
Intel® FPGA SDK for OpenCL™

Stratix® V Network Reference Platform Porting Guide

Updated for Intel® Quartus® Prime Design Suite: 17.1

Subscribe
Send Feedback

UG-OCL008 | 2017.11.06
Latest document on the web: PDF | HTML

https://www.altera.com/bin/rssdoc?name=ewa1404851957878
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Stratix%20V%20Network%20Reference%20Platform%20Porting%20Guide%20(UG-OCL008%202017.11.06)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/ug_aocl_s5_net_platform.pdf
https://www.altera.com/documentation/ewa1404851957878.html

Contents

1 Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide......4
1.1 Stratix V Network Reference Platform: Prerequisites..4

1.1.1 Legacy Board Support... 4
1.2 Features of the Stratix V Network Reference Platform.. 5
1.3 Contents of the Stratix V Network Reference Platform..6

2 Developing Your Custom Platform... 7
2.1 Initializing Your Custom Platform.. 7
2.2 Removing Unused Hardware.. 8
2.3 Integrating Your Custom Platform with the Intel FPGA SDK for OpenCL.......................... 9
2.4 Setting up the Software Development Environment... 10

2.4.1 Setting Up Software Development Environment for Windows.......................... 10
2.4.2 Setting Up the Software Development Environment for Linux..........................11

2.5 Building the Software in Your Custom Platform..11
2.6 Establishing Host Communication..12
2.7 Connecting the Memory...13
2.8 Integrating an OpenCL Kernel...13
2.9 Programming Your FPGA Quickly Using CvP.. 14
2.10 Guaranteeing Timing Closure..15
2.11 Troubleshooting.. 16

3 Stratix V Network Reference Platform Design Architecture..17
3.1 Host-FPGA Communication over PCIe.. 17

3.1.1 Parameter Settings for PCIe Instantiation...17
3.1.2 PCIe Device Identification Registers...17
3.1.3 Version ID..18
3.1.4 Definitions of Hardware Constants in Software Header Files............................ 18
3.1.5 PCIe Kernel Driver.. 19
3.1.6 SG-DMA.. 20

3.2 DDR3 as Global Memory for OpenCL Applications.. 21
3.2.1 DDR3 IP Instantiation..22
3.2.2 DDR3 Connection to PCIe Host... 22
3.2.3 DDR3 Connection to OpenCL Kernel...23

3.3 QDRII as Heterogeneous Memory for OpenCL Applications... 23
3.4 Host Connection to OpenCL Kernels...24
3.5 Implementation of UDP Cores as OpenCL Channels .. 24

3.5.1 QuickUDP IP Instantiation.. 25
3.5.2 QuickUDP Configuration via PCIe-Based Host..25
3.5.3 QuickUDP Connection to OpenCL Kernel... 25

3.6 FPGA System Design... 26
3.6.1 Clocks... 27
3.6.2 Resets...27
3.6.3 Floorplan... 28
3.6.4 Global Routing..29
3.6.5 Pipelining...30
3.6.6 Encrypted IPs...31

3.7 Guaranteed Timing Closure.. 31
3.7.1 Supply the Kernel Clock... 31

Contents

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
2

3.7.2 Guarantee Kernel Clock Timing... 32
3.7.3 Provide a Timing-Closed Post-Fit Netlist... 33

3.8 Addition of Timing Constraints.. 33
3.9 Connection to the Intel FPGA SDK for OpenCL.. 34

3.9.1 Describe s5_net to the Intel FPGA SDK for OpenCL..34
3.9.2 Describe the s5_net Hardware to the Intel FPGA SDK for OpenCL.................... 34

3.10 FPGA Programming Flow.. 36
3.10.1 CvP... 36
3.10.2 Flash... 40
3.10.3 Defining the Contents of the fpga.bin File... 43

3.11 Host-to-Device MMD Software Implementation..44
3.12 OpenCL Utilities Implementation... 45

3.12.1 aocl install..45
3.12.2 aocl uninstall.. 46
3.12.3 aocl program.. 46
3.12.4 aocl flash... 46
3.12.5 aocl diagnose... 46
3.12.6 aocl list-devices.. 47

3.13 Stratix V Network Reference Platform Implementation Considerations........................ 47

A Document Revision History..49

Contents

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
3

1 Intel® FPGA SDK for OpenCL™ Stratix® V Network
Reference Platform Porting Guide

The Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting
Guide describes the procedures and design considerations you can implement to
modify the Stratix V Network Reference Platform (s5_net) into your own Custom
Platform for use with the Intel FPGA Software Development Kit (SDK) for OpenCL(1)(2).
This document also contains reference information on the design decisions for s5_net,
which makes use of features such as heterogeneous memory buffers and I/O channels
to maximize hardware usage on a computing card designed for networking.

1.1 Stratix V Network Reference Platform: Prerequisites

The Stratix V Network Reference Platform Porting Guide assumes that you are an
experienced FPGA designer who is familiar with Intel's FPGA design tools and
concepts.

These design tools and concepts include:

• FPGA architecture, including clocking, global routing and I/Os

• High-speed design

• Timing analysis

• Intel Quartus® Prime software

• Platform Designer (Standard) design and Avalon® interfaces

• Tcl scripting

• Designing with Logic Lock regions

• PCI Express* (PCIe*)

• DDR3 external memory

1.1.1 Legacy Board Support

The Intel FPGA SDK for OpenCL attempts to automigrate your existing Custom
Platform to the most recent Intel Quartus Prime Design Suite version.

(1) OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of the Khronos
Group™.

(2) The Intel FPGA SDK for OpenCL is based on a published Khronos Specification, and has passed
the Khronos Conformance Testing Process. Current conformance status can be found at
www.khronos.org/conformance.

UG-OCL008 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.khronos.org/conformance/
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Refer to the Custom Platform Automigration for Forward Compatibility section in the
Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide for more information
and instructions.

The Custom Platform Toolkit is available in the SDK's board directory (that is,
INTELFPGAOCLSDKROOT/board/custom_platform_toolkit).

Caution: The Stratix V Network Reference Platform and the Stratix V Network Reference
Platform Porting Guide are not compatible with Custom Platforms created prior to
Altera SDK for OpenCL version 14.0.

Related Links

Custom Platform Automigration for Forward Compatibility

1.2 Features of the Stratix V Network Reference Platform

Prior to designing an Intel FPGA SDK for OpenCL Custom Platform, decide on design
considerations that allow you to fully utilize the available hardware on your computing
card.

Figure 1. Hardware Features on a Hypothetical Stratix V Network Reference Platform
Computing Card

DDR3-1600

DDR3-1600

PCIe Gen2 x8

FPGA
Stratix V D8

QDRII + 500 MHz

QDRII + 500 MHz

QDRII + 500 MHz

QDRII + 500 MHz

10GE

10GE

Features of s5_net:

1. OpenCL Host

A PCIe-based host that connects to the Stratix V PCIe Gen2 x8 hard intellectual
property (IP) core.

2. OpenCL Global Memory

The hardware provides two separate 4-gigabyte (GB) DDR3 memory buffers.
S5_net uses both banks together to create 8 GB of global memory.

3. Heterogeneous Memory

S5_net uses the four on-board quad data rate II (QDRII) memory interfaces to
implement a total of 64 megabytes (MB) of heterogeneous memory for the Intel
FPGA SDK for OpenCL Offline Compiler. By default, the host application allocates
memory into the OpenCL global memory (that is, DDR3) when an OpenCL kernel
program loads into the OpenCL runtime. However, based on the kernel arguments,
the host might relocate memory to other buffers available on the computing card
(that is, QDRII). Accesses to heterogeneous memory buffers are advantageous for
network applications because they require the fast random access bandwidth that
QDR provides.

1 Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
5

https://www.altera.com/documentation/ewa1402666946838.html#ewa1414420984884

4. OpenCL I/O Channels

The two 10 Gbps Ethernet (10 GbE) I/Os connect to a full user datagram protocol
(UDP) stack that provides an Avalon Streaming (Avalon-ST) interface for direct
connection to OpenCL kernels.

5. FPGA Programming

The computing card uses the Configuration via Protocol (CvP)-capable PCIe hard
IP. S5_net uses Intel FPGA CvP feature for implementing fast reprogramming over
PCIe.

6. Guaranteed Timing

Guaranteed timing closure is achievable via the Intel Quartus Prime compilation
flow for CvP. S5_net delivers a precompiled netlist in a .personax file that the
offline compiler imports into each kernel compilation.

1.3 Contents of the Stratix V Network Reference Platform

The Stratix V Network Reference Platform is available for download on the Intel FPGA
SDK for OpenCL FPGA Platforms page on the Altera website. Click Custom to reveal
the download link.

Table 1. Highlights of the Contents of s5_net

Windows File or
Folder

Linux File or Directory Description

board_env.xml board_env.xml eXtensible Markup Language (XML) file that describes s5_net to
the SDK.

windows64 linux64 Contains memory-mapped device (MMD) library, kernel mode
driver, and executables for the SDK utilities (that is, install,
flash, program, diagnose, and uninstall) for your 64-bit
operating system.

hardware hardware Contains the Intel Quartus Prime project template into which the
Intel FPGA SDK for OpenCL Offline Compiler integrates kernels.
The offline compiler then synthesizes the Intel Quartus Prime
project files that implement the hardware of s5_net.

source source Contains source codes for the MMD library and SDK utilities in
the linux64 and windows64 directories.

include include Contains header files necessary for compiling an OpenCL host
application and accessing board-specific application programming
interface (API) calls. For s5_net, these files are necessary for
UDP initialization.

Related Links

Intel FPGA SDK for OpenCL FPGA Platforms page

1 Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
6

https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#fpgaplatforms

2 Developing Your Custom Platform
Use the tools available in the Stratix V Network Reference Platform and the Intel FPGA
SDK for OpenCL Custom Platform Toolkit together to create your own Custom
Platform.

Developing your Custom Platform requires in-depth knowledge of the contents in the
following documents and tools:

1. Intel FPGA SDK for OpenCL Custom Platform User Guide

2. Contents of the Custom Platform Toolkit

3. Stratix V Network Reference Platform Porting Guide

4. Documentation for all the Intel FPGA IP in your Custom Platform

5. Intel FPGA SDK for OpenCL Getting Started Guide

6. Intel FPGA SDK for OpenCL Programming Guide

In addition, you must independently verify all the hard IPs on your computing card
(for example, PCIe controllers, DDR3 external memory, and Ethernet).

Related Links

• Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide

• Intel FPGA SDK for OpenCL Getting Started Guide

• Intel FPGA SDK for OpenCL Programming Guide

2.1 Initializing Your Custom Platform

To initialize your Intel FPGA SDK for OpenCL Custom Platform, copy the Stratix V
Network Reference Platform to another directory and rename it.

1. Download s5_net from the Intel FPGA SDK for OpenCL FPGA Platforms page on
the Altera website. Click Custom to reveal to download link.

2. Store the s5_net directory into a directory that you own (that is, not a system
directory) and then rename it (<your_custom_platform_name>).

3. Remove the <your_custom_platform_name>/hardware/s5_net/persona
directory.

4. Rename the <your_custom_platform_name>/hardware/s5_net directory to
match the name of your FPGA board (<board_name>).

UG-OCL008 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/ewa1402666946838.html#mwh1391804342074
https://www.altera.com/documentation/mwh1391807309901.html#mwh1391807297091
https://www.altera.com/documentation/mwh1391807965224.html#mwh1391807939093
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

5. Modify the name attribute of the board XML element in the board_spec.xml file
with <board_name>.

6. Modify the board_env.xml file so that the name and default fields match the
changes you made in 4 on page 7 and 5 on page 8.

7. In the SDK, invoke the command aoc -list-boards to confirm that the Intel
FPGA SDK for OpenCL Offline Compiler displays the board name in your Custom
Platform.

Related Links

• Intel FPGA SDK for OpenCL FPGA Platforms page

• Listing the Available FPGA Boards in Your Custom Platform (-list-boards)

2.2 Removing Unused Hardware

After you store the Stratix V Network Reference Platform to your own directory and
perform some preliminary modifications, modify the Intel Quartus Prime design files.

1. Instantiate your PCIe controller.

For detailed instructions on instantiating your PCIe controller, refer to the Getting
Started with the Avalon-MM Stratix V Hard IP for PCI Express section of the
Stratix V Avalon-MM Interface for PCIe Solutions User Guide.

For information on the design parameters for instantiating the PCIe controller in
s5_net, refer to Host-FPGA Communication over PCIe, and the Parameter Settings
section of the Stratix V Avalon-MM Interface for PCIe Solutions User Guide.

2. In Platform Designer (Standard), open the <your_custom_platform_name>/
hardware/<board_name>/board.qsys Platform Designer (Standard) system
file. Remove the following components by selecting their names and then clicking
Remove from the right-click menu:

a. cpld_bridge_0

b. qdr_0

c. DDR3 memory controllers

Because several components use the clock that ddr3a generates, it might be
easier to remove only the second DDR3 controller (ddr3b) and reparameterize
ddr3a to match your memory.

3. Remove the cpld.sdc file from the <your_custom_platform_name>/
hardware/<board_name> directory.

4. In Platform Designer (Standard), open the <your_custom_platform_name>/
hardware/<board_name>/system.qsys file. Remove the udp_0 component.

5. In the Platform Designer (Standard) System menu, click Remove Dangling
Connections to remove invalid connection points between system.qsys and
board.qys.

6. Modify both Intel Quartus Prime settings files (.qsf) to use only the pin-outs and
settings for your system. Ensure that the only differences between the base.qsf
and top.qsf files are in the settings in the Revision Specific Settings
section of the files.

2 Developing Your Custom Platform

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
8

https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#fpgaplatforms
https://www.altera.com/documentation/mwh1391807965224.html#ewa1412799424979

Related Links

• Getting Started with the Avalon-MM Hard IP for PCI Express

• Host-FPGA Communication over PCIe on page 17

• Parameter Settings

2.3 Integrating Your Custom Platform with the Intel FPGA SDK for
OpenCL

After you modify your Intel Quartus Prime design files, integrate your Custom Platform
with the Intel FPGA SDK for OpenCL.

1. Update the <your_custom_platform_name>/hardware/<board_name>/
board_spec.xml file by removing the QDR and Ethernet channels from it.
Ensure that there is at least one global memory interface, and all the global
memory interfaces correspond to the exported interfaces from the board.qsys
Platform Designer (Standard) system file.

QDR section of the Stratix V Network Reference Platform's board_spec.xml file:

<!-- QDRII -->
<global_mem name="QDR" max_bandwidth="17600" interleaved_bytes="8"
 config_addr="0x100">
 <interface name="board" type="slave" width="64" maxburst="1"
 address="0x200000000" size="0x1000000" latency="150" addpipe="1">
 <port name="kernel_qdr0_r" direction="r"/>
 <port name="kernel_qdr0_w" direction="w"/>
 </interface>
 <interface name="board" type="slave" width="64" maxburst="1"
 address="0x201000000" size="0x1000000" latency="150" addpipe="1">
 <port name="kernel_qdr1_r" direction="r"/>
 <port name="kernel_qdr1_w" direction="w"/>
 </interface>
 <interface name="board" type="slave" width="64" maxburst="1"
 address="0x202000000" size="0x1000000" latency="150" addpipe="1">
 <port name="kernel_qdr2_r" direction="r"/>
 <port name="kernel_qdr2_w" direction="w"/>
 </interface>
 <interface name="board" type="slave" width="64" maxburst="1"
 address="0x203000000" size="0x1000000" latency="150" addpipe="1">
 <port name="kernel_qdr3_r" direction="r"/>
 <port name="kernel_qdr3_w" direction="w"/>
 </interface>
</global_mem>

Ethernet channels section of the s5_net board_spec.xml file:

<channels>
 <interface name="udp_0" port="udp0_out" type="streamsource"
width="256"
 chan_id="eth0_in"/>
 <interface name="udp_0" port="udp0_in" type="streamsink" width="256"
 chan_id="eth0_out"/>
 <interface name="udp_0" port="udp1_out" type="streamsource"
width="256"
 chan_id="eth1_in"/>
 <interface name="udp_0" port="udp1_in" type="streamsink" width="256"
 chan_id="eth1_out"/>
</channels>

2 Developing Your Custom Platform

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
9

https://www.altera.com/documentation/lbl1414182212844.html#nik1410905318071
https://www.altera.com/documentation/lbl1414182212844.html#nik1410564822797

2. In the <your_custom_platform_name>/hardware/<board_name>/scripts
directory, modify the post_flow.tcl file to not call the create_fpga_bin.tcl
file. You can do so by commenting out the line of code containing the command
call_script_as_function scripts/create_fpga_bin.tcl.

Generate fpga.bin used for reprogramming
post_message "Generating fpga.bin"
if {[catch { call_script_as_function scripts/create_fpga_bin.tcl
$revision_name.sof
 $revision_name.core.rbf $revision_name.periph_hash $revision_name }
res]}
{
 post_message -type error "Error in create_fpga_bin.tcl! $res"
 exit 2
}

3. Set the environment variable ACL_QSH_COMPILE_CMD to quartus_sh --flow
compile top -c base.

Setting this environment variable instructs the SDK to compile the base revision
corresponding to the base.qsf file in the <your_custom_platform_name>/
hardware/<board_name> directory of your Custom Platform.

4. Perform the steps outlined in the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/README.txt file to compile the
INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/tests/
boardtest/boardtest.cl OpenCL kernel source file.

The environment variable INTELFPGAOCLSDKROOT points to the location of the
SDK installation.

The hardware compilation stage will fail because of the absence of the fpga.bin
file. However, the Intel Quartus Prime compilation should complete successfully
and produce a boardtest.aoco Intel FPGA SDK for OpenCL Offline Compiler
object file.

5. If compilation fails because of timing failures, fix the errors, or compile
INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/tests/
boardtest.cl with different seeds by including the -seed=<N> option in the
aoc command (for example, aoc -seed=2 boardtest.cl).

2.4 Setting up the Software Development Environment

Prior to building the software layer for your Intel FPGA SDK for OpenCL Custom
Platform, you must set up the software development environment.

2.4.1 Setting Up Software Development Environment for Windows

1. Install the GNU make utility on your Windows development machine.

Note: Intel used the GNU make utility version 3.81a to build the software in the
Stratix V Network Reference Platform.

2. Install Microsoft Visual Studio.

2 Developing Your Custom Platform

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
10

Note: Microsoft Visual Studio 2008 (9.0) was used to build the software in s5_net.

3. Set up the software development environment so that the Intel FPGA SDK for
OpenCL user can invoke SDK commands and utilities at a command prompt.

4. Modify the <your_custom_platform_name>/source/Makefile.common file
so that TOP_DEST_DIR points to the top-level directory of your Custom Platform.

5. In the Makefile.common file, set the JUNGO_LICENSE variable to your Jungo
WinDriver license.

For information on how to acquire a Jungo Windriver license, visit the Jungo
Connectivity Ltd. website.

6. To check that you have set up the software development environment properly,
invoke the gmake or gmake clean command.

Related Links

Jungo Connectivity Ltd. website

2.4.2 Setting Up the Software Development Environment for Linux

1. Ensure that you use a Linux distribution that Intel supports.

Note: Intel used the GNU Compiler Collection (GCC) version 4.2.3 to build the
software in the Stratix V Network Reference Platform.

2. Modify the <your_custom_platform>/source/Makefile.common file so that
TOP_DEST_DIR points to the top-level directory of your Custom Platform.

3. To check that you have set up the software environment properly, invoke the make
or make clean command.

2.5 Building the Software in Your Custom Platform

You can build the software in your custom platform by modifying the library, driver,
and source files provided in the Stratix V Network Reference Platform. To brand your
custom platform, you must modify the MMD library, driver, and utilities provided in
s5_net to include information specific to your board design.

1. In the software available with s5_net, ensure that you replace all references to
s5_net to your Custom Platform.

2. Modify the linklib element in <your_custom_platform_name>/
board_env.xml XML file to your custom MMD library name.

3. Modify the PACKAGE_NAME and MMD_LIB_NAME fields in the
<your_custom_platform_name>/source/Makefile.common file.

4. Modify the following files to include information of your Custom Platform:

— For Windows, <your_custom_platform_name>\source\include
\hw_pcie_constants.h

— For Linux, <your_custom_platform_name>/linux64/driver/
hw_pcie_constants.h

2 Developing Your Custom Platform

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
11

http://www.jungo.com/

Update the following lines of code with information of your Custom Platform:

#define ACL_PCI_SUBSYSTEM_VENDOR_ID 0x1172
#define ACL_PCI_SUBSYSTEM_DEVICE_ID 0x0005
#define ACL_BOARD_PKG_NAME "s5_net"
#define ACL_VENDOR_NAME "Intel(R) Corporation"
#define ACL_BOARD_NAME "Network Reference Platform"

Note: The IDs must match the parameters in the PCIe controller hardware. For
more information, refer to PCIe Device Identification Registers.

5. For Windows systems, update the DeviceList field in the
<your_custom_platform_name>\windows64\driver\acl_boards.inf
Setup Information file.

6. Run make in the<your_custom_platform_name>/source directory to generate
the MMD library, driver, and utilities.

Related Links

PCIe Device Identification Registers on page 17

2.6 Establishing Host Communication

After you modify and rebrand the Stratix V Network Reference Platform to your own
Custom Platform, use the tools and utilities in the Custom Platform to establish
communication between your FPGA accelerator board and your host application.

1. Program your FPGA device with the <your_custom_platform_name>/
hardware/<board_name>/base.aocx hardware configuration file and reboot
your system.

2. Confirm that your operating system recognizes a PCIe device with your vendor
and device IDs.

— For Windows, open the Device Manager

— For Linux, invoke the lspci command

3. Run the aocl install <path_to_customplatform> utility command to
install the kernel driver on your machine.

4. Ensure that you properly set the LD_LIBRARY_PATH environment variable on
Linux or the PATH environment variable on Windows.

For more information about the settings for LD_LIBRARY_PATH or PATH, refer to
the Setting the Intel FPGA SDK for OpenCL User Environment Variables section of
the Intel FPGA SDK for OpenCL Getting Started Guide.

5. To instruct the MMD software not to use CvP or flash memory to program the
FPGA, perform one of the following tasks :

— To force the MMD to program via the quartus_pgm executable, set the
environment variable ACL_PCIE_FORCE_USB_PROGRAMMING to a value of 1.

— To force the MMD to program via your custom programming method, modify
the <your_custom_platform_name>/source/host/mmd/
acl_pcie_device.cpp file. Trace the appearance of the environment
variable ACL_PCIE_FORCE_USB_PROGRAMMING in the source code, and
replace the existing instruction with your custom programming method.

2 Developing Your Custom Platform

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
12

6. Modify the version_id_test function in the MMD source code in the
<your_custom_platform_name>/source/host/mmd/
acl_pcie_device.cpp file to exit after reading from the version ID register.

7. Remake the MMD software.

8. Run the aocl diagnose utility command and confirm the version ID register
reads back the ID successfully. You may set the environment variables
ACL_HAL_DEBUG and ACL_PCIE_DEBUG to a value of 1 to visualize the result of
the diagnostic test on your terminal.

Related Links

• Host-FPGA Communication over PCIe on page 17

• Setting the Intel FPGA SDK for OpenCL User Environment Variables (Windows)

• Setting the Intel FPGA SDK for OpenCL User Environment Variables (Linux)

• Querying the Device Name of Your FPGA Board (diagnose)

2.7 Connecting the Memory

Calibrate the external memory IP and controllers in your Custom Platform, and
connect them to the host.

1. In your Custom Platform, instantiate your external memory IP based on the
information in the DDR3 as Global Memory for OpenCL Applications section.

2. Update the <your_custom_platform_name>/hardware/<board_name>/
board_spec.xml file to reflect the modifications.

3. Remove the boardtest hardware configuration file that you created during the
integration of your Custom Platform with the Intel FPGA SDK for OpenCL.

4. Recompile the INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/
tests/boardtest/boardtest.cl kernel source file.

The environment variable INTELFPGAOCLSDKROOT points to the location of the
SDK installation.

5. Reprogram the FPGA with the new boardtest hardware configuration file and
then reboot your machine.

6. Modify the MMD source code to exit after checking the UniPHY status register in
the function wait_for_uniphy. Rebuild the MMD software.

7. Run the aocl diagnose utility command and confirm that the host reads back
both the version ID and the value 0 from the uniphy_status component.
The utility should return the message Uniphy are calibrated.

8. Consider using the Signal Tap logic analyzer to confirm the successful calibration
of all memory controllers.

Related Links

DDR3 as Global Memory for OpenCL Applications on page 21

2.8 Integrating an OpenCL Kernel

After you establish host communication and connect the external memory, test the
FPGA programming process from kernel creation to program execution.

2 Developing Your Custom Platform

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
13

https://www.altera.com/documentation/mwh1391807309901.html#ewa1416586552764
https://www.altera.com/documentation/mwh1391807309901.html#ewa1416591141201
https://www.altera.com/documentation/mwh1391807965224.html#ewa1396448625540

1. Perform the steps outlined in INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/README.txt file to build the hardware
configuration file from the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/boardtest/boardtest.cl kernel source
file.

The environment variable INTELFPGAOCLSDKROOT points to the location of the
Intel FPGA SDK for OpenCL installation.

2. Program your FPGA device with the boardtest.aocx Intel FPGA SDK for OpenCL
Offline Compiler executable file and reboot your machine.

3. Remove the early-exit modification in the version_id_test function in the
<your_custom_platform_name>/source/host/mmd/
acl_pcie_device.cpp file that you implemented when you established
communication between the board and the host interface.

4. Invoke the aocl diagnose <device_name> command, where
<device_name> is the string you define in your Custom Platform to identify each
board.

By default, <device_name> is the acl number (for example, acl0 to acl31) that
corresponds to your FPGA device. In this case, invoke the aocl diagnose
acl0 command.

5. Build the boardtest host application. The .sln file for Windows and the
Makefile for Linux are available in the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/boardtest directory.

Attention: You must modify the .sln file to link it against the MMD library in
your Custom Platform.

6. Set the environment variable CL_CONTEXT_COMPILER_MODE_INTELFPGA to a
value of 3.

For more information on this environment variable, refer to Troubleshooting.

Related Links

Troubleshooting on page 16

2.9 Programming Your FPGA Quickly Using CvP

After you verify that the host can program you FPGA device successfully, establish the
CvP programming capability of your Custom Platform.

1. Invoke the following command to generate the CvP files:

quartus_cpf -c --cvp <revision_name>.sof <revision_name>.rbf

You may include this command in the <your_custom_platform_name>/
hardware/<board_name>/scripts/post_flow.tcl file so that it generates
the CvP files automatically after each compilation.

2 Developing Your Custom Platform

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
14

Your Intel Quartus Prime compilation directory should contain the files
<revision_name>.sof, <revision_name>.periph.rbf, and
<revision_name>.core.rbf files.

2. Program the base.sof file and then reboot your machine.

3. (Optional) You may use the Intel Quartus Prime Programmer to verify basic CvP
functionality. Invoke the quartus_cvp command to program the
base.core.rbf file.

4. Define the contents of your fpga.bin file by adding Tcl code to the
<your_custom_platform_name>/hardware/<board_name>/scripts/
post_flow.tcl file that generates the fpga.bin file. Then, modify the MMD
source code and the program utility so that you can use the file.

You may use the existing format if you remove the proprietary host-to-flash
programming over the cpld_bridge component from both the hardware and
software.

5. If you set the environment ACL_PCIE_FORCE_USB_PROGRAMMING earlier, unset
it. Then, set the environment variable ACL_PCIE_FORCE_PERIPH_REPLACE_USB
to a value of 1. Alternatively, modify the <your_custom_platform_name>/
source/host/mmd/acl_pcie_device.cpp file to use CvP but not flash
memory for reprogramming periphery changes. Flash programming is unavailable
because of the removal of the cpld_bridge component.

6. Navigate to the directory containing the boardtest.aocx file. Invoke the
command aocl program <device_name> boardtest.aocx to reprogram
the device. Confirm that the message Program succeed appears.

Note: By default, <device_name> is the acl number. If you have retained the
default naming convention, invoke the aocl program command using
acl0 as <device_name>. Alternatively, if you use another naming
convention for <device_name>, use that in your aocl utility command.

Related Links

Programming the FPGA Offline or without a Host (program <device_name>)

2.10 Guaranteeing Timing Closure

When you modify the Stratix V Network Reference Platform into your own Custom
Platform, ensure that guaranteed timing closure holds true for your Custom Platform.

1. Establish the floorplan of your design.

Important: Consider all design criteria outlined in FPGA System Design and the
Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide.

2. Compile several seeds of boardtest.cl until you generate a compiled design
that achieves timing closure cleanly. Include the -seed=<N> option in your aoc
command to specify the seed number.

3. Copy the <path_to_s5_net>/hardware/s5_net/persona/
base.root_partition.personax file into your Custom Platform.

4. Copy the boardtest.aocx file from the timing-closed compilation in Step 2 into
your Custom Platform. Rename the file base.aocx.

2 Developing Your Custom Platform

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
15

https://www.altera.com/documentation/mwh1391807965224.html#ewa1411151156431

5. Derive the top revision top.qsf file from your base.qsf file by including the
changes described in the CvP section.

6. Remove the ACL_QSH_COMPILE_CMD environment variable.

7. Recompile boardtest.cl. In the Fitter Preservation section of the report,
confirm that the Top partition is imported.

The Incremental Compilation Placement Preservation section should show 100%
placement for Top. Similarly, the Incremental Compilation Routing Preservation
section should show 100% routing for Top.

8. Confirm that you can use the .aocx file to reprogram over CvP by invoking the
aocl program acl0 boardtest.aocx command.

9. Ensure that the environment variable CL_CONTEXT_COMPILER_MODE_INTELFPGA
is not set. Run the boardtest_host executable.

Related Links

• Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide

• CvP on page 36

• FPGA System Design on page 26

2.11 Troubleshooting

Set Intel FPGA SDK for OpenCL-specific environment variables to help troubleshoot
Custom Platform design problems.

Table 2. Intel FPGA SDK for OpenCL-Specific Environment Variables for Identifying
Custom Platform Design Problems

Environment Variable Description

ACL_HAL_DEBUG Set this variable to a value of 1 to 5 to enable increasing debug
output from the Hardware Abstraction Layer (HAL), which
interfaces directly with the MMD layer.

ACL_PCIE_DEBUG Set this variable to a value of 1 to 10000 to enable increasing
debug output from the MMD. This variable setting is useful for
confirming that the version ID register was read correctly and
the UniPHY IP cores are calibrated.

ACL_PCIE_JTAG_CABLE Set this variable to override the default quartus_pgm argument
that specifies the cable number. The default is cable 1. If there are
multiple Intel FPGA Download Cable, you can specify a particular
one here.

ACL_PCIE_JTAG_DEVICE_INDEX Set this variable to override the default quartus_pgm argument
that specifies the FPGA device index. By default, this variable has
a value of 1. If the FPGA is not the first device in the JTAG chain,
you can customize the value.

CL_CONTEXT_COMPILER_MODE_INTELFPGA Unset this variable or set it to a value of 3. The OpenCL host
runtime reprograms the FPGA as needed, which it does at least
once during initialization. To prevent the host application from
programming the FPGA, set this variable to a value of 3.
Important: When setting

CL_CONTEXT_COMPILER_MODE_INTELFPGA, only
use a value of 3.

2 Developing Your Custom Platform

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
16

https://www.altera.com/documentation/ewa1402666946838.html#mwh1391804342074

3 Stratix V Network Reference Platform Design
Architecture

Intel created the Stratix V Network Reference Platform based on various design
considerations. Familiarize yourself with these design considerations. Having a
thorough understanding of the design decision-making process might help in the
design of your own Intel FPGA SDK for OpenCL Custom Platform.

3.1 Host-FPGA Communication over PCIe

To set up the PCIe hard IP that enables communication between the host and the
FPGA board, you must configure the IP settings, and set various IDs, constants and
parameters.

3.1.1 Parameter Settings for PCIe Instantiation

The Stratix V Network Reference Platform instantiates the Stratix V PCIe hard IP to
implement a host-to-device connection over PCIe.

Dependencies

• Stratix V hard IP for PCI Express

• For Windows systems, Jungo WinDriver

Table 3. Highlights of the Stratix V PCIe hard IP Configuration Settings

Parameter Setting

Lanes Lane rate: Gen2 (5.0 Gbps)
Number of lanes: x8
Note: This setting is the fastest configuration that can

support CvP.

Rx buffer credit allocation Low
Note: This setting is derived experimentally.

Enable configuration via the PCIe link On
Click the check box to enable the setting.

Base Address Registers (BARs) The design uses only a single BAR (BAR 0).

Address Translation Tables Number of address pages: 256
Note: This setting is derived experimentally.
Size of address pages: 12 bits
Important: The number and size of the address pages

must match the values in the MMD layer.

3.1.2 PCIe Device Identification Registers

To build PCIe hardware, you must set PCIe IDs related to the device hardware.

UG-OCL008 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Table 4. Device Hardware-Related PCIe ID Registers

ID Register Name Parameter Name in PCIe IP Core Description

Vendor ID vendor_id_hwtcl Identifies the manufacturer of the FPGA device.
Always set this register to 0x1172.

Device ID device_id_hwtcl Identifies the FPGA device.
Set the device ID to the device code of the FPGA device
on your accelerator board.
For the Stratix V Network Reference Platform, this
register is set to 0xD800 for the Stratix V D8 FPGA.

Subsystem Vendor ID subsystem_vendor_id_hwtcl Identifies the manufacturer of the accelerator board.
Set this register to the vendor ID of manufacturer of
your accelerator board.
If you are a board vendor, set this register to your
vendor ID.

Subsystem Device ID subsystem_device_id_hwtcl Identifies the accelerator board.
The Intel FPGA SDK for OpenCL uses this ID to identify
the board because the software might perform
differently on different boards. If you create a Custom
Platform that supports multiple boards, use this ID to
distinguish between the boards. Alternatively, if you have
multiple Custom Platforms, each supporting a single
board, you can use this ID to distinguish between the
Custom Platforms.
Important: Make this ID unique to your Custom

Platform.

You can find these PCIe ID definitions in the PCIe controller instantiated in the
board.qsys system. These IDs are necessary in the driver and the SDK
programming flow. The kernel driver uses the Vendor ID, Subsystem Vendor ID and
the Subsystem Device ID to identify the boards it supports. The SDK programming
flow refers to the Device ID to ensure that it programs a device with a .aocx file
targeting that specific device.

3.1.3 Version ID

The Stratix V Network Reference Platform instantiates a version_id component that
connects to the PCIe Avalon master.

Before communicating with any part of the FPGA system, the PCIe first reads from this
version_id register to confirm the following:

• The PCIe can access the FPGA fabric successfully.

• The address map matches the map in the MMD software.

Update the VERSION_ID parameter in the version_id component to a new value with
every slave addition or removal from the PCIe BAR 0 bus, or whenever the address
map changes.

3.1.4 Definitions of Hardware Constants in Software Header Files

After you build the PCIe component in your hardware design, you need a software
layer to communicate with the board via PCIe. To enable communication between the
board and the host interface, define the hardware constants for the software in header
files.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
18

The Stratix V Network Reference Platform includes three header files that describe the
hardware design to the software. The location of these header files are as follows:

• For Linux systems, the location is <path_to_s5_net>/linux64/driver

• For Windows systems, the location is <path_to_s5_net>\source\include

Table 5. S5_net Header Files

Header File Name Description

hw_pcie_constants.h Header file that defines most of the hardware constants for the board design.
Example constants in this file include the IDs described in the PCIe Device
Identification Registers section, BAR number, and offset for different components in
your design. In addition, this header file also defines the name strings of
ACL_BOARD_PKG_NAME, ACL_VENDOR_NAME and ACL_BOARD_NAME.
Keep the information in this file in sync with any changes to the board design.

hw_pcie_dma.h Header file that defines direct memory access (DMA)-related hardware constants.
Refer to SG-DMA for more information.

hw_pcie_cvp_constants.h Header file that defines CvP-related hardware constants.
Refer to CvP for more information.

Related Links

• SG-DMA on page 20

• CvP on page 36

• PCIe Device Identification Registers on page 17

3.1.5 PCIe Kernel Driver

A PCIe kernel driver is necessary for the OpenCL runtime library to access your board
design via a PCIe bus.

The Stratix V Network Reference Platform PCIe kernel driver is in the following
directory:

• For Windows systems, the driver is in the <path_to_s5_net>
\windows64\driver folder

• For Linux systems, the driver is in the <path_to_s5_net>/linux64/driver
directory

Use the Intel FPGA SDK for OpenCL install utility to install the kernel driver. Refer
to aocl install for more information.

For Windows systems, the WinDriver API kernel driver is a third-party driver from
Jungo Connectivity Ltd. For more information about the WinDriver, refer to the Jungo
Connectivity Ltd. website or contact a Jungo Connectivity representative.

For Linux systems, an open-source, MMD-compatible kernel driver is available with
s5_net.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
19

Table 6. Highlight of Files Available in the Linux Kernel Driver Directory

File Name Description

pcie_linux_driver_exports.
h

Header file defining the special commands that the kernel driver supports. It defines
the interface of the kernel driver. The MMD layer uses this header file to communicate
with the device.
After you install the kernel driver, it works as a character device. The basic operations
to the driver are open(), close(), read(), and write(). To support more
complex commands, an acl_cmd struct variable is necessary to pass the
command of interest to the kernel driver through the read() or write() operation.
To execute a command, perform the following tasks:
1. Create a variable as type acl_cmd_struct.
2. Specify the command you want to execute with the appropriate parameters.
3. Send the command through a read() or write() operation.

aclpci.c File that implements the basic structures and functions that a Linux kernel driver
requires (for example, the init and remove functions, probe function, and
functions that handle interrupts).

aclpci_fileio.c File that implements the file I/O operations of the kernel driver. The s5_net Linux
kernel driver supports four file I/O operations, namely open(), close(), read()
and write(). Implementation of these file I/O operations allows the user application
to access the kernel driver via file I/O system calls (open/read/write/close).

aclpci_cmd.c File that implements the special commands defined in the
pcie_linux_driver_exports.h file. Examples of these special commands include
SAVE_PCI_CONTROL_REGS, LOAD_PCI_CONTROL_REGS, DO_CVP, and
GET_PCI_SLOT_INFO.

aclpci_dma.c File that implements DMA-related routine in the kernel driver.
Refer to SG-DMA for more information.

aclpci_cvp.c File that implements CvP-related routine in the kernel driver.
Refer to CvP for more information.

aclpci_queue.c File that implements a queue structure for use in the kernel driver. Such a queue
structure eases programming.

Related Links

• aocl install on page 45

• SG-DMA on page 20

• CvP on page 36

• Jungo Connectivity Ltd. website

3.1.6 SG-DMA

The acl_dma_core.qsys file within the OpenCL SGDMA Controller IP encapsulates
and parameterizes the modular scatter-gather SG-DMA hardware. The board.qsys
system instantiates the acl_dma.qsys file within the OpenCL SGDMA Controller IP.
For more information on SG-DMA, visit the Modular SG-DMA page on the Altera® Wiki
website.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
20

http://www.jungo.com/

Hardware

The acl_dma_core.qsys file presents slave ports for the control and status registers
(dma_csr) and the descriptors (dma_descriptors). It also provides separate
masters for read and write operations. The acl_dma.qsys Platform Designer
(Standard) System File adds the following features:

• An address span extender for non-DMA memory accesses

• A merged read/write master

The merged read/write master issues constant bursts of size 16, resulting in a 1/16
efficiency degradation from sharing the time interface. However, the bandwidth of this
unit exceeds the bandwidth of the PCIe connection by more than this amount.
Therefore, there is no observable host-to-memory bandwidth degradation.

Software

When the MMD receives a request for data transfer, it uses DMA when both of the
following conditions are true:

1. The transfer size is bigger than 1024 bytes.

2. There are 64-byte alignments with the starting addresses for both the host buffer
and the device offset.

Perform the following tasks to carry out a DMA transfer:

1. Check if there are remaining bytes to be sent.

2. Unpin the memory from the previous transfer.

3. Pin the memory for the new transfer.

4. Set up the Address Translation Tables on the PCIe.

5. Create and send the DMA descriptor.

6. Wait until the DMA finishes and then repeat Step 1.

Attention: For the Stratix V Network Reference Platform, this implementation is in the Linux
kernel driver in the <path_to_s5_net>/linux64/driver/aclpci_dma.c file. For
Windows systems, the implementation is in the <path_to_s5_net>\source\host
\mmd\acl_pcie_dma_windows.cpp file.

Related Links

Modular SG-DMA page on Altera Wiki

3.2 DDR3 as Global Memory for OpenCL Applications

The Stratix V Network Reference Platform targets a computing card that has two
banks of 4 GB x72 DDR3-160 SDRAM. Completion of the tasks below are necessary to
access these banks as global memory for OpenCL applications.

For more information on the DDR3 UniPHY IP, refer to the DDR2, DDR3, and DDR4
SDRAM Board Design Guidelines section in Volume 2 of the External Memory Interface
Handbook.

Related Links

DDR2, DDR3, and DDR4 SDRAM Board Design Guidelines

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
21

http://www.alterawiki.com/wiki/Modular_SGDMA
https://www.altera.com/documentation/hco1416492180052.html#hco1416490962387

3.2.1 DDR3 IP Instantiation

The Stratix V Network Reference Platform uses two DDR3 controllers with UniPHY IP to
communicate with the physical memories.

Table 7. DDR3 SDRAM Controller with UniPHY IP Configuration Settings

IP Parameter Configuration Setting

Timing Parameters As per the computing card's data specifications.

Phase-locked loop (PLL)/delay-
locked loop (DLL) Sharing

s5_net is configured such that both memory controllers can share the same PLL and
DLL.

Avalon Width Power of 2 Currently, OpenCL does not support non-power-of-2 bus widths. As a result, s5_net
uses the option that forces the DDR3 controller to power of 2. Use the additional pins
of this x72 core for error checking between the memory controller and the physical
module.

Byte Enable Support OpenCL requires byte-level granularity to all memories; therefore, byte-enable
support is necessary in the core.

Performance Enabling reordering and a deeper command queue look-ahead depth might provide
increased bandwidth for some OpenCL kernels. For a target application, adjust these
and other parameters as necessary.

Debug Debug is disabled for production.

After you instantiate the UniPHY IP, you typically need to run the
<variation_name>_pin_assignments.tcl Tcl script to add additional constraints
to the Intel Quartus Prime project. For more information on this process, refer to the
Adding Pins and DQ Group Assignments section in Volume 2 of the External Memory
Interface Handbook.

Related Links

Adding Pins and DQ Group Assignments

3.2.2 DDR3 Connection to PCIe Host

Connect all global memory systems to the host via the OpenCL Memory Bank Divider
component.

The DDR3 UniPHY IP core has two banks where their width and address configurations
match those of the DDR3 SDRAM. Intel tunes the other parameters such as burst size,
pending reads, and pipelining. These parameters are customizable for an end
application or board design.

The Avalon master interfaces from the bank divider connect to their respective
memory controllers. The Avalon slave connects to the PCIe and DMA cores.
Implementations of appropriate clock crossing and pipelining are based on the design
floorplan and clock domains specific to the computing card. The OpenCL Memory Bank
Divider section in the Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide
specifies the connection details of the snoop and memorg ports.

Important: Instruct the host to check for the successful calibration of the memory controller.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
22

https://www.altera.com/documentation/hco1416492180052.html#hco1416491386907

The board.qsys system uses a custom IP component named UniPHY Status to AVS
to aggregate different UniPHY status conduits into a single Avalon slave port named s.
This slave connects to the pipe_stage_host_ctrl component so that the PCIe host can
access it.

Related Links

OpenCL Memory Bank Divider

3.2.3 DDR3 Connection to OpenCL Kernel

The OpenCL kernel needs to connect directly to the memory controller via a FIFO-
based clock crosser.

A clock crosser is necessary because the kernel interface for the compiler must be
clocked in the kernel clock domain. In addition, the width, address width, and burst
size characteristics of the kernel interface must match those specified in the bank
divider connecting to the host. Appropriate pipelining also exists between the clock
crosser and the memory controller.

3.3 QDRII as Heterogeneous Memory for OpenCL Applications

The OpenCL heterogeneous memory feature allows Intel FPGA SDK for OpenCL users
to take advantage of the nonuniform memory architecture in a Custom Platform.

An SDK Custom Platform groups memories with similar characteristics into a single
global memory system. Each Custom Platform has a designated default global
memory system. In the case of the Stratix V Network Reference Platform, the default
global memory system consists of the two DDR3 memory banks. The default global
memory system must start at base address 0 from the host's perspective. Both the
hardware design and the board_spec.xml file in the Custom Platform reflect this
address assignment. In s5_net, the DDR global memory system is named DDR.

In addition to the DDR global memory system, the computing card that s5_net targets
includes four banks of QDR memory. These four banks belong to a global memory
system named QDR. SDK users can only allocate memory in the QDR global memory
system using an attribute on their global memory buffers. All addressable global
memory must be contiguous from the host's perspective; therefore, the QDR memory
base address must start where the DDR memory ends.

For more information on the QDR UniPHY IP, refer to the QDR II and QDR IV SRAM
Board Design Guidelines in Volume 2 of the External Memory Interface Handbook.

The procedure for implementing the QDR subsystem is similar to the one outlined in
the Developing Your Custom Platform section. Below is a list of high-level tasks:

1. Instantiate and parameterize the UniPHY memory controllers.

2. Connect the UniPHY memory controllers to the host via a new OpenCL Memory
Bank Divider instance.

3. Connect the UniPHY memory controller to the UniPHY Status to AVS component.

4. Export the UniPHY memory controller to the OpenCL kernel via clock-crossing
bridges.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
23

https://www.altera.com/documentation/ewa1402666946838.html#ewa1403034187264

Below are special QDR subsystem design considerations for s5_net:

• QDR provides separate read and write ports.

By default, the OpenCL Memory Bank Divider produces a single bidirectional
master for each memory controller. In Platform Designer (Standard), select the
Separate read/write ports option to support separate read and write masters.
With respect to the kernel, instantiate clock crosses and separate read and write
interfaces.

• The 275 MHz QDR afi clock and 4-to-1 multiplexing in the bank divider make it
difficult to meet timing.

To achieve timing closure robustly, open the qdr.qsys file in Platform Designer
(Standard), and select the option to pipeline the outputs in the OpenCL Memory
Bank Divider memory_bank_divider_1. Doing so adds a pipeline stage for each
master that the bank divider creates.

Related Links

• Developing Your Custom Platform on page 7

• QDR II and QDR IV SRAM Board Design Guidelines

3.4 Host Connection to OpenCL Kernels

The PCIe host needs to pass commands and arguments to the OpenCL kernels via the
control register access (CRA) Avalon slave port that each OpenCL kernel generates.
The OpenCL Kernel Interface component exports an Avalon master interface
(kernel_cra) that connects to this slave port. The OpenCL Kernel Interface
component also generates the kernel reset (kernel_reset) that resets all logic in
the kernel clock domain.

The Stratix V Network Reference Platform instantiates the OpenCL Kernel Interface
component and sets the Number of global memory systems parameter to 2. The
parameter setting is 2 because s5_net has DDR and QDR memories. Below is a list of
connection settings in s5_net:

• For the default DDR memory, the generated memorg_host0x018 conduit must
connect to the DDR bank divider (memory_bank_divider_0).

• For the default DDR memory, the config_addr attribute in the
board_spec.xml file must be set to 0x018.

• For the QDR memory, the memorg_host0x100 conduit must connect to the QDR
bank divider (memory_bank_divider_1).

• For the QDR memory, the config_addr attribute in the board_spec.xml file
must be set to 0x100.

3.5 Implementation of UDP Cores as OpenCL Channels

OpenCL kernels can communicate directly with I/O using the Intel FPGA SDK for
OpenCL channels extension.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
24

https://www.altera.com/documentation/hco1416492180052.html#hco1416491328454

For the Stratix V Network Reference Platform, Intel uses the PLDA QuickUDP IP to
implement a full UDP stack on top of the available 10 GbE channels on the card.
QuickUDP provides an Avalon-ST interface that can connect directly to the OpenCL
kernel, allowing it to send and receive UDP network traffic without concern for UDP or
lower-level protocols.

Attention: The UDP Hardware Stack QuickUDP IP is a licensed IP from PLDA. Refer to the PLDA
website for information on acquiring and installing the appropriate license.

Caution: Improper installation of the QuickUDP IP license causes the SDK users to encounter
the following error message when they compile with a Custom Platform that contains
the QuickUDP IP:

Error (292014): Can't find valid feature line for core PLDA
QUICKTCP (73E1_AE12) in current license.

The error has no actual dependency on the PLDA QuickTCP IP.

Related Links

PLDA website

3.5.1 QuickUDP IP Instantiation

The Stratix V Network Reference Platform targets a computing card that has two 10
GbE channels. To access these channels, s5_net instantiates two PLDA QuickUDP IP
cores.

The two 10 Gigabit Media Independent Interface (XGMII) interfaces from these cores
connect to a single 10GBASE-R PHY with two channels. The Verilog instantiation of the
PHY IP core is in the <path_to_s5_net>/hardware/s5_net/ip/quickudp/
quickudp_wrapper.v file. This file contains parameters such as the multitenant unit
(MTU) and the number of sessions supported. Most parameters are accessible via
QuickUDP's Avalon Memory-Mapped (Avalon-MM) slave interface.

3.5.2 QuickUDP Configuration via PCIe-Based Host

The Stratix V Network Reference Platform provides access to the PLDA QuickUDP IP
configuration space to the host over PCIe by connecting pipe_stage_host_ctrl to
the config_udp0 and config_udp1 interfaces of the s5_net udp.qsys subsystem.

Intel FPGA SDK for OpenCL users need to set their own parameters such as media
access control (MAC), IP address, ports, and destinations. With the host access to
QuickUDP via PCIe, the SDK users can configure the QuickUDP settings in their host
software using the API in the <path_to_s5_net>/include/aocl_net.h header
file.

3.5.3 QuickUDP Connection to OpenCL Kernel

Each PLDA QuickUDP IP core produces a read stream and a write stream, for a total of
four Intel FPGA SDK for OpenCL channels available to the kernel. These streams cross
into the kernel clk domain and are listed in the board spec.xml file.

Attention: The SDK supports only basic Avalon-ST with no packet support.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
25

http://www.plda.com/

QuickUDP provides an Avalon-ST interface with full packet support along with
additional metadata about the payload. Because OpenCL does not support the packet
extensions, the packetization signals are converted to data, and the OpenCL
application must handle all packetization.

QuickUDP also provides additional metadata that the application can use. For a full
explanation of these signals, refer to the QuickUDP documentation on the PLDA
website. In the Stratix V Network Reference Platform, the payload, packetization
signals, and metadata are concatenated into a single 256-bit-wide vector exported as
an Intel FPGA SDK for OpenCL channel.

Use the information in the following table to access the desired components of the
channel's data:

Table 8. Bit Mapping for the 256-Bit Intel FPGA SDK for OpenCL Channel to QuickUDP

Bit Range Name Description

[0:127] payload Packet payload

[128] sop Start of packet signal

[129] eop End of packet (EOP) signal

[130:133] empty On EOP, this field indicates how many bytes are unused

[134:149] payload_size Size of the packet
Set to 0 for outbound packets

[150:181] rem_ip Indicates the remote IP for incoming packets

[182:197] rem_port Indicates the remote port for incoming packets

[198:205] channel Avalon channel

[206] error Avalon error signal

Related Links

PLDA website

3.6 FPGA System Design

To integrate all components, close timing, and deliver a post-fit netlist that functions
in the hardware, you must first address several additional FPGA design complexities.
These design complexities include a robust reset sequence, establishment of a design
floorplan, global routing management, pipelining, and IP encryption. Optimizations of
these design complexities occur in tandem with one another in order to meet timing
and board hardware optimization requirements.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
26

http://www.plda.com/

3.6.1 Clocks

The following clock domains affect the Platform Designer (Standard) hardware
system:

• 250 MHz PCIe clock

• 200 MHz DDR3 clock

• 275 MHz QDR clock

• 156.25 MHz Ethernet clock

• 100 MHz general clock (config_clk)

• Kernel clock that can take on any clock frequency

With the exception of the kernel clock, the Stratix V Network Reference Platform is
responsible for closing timing of these clocks. However, because the board design
must clock cross all interfaces in the kernel clock domain, the board design also has
logic in this clock domain. It is crucial that this logic is minimal and achieves an Fmax
higher than typical kernel performance.

Related Links

Guaranteed Timing Closure on page 31

3.6.2 Resets

The FPGA system design includes the implementation of the following reset drivers:

1. The por_reset_counter in the board.qsys system implements the power-on-
reset. This reset issues a reset for a number of cycles after the FPGA completes
configuration. It resets all the hardware on the device.

2. The PCIe bus issues a PERST reset that resets all hardware on the device.

3. The OpenCL Kernel Interface component issues the kernel_reset that resets all
logic in the kernel clock domain.

The first two resets are combined into a single global_reset; therefore, there are
only two reset sources in the system. However, these resets are explicitly
synchronized across the various clock domains, resulting in several reset interfaces.

Important notes regarding resets:

1. Synchronizing resets to different clock domains might cause several high fan-out
resets.

Platform Designer (Standard) automatically synchronizes resets to the clock
domain of each connected component. In doing so, Platform Designer (Standard)
instantiates new reset controllers with derived names that might change when the
design changes. This name change makes it difficult to make and maintain global
clock assignments to some of the resets. As a result, for each clock domain, there
are explicit reset controllers. For example, global_reset drives
reset_controller_pcie and reset_controller_ddr3a; however, they are
synchronized to the PCIe and DDR3 clock domains, respectively. Because both of
these resets have high fan-out signals, they are assigned to global routing in
the .qsf file.

2. Resets and clocks must work together to propagate reset to all logic.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
27

Resetting a circuit in a given clock domain involves asserting the reset over a
number of clock cycles. However, your design may apply resets to the PLLs that
generate the clocks for a given clock domain. This means a clock domain can hold
in reset without receiving the clock edge necessary for synchronous resets. In
addition, a clock holding in reset might prevent propagation of a reset signal
because it is synchronized to and from that clock domain. Avoid such situations by
ensuring that your design satisfies the following criteria:

• Generate the global_reset signal off the free-running config_clk.

• Never reset the UniPHY controllers.

• Clock the reset controller for the Ethernet PHYs by its free-running reference
clock.

3. Apply resets to both reset interfaces of a clock-crossing bridge or FIFO component.

FIFO content corruption might occur if only part of a clock-crossing bridge or a
dual-clock FIFO component is reset. These components typically provide a reset
input for each clock domain; therefore, reset both interfaces or none at all. For
example, in the Stratix V Network Reference Platform, kernel_reset resets all
the kernel clock-crossing bridges between DDR, QDR, and UDP on both the
m0_reset and s0_reset interfaces.

3.6.3 Floorplan

The Intel FPGA SDK for OpenCL requires all board logic to be constrained along the
edges of the FPGA device. This constraint provides a large contiguous space for
OpenCL kernel implementation, which generally leads to better circuit performance
(that is, Fmax).

The Stratix V Network Reference Platform floorplan below shows that all board
interface logic are along the edges of the device. The logic in the center is the OpenCL
kernel. At the bottom of the device are the PCIe and the two DDR3 cores. The QDR
controllers are along the top of the device, and the two UDP stacks are on the right.
The Stratix V global clock buffers are all around the middle of the device. This
floorplan accommodates access to the global clock buffers by extending the bottom
region edges up the left and right sides. This extension allows the placement of reset
and other global routing drivers in the bottom region to be near the global clock
buffer.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
28

Figure 2. S5_net Floorplan

You can derive a floorplan for any board by following these steps:

1. Compile the design without any region constraints.

2. Examine the placement location of each of the IP cores in the Chip Planner.

3. Apply Logic Lock regions to push the IP cores to the edges of the device.

3.6.4 Global Routing

FPGAs have dedicated clock trees that distribute high fan-out signals to various
sections of the devices.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
29

In the FPGA system that the Stratix V Network Reference Platform targets, global
routing can distribute high fan-out signals in the following manners:

1. Regional—Across any quadrant of the device

2. Dual-regional—Across any half of the device

3. Global—Across the entire device

Because there is no restriction on the placement location of the OpenCL kernel on the
device, the kernel clocks and kernel reset must perform global distribution.

The DDR3 clock clocks all DMA logic and carries data into the QDR region at the top of
the device. As a result, this clock and the reset synchronized to this clock domain also
perform global distribution.

3.6.5 Pipelining

To implement pipelining in Platform Designer (Standard), refer to the Platform
Designer (Standard) Interconnect chapter of the Intel Quartus Prime Standard Edition
Handbook for more information.

Below are some specific examples of pipelining:

• Signals that traverse long distances because of the floorplan require additional
pipelining.

The DMA at the bottom of the FPGA must connect to the QDR memory at the top
of the FPGA. QDR provides a 64-bit-wide interface at 275 MHz. The DMA is 512
bits in width at 200 MHz. This latter connection is converted to a 128-bit-wide 200
MHz interface in the pipe_stage_qdr_host_0 module, which is pipelined in
both command and response. This narrower bus enables crossing from the bottom
region to the QDR region at the top, where it goes directly into
pipe_stage_qdr_host_1. The configuration of the pipe_stage_qdr_host_1
module is similar to pipe_stage_qdr_host_0 to ensure no logic insertion
between the two regions. This setup effectively implements pipelined routing in
the 200 MHz clock domain, which the clock crosses into the 275 MHz domain.
Finally, the width of the clock domain is adapted to ensure that this entire
connection can still fully saturate the QDR bandwidth.

• The OpenCL kernel might need to connect the DDR interfaces at the bottom of the
device and the QDR kernel interfaces at the top of the device.

The kernel interfaces for QDR memory are located in the top region of the FPGA.
However, the host and DDR connections originate from the bottom region of the
FPGA. This distribution can force the kernel to stretch across the vertical span of
the device, resulting in a slower Fmax. To minimize the decrease in Fmax, enable
additional pipelining in the kernel when connecting to QDR memory. Add an
addpipe attribute to each of the QDR interface element in board spec.xml,
and assign it a value of 1.

Related Links

Platform Designer (Standard) Interconnect

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
30

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958828732

3.6.6 Encrypted IPs

The Stratix V Network Reference Platform incorporates two encrypted IP cores. They
are the PLDA QuickUDP IP and the CPLD_bridge IP. The CPLD_bridge IP enables
communication between the FPGA and external CPLD.

Incorporation of these IP cores in s5_net demonstrates that it is feasible to use the
Intel FPGA encryption infrastructure to encrypt IPs within a Custom Platform.

Contact your field application engineer for more information on how to encrypt IP for
use with the Intel Quartus Prime software.

3.7 Guaranteed Timing Closure

One of the key features of the Intel FPGA SDK for OpenCL is that it abstracts away
hardware details, such as timing closure, for software developers. Both the SDK and
the Custom Platform contribute to the implementation of the SDK's guaranteed timing
closure feature. The SDK provides IP to generate the kernel clock, along with a post-
flow script that ensures this clock is configured with a safe operating frequency
confirmed by timing analysis. The Custom Platform imports a post-fit netlist that has
already achieved timing closure on all nonkernel clocks.

3.7.1 Supply the Kernel Clock

The OpenCL Kernel Clock Generator component provides the kernel clock and its 2x
variant. For more information, refer to the OpenCL Kernel Clock Generator section of
the Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide.

Figure 3. The OpenCL Kernel Clock Generator Parameter Editor GUI
This figure shows where the REF_CLK_RATE parameter specifies the frequency of the reference clock that
connects to the pll_refclk. In this case, the frequency is 100 MHz.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
31

The KERNEL_TARGET_CLOCK_RATE parameter specifies the frequency that the
Intel Quartus Prime software attempts to achieve during compilation. The board
hardware contains some logic that the kernel clock clocks; at a minimum it includes
the clock crossing hardware. To prevent this logic from limiting the Fmax achievable
by a kernel, the KERNEL_TARGET_CLOCK_RATE must be higher than the frequency
that a simple kernel can achieve on your device. For the Stratix V C2 device that the
Stratix V Network Reference Platform targets, the KERNEL_TARGET_CLOCK_RATE
is 380 MHz.

Caution: When developing a Custom Platform, a high target Fmax might cause difficulty in
achieving timing closure.

When developing your Custom Platform and attempting to close timing, add an
overriding Synopsys Design Constraints (SDC) definition to relax the timing of the
kernel. The following code example from the <path_to_s5_net>/hardware/
s5_net/top_post.sdc file applies a 5 ns (200 MHz) maximum delay constraint on
the OpenCL kernel during base revision compilations:

if {! [string equal $::TimeQuestInfo(nameofexecutable) "quartus_map"]}
{
 if { [get_current_revision] eq "base" }
 {
 post_message -type critical_warning "Compiling with slowed OpenCL Kernel
clock."
 if {! [string equal $::TimeQuestInfo(nameofexecutable) "quartus_sta"]}
 {
 set kernel_keepers [get_keepers system_inst\|kernel_system\|*]
 set_max_delay 5 -from $kernel_keepers -to $kernel_keepers
 }
 }
}

Caution: Applying this 5 ns SDC definition constrains both the kernel clock and the 2x clock to 5
ns, resulting in significantly slower kernel speeds.

Related Links

OpenCL Kernel Clock Generator

3.7.2 Guarantee Kernel Clock Timing

The OpenCL Kernel Clock Generator works together with a script that the Intel
Quartus Prime database interface executable (quartus_cdb) runs after every Intel
Quartus Prime software compilation as a post-flow script.

The following setting in the base.qsf and top.qsf files invokes the
<path_to_s5_net>/hardware/s5_net/scripts/post_flow.tcl Tcl script in
the Stratix V Network Reference Platform after every Intel Quartus Prime software
compilation using quartus_cdb:
set_global_assignment -name POST_FLOW_SCRIPT_FILE
"quartus_cdb:scripts/post_flow.tcl"

Within this script, the following statement calls the OpenCL script to determine and
configure the kernel clock to a functional frequency:
source $::env(INTELFPGAOCLSDKROOT)/ip/board/bsp/adjust_plls.tcl

where INTELFPGAOCLSDKROOT points to the path to the Intel FPGA SDK for OpenCL
installation.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
32

https://www.altera.com/documentation/ewa1402666946838.html#ewa1403029076915

Important: Ensure that this flow executes during every Intel Quartus Prime software compilation
of an OpenCL kernel.

3.7.3 Provide a Timing-Closed Post-Fit Netlist

Provide a timing-closed post-fit netlist that imports placement and routing information
for all nodes clocked by nonkernel clocks.

Intel provides several mechanisms for preserving the placement and routing of some
previously-compiled logic and for importing it into a new compilation. For the Stratix V
Network Reference Platform, the following features are desirable from such a flow:

1. Timing preservation

2. Version compatibility to allow the import of the netlist into a newer Intel Quartus
Prime software version

3. Strict preservation of the FPGA periphery to guarantee successful CvP
programming

The Intel FPGA CvP compilation flow for the Stratix V device provides all of these
features through an exported .personax file for the top-level partition. This means
s5_net is configured with the project revisions and partitions necessary for
implementing this flow. By default, the Intel FPGA SDK for OpenCL invokes the Intel
Quartus Prime software on revision top. This revision is configured to import the
persona/base.root_partition.personax file, which has been precompiled and
exported from a base revision compilation.

For more information, refer to the CvP section.

Related Links

CvP on page 36

3.8 Addition of Timing Constraints

A Custom Platform must apply the correct timing constraints to the Intel Quartus
Prime project. In the Stratix V Network Reference Platform, the top.sdc file contains
all timing constraints applicable before IP instantiation in Platform Designer
(Standard). The top_post.sdc file contains timing constraints applicable after
Platform Designer (Standard). The order of the application is based on the order of
appearance of the top.sdc and top_post.sdc in the top.qsf file.

One noteworthy constraint in s5_net is the multicycle constraint for the kernel reset in
the top_post.sdc file. Using global routing saves routing resources and provides
more balanced skew. However, the delay across the global route might cause recovery
timing issues that limit kernel clock speed. Although Intel requires all logic to exit
reset mode in the same clock cycle, it is not necessary for the exit to happen in the
same clock cycle as reset deassertion. Therefore, Intel adds a multicycle setup
constraint of 2 and multicycle hold of 1 to the kernel reset. Without these additions,
even with reset drivers located directly adjacent to global clock buffers, the highest
kernel Fmax that Intel achieves is around 320 MHz.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
33

3.9 Connection to the Intel FPGA SDK for OpenCL

A Custom Platform must include a board_env.xml file to describe its general
contents to the Intel FPGA SDK for OpenCL Offline Compiler. For each hardware
design, your Custom Platform also requires a board_spec.xml file that describes the
hardware.

The following sections describe the implementation of these files for the Stratix V
Network Reference Platform.

3.9.1 Describe s5_net to the Intel FPGA SDK for OpenCL

The board_env.xml file describes a Custom Platform to the Intel FPGA SDK for
OpenCL. Details of each field in the board_env.xml file is available in the Creating
the board_env.xml File section of the Intel FPGA SDK for OpenCL Custom Platform
Toolkit User Guide.

In the Stratix V Network Reference Platform, Intel uses the bin directory for Windows
dynamic link libraries, lib directory for delivering libraries, and libexec directory for
delivering the SDK utility executables. This directory structure allows the PATH
environment variable to point to the location of the dynamic link libraries (that is,
bin) in isolation of the SDK utility executables.

The s5_net Reference Platform also supplies an end-user API for UDP initialization.
The header in the <path_to_s5_net>/include/aocl_net.h file provides this API.
The compileflags element in the board_env.xml file points the compiler to this
directory when the SDK user invokes the aocl compile-config utility command
to derive compiler arguments.

Related Links

Creating the board_env.xml File

3.9.2 Describe the s5_net Hardware to the Intel FPGA SDK for OpenCL

The Stratix V Network Reference Platform includes a board_spec.xml file that
describes the hardware to the Intel FPGA SDK for OpenCL in the contexts described
below.

Board

The version attribute of the board element must match the Intel Quartus Prime
software version you use to develop the Custom Platform.

Device

The device section contains the name of the device model file available in the
INTELFPGAOCLSDKROOT/share/models/dm directory of the SDK and in the board
spec.xml file. The used_resources element accounts for all logic outside of the
kernel. The value of used_resources equals the difference between the number of

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
34

https://www.altera.com/documentation/ewa1402666946838.html#ewa1408565154386

adaptive logic modules (ALMs) used in final placement and the number of ALMs used
for registers. You can derive this value from the Partition Statistic section of the Fitter
report. Consider the following ALM categories within an example Fitter report:

; Statistic ;
+--
; Logic utilization (ALMs needed/total ALMs on device) ;
; ALMs needed [=A-B+C] ;
; [A] ALMs used in final placement [=a+b+c+d] ;
; [a] ALMs used for LUT logic and registers ;
; [b] ALMs used for LUT logic ;
; [c] ALMs used for registers ;
; [d] ALMs used for memory (up to half of total ALMs) ;
; [B] Estimate of ALMs recoverable by dense packing ;
; [C] Estimate of ALMs unavailable [=a+b+c+d] ;
; [a] Due to location constrained logic ;
; [b] Due to LAB-wide signal conflicts ;
; [c] Due to LAB input limits ;
; [d] Due to virtual I/Os ;

The value of used_resources equals ALMs used in final placement minus
ALMs used for registers (that is, [A] - [c]).

Global Memory

In the board_spec.xml file, there are separate global_mem sections for DDR and
QDR memory, namely DDR and QDR, respectively. Assign DDR and QDR to the name
attribute of the global_mem element. The board instance in Platform Designer
(Standard) provides all of these interfaces; therefore, board is specified in the name
attribute of all the interface elements within global_mem.

• DDR

Because DDR memory serves as the default memory for the board that s5_net
targets, its address attribute begins at zero. Its config_ddr is 0x018 to match
the memorg conduit used to connect to the corresponding Memory Bank Divider
for DDR.

Attention: The width and burst sizes must match the parameters in the Memory
Bank Divider for DDR (memory_bank_divider_0).

• QDR

The QDR section begins its address attribute directly after the DDR address space
stops, and its config_addr is 0x100, as indicated in the name of its memorg
conduit. Because QDR provides separate read and write ports, each port is
described to the Intel FPGA SDK for OpenCL Offline Compiler in a separate port
attribute.

As discussed in the Pipelining section, the addpipe option is necessary because
the QDR kernel interfaces are at the top of the FPGA and the rest of the kernel
interface signals are along the bottom of the device.

Attention: The width and burst sizes must match the parameters in the Memory
Bank Divider for QDR (memory_bank_divider_1).

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
35

Channels

The channels section describes the send and receive Avalon-ST channels for each of
the UDP cores, for a total of four 256-bit Intel FPGA SDK for OpenCL Offline Compiler
channels. These channel interfaces originate in the hardware from the udp_0 instance.
Therefore, udp_0 is specified in all the name attributes. The port attribute identifies
the name of the Platform Designer (Standard) interface to which a channel connects.
The chan_id attribute is the identifier with which the SDK user declares the channel.

Interfaces

The interfaces section describes kernel clocks, reset, CRA, and snoop interfaces.
The Memory Bank Divider for the default memory (in this case,
memory_bank_divider_0) exports the snoop interface described in the
interfaces section. The width of the snoop interface should match the width of the
corresponding streaming interface.

Compile

The compile section describes your Intel Quartus Prime project and provides the
commands necessary to generate and synthesize the RTL in your design. In addition,
it explicitly registers itself with the Automigration platform. If you derive your Custom
Platform design from s5_net, set the platform_type parameter of the
auto_migrate attribute to s5_net.

Related Links

• Creating the board_spec.xml File

• Pipelining on page 30

3.10 FPGA Programming Flow

There are three ways to program the FPGA. To replace only the FPGA core, use CvP
programming. To replace both the FPGA periphery and the core, use Flash
programming (if available), or the Intel Quartus Prime Programmer command-line
executable (quartus_pgm) programming via cables such as Intel FPGA Download
Cable.

The default FPGA programming flow is to compare the periphery currently
programmed on the FPGA with the periphery of a new design. If they match,
programming through CvP replaces the existing FPGA core with the new core. If they
differ, programming through external flash memory replaces the existing FPGA
periphery with the new design. FPGA programming using quartus_pgm via Intel
FPGA Download Cable is an old approach. Only use this programming method if you
use a cable to connect the board and the host computer. Cabling is a point of potential
failure, and it does not scale well to large deployments. The quartus_pgm approach
remains for development and testing purposes, and for use on boards that do not
have an alternative method (such as Flash) for periphery replacement.

3.10.1 CvP

The CvP feature enables core logic update over the PCIe hard IP for Stratix V and Arria
V GZ devices. Refer to the Configuration via Protocol (CvP) Implementation in V-series
FPGA Devices User Guide for more information.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
36

https://www.altera.com/documentation/ewa1402666946838.html#ewa1409325970637

Related Links

Configuration via Protocol (CvP) Implementation in V-series FPGA Devices User Guide

3.10.1.1 Replacing FPGA Core Logic via CvP Programming

To successfully program the FPGA core logic, the Fitter must ensure that all FPGA
periphery programming bits remain unchanged. The CvP revision flow expresses this
hard constraint to the Fitter. Use the Stratix V Network Reference Platform CvP
revision flow to achieve reliable CvP programming of the core logic.

1. Create a base revision. In the Stratix V Network Reference Platform, the base
revision is the <path_to_s5_net>/hardware/s5_net/base.qsf file.

2. Create a CvP update revision.

This update version is derived from the base revision and includes an
imported .personax file. The .personax file is created during a base revision
compilation. It includes the root partition imported from the base revision
compilation. In s5_net, this CvP update revision is the top.qsf file, which
becomes the project revision that the Intel FPGA SDK for OpenCL Offline Compiler
compiles by default.

3. Create a kernel partition in both base and update revisions (marked as having
multiple personas).

4. Store the base revision compilation programming file output in the Flash memory
as the power-up configuration.

5. Use the CvP update revision compilation programming file output for all
subsequent FPGA configurations.

3.10.1.2 Specifying Configuration via PCI Express Options

To enable Configuration via Protocol programming of the FPGA core logic, specify the
configuration via PCIe options in the Intel Quartus Prime software.

1. In the Stratix V HIP for PCI Express parameter editor GUI, under System
Settings, select Enable configuration via the PCIe link to enable CvP on the
PCIe IP.

2. Include the following INI settings in the quartus.ini file:

skip_hssi_gen3_pcie_hip_cvp_enable_rule = on
skip_hssi_gen3_pcie_hip_hip_hard_reset_rule = on
skip_hssi_gen3_pcie_hip_hrdrstctrl_en_rule = on

3. In the Intel Quartus Prime software, click Assignments ➤ Device ➤ Device and
Pin Options to open the Device and Pin Options dialog box.

4. Under General, select Enable autonomous PCIe HIP mode.

5. Under CvP Settings, perform the following tasks:

a. Set Configuration via Protocol to Core update.

b. Select Enable CvP_CONFDONE pin.

c. Select Enable open drain on CvP_CONFDONE pin.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
37

https://www.altera.com/documentation/nik1412546950394.html#nik1412546833714

The PCIe core must have the force_hrc parameter set to a value of 1 in the
board.qsys file. Because you cannot set this parameter using the Platform
Designer (Standard) GUI, you must save and exit Platform Designer (Standard),
and then edit the setting in the board.qsys file.

Attention: Depending on whether the PCIe core is used in the base or CvP revision, additional
modifications to the PCIe controller behavior might be necessary. An additional
multpersona partition named cvp_update_reset_partition is implemented to
work in conjunction with the following file edits:

• Replacement of altpcie_sv_hip_ast_hwtcl.v and
altpcie_hip_256_pipen1b.v in the
<path_to_OpenCL_kernel_filename_directory>/system/synthesis/
submodules directory.

• Addition of cvp_update_reset.v (for base revision) and
cvp_update_reset_zero.v (for CvP update revision) in the
<path_to_OpenCL_kernel_filename_directory>/system/synthesis/
submodules directory.

After Platform Designer (Standard) Verilog generation and before launching the Intel
Quartus Prime compilation, the <path_to_s5_net>/hardware/s5_net/scripts/
pre_flow.tcl Tcl script performs these file edits automatically. The following Verilog
source files reside in the INTELFPGAOCLSDKROOT/ip/board/migrate/
cvpupdatefix directory, where INTELFPGAOCLSDKROOT points to the Intel FPGA
SDK for OpenCL installation directory:

• altpcie_sv_hip_ast_hwtcl.v

• altpcie_hip_256_pipen1b.v

• cvp_update_reset.v

• cvp_update_reset_zero.v

3.10.1.3 Base versus CvP Update Revisions in CvP Programming

Base revision and CvP update revision have separate but almost identical Intel
Quartus Prime Settings Files named base.qsf and top.qsf, respectively.

The base.qsf file includes the following parameter settings:

set_global_assignment -name VERILOG_FILE system/synthesis/submodules/
cvp_update_reset.v
set_global_assignment -name CVP_REVISION top
set_global_assignment -name ROUTING_BACK_ANNOTATION_FILE
super_kernel_clock.rcf

The top.qsf file includes the following parameter settings:

set_global_assignment -name VERILOG_FILE system/synthesis/submodules/
cvp_update_reset_zero.v
set_global_assignment -name REVISION_ TYPE CVP
set_global_assignment -name BASE_REVISION base
set_global_assignment -name INPUT_PERSONA persona/
base.root_partition.personax -section_id Top

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
38

Figure 4. Base and CvP Revisions in top.qpf
When you open the top-level Intel Quartus Prime Project File <path_to_s5_net>/hardware/s5_net/
top.qpf in the Intel Quartus Prime software, the Project Navigator displays the base revision (base) and the
CvP revision (top).

Figure 5. Base Revision Design Partitions
When you click Assignments ➤ Design Partitions Window, the Design Partitions window lists two defined
design partitions for the base revision.

• acl_kernel_partition contains all kernel-related logic.

• cvp_update_reset_partition contains the fix that works in conjunction with
the pre_flow.tcl script to modify the PCIe controller behavior.

For both partitions, the Allow Multiple Personas parameter is set to On. This setting
indicates that the board interface logic remains unchanged, but these partitions might
change across different compilations. The acl_kernel_partition comprises of
different kernel logic resulting from the compilation of the OpenCL kernel source code,
as shown below:

Figure 6. CvP Revision Design Partitions
The Top partition, which contains everything other than acl_kernel_partition and
cvp_update_reset_partition, preserves placement-and-routing by importing the input persona
persona/base.root_partition.personax file.

In the case of a base revision compilation, invoking the export_persona -
overwrite -partition Top Tcl command exports the persona/
base.root_partition.personax file from the <path_to_s5_net>/hardware/
s5_net/scripts/post_flow.tcl file. This .personax file is imported into all
subsequent CvP update revision compilations. It preserves the placement and routing
of all non-kernel-related logic so that CvP updates only change the logic residing in
the kernel partition. Within the kernel partition, the kernel_system.qsys system is
automatically generated at compilation time. It is a Platform Designer (Standard)
subhierarchy of system.qsys. It contains one or more kernel IPs and wrapper logic
to connect the kernel partition to the OpenCL board logic in board.qsys and the UDP
logic in udp.qsys.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
39

3.10.2 Flash

CvP programming reprograms the FPGA core quickly, but it cannot replace the
periphery configuration. When a new design uses a different board variant within a
Custom Platform, changes to the periphery are necessary to reflect differences in
hardware resources such as the number of memory controllers. Periphery changes
require full-device reprogramming using hardware external to the FPGA. Full-device
programming through the Flash memory is commonly used to store power-on FPGA
configuration images. With this technique, the host system programs the Flash
memory across PCIe using custom bridge IP on the FPGA. An FPGA reprogramming
operation from Flash is then carried out, followed by PCIe link restoration with the
newly programmed FPGA.

The information below describes the implementation of Flash programming for the
Stratix V Network Reference Platform. If your board offers alternative means of FPGA
periphery reconfiguration, Flash programming is unnecessary.

Remember: Flash memory is one of many possible techniques to program the FPGA periphery. It is
a board-specific choice. Flash programming depends on board-specific communication
link between the host and Flash memory. It also relies on the ability to command
FPGA reprogram operation from Flash in live system.

Alternative FPGA periphery programming methods, preferably accessible from the
PCIe bus, can be built into a board. You can use external cables to program the FPGA
periphery with an external device such as the Intel FPGA Download Cable (either
separate or integrated onto the board). However, cables are points of failure that do
not scale well to large deployments.

Attention: Intel does not recommend external cabling as a solution for periphery programming.

Periphery Hashing and Hash ROM

The Custom Platform must have the necessary infrastructure to select at runtime
between FPGA reconfiguration via CvP programming (core replacement only) or via
Flash programming (periphery and core replacement). Flash programming is slower of
the two programming methods. It is unsafe to first attempt CvP programming and
then Flash programming (if CvP programming fails) because Flash programming
requires PCIe communication with the FPGA. A CvP programming failure because of
mismatched peripheries renders the PCIe link unusable. It eliminates the
communication link necessary to program the Flash device. In that failure mode, a
system power cycle is necessary to restore the FPGA and the PCIe link.

S5_net includes two infrastructure components to enable runtime decision making on
the FPGA configuration method:

1. ROM storage in the locked-down portion of the FPGA, which contains a hash of the
currently programmed periphery configuration. The MMD software layer can read
this ROM via PCIe.

2. Hash of the FPGA periphery bitstream, which is created at the end of the Intel
Quartus Prime compilation flow. This hash is embedded in two locations:

a. The fpga.bin file, embedded in the .aocx Intel FPGA SDK for OpenCL
Offline Compiler executable file.

b. The FPGA configuration bitstream, so that the correct hash populates the
ROM.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
40

By comparing the hash of the periphery currently programmed to the FPGA against
that of the new design, the following function in the acl_pcie_flash.cpp MMD file
decides whether CvP programming is sufficient. If not, a fall-back method such as
Flash programming is necessary to reprogram the device periphery:
ACL_PCIE_FLASH::does_programmed_periphery_differ_from_fpga_bin()

Note: S5_net uses a SHA-1 hash function.

Attention: Populating the periphery hash within the FPGA configuration bitstream changes the
periphery hash value derived from the bitstream.

To avoid this update loop, the Intel Quartus Prime compilation uses a ROM
initialization value of all zeros. The output from this compilation goes into the
computation of the periphery hash. Then, when you run quartus_cdb --
update_mif, it replaces the ROM value with the output hash from the original
compilation.

Communicating with Flash Memory over PCIe

In s5_net, the host communicates with Flash memory through a CPLD that connects
to a set of FPGA pins. The CPLD is located between the FPGA and Flash, and it masters
communication between the FPGA and off-chip peripherals. A CPLD_bridge IP block is
instantiated in the locked-down interface portion of the FPGA design. It provides
memory-mapped communication between the PCIe controller on the FPGA and the
external CPLD communication bus.

The CPLD uses a custom packet-based communication protocol for communication
with the FPGA. The MMD host code creates the necessary packets, and transmits them
over PCIe to the CPLD_bridge on the FPGA. The bridge in turn communicates the
packets to the CPLD for further processing and routing. Flash programming commands
are embedded within these packets.

Flash Memory Programming

A full programming bitstream is stored in the Flash memory. The operations necessary
for programming are specific to the Flash chip. For more information on the
configuration protocol, refer to the source code of the acl_pcie_flash.cpp MMD
file and the Flash device datasheet.

The high-level Flash memory programming tasks are as follows:

1. Erase the Flash lines that you want to program.

2. Program the data lines.

3. Read back the data to verify that the programming bitstream is correct.

In s5_net, raw binary file (RBF) bitstreams are programmed to the Flash memory
because the configuration hardware on the board expects the .rbf file format.
Alternative file formats might be necessary on boards with different configuration
methods. You can use Intel Quartus Prime software utilities, such as quartus_cdb, to
perform file format conversion using the post-flow scripts (scripts/post_flow.tcl
and subscripts).

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
41

Note: For simplicity, the FPGA bitstreams are not compressed in s5_net.

S5_net verifies the successful programming of the Flash memory (that is, no bit
errors). In a production environment where programming speed is of concern, you can
take multiple steps to reduce the Flash programming time. For example, you can use
compressed bitstreams, reduce or eliminate the verification of Flash contents, and
remove multiple busy wait loops in the Flash programming code. Because s5_net is
intended as an instructional proof of concept, it is not optimized for programming
time.

If the device is configured with a compressed bitstream, then CvP must also use a
compressed bitstream.

Base and CvP Revisions for Flash Programming

The Intel Quartus Prime compilation of an OpenCL kernel can produce two different
compilation revisions: base and CvP. For more information on these revisions, refer to
the CvP section.

S5_net uses Flash programming for two purposes:

1. Modification of the FPGA periphery configuration.

2. Replacement of the power-on Flash configuration image (using the Intel FPGA SDK
for OpenCL flash utility).

Modifying the FPGA periphery requires a bitstream from a CvP revision compilation.
Replacing the power-on image requires an RBF from a base revision compilation to
guarantee CvP reliability. RBF bitstreams are large. To avoid storing both the base and
CvP revision compilation RBF files for every design, only include the base revision RBF
in the fpga.bin file. As a result, you can use the SDK flash utility to replace the
power-on bitstream with the RBF in the fpga.bin file. However, periphery
replacement in a live system becomes more complicated. The base revision
compilation contains the correct periphery for an SDK user's design, but it does not
contain the design itself. The design is only available in a CvP revision compilation.
The solution is to replace the periphery through Flash programming using the base
revision compilation, and then to immediately CvP program the user's design on top of
that periphery. The result is identical to programming a full RBF bitstream from the
user's CvP revision compilation, but without storing that RBF.

FPGA Reprogramming from Flash

After you program the Flash memory with the new configuration bitstream from a
base revision compilation, you must reconfigure the FPGA in the live system by
performing the following tasks:

1. Reprogram the FPGA from the bitstream in Flash memory.

2. Wait for device programming to complete.

3. Restore PCIe link and verify communication with the FPGA.

4. Program the SDK user design core onto the FPGA via CvP. Refer to the CvP section
for more information.

S5_net performs FPGA reprogramming from Flash via a control command to the CPLD
by the host, through the bridge on the FPGA. Details of the command are specific to
the board hardware and are different across manufacturers.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
42

Flash programming restores the PCIe link in the same way as programming via
quartus_pgm. The PCIe configuration space is saved on the host before
reprogramming. After reprogramming, the registers are restored by copying the
original configuration data from the host to the device configuration space across
PCIe. PCIe advanced error reporting (AER) is disabled during the programming
operation because the FPGA effectively disappears from the PCIe bus during
programming, which is typically a fatal PCIe event (Basic Input/Output System (BIOS)
often halts the CPU). By restoring the PCIe configuration space registers after
reprogramming, the device can communicate with the host using the same
configuration as the original power-on PCIe enumeration.

From the host computer's perspective, the FPGA PCIe endpoint remains unchanged.
After PCIe communicates with the FPGA that has the new and verified periphery
configuration, CvP programming populates the FPGA core with the OpenCL kernel
design. Refer to the CvP section for more details.

Important: S5_net targets a board with Flash memory that stores the power-on FPGA
configuration bitstream.

When changing the periphery through Flash programming at runtime, to avoid
overwriting the power-on bitstream, you may use a different region of Flash memory
as the intermediate storage location. However, this technique requires a means to
specify the Flash memory address from which the FPGA will be reprogrammed. For
boards without the ability to load from multiple Flash regions dynamically, you might
need to overwrite the power-on programming bitstream.

Related Links

CvP on page 36

3.10.3 Defining the Contents of the fpga.bin File

You may arbitrarily define the contents of the fpga.bin file in a Custom Platform
because it passes from the Intel FPGA SDK for OpenCL to the Custom Platform as a
black box.

Table 9. Contents of the s5_net fpga.bin File

The contents of the fpga.bin file in the Stratix V Network Reference Platform are defined as an Executable
and Linkable Format (ELF) library that organizes the various fields.

Field Description

.acl.sof The full programming bits for the compiled design.

.acl.core.rbf The CvP programming bits for the compiled design.

.acl.periph.hash The hash of the periph.rbf file that the current compilation generates. This hash is
also embedded in the on-chip Hash ROM. The Hash ROM is compared against this hash
to determine, ahead of time, whether CvP programming will succeed.

.acl.compile_revision The name of the compiled Intel Quartus Prime project revision.

continued...

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
43

Field Description

.acl.pcie.dev The device ID of the PCIe controller. The PCIe device ID is set to match the FPGA part
number (for example, D8). This field is compared to the FPGA part number to ensure
that the programming files correspond to the device undergoing programming.

.acl.base_revision.rbf The full-FPGA .rbf file of the base revision compilation used to generate the post-fit
netlist. This .rbf file must be the power-on image of the FPGA. All other designs can be
programmed via CvP on top of this image.

.acl.base_revision.perip
h.hash

The hash of the periph.rbf file of the base revision compilation from which the post-
fit netlist is derived. This field is retrieved from the base.aocx file and should match
the .acl.periph.hash field for any SDK user compilation.

3.11 Host-to-Device MMD Software Implementation

The MMD layer is a thin software layer for communicating with the board. A full
implementation of the MMD library is necessary for every Custom Platform for the
proper functioning of the OpenCL host applications and board utilities. Details of the
API functions, their arguments, and return values for MMD layer are specified in the
<TOP_DEST_DIR>/source/include/aocl_mmd.h file, where <TOP_DEST_DIR>
points to the top-level directory of your Custom Platform.

The source codes of an MMD library that demonstrates good performance are available
in the <TOP_DEST_DIR>/source/host/mmd directory. For more information on the
MMD API functions, refer to the MMD API Descriptions section of the Intel FPGA SDK
for OpenCL Custom Platform Toolkit User Guide.

acl_pcie.cpp

The acl_pcie.cpp file implements the MMD API and provides multiple devices
support. This file also handles the PCIe interrupt. For Linux, the kernel driver uses
signal to notify the MMD about an interrupt from the PCIe. For Windows, the MMD use
the Jungo WinDriver API to handle the interrupt from PCIe.

In addition, this file includes a signal handler for Ctrl-C event. The MMD needs to
capture the Ctrl-C event to ensure that the program does not terminate itself during
unsafe operation, such as programming the device or running quartus_pgm.

acl_pcie_device.cpp

The acl_pcie_device.cpp file implements a class to represent a device, and
abstracts details to allow easier handling of multiple devices. Examples of the
supported operations of the device by this class include write_block, read_block,
reprogram, and flash.

During the instantiation of an instant for the device class, the following verifications
take place:

1. Ensures that the kernel driver is installed and that its version matches the MMD
version.

2. Ensures that the device with the given name can be found.

3. Ensures that the Version ID of the device matches the supported ID in the
software.

4. Waits for UniPHY IP calibration.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
44

acl_pcie_mm_io.cpp

The acl_pcie_mm_io.cpp file implements a class to allow access to the device as a
memory-mapped I/O. It provides access to GLOBAL-MEM, PCIE-CRA, DMA-CSR, DMA-
DESCRIPTOR, KERNEL, etc.

acl_pcie_dma_linux.cpp or acl_pcie_dma_windows.cpp

The acl_pcie_dma_linux.cpp or acl_pcie_dma_windows.cpp file implements
DMA-related functions. For more information, refer to the SG-DMA section.

acl_pcie_config.cpp

The acl_pcie_config.cpp file implements functions for configuring the device. For
more information, refer to the FPGA Programming Flow section.

acl_pcie_flash.cpp

The acl_pcie_flash.cpp file implements Flash-related functions. For more
information, refer to the Flash section.

acl_pcie_quickudp.cpp

The acl_pcie_quickudp.cpp file implements UDP-related functions. For more
information, refer to the Implementation of UDP Cores as OpenCL Channels section.

acl_pcie_debug.cpp

The acl_pcie_debug.cpp file defines the commonly used debug functions and
parameters. It is included by most of the other files.

acl_pcie_timer.cpp

The acl_pcie_timer.cpp file implements a timer module to measure performance.

Related Links

• SG-DMA on page 20

• FPGA Programming Flow on page 36

• Flash on page 40

• Implementation of UDP Cores as OpenCL Channels on page 24

• MMD API Descriptions

3.12 OpenCL Utilities Implementation

A Custom Platform requires a set of Intel FPGA SDK for OpenCL utilities for managing
the FPGA board.

3.12.1 aocl install

The install <path_to_customplatform> utility installs the kernel driver on the
host computer. Users of the Intel FPGA SDK for OpenCL only need to install the driver
once, after which the driver should be automatically loaded each time the machine
reboots.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
45

https://www.altera.com/documentation/ewa1402666946838.html#ewa1402934770992

Attention: You must have write privileges to the SDK directory to install the kernel directory.

Windows

The install.bat script is located in the <your_custom_platform>
\windows64\libexec directory, where <your_custom_platform> points to the top-
level directory of your Custom Platform. This install.bat script triggers the
install executable from Jungo Connectivity Ltd. to install the WinDriver on the host
machine.

Linux

The install script is located in the <your_custom_platform>/linux64/
libexec directory. This install script first compiles the kernel module in a
temporary location and then performs the necessary setup to enable automatic driver
loading after reboot.

3.12.2 aocl uninstall

The uninstall <path_to_customplatform> utility removes the current host
computer drivers used for communicating with the board.

Windows

The uninstall.bat script is located in the <your_custom_platform>
\windows64\libexec directory, where <your_custom_platform> points to the top-
level directory of your Custom Platform. This uninstall.bat script triggers the
uninstall executable from Jungo Connectivity Ltd. to uninstall the WinDriver on the
host machine.

Linux

The uninstall script is located in the <your_custom_platform>/linux64/
libexec directory. This uninstall script removes the driver module from the
kernel.

3.12.3 aocl program

The program utility programs the board with the specified .aocx file. Calling the
aocl_mmd_reprogram() MMD API function implements the program utility.

3.12.4 aocl flash

The flash utility configures the power-on image for the FPGA using the
specified .aocx file. Calling into the MMD library implements the flash utility.

3.12.5 aocl diagnose

The diagnose utility reports device information and identifies issues. The diagnose
utility first verifies the installation of the kernel driver. Depending on whether an
additional argument is specified in the command, the utility then performs different
tasks.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
46

Without an argument, the utility returns the overall information of all the devices
installed in a host machine. If a specific device name is provided as an argument (that
is, aocl diagnose <device_name>), the diagnose utility runs a memory
transfer test and then reports the host-device transfer performance.

You can run the diagnose utility for multiple devices (that is, aocl diagnose
<device_name1> <device_name2> <device_name3>). If you want to run the
diagnose utility for all devices, use the all option (that is aocl diagnose all).

3.12.6 aocl list-devices

The list-devices utility lists all the devices installed in a host machine, grouped by
board packages.

The list-devices utility is similar to the diagnose utility. It first verifies the
installation of the kernel driver and then lists all the devices.

3.13 Stratix V Network Reference Platform Implementation
Considerations

The implementation of the Stratix V Network Reference Platform includes some
workarounds that address certain Intel Quartus Prime software known issues.

1. The quartus_map executable reads the SDC files. However, it does not support
the Tcl command get_current_revision. Therefore, in the top_post.sdc
file, a check is in place to determine whether quartus_map has read the file
before checking the current version.

2. Configuration via PCIe requires the force_hrc parameter to have a value of 1,
and the inclusion of the three PCIe INI settings described in the CvP section.

3. The kernel clock requires a lot of connectivity. Therefore, Intel recommends
compiling the base revision using the super_kernel_clock.rcf Routing
Constraints File.

4. Use the INI setting bpm_hard_block_partition=off to improve version
compatibility.

5. Use the INI setting qic_pf_no_input_rotation=on to prevent certain failures
to route.

6. The CvP revision (that is, top), which imports the .personax file, must include
auto global clock promotion for clocks, resets, and clock enable signalss.

7. To avoid certain routing failures, set the Fitter Preservation Level for the Top
partition to Netlist Only. You may assign the setting via the Design Partitions
Window or the Tcl Console.

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
47

In addition to these workarounds, take into account the following considerations:

1. The pll_rom.hex file exists before compilation.

2. Intel Quartus Prime compilation is only ever performed after the Intel FPGA SDK
for OpenCL Offline Compiler has embedded an OpenCL kernel inside the system.

3. Perform Intel Quartus Prime compilation after you install the Intel FPGA SDK for
OpenCL and set the INTELFPGAOCLSDKROOT environment variable to point to the
SDK installation.

4. The name of the directory where the Intel Quartus Prime project resides must
match the name field in the board_spec.xml file within the Custom Platform.
The name must be case sensitive.

5. The PATH or LD_LIBRARY_PATH environment variable must point to the MMD
library in the Custom Platform.

Related Links

CvP on page 36

3 Stratix V Network Reference Platform Design Architecture

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
48

A Document Revision History
Table 10. Document Revision History of the Stratix V Network Reference Platform

Porting Guide

Date Version Changes

November 2017 2017.11.03 • Rebranded the following:
— Environment variable ALTERAOCLSDKROOT to

INTELFPGAOCLSDKROOT.
— Environment variable CL_CONTEXT_COMPILER_MODE_ALTERA to

CL_CONTEXT_COMPILER_MODE_INTELFPGA
— USB Blaster Cable to Intel FPGA Download Cable.
— SignalTap II Logic Analyzer to Signal Tap logic analyzer.
— Quartus Prime to Intel Quartus Prime
— LogicLock to Logic Lock
— Qsys to Platform Designer (Standard)

• Implemented single dash and -option=<value> conventions in the
following topics:
— Initializing Your Custom Platform on page 7
— Integrating Your Custom Platform with the Intel FPGA SDK for OpenCL

on page 9
— Guaranteeing Timing Closure on page 15

• Added a new topic aocl list-devices on page 47.
• Updated the topic aocl diagnose on page 46 to include support for

diagnosing multiple devices and all devices.
• Updated the topics aocl install on page 45 and aocl uninstall on page 46 to

include the path to custom platform during installation and uninstallation.
• In Establishing Host Communication on page 12, removed reference to the

environment variable AOCL_BOARD_PACKAGE_ROOT since it is
deprecated and updated instances of aocl install updated as aocl
install <path_to_customplatform>.

May 2017 2017.05.08 • Maintenance release.

October 2016 2016.10.31 • Rebranded Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.
• Rebranded Altera Offline Compiler to Intel FPGA SDK for OpenCL Offline

Compiler.
• In Building the Software in Your Custom Platform, updated the code

snippet in Step 4 from #define ACL_VENDOR_NAME "Altera
Corporation" to #define ACL_VENDOR_NAME "Intel(R)
Corporation".

May 2016 2016.05.02 Maintenance release.

November 2015 2015.11.02 Maintenance release, and made the following updates:
• Changed instances of Quartus II to Quartus Prime.
• Changed instances of Altera Complete Design Suite to Intel Quartus Prime

Design Suite®.

continued...

UG-OCL008 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Date Version Changes

May 2015 15.0.0 Maintenance release.

December 2014 14.1.0 • Renamed the document as Altera Stratix V Network Reference Platform
Porting Guide.

• Updated the Legacy Board Support section. Added reference to the
Custom Platform Automigration for Forward Compatibility section in the
Altera SDK for OpenCL Custom Platform Toolkit User Guide for
automigration information and instructions.

• In the Implementation of UDP Cores as OpenCL Channels section, added
notes indicating the following:
1. The QuickUDP IP requires a license from PLDA.
2. Improper installation of the PLDA QuickUDP license causes the Altera

Software Development Kit (SDK) for OpenCL (AOCL) users to
encounter a compilation error.

• In the Describe the s5_net Hardware to the AOCL section:
1. Elaborated on the calculation of the value for used_resources based

on the values reported in the Fitter report.
2. Added information on the compile and board board_spec.xml XML

elements.
• Added an aocl uninstall subsection under OpenCL Utilities Implementation

to document the locations of the uninstall script for Windows and Linux
systems.

July 2014 14.0.0 Initial Release.

A Document Revision History

UG-OCL008 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
50

	 Intel FPGA SDK for OpenCL Stratix V Network Reference Platform Porting Guide
	Contents
	1 Intel® FPGA SDK for OpenCL™ Stratix® V Network Reference Platform Porting Guide
	1.1 Stratix V Network Reference Platform: Prerequisites
	1.1.1 Legacy Board Support

	1.2 Features of the Stratix V Network Reference Platform
	1.3 Contents of the Stratix V Network Reference Platform

	2 Developing Your Custom Platform
	2.1 Initializing Your Custom Platform
	2.2 Removing Unused Hardware
	2.3 Integrating Your Custom Platform with the Intel FPGA SDK for OpenCL
	2.4 Setting up the Software Development Environment
	2.4.1 Setting Up Software Development Environment for Windows
	2.4.2 Setting Up the Software Development Environment for Linux

	2.5 Building the Software in Your Custom Platform
	2.6 Establishing Host Communication
	2.7 Connecting the Memory
	2.8 Integrating an OpenCL Kernel
	2.9 Programming Your FPGA Quickly Using CvP
	2.10 Guaranteeing Timing Closure
	2.11 Troubleshooting

	3 Stratix V Network Reference Platform Design Architecture
	3.1 Host-FPGA Communication over PCIe
	3.1.1 Parameter Settings for PCIe Instantiation
	3.1.2 PCIe Device Identification Registers
	3.1.3 Version ID
	3.1.4 Definitions of Hardware Constants in Software Header Files
	3.1.5 PCIe Kernel Driver
	3.1.6 SG-DMA

	3.2 DDR3 as Global Memory for OpenCL Applications
	3.2.1 DDR3 IP Instantiation
	3.2.2 DDR3 Connection to PCIe Host
	3.2.3 DDR3 Connection to OpenCL Kernel

	3.3 QDRII as Heterogeneous Memory for OpenCL Applications
	3.4 Host Connection to OpenCL Kernels
	3.5 Implementation of UDP Cores as OpenCL Channels
	3.5.1 QuickUDP IP Instantiation
	3.5.2 QuickUDP Configuration via PCIe-Based Host
	3.5.3 QuickUDP Connection to OpenCL Kernel

	3.6 FPGA System Design
	3.6.1 Clocks
	3.6.2 Resets
	3.6.3 Floorplan
	3.6.4 Global Routing
	3.6.5 Pipelining
	3.6.6 Encrypted IPs

	3.7 Guaranteed Timing Closure
	3.7.1 Supply the Kernel Clock
	3.7.2 Guarantee Kernel Clock Timing
	3.7.3 Provide a Timing-Closed Post-Fit Netlist

	3.8 Addition of Timing Constraints
	3.9 Connection to the Intel FPGA SDK for OpenCL
	3.9.1 Describe s5_net to the Intel FPGA SDK for OpenCL
	3.9.2 Describe the s5_net Hardware to the Intel FPGA SDK for OpenCL

	3.10 FPGA Programming Flow
	3.10.1 CvP
	3.10.1.1 Replacing FPGA Core Logic via CvP Programming
	3.10.1.2 Specifying Configuration via PCI Express Options
	3.10.1.3 Base versus CvP Update Revisions in CvP Programming

	3.10.2 Flash
	3.10.3 Defining the Contents of the fpga.bin File

	3.11 Host-to-Device MMD Software Implementation
	3.12 OpenCL Utilities Implementation
	3.12.1 aocl install
	3.12.2 aocl uninstall
	3.12.3 aocl program
	3.12.4 aocl flash
	3.12.5 aocl diagnose
	3.12.6 aocl list-devices

	3.13 Stratix V Network Reference Platform Implementation Considerations

	A Document Revision History

