design appear in red. Status icons
indicate whether a component is currently being regenerated, the component is encrypted, or that there is
not enough information to determine the status of component. To upgrade a component, in the Upgrade
IP Cores dialog box, select the component that you want to upgrade, and then click Upgrade. The Quartus
IT software maintains a list of all IP components associated with your design on the Components tab in the
Project Navigator.

Related Information
Upgrade IP Components Dialog Box

Life Cycle of a Component

When you define a component with the Qsys Component Editor, or a custom _hw.tcl file, you specify the
information that Qsys requires to instantiate the component in a Qsys system and to generate the appropriate
output files for synthesis and simulation.

The following phases describe the process when working with components in Qsys:

» Discovery—During the discovery phase, Qsys reads the _hw.tcl file to identify information that appears
in the Qsys Library, such as the component's name, version, and documentation URLs. Each time you
open Qsys, the tool searches for the following file types using the default search locations and entries in
the IP Search Path:

o _hw.tcl files—Each _hw.tcl file defines a single component.
o IP Index (.ipx) files—Each .ipx file indexes a collection of available components, or a reference to
other directories to search.

+ Static Component Definition—During the static component definition phase, Qsys reads the _hw.tcl
file to identify static parameter declarations, interface properties, interface signals, and HDL files that
define the component. At this stage of the life cycle, the component interfaces might be only partially
defined.

o Parameterization—During the parameterization phase, after an instance of the component is added to
a Qsys system, the user of the component specifies parameters with the component’s parameter editor.

 Validation—During the validation phase, Qsys validates the values of each instance's parameters against
the allowed ranges specified for each parameter. You can use callback procedures that run during the
validation phase to provide validation messages. For example, if there are dependencies between parameters
where only certain combinations of values are supported, you can report errors for the unsupported
values.

Altera Corporation Creating Qsys Components

() send Feedback

http://quartushelp.altera.com/current/master.htm#mergedProjects/global/pjn/pjn_com_upgrade_ip.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51022
2013.11.4

Creating Qsys Components in the Component Editor 7-5

 Elaboration—During the elaboration phase, Qsys queries the component for its interface information.
Elaboration is triggered when an instance of a component is added to a system, when its parameters are
changed, or when a system property changes. You can use callback procedures that run during the
elaboration phase to dynamically control interfaces, signals, and HDL files based on the values of
parameters. For example, interfaces defined with static declarations can be enabled or disabled during
elaboration. When elaboration is complete, the component's interfaces and design logic must be completely
defined.

« Composition—During the composition phase, a component can manipulate the instances in the
component's subsystem. The _hw.tcl file uses a callback procedure to provide parameterization and
connectivity of subcomponents.

+ Generation—During the generation phase, Qsys generates synthesis or simulation files for each component
in the system into the appropriate output directories, as well as any additional files that support associated
tools.

Creating Qsys Components in the Component Editor

The Qsys Component Editor, accessed by clicking New Component in the Qsys Library, allows you to create
and package a component for use in Qsys. When you use the Component Editor to define a component, the
Component Editor writes the information to the _hw.tcl file.

The Component Editor allows you to perform the following tasks:

o Specify component’s identifying information, such as name, version, author, etc.

o Specify the SystemVerilog, Verilog HDL, or VHDL files, and constraint files that define the component
for synthesis and simulation.

+ Create an HDL template for a component by first defining its parameters, signals, and interfaces.

« Associate and define signals for a component’s interfaces.

« Set parameters on interfaces, which specify characteristics.

o Specify relationships between interfaces.

o Declare parameters that alter the component structure or functionality.

If the component is HDL-based, you must define the parameters and signals in the HDL file, and cannot
add or remove them in the Component Editor. If you have not yet created the top-level HDL file, you declare
the parameters and signals in the Component Editor, and they are then included in the HDL template file
that Qsys creates.

In a Qsys system, the interfaces of a component are connected within the system, or exported as top-level
signals from the system.

If you are creating the component using an existing HDL file, the order in which the tabs appear in the
Component Editor reflects the recommended design flow for component development. You can use the
Prev and Next buttons at the bottom of the Component Editor window to guide you through the tabs.

If the component is not based on an existing HDL file, enter the parameters, signals, and interfaces first, and
then return to the Files tab to create the top-level HDL file template. When you click Finish, Qsys creates
the component _hw.tcl file with the details provided on the Component Editor tabs.

After the component is saved, it is available in the Qsys Library.

If you require features in the component that are not supported by the Component Editor, such as callback
procedures, you can use the Component Editor to create the _hw.tcl file, and then manually edit the file to

Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
7-6 Saving a Component and Creating an _hw.tcl File 2%13_1 1.4

complete the component definition. Subsequent topics document the _hw.tcl commands that are generated
by the Component Editor, as well as some of the advanced features that you can add with your own _hw.tcl
commands.

Related Information
Component Interface Tcl Reference

Saving a Component and Creating an _hw.tcl File
You save a component by clicking Finish in the Component Editor. The Component Editor saves the

component to a file with the file name <component_name> _hw.tcl.

Altera recommends that you save _hw.tcl files and their associated files in an ip/ <class-name> directory
within your Quartus II project directory. You can also publish component information for use by software,
such as a C compiler and a board support package (BSP) generator.

Refer to Creating a System with Qsys for information on how to search for and add components to the Qsys
library for use in your designs.

Related Information
Publishing Component Information to Embedded Software (Nios II Software Developer’s Handbook)
Creating a System with Qsys

Editing a Component with the Component Editor

In Qsys, you make changes to a component by right-clicking the component in the Library, and then clicking
Edit. After making changes, click Finish to save the changes to the _hw.tcl file. You can open the _hw.tcl
file in a text editor to view the hardware Tcl for the component. If you edit the _hw.tcl file to customize the
component with advanced features, you cannot use the Component Editor to make further changes without
over-writing your customized file.

You cannot use the Component Editor to edit components installed with the Quartus II software, such as
Altera-provided components. If you edit the HDL for a component and change the interface to the top-level
module, you must edit the component to reflect the changes you made to the HDL.

Related Information
Creating Qsys Components (Quartus IT Help)

Specifying Basic Component Information

The Component Type tab in the Component Editor allows you to specify the following information about
the component:

Altera Corporation Creating Qsys Components

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/system/qsys/qsys_pro_creating_components.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51022
2013.11.4

Specifying Basic Component Information 7-7

Name—Specifies the name used in the _hw.tcl filename, as well as in the top-level module name when
you create a synthesis wrapper file for a non HDL-based component.

Display name—Identifies the component in the parameter editor, which you use to configure and instance
of the component, and also appears in the Library under Project and on the System Contents tab.
Version—Specifies the version number of the component.

Group—Represents the category of the component in the list of available components in the Library.
You can select an existing group from the list, or define a new group by typing a name in the Group box.
Separating entries in the Group box with a slash defines a subcategory. For example, if you type Memories
and Memory Controllers/On-Chip, the component appears in the Library under the On-Chip group,
which is a subcategory of the Memories and Memory Controllers group. If you save the component in
the project directory, the component appears in the Library in the group you specified under Project.
Alternatively, if you save the component in the Quartus II installation directory, the component appears
in the specified group under Library.

Description—Allows you to describe the component. This description appears when the user views the
component details.

Created By—Allows you to specify the author of the component.

Icon—Allows you to enter the relative path to an icon file (.gif, .jpg, or .png format) that represents the
component and appears as the header in the parameter editor for the component. The default image is
the Altera MegaCore function icon.

Documentation—Allows you to add links to documentation for the component, and appears when you
right-click the component in the Library, and then select Details.

« To specify an Internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html.

« To specify a file in the file system, begin your path with file:/// for Linux, and file://// for Windows;
for example (Windows): file:////company_server/datasheets my_memory_controller.pdf.

The Display name, Group, Description, Created By, Icon, and Documentation entries are optional. Figure
7-1 shows the Component Type tab with the component information.

Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7-8 Specifying Basic Component Information

Figure 7-1: Component Type Tab in the Component Editor

QI151022
2013.11.4

-
% Component Editor - demo_axi_memory_hw.tcl*

File Templates

Component Type | File.sl Parametersl Signals-l Interfaces

¥ About Component Type

Name: deme_axi_memory
Display name: |pemo AXI Memory
Version: 1.0

Group: My Components

Description: Demonstration AX-3 memory with optional Avalon-ST port
Created by: Anerﬂ|

lzon:

Documentation: Title URL

-

When you use the Component Editor to create a component, it writes this basic component information in
the _hw.tcl file. The example below shows the component hardware Tcl code related to the entries for the
Component Type tab in figure above. The package r equi r e command specifies the Quartus II software
version that Qsys uses to create the _hw.tcl file, and ensures compatibility with this version of the Qsys API

in future ACDS releases.

The component defines its basic information with various module properties using the

set _nodul e_pr operty command. Forexample,set _nodul e_property NAMEspecifies the name
of the component, while set _nodul e_pr operty VERSI ONallows you to specify the version of the
component. When you apply a version to the _hw.tcl file, it allows the file to behave exactly the same way

in future releases of the Quartus II software.

Example 7-1: _hw.tcl Created from Entries in the Component Type tab

request TCL package from ACDS 13.1
package require -exact gsys 13.1
deno_axi _nenory

set _nodul e_property DESCRI PTI ON \
"Denmo AXI-3 nmenory with optional Aval on-ST port"

set _modul e_property NAME denp_axi _menory

set _nodul e_property VERSION 1.0

set _nodul e_property GROUP "My Conponents”

set _nodul e_property AUTHOR Altera

set _nodul e_property DI SPLAY NAME "Deno AXI Menory"

Altera Corporation Creating Qsys Components

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51022
2013.11.4

Specifying Files for Synthesis and Simulation 7-9

Related Information

Component Interface Tcl Reference

Specifying Files for Synthesis and Simulation

The Files tab in the Component Editor allows you to specitfy files for synthesis and simulation. If you already
have HDL code that describes the Qsys component that you want to create, you can specify the files on the
Files tab. If you have not yet created the HDL code that describes the component, but you have identified
the signals and parameters that you want in the component, you can use the Files tab to create a top-level
HDL template file. The Component Editor generates the appropriate _hw.tcl commands to specify the files.
You can also write your own hw.tcl file with the same commands, if you are not using the Component Editor.

A component uses filesets to specify the different sets of files that can be generated for an instance of the
component. The supported fileset types are: QUARTUS_SYNTH, for synthesis and compilation in the Quartus
IT software, SI M_VERI LOG for Verilog HDL simulation, and SI M_VHDL, for VHDL simulation.

Ina_hw.tcl file, you add a fileset to a component with theadd_f i | eset command. You then list specific
fileswiththeadd_fi | eset _fi | e command, which adds the specified files to the most recently declared
fileset. The add_f i | eset _property command allows you to add properties such as TOP_LEVEL,
which specifies the top-level HDL module for the component.

You can populate a fileset with a a fixed list of files, add different files based on a parameter value, or even
generate an HDL file with a custom HDL generator function outside of the _hw.tcl file.

Specifying HDL Files for Synthesis

In the Component Editor, you can add HDL files and other support files that should be included when this
component is created to the list of Synthesis Files by clicking +, and then selecting the files in the Open
dialog box.

A component must specify an HDL file as the top-level file, which contains the top-level module. The
Synthesis Files list might also include supporting HDL files, such as timing constraints, or other files required
to successfully synthesize and compile in the Quartus II software. The synthesis files for a component are
copied to the generation output directory during Qsys system generation.

Figure 7-2 indicates the demo_axi_memory.sv file as the top-level file for the component in the Synthesis
Files section on the Files tab.

Creating Qsys Components Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
7-10 Creating a New HDL File for Synthesis 2?)13.1 1.4

Figure 7-2: Using HDL Files to Define a Component

- ~
%= Component Editor - demo_axi_memory_hw.tcl* Iﬁ

File Templates

CDmpDnentType| Files | Parametersl Signals-l Interfaces

+ About Files

Synthesis Files
These files describe this component's implementation, and will be created when a Quartus |l synthesis model is generated.
The parameters and signals found in the top-level module will be used for this compoenent's parameters and signals.

Output Path Source File Type Aftributes

demo_axi_memory.sv deme_axi_memory.sv System Verilog HDL Top-level File
single_clk_ram.v =ingle_clk_ram.v Verilog HOL no attributes

E] [Analyze Synthesis Files | Create Synthesis File from Signals

Top-level Module: | demo_axi_memory |

Creating a New HDL File for Synthesis

If you do not already have an HDL implementation of the component, you can use the Component Editor
to define the component, and then create a simple top-level synthesis file containing the signals and parameters
for the component. You can then edit this HDL file to add the logic that directs the component's behavior.

To begin, you first specify the information about the component on the Parameters, Signals, and Interfaces
tabs. Then, you return to the Files tab to create an HDL file by clicking Create Synthesis File from Signals.
The Component Editor creates an HDL file from the specified parameters and signals.

Analyzing Synthesis Files

After the top-level HDL file is specified in the Component Editor, click Analyze Synthesis Files to analyze
the parameters and signals in the top-level, and then select the top-level module from the Top Level Module
list. If there is a single module or entity in the HDL file, Qsys automatically populates the Top-level Module
list.

Once analysis is complete and the top-level module is selected, the parameters and signals found in the top-
level module are used as the parameters and signals for the component, and you can view them on the
Parameters and Signals tabs. The Component Editor might report errors or warnings at this stage, because
the signals and interfaces are not yet fully defined.

Note: At this stage in the Component Editor flow, you cannot add or remove parameters or signals created
from a specified HDL file without editing the HDL file itself.

The synthesis files are added to a fileset with the name QUARTUS_SYNTH and type QUARTUS_SYNTHin
the _hw.tcl file created by the Component Editor. The top-level module is used to specify the TOP_LEVEL
fileset property. Each synthesis file is individually added to the fileset. If the source files are saved in a different
directory from the working directory where the Component Editor is launched and the _hw.tcl is located,

you can use standard fixed or relative path notation to identify the file location for the PATH variable.

Altera Corporation Creating Qsys Components

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
3013_11_4 Naming HDL Signals for Automatic Interface and Type Recognition 7-11

Example 7-2 shows the component hardware Tcl code related to the entries for the Files Type tab in the
Synthesis Files section shown in Figure 7-2.

Example 7-2: _hw.tcl Created from Entries in the Files tab in the Synthesis Files Section

file sets

add_fil eset QUARTUS_SYNTH QUARTUS_SYNTH "" ""
set _fileset_property QUARTUS SYNTH TOP_LEVEL deno_axi _nmenory

add_fileset _file deno_axi _nmenory.sv
SYSTEM VERI LOG PATH denp_axi _nenory. sv

add fileset file single clk ramv VERI LOG PATH single clk ramyv

Related Information

o Component Interface Tcl Reference

+ Specifying HDL Files for Synthesis on page 7-9

Naming HDL Signals for Automatic Interface and Type Recognition

If you create the component's top-level HDL file before using the Component Editor, the Component Editor
recognizes the interface and signal types based on the signal names in the source HDL file. This
auto-recognition feature eliminates the task of manually assigning each interface and signal type in the
Component Editor.

To enable this auto-recognition feature, you must create signal names using the following naming convention:
<interface type prefix>_<interface name>_<signal type>

Specifying an interface name with <interface name> is optional if you have only one interface of each type
in the component definition. For interfaces with only one signal, such as clock and reset inputs, the <interface
type prefix> is also optional. When the Component Editor recognizes a valid prefix and signal type for a
signal, it automatically assigns an interface and signal type to the signal based on the naming convention. If
no interface name is specified for a signal, you can choose an interface name on the Interfaces tab in the
Component Editor.

Table 7-1: Interface Type Prefixes for Automatic Signal Recognition

Interface Prefix Interface Type

asi Avalon-ST sink (input)
aso Avalon-ST source (output)
avm Avalon-MM master
avs Avalon-MM slave
axm AXI master
Creating Qsys Components Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7-12 Specifying Files for Simulation

QI151022
2013.11.4

Interface Prefix Interface Type

axs AXI slave

apm APB master

aps APB slave

coe Conduit

csi Clock Sink (input)

cso Clock Source (output)

inr Interrupt receiver

ins Interrupt sender

ncm Nios II custom instruction master
ncs Nios IT custom instruction slave
rsi Reset sink (input)

rso Reset source (output)

tcm Avalon-TC master

tcs Avalon-TC slave

Refer to the Avalon Interface Specifications or the AMBA Protocol Specification for the signal types available

for each interface type.

Related Information

o Avalon Interface SpecificationsProtocol Specification

o AMBA Protocol Specification

Specifying Files for Simulation

To support Qsys system generation for simulation, a component must specify the VHDL or Verilog simulation
files. Simulation files are generated when a user adds the component to a Qsys system and chooses to generate
Verilog or VHDL simulation files. In most cases, these files are the same as the synthesis files. If there are
simulation-specific HDL files or simulation models, you can use them in addition to, or in place of the
synthesis files. To use your synthesis files as your simulation files in the Component Editor, on the Files tab,
click Copy From Synthesis Files to copy the list of synthesis files to the Verilog Simulation Files or VHDL

Simulation Files lists.

You specify the simulation files in a similar way as the synthesis files with the fileset commands in a _hw.tcl
file. The code example below shows SI M_VERI LOGand SI M_VHDL filesets for Verilog and VHDL
simulation output files. In this example, the same Verilog files are used for both Verilog and VHDL outputs,
and there is one additional System Verilog file added. This method works for designers of Verilog IP to

Altera Corporation

Creating Qsys Components

() send Feedback

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151022
2013.11.4

Creating Qsys Components

Specifying Files for Simulation 7-13

support users who want to generate a VHDL top-level simulation file when they have a mixed-language
simulation tool and license that can read the Verilog output for the component. Figure 7-3 shows the files
specified for simulation on the Files tab.

Figure 7-3: Specifying the Simulation Output Files

Verilog Simulation Files

These files will be produced when a Verilog simulation model is generated.

Qutput Path Source File Type Adtributes.
demo_axi_memory.sv demo_axi_memory.sv System Verilog HDL no attributes
"} |single_clk_ram.v =single_clk_ram.v Verilog HDL no attributes

verbosity_pkg.sv verification_libfverbosity_pkg.sv System Verilog HDL

B Copy from Synthesis Files

VHDL Simulation Files
These files wil be produced when a WHDL simulation model is generated.

Qutput Path Source File Type Adtributes.
demo_axi_memory.sv demo_axi_memory.sv System Verilog HDL no attributes
single_clk_ram.v =single_clk_ram.v Verilog HDL no attributes

verbosity_pkg.sv verification_libfverbosity_pkg.sv System Verilog HDL

B Copy from Synthesis Files

Example 7-3: _hw.tcl Created from Entries in the Files tab in the Simulation Files Section

add _fileset SIMVERI LOG SIMVERI LOG "" ""
set fileset property SIMVERI LOG TOP_LEVEL deno_axi _nenory
add _fileset file single clk ramv VERI LOG PATH single_clk ramyv

add fileset file verbosity pkg.sv SYSTEM VERI LOG PATH \
verification_|lib/verbosity_pkg.sv

add_fileset _file deno_axi _menory.sv SYSTEM VERI LOG PATH \
deno_axi _menory. sv

add fileset SSMVHDL SIMVHDL "" ™"
set fileset property SIMVHDL TOP_LEVEL denpb_axi _nenory
set _fileset_property SIMVHDL ENABLE RELATI VE_| NCLUDE_PATHS f al se

add_fileset file deno_axi _nmenory.sv SYSTEM VERI LOG PATH \
deno_axi _nmenory. sv

add_fileset _file single_clk _ ramv VERI LOG PATH single_clk ramyv

add_fileset _file verbosity_pkg.sv SYSTEM VERI LOG PATH \
verification_lib/verbosity_pkg.sv

Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
7-14 Including Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component 2%13_1 1.4

Related Information
Component Interface Tcl Reference

Including Internal Register Map Description in the .svd for Slave Interfaces Connected

to an HPS Component

Qsys supports the ability for IP component designers to specify register map information on their slave
interfaces. This allows components with slave interfaces that are connected to an HPS component to include
their internal register description in the generated .svd file.

To specify their internal register map, the IP component designer must write and generate their own .svd
file and attach it to the slave interface using the following command:

set _i nterface_property <slave interface> CMSI S_SVD_FI LE <file path>

The CVSBI S_SVD_VARI ABLES interface property allows for variable substitution inside the .svd file. You
can dynamically modify the character data of the .svd file by using the CMSIS_SVD_VARIABLES property.

For example, if you set the CM5I S_SVD_VARI ABLES as shown in Example 7-4 in the _hw tcl file, then
in the .svd file if there is a variable { Wi dt h} that describes the element <si ze>${wi dt h} </ si ze>, it
is replaced by <si ze>23</ si ze> during generation of the .svd file. Note that substitution works only
within character data (the data enclosed by <element>...</element>) and not on element attributes.

Example 7-4: Setting the CMSIS_SVD_VARIBLES Interface Property

set _interface_property <interface nanme> \
Cvsl S _SVD VARI ABLES "{wi dth} {23}"

Related Information
o Component Interface Tcl Reference

o« CMSIS - Cortex Microcontroller Software

Specifying Component Parameters

Components can include parameterized HDL, which allows users of the component flexibility in meeting
their system requirements. For example, a component might have a configurable memory size or data width,
where one HDL implementation can be used in many different systems, each with unique parameters values.

The Parameters tab in the Component Editor allows you specify the parameters that are used to configure
instances of the component in a Qsys system. You can specify various properties for each parameter that
describe how the parameter is displayed and used. You can also specify a range of allowed values that are
checked during the Validation phase. The Parameters table displays the HDL parameters that are declared
in the top-level HDL module. If you have not yet created the top-level HDL file, the parameters that you
create on the Parameters tab are included in the top-level synthesis file template created from the Files tab.

When the component includes HDL files, the parameters match those defined in the top-level module, and
you cannot be add or remove them on the Parameters tab. To add or remove the parameters, edit your HDL
source, and then re-analyze the file.

Altera Corporation Creating Qsys Components

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151022

2013.11.4 Specifying Component Parameters 7-15
If you used the Component Editor to create a top-level template HDL file for synthesis, you can remove the
newly-created file from the Synthesis Files list on the Files tab, make your parameter changes, and then re-
analyze the top-level synthesis file.

You can use the Parameters table to specify the following information about each parameter:
o Name—Specifies the name of the parameter.
o Default Value—Sets the default value used in new instances of the component.
« Editable—Specifies whether or not the user can edit the parameter value.
o Type—Defines the parameter type as string, integer, boolean, std_logic, logic vector, natural, or positive.
» Group—Allows you to group parameters in parameter editor.
« Tooltip—Allows you to add a description of the parameter that appears when the user of the component
points to the parameter in the parameter editor.
On the Parameters tab, you can click Preview the GUI at any time to see how the declared parameters
appear in the parameter editor. Figure 7-4 shows parameters with their default values defined, with checks
in the Editable column indicating that users of this component are allowed to modify the parameter value.
Editable parameters cannot contain computed expressions. You can group parameters under a common
heading or section in the parameter editor with the Group column, and a tooltip helps users of the component
understand the function of the parameter. Various parameter properties allow you to customize the
component’s parameter editor, such as using radio buttons for parameter selections, or displaying an image.
Figure 7-4: Parameters Tab in the Components Editor
[% Component Editor - axi_component_hw.tcl* . &Jﬂ
File Templates
Component Typel File.5-|§ Parameters;| Signalsl Interfaces
¥ About Parameters
Name Default Value Edita.. Type Group Toolip
AX_ID_W 4 integer AXl Port Wi... |Width of ID fields. -
n . |AXI_ADDRESS_W|[12 integer AXl Port Wi... |Address width. A...
arameters:) . I =
AX_DATA_W 32 integer AXl Port Wi... |Width of data buse...|
AX| NUMBYTES |4 integer AXl Port Wi... |Number of bytes i...
AV_ADDRESS W|2 integer Avalon Slav... |Address width of .. [_
| [
If a parameter <n> defines the width of a signal, the signal width must follow the format: <n-1>:0.
In Example 7-5, the first add_par amet er command includes commonly-specified properties. The
set _par amet er _pr operty command specifies each property individually. The Tooltip column on
Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7-16 Allowed Ranges Parameter Property 2%2‘:_11012.2
the Parameters tab maps to the DESCRI PTI ONproperty, and there is an additional unused UNI TS property
created in the code. The HDL_ PARANMETER property specifies that the value of the parameter is specified
in the HDL instance wrapper when creating instances of the component. The Group column in the
Parameters tab maps to the display items section with the add_di spl ay_i t emcommands.

Example 7-5: _hw.tcl Created from Entries in the Parameters Tab

#

paraneters

#

add_paraneter AXI _ID WINTEGER 4 "Wdth of ID fields"
set _paraneter _property AXI | D WDEFAULT VALUE 4

set _parameter_property AXI _| D WD SPLAY_NAVE AXI _ID W
set _paraneter_property AXI | D WTYPE | NTEGER

set _paraneter_property AXI _ID WUN TS None

set _parameter_property AXI _| D WDESCRI PTION "Wdth of 1D fields"
set _paraneter_property AXI | D WHDL_PARAMETER true
add_par anet er AXI _ADDRESS W | NTEGER 12

set _paraneter _property AXI _ADDRESS W DEFAULT_VALUE 12

add_par anet er AXI _DATA W I NTEGER 32

#.
display itens
#

add_display_item"AXI Port Wdths" AXl _| D W PARAMVETER ""

Note: Ifan AXI slave's ID bit width is smaller than required for your system, the AXI slave response might
not reach all AXI masters. The formula of an AXI slave ID bit width is calculated as follows:

maximum_master_id_width_in_the_interconnect + log2
(number_of_masters_in_the_same_interconnect)

For example, if an AXI slave connects to three AXI masters and the maximum AXI master ID length
of the three masters is 5 bits, then the AXI slave ID is 7 bits, and is calculated as follows:

5 bits + 2 bits (log,(3 masters)) =7

Related Information
Component Interface Tcl Reference

Allowed Ranges Parameter Property

In a component's hw.tcl file, you can specify valid ranges for parameters. In Qsys, validation checks each
parameter value against the ALLONED_RANGES property. If the values specified are outside of the allowed
ranges, Qsys displays an error message. Specifying choices for the allowed values enables users of the
component to choose the parameter value from a drop-down list or radio button in the parameter editor
GUI instead of entering a value.

The ALLONED_RANGES property is a list of valid ranges, where each range is a single value, or a range of
values defined by a start and end value. Table 7-2 shows examples of the ALLOAED_RANGES property.

Altera Corporation Creating Qsys Components

(] Send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151022
2013.11.4

Table 7-2: ALLOWED_RANGES Property

Types of Parameters 7-17

{a b c}

{"No Control"™ "Single Control" "Dual
Control s"}

{12 4 8 16}
{1: 3}
{1 2 3 7:10}

a,b,orc

Unique string values. Quotation marks are required
if the strings include spaces

1,2,4,8,0r 16
1 through 3, inclusive

1, 2, 3, or 7 through 10 inclusive

For GUI and code example for the ALLONED RANGES property, refer to Declaring Parameters with Custom

hw.tcl Commands.

Related Information

Declaring Parameters with Custom hw.tcl Commands on page 7-18

Types of Parameters

Qsys uses the following parameter types: user parameters, system information parameters, and derived

parameters.

Related Information

Declaring Parameters with Custom hw.tcl Commands on page 7-18

User Parameters

User parameters are parameters that users of a component can control, and appear in the parameter editor
for instances of the component. User parameters map directly to parameters in the component HDL.

For user parameter code examples, such as AXI _DATA_ Wand ENABLE _STREAM OUTPUT, refer to
Declaring Parameters with Custom hw.tcl Commands.

System Information Parameters

A SYSTEM | NFOparameter is a parameter whose value is set automatically by the Qsys system. When you
define a SYSTEM | NFOparameter, you provide an i nf or mat i on type, and additional arguments.

For example, you can configure a parameter to store the clock frequency driving a clock input for your
component. To do this, define the parameter as SYSTEM_| NFOof type CLOCK_RATE:

set _parameter _property <param> SYSTEM | NFO CLOCK RATE

You then set the name of the clock interface as the SYSTEM | NFOargument:

set _parameter_property <paranm> SYSTEM | NFO_ARG <cl knane>

Derived Parameters

Derived parameter values are calculated from other parameters during the Elaboration phase, and are

specified in the hw.tcl file with the DERI VED property. Derived parameter values are calculated from other
parameters during the Elaboration phase, and are specified in the hw.tcl file with the DERI VED property.
For example, you can derive a clock period parameter from a data rate parameter. Derived parameters are

Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
7-18 Parameterized Parameter Widths 2%13_1 1.4
sometimes used to perform operations that are difficult to perform in HDL, such as using logarithmic
functions to determine the number of address bits that a component requires.

For GUI and code example of derived parameters, refer to Declaring Parameters with Custom hw.tcl
Commands.

Parameterized Parameter Widths
Qsysallowsast d_| ogi c_vect or parameter to have a width that is defined by another parameter, similar
to derived parameters. The width can be a constant or the name of another parameter.

Declaring Parameters with Custom hw.tcl Commands

The example below illustrates a custom _hw.tcl file, with more advanced parameter commands than those
generated when you specify parameters in the Component Editor. Commands include the ALLOANED _RANGES
property to provide a range of values for the AXI _ ADDRESS_W(Address Width) parameter, and a list of
parameter values for the AXI _DATA_W(Data Width) parameter. This example also shows the parameter
AXI _NUMBYTES (Data width in bytes) parameter; that uses the DERI VED property. In addition, these
commands illustrate the use of the GROUP property, which groups some parameters under a heading in the
parameter editor GUI. You use the ENABLE_STREAM OUTPUT_CGROUP (Include Avalon streaming
source port) parameter to enable or disable the optional Avalon-ST interface in this design, and is displayed
as a check box in the parameter editor GUI because the parameter is of type BOOLEAN. Refer to figure
below to see the parameter editor GUI resulting from these hw.tcl commands.

Example 7-6 illustrates parameter declaration statements and includes a parameter whose value is derived
during the Elaboration phase based on another parameter, instead of being assigned to a specific value.
AXI _NUMBYTES describes the number of bytes in a word of data. Qsys calculates the AXI _ NUMBYTES
parameter from the DATA W DTHparameter by dividing by 8. The _hw.tcl code defines the AXI _NUVBYTES
parameter as a derived parameter, since its value is calculated in an elaboration callback procedure.

The AXI _NUMBYTES parameter value is not editable, because its value is based on another parameter value.

Example 7-6: Parameter Declaration Statements

add_par anet er AXI _ADDRESS W | NTEGER 12

set _paraneter_property AXI _ADDRESS W DI SPLAY_ NAME \
"AXI Sl ave Address Wdth"

set _paraneter_property AXI _ADDRESS W DESCRI PTI ON \
"Address wi dth."

set _parameter _property AXI _ADDRESS WUNI TS bits
set _paraneter_property AXI _ADDRESS W ALLONED RANCES 4: 16
set _parameter_property AXl _ADDRESS W HDL_PARAMETER true

set _paraneter_property AXI _ADDRESS W GROUP \
"AXI Port W dths"

add_par anet er AXI _DATA W I NTEGER 32
set _paraneter_property AXI _DATA W DI SPLAY NAME "Data W dth"

Altera Corporation Creating Qsys Components

(] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
3013_11_4 Declaring Parameters with Custom hw.tcl Commands 7-19

set _parameter_property AXI _DATA W DESCRI PTI ON \
"Wdth of data buses."

set _paraneter _property AXI _DATA WUNI TS bits

set _paraneter_property AXI _DATA W ALLOAED RANGES \
{8 16 32 64 128 256 512 1024}

set _paraneter_property AXI DATA W HDL_ PARAVMETER true
set _paraneter_property AXI _DATA WGROUP "AXlI Port W dths"

add_par anet er AXI _NUMBYTES | NTEGER 4
set _paraneter_property AXI _NUMBYTES DERI VED true

set _paraneter_property AXI _NUVMBYTES DI SPLAY_NAME \
"Data Wdth in bytes; Data Wdth/8"

set _paraneter_property AXI _NUVMBYTES DESCRI PTI ON \
"Nunber of bytes in one word"

set paraneter_property AXI _NUMBYTES UNI TS byt es

set _paraneter_property AXI _NUVBYTES HDL_PARAMETER true

set _paraneter_property AXI _NUMBYTES GROUP "AXI Port W dths"
add_par anet er ENABLE_STREAM OUTPUT BOOLEAN true

set _paranet er _property ENABLE STREAM OUTPUT DI SPLAY_NAME \
"I ncl ude Aval on Streani ng Source Port"

set _paraneter_property ENABLE STREAM OQUTPUT DESCRI PTI ON \
"Include optional Aval on-ST source (default),\
or hide the interface"

set _paranet er _property ENABLE STREAM OUTPUT GROUP \
"Stream ng Port Control™

Figure 7-5 shows the parameter editor GUI generated from Example 7-6.

Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
7-20 Validating Parameter Values with a Validation Callback 2%13_1 14

Figure 7-5: Parameter Editor lllustrating Parameter Declarations

[* Port Widths
I Port Widths: 4 -
Address Width: 12
Data Width: v .

Data width in bytes: |4

|' Streaming Port Control
Include Avalon Streaming Source Port

Related Information
o Component Interface Tcl Reference

« Controlling Interfaces Dynamically with an Elaboration Callback on page 7-26

Validating Parameter Values with a Validation Callback

You can use a validation callback procedure to validate parameter values with more complex validation
operations than the ALLONED_RANGES property allows. You define a validation callback by setting the
VALI DATI ON_CALLBACK module property to the name of the Tcl callback procedure that runs during
the validation phase. In the validation callback procedure, the current parameter values is queried, and
warnings or errors are reported about the component's configuration.

In Example 7-7, if the optional Avalon streaming interface is enabled, then the control registers must be
wide enough to hold an AXI RAM address, so the designer can add an error message to ensure that the user
enters allowable parameter values.

Example 7-7: Demo AXI Memory Example

set _nodul e_property VALI DATI ON_CALLBACK val i date
proc validate {} {
if {
[get _paramet er _val ue ENABLE_STREAM OQUTPUT | &&
([get _paraneter_val ue AXI _ADDRESS W >
[get _paramnet er_val ue AV_DATA W)

send_nessage error "If the optional Aval on stream ng port\
is enabled, the AXI Data Wdth nust be equal to or greater\
than the Aval on control port Address W dth"

}
}

Related Information

o Component Interface Tcl Reference

Altera Corporation Creating Qsys Components

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151022
2013.11.4

Specifying Interface and Signal Types 7-21

o Demo AXI Memory Example

Specifying Interface and Signal Types

The Signals tab in the Components Editor allows you to specify the interface and signal type of each signal
in the component. When you add HDL files to the Synthesis Files table on the Files tab, and then click
Analyze Synthesis Files, the signals on the top-level module appear on the Signals tab.

If you have not yet created your top-level HDL file, you can click Add Signal to specify each top-level signal
in the component. For each signal that you add, you must provide the appropriate values in the Name,
Interface, Signal Type, Width, and Direction columns. You can use the error and warning messages at the
bottom of the window to guide your selections. You can edit the signal name by double-clicking the Name
column, and then typing the new name.

After you have analyzed the component's top-level HDL file on the Files tab, you cannot add or remove
signals or change the signal names on the Signals tab. To change the signals, edit your HDL source, and
then click Generate Synthesis File from Signals.

If you used the Component Editor to create a top-level template HDL file for synthesis, you can remove the
newly-created file from the Synthesis Files list on the Files tab, make your signal changes, and then re-
analyze the top-level synthesis file.

The Interface column allows you assign a signal to an interface. Each signal must belong to an interface and
be assigned a legal signal type for that interface. To create a new interface of a specific type, select new
<interface type> from the list; this new interface then become available in the list for subsequent signal
assignments. You can highlight all of the signals in an interface and then select an Interface from the list to
apply the Interface name to each signal in the interface.

You edit the interface name on the Interface tab; you cannot edit the interface name on the Signals tab.

Figure 7-6 shows the altera_axi_slave selection available for the axs_awaddr signal. Example 7-8 in the
Adding Interfaces and Managing Interface Settings section shows the _hw.tcl that Qsys generates from these
entries along with other interface information.

Creating Qsys Components Altera Corporation

() send Feedback

www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7-22 Adding Interfaces and Managing Interface Settings

Figure 7-6: Signals Tab in the Components Editor

QI151022
2013.11.4

| Component Typel Filesl Pararneter5-| Signalsl Interfaces|

F About Signals

Name

clk
reset_n
axs_awid
add
axs_awlen
axs_awsize
axs_awburst
axs_awlock
axs_awcache
axs_awprot
axs_awvalid
axs_awready
axs_wid
axs_wdata
axs_wsirb
axs_wilast
axs_walid
axs_wready
axs_bid
axs_bresp
axs_bwvalid
axs_bready
axs_arid
axs_araddr

Related Information

Interface

clock

reset
altera_axi_slave
[ake.ra axi slave

Signal Type
clk
reset_n
awid

)

clock
reset
avalon_streaming_source 0

new Avalon Mei pped Master..
new Avalon Memory Mapped Slave...
new Avalon Streaming Source...

new Avalon Streaming Sink...

new AXI Master...

new AXI Slave...

new AXi4 Master..

new AXi4 Slave...

new Clock Output...

new Clock Input..

new Conduit...

new Interrupt Receiver...

new Interrupt Sender...

new Custom Instruction Master...

new Avalon Memory Msapped Tristate Slave...

-~

m

awlen
awsize
awburst
awlock
awcache
awprot
awvalid
awready
wid
wdata
wstrb
wlast
walid
wready
bid
bresp
bvalid
bready
arid

new Custom Instruction Slave...

Component Interface Tcl Reference

Adding Interfaces and Managing Interface Settings

araddr

[N S R WS |

Vidth
1
1
AXLID_...

T
b2
o
=]

... input

Direction
input
input
input

»

input
input
input
input
input
input
input
output
input
input
input
input
input
output
output
output
output
input
input
input

m

The Interfaces tab in the Component Editor allows you to manage settings for each interface of the
component. The interface name appears on the Signals tab, and in the Qsys System Contents tab when the
component is added to a system.

You can configure the type and properties of each interface. Some interfaces display waveforms that illustrate
the timing for the interface. If you update timing parameters, the waveforms automatically update.

You add additional interfaces by clicking Add Interface, and then you must specify the signals for the added
interface on the Signals tab. You can remove interfaces that have no assigned signals by clicking Remove
Interfaces With No Signals. Figure 7-7 shows the Avalon Streaming Source interface, named streaming.

Altera Corporation

Creating Qsys Components

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151022
2013.11.4

Adding Interfaces and Managing Interface Settings

Figure 7-7: Interfaces Tab in the Components Editor

| Component T}rpel File.s-l F‘arametersl Signalsl |ﬂt3ffﬂC&3|

¥ About Interfaces

T "streaming" (Avalon Streaming Source)

7-23

MName: |streaming

Type: :Avalun Streaming Source
Associated Clock: | clock
Associated Reset: :reset

Assignments: Edit...

|' Block Diagram

4
H |' Parameters

streaming

streaming

data aso_data[7 .

walid

ready

Data bits per symbal: |g

Error descriptor:)
ot Error descriptor

First Symbol In High-Order Bits

Maximum channel: 0

Ready latency: 0

m

[~ Packet Transfer

e LT LI LT L L L LT
ready JI 'l, JI ll
valid | [

data[7:0])00 [or e

|
Jo T

In Example 7-8, each interface is created with the add_i nt er f ace command. You specify the properties
of each interface with the set _i nt er f ace_pr oper t y command. The interface's signals are specified
with the add_i nterface_port command.

Example 7-8: _hw.tcl Created from Entries in the Interface Tab

#

connection point cl ock

#

add_interface clock cl ock end
set _interface_property clock clockRate O
set _interface_property clock ENABLED true

add_i nterface_port clock clk clk Input 1

#

Creating Qsys Components

() send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7-24 Adding Interfaces and Managing Interface Settings

connection point reset

#

add_interface reset reset end
set _interface_property reset associ atedC ock cl ock

set _interface _property reset synchronousEdges DEASSERT
set_interface_property reset ENABLED true

add_i nterface_port reset

QI151022
2013.11.4

reset_n reset_n Input 1

add_i nterface streaming aval on_streaning start

st ream
stream
strean
stream
st ream
stream
stream
strean

#

connection point stream ng
#

set _interface property
set _interface_property
set _interface_property
set _interface_property
set _interface_property
set _interface property
set _interface_property
set _interface_property

add_i nterface_port stream ng
add_interface_port stream ng
add_i nterface_port stream ng

#

connection point sl ave

#
add_interface slave axi

set _interface property
set _interface_property
set _interface_property
set _interface_property
set _interface_property
set _interface property
set _interface_property

add_i nterface_port sl ave axs

end

ng associ at edd ock cl ock

ng associ at edReset reset

ng dat aBi t sPer Synbol 8

ng errorDescriptor ""

ng firstSynbol | nH ghOrderBits true
ng maxChannel 0

ng readylLatency O

ng ENABLED true

aso_data data Qutput 8
aso valid valid Qutput 1
aso_ready ready Input 1

sl ave associ at edd ock cl ock

sl ave associ at edReset reset

sl ave readAcceptanceCapability 1

sl ave witeAcceptanceCapability 1

sl ave conbi nedAccept anceCapability 1
sl ave readDat aReorderingDepth 1

sl ave ENABLED true

_awid awid I nput AXI _ID W

add_interface_port slave axs_rresp rresp Qutput 2

Qsys refers to AXI interface parameters to build AXI interconnect. If these parameter settings are
incompatible with the component's HDL behavior, Qsys interconnect and transactions might not work
correctly. To prevent unexpected interconnect behavior, you must set the AXI component parameters

described in Table 7-3.

Table 7-3: AXI Master and Slave Parameters

AXI Master Parameters AXI Slave Parameters

readl ssui ngCapability

‘readA@ceptancecapabiIity

Altera Corporation

Creating Qsys Components

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151022

2013.11.4 Creating Custom _hw.tcl Interface Settings and Properties 7-25
writel ssuingCapability wr i t eAccept anceCapability
conbi nedl ssui ngCapability conbi nedAccept anceCapabi l ity

r eadDat aReor deri ngDept h

Related Information
Component Interface Tcl Reference

Creating Custom _hw.tcl Interface Settings and Properties

Example 7-9 shows clock, reset, AXI slave, and Avalon streaming interfaces using variables for the interface
names that make the file easier to read and update. The interface declaration statement includes the name,
type, and direction of the interface, as well as the associated clock and reset interfaces. Also in the example
below, some of the AXI memory signals use parameters to specify their width.

Example 7-9: Clock, Reset, AXI Slave, and Avalon Streaming Interfaces Using Variables

set CLOCK | NTERFACE "cl k"
add_i nterface $CLOCK | NTERFACE cl ock end
add_interface_port $CLOCK | NTERFACE clk clk I nput 1

set RESET_I NTERFACE "reset"

add_i nterface $RESET_|I NTERFACE reset end

set _interface_property $RESET | NTERFACE associ atedC ock cl k

set _interface_property $RESET | NTERFACE synchronousEdges DEASSERT
add_interface_port reset reset_n reset_n Input 1

set SLAVE | NTERFACE "sl ave"

add_i nterface $SLAVE | NTERFACE axi end

set _interface_property $SLAVE | NTERFACE associ at edCl ock "cl k"
set _interface_property $SLAVE | NTERFACE associ at edReset "reset"

set _interface_property $SLAVE | NTERFACE \
readAccept anceCapability 1

édd_i nterface_port $SLAVE | NTERFACE axs_wdata wdata \
| nput AXI _DATA W

add_interface_port $SLAVE | NTERFACE axs_wstrb wstrb \
| nput AXI _NUMBYTES

add_interface_port $SLAVE | NTERFACE axs_wW ast w ast Input 1

set STREAM NG _I NTERFACE "stream ng"

add_i nterface $STREAM NG _| NTERFACE aval on_stream ng start

set _interface_property $STREAM NG | NTERFACE associ at edd ock "cl k"

édd_i nterface _port $STREAM NG | NTERFACE aso_data data Qutput 8

Creating Qsys Components Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151022

7-26 Controlling Interfaces Dynamically with an Elaboration Callback 2013.11.4

add_interface_port $STREAM NG _| NTERFACE aso_valid valid Qutput 1
add_interface_port $STREAM NG_| NTERFACE aso_ready ready |nput 1

Related Information

Component Interface Tcl Reference

Controlling Interfaces Dynamically with an Elaboration Callback

You can allow user parameters to dynamically control your component's behavior with a an elaboration
callback procedure during the elaboration phase. Using an elaboration callback allows you to change interface
properties, remove interfaces, or add new interfaces as a function of parameter values. You define an
elaboration callback by setting the module property ELABORATI ON_CALLBACK to the name of the T«cl
callback procedure that runs during the elaboration phase. In the callback procedure, you can query the
parameter values of the component instance, and then change the interfaces accordingly.

Example 7-10 shows an Avalon-ST source interface that is optionally included in an instance of the
component, based on the ENABLE_STREAM_OUTPUT parameter. The ENABLE_STREAM OUTPUT
parameter was defined previously in the nodul e_property VALI DATI ON_CALLBACK, and the
streaming interface was defined previously in the static portion of the HDL file.

Example 7-10: Optional Avalon-ST Source Interface Specified with an Elaboration Callback

set _nodul e_property ELABORATI ON_CALLBACK el aborate
proc el aborate {} {
Optionally disable the Aval on- ST data out put
i f{[get_paraneter_ val ue ENABLE STREAM QUTPUT] == "fal se" }{
set _port_property aso_data term nation true
set _port_property aso_valid termination true
set _port_property aso_ready termnation true
set _port _property aso_ready term nation_value 0

}
Calculate the Data Bus Wdth in bytes

set bytew dth_var [expr [get_paraneter_val ue AXI _DATA W/ 8]
set _paraneter_val ue AXI _NUMBYTES $byt ew dt h_var

Related Information

o Component Interface Tcl Reference
o Creating Custom _hw.tcl Interface Settings and Properties on page 7-25

o Validating Parameter Values with a Validation Callback on page 7-20

Altera Corporation Creating Qsys Components

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
3013_11_4 Controlling File Generation Dynamically with Parameters and a Fileset Callback 7-27

Controlling File Generation Dynamically with Parameters and a Fileset
Callback

You can use a fileset callback to control which files are created in the output directories during the generation
phase based on parameter values, instead of providing a fixed list of files. In a callback procedure, you can
query the values of the parameters and use them to generate the appropriate files. To define a fileset callback,
you specify a callback procedure name as an argument in the add_f i | eset command. You can use the
same fileset callback procedure for all of the filesets, or create separate procedures for synthesis and simulation,
or Verilog and VHDL.

Example 7-11 shows a fileset callback using parameters to control filesets in two different ways. The
RAM_VERSI ON parameter chooses between two different source files to control the implementation of a
RAM block. For the top-level source file, a custom Tcl routine generates HDL that optionally includes control
and status registers, depending on the value of the CSR_ENABLED parameter.

During the generation phase, Qsys creates a a top-level Qsys system HDL wrapper module to instantiate the
component top-level module, and applies the component's parameters, for any parameter whose parameter
property HDL_ PARAMETER s set to true.

Example 7-11: Fileset Callback Using Parameters to Control Filesets

#Create synthesis fileset with fil eset _call back and set top | evel
add _fileset ny _synthesis fileset QUARTUS SYNTH fil eset cal |l back

set fileset property ny _synthesis fileset TOP_LEVEL \
deno_axi _menory

Create Verilog sinulation fileset with sane fileset_call back
and set top |evel

add_fileset ny verilog simfileset SIMVERI LOG fil eset_call back

set _fileset _property nmy verilog simfileset TOP_LEVEL \
denmo_axi _nenory

Add extra file needed for sinulation only

add_fileset_file verbosity_pkg.sv SYSTEM VERI LOG PATH \
verification_lib/verbosity pkg.sv

Create VHDL simulation fileset (with Verilog files
for m xed-1language VHDL sinul ation)

add fileset ny vhdl _simfileset SIMVHDL fil eset call back
set _fileset_property ny_vhdl _simfileset TOP_LEVEL deno_axi _nenory

add fileset file verbosity pkg.sv SYSTEM VERI LOG PATH
verification_|lib/verbosity_pkg.sv

Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51022

7-28 Creating a Composed Component or Subsystem 2013.11.4

Define parameters required for fileset_call back

add_par anet er RAM VERSI ON | NTEGER 1

set _paraneter_property RAM VERSI ON ALLOVWED RANGES {1 2}
set _parameter_property RAM VERSI ON HDL_PARAMETER f al se
add_par anet er CSR_ENABLED BOCOLEAN enabl e

set _paraneter_property CSR ENABLED HDL PARAMETER f al se

Create Tcl call back procedure to add appropriate files to
filesets based on paraneters

proc fileset callback { entityName } {
send_nessage | NFO "CGenerating top-level entity $entityNanme"
set ram [get paraneter_val ue RAM VERSI Q\|
set csr_enabl ed [get_paraneter_val ue CSR_ENABLED]

send_nessage | NFO "CGenerating nenory
i npl enent ati on based on RAM VERSI ON $ram "

if {$ram == 1} {
add fileset file single clk raml.v VERI LOG PATH \
single_clk _ranl.v

} else

add fileset file single clk ran2.v VERI LOG PATH \
single_clk_ranR.v

}

send_nessage | NFO "Generating top-level file for \
CSR_ENABLED $csr _enabl ed"”

generate_my_custom hdl $csr_enabl ed deno_axi _nenory_gen. sv

add fileset file deno_axi nenory_gen.sv VERI LOG PATH \
deno_axi _menory_gen. sv

}

Related Information
o Component Interface Tcl Reference

 Specifying Files for Synthesis and Simulation on page 7-9

Creating a Composed Component or Subsystem

A composed component is a subsystem containing instances of other components. Unlike an HDL-based
component, acomposed component's HDL is created by generating HDL for the components in the subsystem,
in addition to the Qsys interconnect to connect the subsystem instances.

You can add child instances in a composition callback of the _hw.tcl file.

Altera Corporation Creating Qsys Components

(] Send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151022
2013.11.4

Creating a Composed Component or Subsystem 7-29

With a composition callback, you can also instantiate and parameterize subcomponents as a function of the
composed component’s parameter values. You define a composition callback by setting the COVPCSI -
TI ON_CALLBACK module property to the name of the composition callback procedures.

A composition callback replaces the validation and elaboration phases. HDL for the subsystem is generated
by generating all of the subcomponents and the top-level that combines them.

To connect instances of your component, you must define the component's interfaces. Unlike an HDL-based
component, a composed component does not directly specify the signals that are exported. Instead, interfaces
of submodules are chosen as the external interface, and each internal interface's ports are connected through
the exported interface.

Exporting an interface means that you are making the interface visible from the outside of your component,
instead of connecting it internally. You can set the EXPORT_OF property of the externally visible interface
from the main program or the composition callback, to indicate that it is an exported view of the submodule's
interface.

Exporting an interface is different than defining an interface. An exported interface is an exact copy of the
subcomponent’s interface, and you are not allowed to change properties on the exported interface. For
example, if the internal interface is a 32-bit or 64-bit master without bursting, then the exported interface
is the same. An interface on a subcomponent cannot be exported and also connected within the subsystem.

When you create an exported interface, the properties of the exported interface are copied from the
subcomponent’s interface without modification. Ports are copied from the subcomponent’s interface with
only one modification; the names of the exported ports on the composed component are chosen to ensure
that they are unique.

Figure 7-8 shows a block diagram for the composed component in Example 7-12.

Figure 7-8: Top-Level of a Composed Component

my_component

altera
reset
bridge

reset

altera
clock
bridge

clk

pins

my_phy_MiICrocore jrmp-

P my_regs_microcore

slave —>
—

In Example 7-12, Qsys connects the components, and also connects the clocks and resets. Note that clock
and reset bridge components are required to allow both subcomponents to see common clock and reset
inputs.

Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51022

7-30 Creating a Component With Differing Structural Qsys View and Generated Output Files 2013.11.4

Example 7-12: Composed _hw.tcl File that Instantiates two Subcomponents

package require -exact gsys 13.1
set _modul e_property nane my_conponent
set _nodul e_property COVPOSI TI ON_CALLBACK conposed_conponent

proc conposed_conponent {}

add_i
add_i
add_i
add_i

add_i
add_i
add_i
add_i

_interface
_instance_p
interface
interface
interface

nstance c
nst ance r
nst ance r
nstance p

nt er f ace
nt erface
nt er f ace
nt erface

add_connecti on
add_connecti on
add_connecti on
add_connecti on
add_connecti on
add_connecti on
add_connecti on

Related Information

| k altera_cl ock_bridge
eset altera_reset_bridge
egs ny_regs_m crocore

hy my_phy_m crocore

clk clock end
reset reset end

sl ave aval on sl ave
pi ns conduit end

property clk EXPORT_OF clk.in_clk
roperty_val ue reset synchronous_edges deassert
property reset EXPORT_OF reset.in_reset
property slave EXPORT_CF regs. sl ave

property pins EXPORT_COF phy. pins

clk.out _clk reset.clk

clk.out _clk regs.clk

cl k. out _cl k phy.clk

reset.out _reset regs.reset
reset.out _reset phy.clk_reset
regs. out put phy.input

phy. out put regs.input

Component Interface Tcl Reference

Creating a Component With Differing Structural Qsys View and Generated

Output Files

There are cases where it might be beneficial to have the structural Qsys system view of a component differ
from the generated synthesis output files. The structural composition callback allows you to define a structural
hierarchy for a component separately from the generated output files.

One application of this feature is for IP designers who want to send out a placed-and-routed component
that represents a Qsys system in order to ensure timing closure for the end-user. In this case, the designer
creates a design partition for the Qsys system, and then exports a post-fit Quartus II Exported Partition File
(.qxp) when satisfied with the placement and routing results.

The designer specifies a .qxp file as the generated synthesis output file for the new component. The designer
can specify whether to use a simulation output fileset for the custom simulation model file, or to use simulation
output files generated from the original Qsys system.

Altera Corporation

Creating Qsys Components

(] Send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51022
2013.11.4

Creating a Component With Differing Structural Qsys View and Generated Output Files 7-31

When the end-user adds this component to their Qsys system, the designer wants the end-user to see a
structural representation of the component, including lower-level components and the address map of the
original Qsys system. This structural view is a logical representation of the component that is used during

the elaboration and validation phases in Qsys.

To specify a structural representation of the component for Qsys, the designer connects components, or
generates a hardware Tcl description of the Qsys system, and then insert the Tcl commands into a structural
composition callback. Example 7-13 shows an _hw.tcl file with a structural composition callback and a .qxp
file as the generated output file. To invoke the structural composition callback use the command:

set _nodul e_property STRUCTURAL_COVPCSI TI ON_CALLBACK structural _hierarchy

Example 7-13: Structural Composition Callback

package require -exact gsys 13.1
set _modul e_property nane exanpl e_structural _conposition

set _modul e_property STRUCTURAL_COWVPCSI TI ON_CALLBACK \
structural _hierarchy

add_fileset synthesis_fileset QUARTUS_SYNTH \
synt h_cal | back_procedure

add fileset sinulation fileset SIMVERI LOG \
sim cal | back_procedure

set fileset property synthesis fileset TOP_LEVEL \
ny_cust om conponent

set _fileset _property sinmulation_ fileset TOP_LEVEL \
ny_cust om conponent

proc structural _hierarchy {} {

called during elaboration and validati on phase

exported ports should be sane in structural hierarchy
and generated QXP

These comands coul d conme fromthe exported hardware Tc

add_interface clk clock sink
add interface reset reset sink

add_i nstance cl k_0 clock_source
set _interface_property clk EXPORT_CF clk_O.clk_in
set _interface property reset EXPORT_OF clk 0.clk_in_reset

add_instance pll _0 altera_pll

connections and connection paraneters
add_connection clk_0.clk pll_0O.refclk clock
add_connection clk_0.clk reset pll_0.reset reset

Creating Qsys Components

() send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
7-32 Adding Component Instances to a Static or Generated Component 2%13_1 1.4

proc synth_cal |l back_procedure { entity_nanme } {

the QXP should have the sane nanme for ports
as exportedin structural hierarchy

add_fileset_file nmy_custom conponent.gxp QXP PATH \
"my_cust om conponent . gxp"

}

proc simcall back_procedure { entity _name } {

the simulation files should have the sane nane for ports as
exported in structural _hierarchy

add_fileset _file my_custom conponent.v VER LOG PATH \
"my_custom conponent . v"

Related Information

Creating a Composed Component or Subsystem on page 7-28

Adding Component Instances to a Static or Generated Component

You can create nested components by adding component instances to an existing component. Both static
and generated components can create instances of other components. You can add child instances of a
component in a _hw.tcl using elaboration callback.

Note: You cannot add child instances in a static part of a_hw.tcl because for Qsys 13.1, the
add_hdl _i nst anceandset _i nst ance_par anet er _val ue commands are not supported
in global context.

With an elaboration callback, you can also instantiate and parameterize subcomponents with the
add_hdl _i nst ance command as a function of the parent component's parameter values.

When you instantiate multiple nested components, you must create a unique variation name for each
component with theadd_hdl _i nst ance command. Prefixing a variation name with the parent component
name prevents conflicts in a system. The variation name can be the same across multiple parent components
if the generated parameterization of the nested component is exactly the same.

Note: If you do not adhere to the above naming variation guidelines, Qsys validation-time errors occur,
which are often difficult to debug.

Related Information
o Static Components on page 7-33

+ Generated Components on page 7-34

Altera Corporation Creating Qsys Components

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
3013.11.4 Static Components 7-33

Static Components

Static components always generate the same output, regardless of their parameterization. Components that
instantiate static components must have only static children.

A design file that is static between all parameterizations of a component can only instantiate other static
design files. Since static IPs always render same HDL regardless of parameterization, Qsys generates static
IPs only once across multiple instantiations, meaning they have the same top-level name set. Example 7-14
shows typical usage of the add_hdl _i nst ance command for static components.

Example 7-14: add_hdl_instance for Static Components

package require -exact gsys 13.1

set _nodul e_property nane add_hdl i nstance_exanpl e
add_fileset synth fileset QUARTUS_SYNTH synt h_cal | back
set fileset property synth fileset TOP LEVEL basic_static
set _nodul e_property el aboration_cal |l back el ab

proc elab {} {
Actual APl to instantiate an IP Core
add_hdl _instance em f_instance _nane altera_nmem.if _ddr3 emf

Make sure the paranmeters are set appropriately
set i nstance_paranet er _val ue emnif_instance_nanme SPEED GRADE {7}

proc synth_cal |l back { output_nane } {
add fileset file "basic static.v" VER LOG PATH basic_static.v

}

Example 7-14 generates a wrapper file for the instance name specified in the _hw.tcl file. Example 7-15
shows the top-level HDL instance and the wrapper file created by Qsys.

Example 7-15: Top-Level HDL Instance and Wrapper File

/| Top Level Conponent HDL

nmodul e basic_static (input_wire, output_wire, inout_wre);
i nput [31:0] input_wre;

out put [31:0] output_wire;

inout [31:0] inout_wire;

/1l Instantiation of the instance added via add_hdl instance
/1 command. This is an exanple of how the instance added via
/! the add_hdl _i nstance conmand can be used

/1l in the top-level file of the conponent.

em f_instance_nane fixed name_instantiation_in_top_|evel(

.pll _ref_clk (input_wire), // pll_ref_clk.clk
.global _reset_n (input_wire), // global _reset.reset_n

Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51022

7-34 Generated Components 2013.11.4

.soft_reset_n (input_wire), // soft_reset.reset_n

o)
endnodul e
/1 Wapper for added HDL i nstance

/1 emf _instance_nane.v
/1 Generated using ACDS version 13.1

“timescale 1 ps / 1 ps

nmodul e enm f_i nstance_nane (

input wire pll _ref _clk, // pll_ref _clk.clk

i nput wire global _reset_n, // global _reset.reset_n
input wire soft _reset_n, // soft _reset.reset_n
output wire afi_clk, // afi_clk.clk

exanpl e_addhdl i nst ance_system
_add_hdl _i nstance_exanple 0 _em f _instance
_nanme_eni f_i nstance_nane eni f_i nstance_nane (

.pll _ref_clk (pll_ref_clk), // pll_ref_clk.clk
.global _reset _n (global _reset n), // global _reset.reset_n
.soft _reset_n (soft _reset _n), // soft _reset.reset_n

.

éhdnﬁdule

Generated Components

A generated component's fileset callback allows an instance of the component to create unique HDL design
files based on the instance's parameter values. For example, you can write a fileset callback to include a
control and status interface based on the value of a parameter. The callback overcomes a limitation of HDL
languages, which do not allow runtime parameters.

Generated components change their generation output (HDL) based on their parameterization. If a component
is generated, then any component that might instantiate it with multiple parameter sets must also be
considered generated, since its HDL changes with its parameterization. This case has an effect that propagates
up to the top-level of a design.

Since generated components are generated for each unique parameterized instantiation, when implementing
the add_hdl _i nst ance command, you cannot use the same fixed name (specified using

i nst ance_nane) for the different variants of the child HDL instances. To facilitate unique naming for
the wrapper of each unique parameterized instantiation of child HDL instances, you must use the following
command so that Qsys generates a unique name for each wrapper. You can then access this unique wrapper
name with a fileset callback so that the instances are instantiated inside the component's top-level HDL.

Altera Corporation Creating Qsys Components

(] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
3013.11.4 Generated Components 7-35

» To declare auto-generated fixed names for wrappers, use the command:

set _instance_property instance_nane HDLI NSTANCE USE GENERATED NAME \
true

You can only use this command with a generated component, and is used in the global context, or in an
elaboration callback

« To obtain auto-generated fixed name with a fileset callback, use the command:
get _instance_property instance_nane HDLI NSTANCE GET GENERATED NAME

You can only use this command with a fileset callback. This command returns the value of the auto-
generated fixed name, which you can then use to instantiate inside the top-level HDL.

Example 7-16 shows typical usage of the add_hd| _i nst ance command for generated components.

Example 7-16: add_hdlI_instance for Generated Components

package require -exact gsys 13.1

set _nodul e_property nane generated_topl evel conponent
set _nodul e_property ELABORATI ON_CALLBACK el aborate
add fil eset QUARTUS SYNTH QUARTUS SYNTH gener at e
add_fileset SIMVERI LOG SI M VERI LOG gener at e

add fileset SIMVHDL SIM VHDL generate

proc el aborate {} {

Actual APl to instantiate an |IP Core
add _hdl _instance em f _instance nanme altera memif_ddr3 em f

Make sure the paraneters are set appropriately
set _instance_paraneter_val ue enif _instance _nane SPEED GRADE {7}

#'instruct sys to use auto generated fixed nane
set _instance_property em f_i nstance_nane \
HDLI NSTANCE_USE_GENERATED_NAME 1

}

proc generate { entity_nane } {

get the autogenerated nanme for em f_instance_nanme added
via add_hdl _i nstance

set aut ogener at edfi xednane [get _instance_property \
em f_instance_nane HDLI NSTANCE GET GENERATED NANE]

set filelD [open "generated_topl evel _conponent.v" r]
set temp ""

read the contents of the file

Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151022
7-36 Generated Components 2?)13.1 1.4

while {[eof $filelD !'= 1} {
gets $filelD linelnfo

replace the top level entity name with the nane provided
during generation

regsub -all "substitute_entity nanme_here" $linelnfo \
"${entity nane}" linelnfo

replace the autogenerated nane for em f_instance_nane added
via add_hdl _i nstance

regsub -all "substitute autogenerated emni finstancenane_here" \
$l i nel nf 0" ${ aut ogener at edf i xednane}" linelnfo \

append tenmp "${linel nfo}\n"
}

adding a top | evel conponent file

add_fileset _file ${entity_nane}.v VERI LOG TEXT $tenp
}

Example 7-16 generates a wrapper file for the instance name specified in the _hw.tcl file. Example 7-17
shows the top-level HDL instance and the wrapper file created by Qsys

Example 7-17: Top-Level HDL Instance and Wrapper File

/! Top Level Conponent HDL

nmodul e substitute_entity_nane_here (input_wre, output_wre,
i nout_wire);

i nput [31:0] input_wre;
out put [31:0] output_wire;
inout [31:0] inout_wre;

/1 Instantiation of the instance added via add_hdl _i nstance
/1 conmmand. This is an exanple of how the instance added

/1 via add_hdl _i nstance command can be used

[/ in the top-level file of the conponent.

substitut e_aut ogenerat ed_emi fi nstancenane_here

fixed nanme_instantiation_in_top_ level (

.pll _ref_clk (input_wire), // pll_ref_clk.clk

.global _reset n (input_wire), // global _reset.reset _n
.soft _reset_n (input_ wire), // soft_reset.reset_n

),

éhdnndule

Altera Corporation Creating Qsys Components

(] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151022

2013.11.4 Design Guidelines for Adding Component Instances 7-37
/1 Wapper for added HDL instance
/1l generated toplevel conponent 0 enmf _instance nane.v is the
/! auto generated //em f_instance_nane
/1l Generated using ACDS version 13.

“timescale 1 ps / 1 ps

nodul e generat ed_t opl evel _conponent 0 _eni f_i nstance_nane (
input wire pll _ref_clk, // pll_ref_clk.clk

input wire global _reset n, // global reset.reset_n

input wire soft _reset_n, // soft_reset.reset_n

output wire afi_clk, // afi_clk.clk

exanpl e_addhdl i nstance_system add_hdl i nstance_exanple 0 emf
_instance_nane_emni f_instance_nanme emnf_i nstance_nane (

.pll _ref_clk (pll_ref_clk), // pll_ref_clk.clk
.global _reset_n (global _reset_n), // global _reset.reset_n
.soft _reset _n (soft _reset _n), // soft _reset.reset_n

-);

éhdnodule

Related Information

Controlling File Generation Dynamically with Parameters and a Fileset Callback on page 7-27

Design Guidelines for Adding Component Instances

In order to promote standard and predictable results when generating static and generated components,
Altera recommends the following best-practices:

 For two different parameterizations of a component, a component must never generate a file of the same
name with different instantiations. The contents of a file of the same name must be identical for every
parameterization of the component.

« Ifacomponent generates a nested component, it must never instantiate two different parameterizations
of the nested component using the same instance name. If the parent component's parameterization
affects the parameters of the nested component, the parent component must use a unique instance name
for each unique parameterization of the nested component.

« Static components that generate differently based on parameterization have the potential to cause problems
in the following cases:

« Different file names with the same entity names, results in same entity conflicts at compilation-time

« Different contents with the same file name results in overwriting other instances of the component,
and in either file, compile-time conflicts or unexpected behavior.

+ Generated components that generate files not based on the output name and that have different content
results in either compile-time conflicts, or unexpected behavior.

Creating Qsys Components Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . Ql151022
7-38 Document Revision History 2013.11.4

Document Revision History
Table 7-4 indicates edits made to the Creating Qsys Components content since its creation.

Table 7-4: Document Revision History

I S A N

November 2013 13.1.0 o Added add_hdl_instance.

o Added Creating a Component
With Differing Structural Qsys
View and Generated Output
Files .

May 2013 13.0.0 « Consolidated content from
other Qsys chapters.

« Added Upgrading IP
Components to the Latest
Version.

o Updated for AMBA APB
support.

November 2012 12.1.0 o Added AMBA AXI4 support.

o Added the demo_axi_memory
example with screen shots and
example _hw.tcl code.

June 2012 12.0.0 o Added new tab structure for
the Component Editor.

o Added AMBA AXI3 support.

November 2011 11.1.0 Template update.

May 2011 11.0.0 « Removed beta status.

o Added Avalon Tri-state
Conduit (Avalon-TC) interface
type.

o Added many interface
templates for Nios custom
instructions and Avalon-TC
interfaces.

December 2010 10.1.0 Initial release.

For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook Archive.

Related Information
Quartus II Handbook Archive

Altera Corporation Creating Qsys Components

() send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QII51022%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	7. Creating Qsys Components
	Qsys Components
	Component Interface Support
	Component Structure
	Component File Organization
	Component Versions
	Upgrading IP Components to the Latest Version

	Life Cycle of a Component
	Creating Qsys Components in the Component Editor
	Saving a Component and Creating an _hw.tcl File
	Editing a Component with the Component Editor

	Specifying Basic Component Information
	Specifying Files for Synthesis and Simulation
	Specifying HDL Files for Synthesis
	Creating a New HDL File for Synthesis
	Analyzing Synthesis Files
	Naming HDL Signals for Automatic Interface and Type Recognition
	Specifying Files for Simulation
	Including Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component

	Specifying Component Parameters
	Allowed Ranges Parameter Property
	Types of Parameters
	User Parameters
	System Information Parameters
	Derived Parameters
	Parameterized Parameter Widths

	Declaring Parameters with Custom hw.tcl Commands
	Validating Parameter Values with a Validation Callback

	Specifying Interface and Signal Types
	Adding Interfaces and Managing Interface Settings
	Creating Custom _hw.tcl Interface Settings and Properties

	Controlling Interfaces Dynamically with an Elaboration Callback
	Controlling File Generation Dynamically with Parameters and a Fileset Callback
	Creating a Composed Component or Subsystem
	Creating a Component With Differing Structural Qsys View and Generated Output Files
	Adding Component Instances to a Static or Generated Component
	Static Components
	Generated Components
	Design Guidelines for Adding Component Instances

	Document Revision History

