
Intel® FPGA SDK for OpenCL™

Standard Edition
Custom Platform Toolkit User Guide

Updated for Intel® Quartus® Prime Design Suite: 18.1

Subscribe
Send Feedback

UG-20153 | 2018.09.24
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=ktw1517427248968
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/ug-aoclstd-custom-platform-toolkit.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/ktw1517427248968.html

Contents

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide..... 4
1.1. Prerequisites for the Intel FPGA SDK for OpenCL Standard Edition Custom Platform

Toolkit...4
1.2. Overview of the Intel FPGA SDK for OpenCL Standard Edition Custom Platform..............5

1.2.1. Directories and Files in an Intel FPGA SDK for OpenCL Standard Edition
Custom Platform..6

1.2.2. Recommendations for Structuring the Custom Platform Directory..................... 7
1.3. Custom Platform Automigration for Forward Compatibility .. 7

1.3.1. Customizing Automigration .. 8
1.4. Creating an Intel FPGA SDK for OpenCL Standard Edition Custom Platform....................8

1.4.1. Designing the Board Hardware ... 9
1.4.2. Creating the Board XML Files .. 14
1.4.3. Creating the MMD Library ...20
1.4.4. Setting Up the FPGA Client Driver ..22
1.4.5. Providing Intel FPGA SDK for OpenCL Standard Edition Utilities Support.......... 23
1.4.6. Testing the Hardware Design .. 25

1.5. Applying for the Intel FPGA SDK for OpenCL Standard Edition Preferred Board Status... 26
1.6. Shipping Recommendations ..27
1.7. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Design Revision History. 28

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference
Material... 30
2.1. The Board Platform Designer (Standard) Subsystem ..30

2.1.1. Intel FPGA SDK for OpenCL Standard Edition-Specific Platform Designer
(Standard) System Components.. 31

2.2. XML Elements, Attributes, and Parameters in the board_spec.xml File34
2.2.1. board .. 35
2.2.2. device ... 35
2.2.3. global_mem ... 36
2.2.4. host .. 37
2.2.5. channels ..38
2.2.6. interfaces .. 38
2.2.7. interface ..39
2.2.8. compile ... 40

2.3. MMD API Descriptions ..41
2.3.1. aocl_mmd_get_offline_info .. 42
2.3.2. aocl_mmd_get_info ...43
2.3.3. aocl_mmd_open ... 44
2.3.4. aocl_mmd_close ... 45
2.3.5. aocl_mmd_read ..45
2.3.6. aocl_mmd_write ... 46
2.3.7. aocl_mmd_copy ..47
2.3.8. aocl_mmd_set_interrupt_handler ..48
2.3.9. aocl_mmd_set_status_handler ... 49
2.3.10. aocl_mmd_yield ..49
2.3.11. aocl_mmd_shared_mem_alloc .. 50
2.3.12. aocl_mmd_shared_mem_free ... 51
2.3.13. aocl_mmd_reprogram ..51

Contents

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.14. aocl_mmd_hostchannel_create ... 52
2.3.15. aocl_mmd_hostchannel_destroy ..53
2.3.16. aocl_mmd_hostchannel_get_buffer ... 53
2.3.17. aocl_mmd_hostchannel_ack_buffer ... 54

2.4. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference
Manual Revision History... 54

Contents

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom
Platform Toolkit User Guide

The Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User
Guide outlines the procedure for creating an Intel FPGA Software Development Kit
(SDK) for OpenCL Standard Edition Custom Platform.

The Intel FPGA SDK for OpenCL(1)(2) Standard Edition Custom Platform Toolkit
provides the necessary tools for implementing a fully functional Custom Platform. The
Custom Platform Toolkit is available in the INTELFPGAOCLSDKROOT/board directory,
where the environment variable INTELFPGAOCLSDKROOT points to the location of the
SDK installation.

The goal is to enable an SDK user to target any given Custom Platform seamlessly by
performing the following tasks:

1. Acquire an accelerator board and plug it into their system.

2. Acquire the Custom Platform and unpack it to a local directory.

3. Set the environment variable QUARTUS_ROOTDIR_OVERRIDE to point to
installation directory of the Intel Quartus® Prime Standard Edition software .

4. Invoke the aocl install <path_to_customplatform> utility command.

5. Compile the OpenCL kernel and build the host application.

6. Set environment variables to point to the location of the memory-mapped device
(MMD) library.

• For Windows* systems, set the PATH environment variable.

• For Linux* systems, set the LD_LIBRARY_PATH environment variable.

7. Run the host application.

1.1. Prerequisites for the Intel FPGA SDK for OpenCL Standard
Edition Custom Platform Toolkit

The Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit User Guide
assumes that you have prior hardware design knowledge necessary for using the
Custom Platform Toolkit to create an Intel FPGA SDK for OpenCL Standard Edition
Custom Platform.

(1) OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of the Khronos
Group™.

(2) The Intel FPGA SDK for OpenCL is based on a published Khronos Specification, and has passed
the Khronos Conformance Testing Process. Current conformance status is available at
www.khronos.org/conformance.

UG-20153 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.khronos.org/conformance/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

You must have experiences in the following hardware design areas:

• Intel Quartus Prime Standard Edition software design with Platform Designer
(Standard), HDL and Tcl

• Intel FPGA intellectual property (IP) necessary to communicate with the physical
interfaces of the board

• High speed design, timing analysis and Synopsys Design Constraints (SDC)
constraints

• FPGA architecture, including clock and global routing, floorplanning, and I/O

• Team-based design (that is, incremental compilation)

You must install the Intel Quartus Prime Standard Edition software, the relevant
device support file(s), and the SDK on your machine. Refer to the Intel FPGA SDK for
OpenCL Standard Edition Getting Started Guide for installation instructions.

You have the following Custom Platform design options:

• Refer to the information in this document to create a Custom Platform from the
templates available in the Custom Platform Toolkit.

• Refer to the information in this document and the Intel FPGA SDK for OpenCL Intel
Stratix V Network Reference Platform Porting Guide to create a Custom Platform
by modifying relevant files in the Intel Stratix® V Network Reference Platform
(s5_net).

Download s5_net from the Intel FPGA SDK for OpenCL FPGA Platforms page on
the Intel FPGA website. The link for the download is under Custom.

• Refer to the information in this document and the following documents to create a
Custom Platform by modifying relevant files in the Intel Cyclone® V SoC
Development Kit Reference Platform (c5soc), available with the SDK:

1. Intel FPGA SDK for OpenCL Intel Cyclone V SoC Development Kit Reference
Platform Porting Guide

2. Intel Cyclone V SoC Development Board Reference Manual

Related Information

• Intel FPGA SDK for OpenCL Standard Edition Getting Started Guide

• Intel FPGA SDK for OpenCL Stratix V Network Reference Platform Porting Guide

• Intel FPGA SDK for OpenCL Cyclone V SoC Development Kit Reference Platform
Porting Guide

• Intel FPGA SDK for OpenCL Cyclone V SoC Development Board Reference Manual

• Intel FPGA SDK for OpenCL FPGA Platforms page on the Intel FPGA website

1.2. Overview of the Intel FPGA SDK for OpenCL Standard Edition
Custom Platform

An Intel FPGA SDK for OpenCL Standard Edition Custom Platform is a collection of
tools and libraries necessary for the communication between the Intel FPGA SDK for
OpenCL Offline Compiler and the FPGA boards.

Currently, the offline compiler targets a single Custom Platform at a time.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

5

https://www.intel.com/content/www/us/en/programmable/documentation/xwm1515793070801.html#deh1518726775930
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1404851957878.html#ewa1404852921684
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1403875738903.html#ewa1403886518038
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1403875738903.html#ewa1403886518038
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_cv_soc_dev_board.pdf
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#fpgaplatforms
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A given Custom Platform installation can include several board variants of the same
board interface. You might have different FPGA parts, or you might want to support
different subsets of board interfaces. Colocating the board variants allows
simultaneous communication with different boards in a multiple-device environment.

An Intel FPGA SDK for OpenCL Standard Edition Custom Platform contains the
following components:

• Intel Quartus Prime skeleton project—A Intel Quartus Prime project for your
board, which the SDK's offline compiler modifies to include the compiled kernel.
This project must include a post-place-and-route partition for all logic not
controlled by the kernel clock.

• Board installation setup—A description of your board and its various
components.

• Generic I/O interface—An MMD software library that implements basic I/O
between the host and the board.

• Board utilities—An implementation of the SDK's utilities for managing the
accelerator board, including tasks such as installing and testing the board.

1.2.1. Directories and Files in an Intel FPGA SDK for OpenCL Standard
Edition Custom Platform

Populate your Intel FPGA SDK for OpenCL Standard Edition Custom Platform with files,
libraries and drivers that allow an OpenCL kernel to run on the target FPGA board.

Table 1. Contents within the Top-Level Custom Platform Directory

Content Description

board_env.xml The XML file that describes the board installation to the SDK.

<hardware> Directory containing the Intel Quartus Prime projects for the supported boards within a
given Custom Platform. Specify the name of this directory in the board_env.xml file.
Within this directory, the SDK assumes that any subdirectory containing a
board_spec.xml file is a board.

include Directory containing board-specific header files.

source Directory containing board-specific files, libraries and drivers.

platform Directory containing platform-specific (for example, x86_64 Linux) drivers and utilities.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.2. Recommendations for Structuring the Custom Platform Directory

For ease of use, consider adopting the Intel-recommended directory structure and
naming convention when you create an Intel FPGA SDK for OpenCL Standard Edition
Custom Platform.

• Make the INTELFPGAOCLSDKROOT/board directory the location of the board
installation, where INTELFPGAOCLSDKROOT points to the location of the SDK
installation.

Attention: Do not remove any existing subdirectories from the
INTELFPGAOCLSDKROOT/board directory.

• Create a <board_vendor_name> subdirectory within the
INTELFPGAOCLSDKROOT/board directory to store the Custom Platform.

• Store the contents of a given Custom Platform in a INTELFPGAOCLSDKROOT/
board/<board_vendor_name>/<board_family_name> subdirectory.

• Assign unique names to software libraries (for example,
lib<board_vendor_name>_<board_family_name>.so) to avoid name
collisions.

For example, if you (ABC Incorporated) create a Custom Platform for a family of
boards named XYZ, set up your Custom Platform such that the SDK user can access
XYZ by installing the XYZ Custom Platform in INTELFPGAOCLSDKROOT/board/ABC/
XYZ, where INTELFPGAOCLSDKROOT is the environment variable that points to the
absolute path to the SDK installation package.

1.3. Custom Platform Automigration for Forward Compatibility

The automigration feature updates an existing Intel-registered Custom Platform for
use with the current version of the Intel Quartus Prime Design Suite and the Intel
FPGA SDK for OpenCL Standard Edition.

Important: Automigration is more likely to complete successfully if your Custom Platform
resembles an Intel FPGA Reference Platform as closely as possible.

The following information applies to a Custom Platform that is version 14.0 and
beyond:

1. To update a Custom Platform for use with the current version of the Intel Quartus
Prime Design Suite, which includes the SDK, do not modify your Custom Platform.
The automigration capability detects the version of your Custom Platform based on
certain characteristics and updates it automatically.

2. If you have modified a Custom Platform and you want to update it for use with the
current version of the Intel Quartus Prime Design Suite, which includes the SDK,
implement all features mandatory for the current version of the Custom Platform.
After you modify a Custom Platform, automigration can no longer correctly detect
its characteristics. Therefore, you must upgrade your Custom Platform manually.

A successfully-migrated Custom Platform will preserve its original functionality. In
most cases, new features in a new Intel Quartus Prime Design Suite or SDK version
will not interfere with Custom Platform functionality.

When the Intel FPGA SDK for OpenCL Offline Compiler compiles a kernel, it probes the
board_spec.xml file for the following information:

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. The version of the Custom Platform, as specified by the version attribute of the
board XML element.

2. The platform type, as specified by the platform_type parameter of the
auto_migrate attribute within the compile XML element.

Based on the information, the SDK names a set of fixes it must apply during Custom
Platform migration. It applies the fixes to the Intel Quartus Prime project that the
offline compiler uses to compile the OpenCL kernel. It also generates an
automigration.rpt report file in the SDK user's current working directory
describing the applied fixes.

The automigration process does not modify the installed Custom Platform.

Note: If automigration fails, contact your local Intel FPGA product's field applications
engineer for assistance.

1.3.1. Customizing Automigration

You and the Intel FPGA SDK for OpenCL user both have the ability to disable the
automigration of an installed Custom Platform. In addition, you may choose which
named fixes, identified by the SDK, you want to apply to your Custom Platform.

1. Disable automigration in one of the following manners:

— If you are a board developer, within the compile XML element in the
board_spec.xml file, set the platform_type parameter of the
auto_migrate attribute to none.

— If you are an SDK user, invoke the aoc -no-auto-migrate command.

2. To explicitly include or exclude fixes that the SDK identifies, in the
board_spec.xml file, subscribe or unsubscribe to each fix by listing it in the
include fixes or exclude fixes parameter, respectively. The include
fixes and exclude fixes parameters are part of the auto_migrate attribute
within the compile element. When listing multiple fixes, separate each fix by a
comma.

Refer to the automigration.rpt file for the names of the fixes that you specify
in the include fixes and exclude fixes parameters.

1.4. Creating an Intel FPGA SDK for OpenCL Standard Edition
Custom Platform

The following topics outline the tasks you must perform to create a Custom Platform
for use with the Intel FPGA SDK for OpenCL Standard Edition.

1. Designing the Board Hardware on page 9

2. Creating the Board XML Files on page 14

3. Creating the MMD Library on page 20

4. Setting Up the FPGA Client Driver on page 22

5. Providing Intel FPGA SDK for OpenCL Standard Edition Utilities Support on page
23

6. Testing the Hardware Design on page 25

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.1. Designing the Board Hardware

To design an accelerator board for use with the Intel FPGA SDK for OpenCL Standard
Edition, you must create all the board and system components, and the files that
describe your hardware design to the Intel FPGA SDK for OpenCL Offline Compiler.

Each board variant in the Custom Platform consists of an Intel Quartus Prime project,
and a board_spec.xml XML file that describes the system to the offline compiler.
The board_spec.xml file describes the interfaces necessary to connect to the kernel.
The offline compiler generates a custom circuit based on the data from the
board_spec.xml file. Then it incorporates the OpenCL kernel into the Platform
Designer (Standard) system you create for all nonkernel logic.

You must preserve the design of all nonkernel logic. You can preserve your design in
the Intel Quartus Prime software via one of the following methods:

• Create a design partition containing all nonkernel logic under a single HDL
hierarchy and then export the partition. For example, you may create and export a
board.qsys Platform Designer (Standard) subsystem (see figure below). The
top-level system.qsys Platform Designer (Standard) system can then instantiate
this exported board Platform Designer (Standard) subsystem.

• Implement the Configuration via Protocol (CvP) configuration scheme, which
preserves all logic outside a design partition. In this case, you only need to create
a partition around the kernel logic. You may place all nonkernel logic into a single
top-level Platform Designer (Standard) system file (for example, system.qsys).

You must design all the components and the board_spec.xml file that describe the
system to the SDK.

Figure 1. Example System Hierarchy with a Board Platform Designer (Standard)
Subsystem

Avalon-MM Slave

Avalon-ST Sink

Avalon-ST Source

Avalon-MM Master

Avalon-MM Master

Avalon-ST Source

Avalon-MM Master

Avalon-ST Sink

Avalon-MM Slave

Avalon-MM Slave

Streaming
Source

Streaming
Sink

Host Interface

Memory
Interface

Memory
Interface

I/O

top.v

system.qsys

board.qsys (optional)

Kernel (placeholder)

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.1.1. Creating the Board Platform Designer (Standard) System

When designing your board hardware, you have the option to create a Platform
Designer (Standard) subsystem within system.qsys that contains all the board logic.
In addition to organizing your design code, having this subsystem allows you to create
an Intel Quartus Prime partition that you can preserve. To create your board system in
a Platform Designer (Standard) subsystem, you may modify the board.qsys
template in the Custom Platform Toolkit.

An implementation of a board Platform Designer (Standard) subsystem might include
the following components:

• Proper reset sequencing

• Intel FPGA SDK for OpenCL Standard Edition-specific components

• Host-to-FPGA communication IP

• Memory IP used for SDK's global memory

• Streaming channels to board-specific interfaces

Refer to The Board Platform Designer (Standard) System section for more information.

Templates of the following hardware design files are available in the
INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/board_package/
hardware/template directory:

• board.qsys

• system.qsys

• top.v

• top.qpf

• board_spec.xml

Template of the post_flow.tcl file is available in the INTELFPGAOCLSDKROOT/
board/custom_platform_toolkit/board_package/hardware/template/
scripts directory of the Custom Platform Toolkit.

To create nonkernel logic, perform the following tasks in the system.qsys top-level
Platform Designer (Standard) system or in a board Platform Designer (Standard)
subsystem:

1. In Platform Designer (Standard), add your host and memory IPs to the Platform
Designer (Standard) system, and establish all necessary connections and exports.

Attention: You might need to acquire separate IP licenses. For a list of available
licensed and unlicensed IP solutions, visit the All Intellectual Property
page of the Intel FPGA website. For more information about each IP,
click the link in the Product Name column to navigate to the product
page.

a. Connect your host interface clock such that it drives
por_reset_controller/clk. Your design's global reset and clock inputs are
fed to a reset counter (por_reset_counter). This reset counter then
synchronizes to the host interface clock in the Merlin Reset Controller
(por_reset_controller).

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The por_reset_counter ACL SW Reset component implements the power-
on reset. It resets all the device hardware by issuing a reset for a number of
cycles after the FPGA completes its configuration.

b. Modify the parameters of the pipe_stage_host_ctrl Avalon® Memory-
Mapped (Avalon-MM) Pipeline Bridge component such that it can receive
requests from your host IP. Connect your host interface's Avalon-MM master
port to the s0 port of pipe_stage_host_ctrl. Connect the m0 port of
pipe_stage_host_ctrl to all the peripherals that must communicate with
your host interface, including the OpenCL Kernel Clock Generator and the
OpenCL Kernel Interface components.

c. Adjust the number of clock_cross_kernel_mem_<N> Avalon-MM Clock
Crossing Bridge components to match the number of memory interfaces on
your board. This component performs clock crossing between the kernel and
memory interfaces. Modify the parameters of each component so that they are
consistent with the parameters of the OpenCL Memory Bank Divider
component and the interface attribute described in board_spec.xml.
Connect the m0 master, clock, and reset ports of
clock_cross_kernel_mem_<N> (that is, m0, m0_clk, and m0_reset,
respectively) to your memory IP.

Important: Connect m0_reset in such a way that assertion of kernel_reset
from the OpenCL Memory Bank Divider component triggers this
reset.

2. Customize the SDK-specific Platform Designer (Standard) system components..

Attention: If you use the board.qsys system template to create a Platform
Designer (Standard) subsystem, note that it is preconfigured with the
necessary connections between the SDK-specific system components
and the appropriate interfaces exported to match the
board_spec.xml file. Intel recommends that you preserve the
preconfigured connections as much as possible.

a. In Platform Designer (Standard), click Tools ➤ Options. In the Options
dialog box, add INTELFPGAOCLSDKROOT/ip/board to the Qsys IP Search
Path and then click Finish.

b. Instantiate the OpenCL Kernel Clock Generator component. Specify the
component parameters, and connect the signals and ports as outlined in the
OpenCL Kernel Clock Generator section.

c. Instantiate the OpenCL Kernel Interface component. Specify the component
parameters, and connect the signals and ports as outlined in the OpenCL
Kernel Interface section.

d. For each global memory type, instantiate the OpenCL Memory Bank Divider
component. Specify the component parameters, and connect the signals and
ports as outlined in the OpenCL Memory Bank Divider section.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Attention: Set the parameters such that the resulting bank masters have the
equivalent address bits and burst widths as those from the kernel,
as defined in the interface attribute of the global_mem
element in the board_spec.xml file. For each memory bank,
Platform Designer (Standard) generates a master that inherits the
same characteristics as your specifications.

3. If you choose to create a Platform Designer (Standard) subsystem for the
nonkernel logic, export any necessary I/Os to the top-level system.qsys
Platform Designer (Standard) system.

4. Edit the top-level top.v file to instantiate system.qsys and connect any board-
specific I/Os.

5. Set up the top.qpf Intel Quartus Prime project with all the necessary settings for
your board design.

6. Modify the post_flow.tcl file to include the Tcl code that generates the
fpga.bin file during Intel Quartus Prime compilation.

The fpga.bin file is necessary for programming the board.

7. Edit the board_spec.xml file to include board-specific descriptions.

Related Information

• OpenCL Kernel Interface on page 32

• OpenCL Memory Bank Divider on page 33

• All Intellectual Property page on the Intel FPGA website

• The Board Platform Designer (Standard) Subsystem on page 30

• OpenCL Kernel Clock Generator on page 31

1.4.1.1.1. General Quality of Results Considerations for the Exported Board Partition

When generating a post-place-and-route partition, take into account several design
considerations for the exported board partition that might have unexpected
consequences on the Intel FPGA SDK for OpenCL Standard Edition compilation results.
The best approach to optimizing the board partition is to experiment with a range of
different OpenCL kernels.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

12

https://www.altera.com/products/intellectual-property/ip.html#allintellectualproperty
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The list below captures some of the parameters that might impact the quality of SDK
compilation results:

• Resources Used

Minimize the number of resources the partition uses to maximize the resources
available for the OpenCL kernels.

• Kernel Clock Frequency

Intel recommends that the kernel clock has a high clock constraint (for example,
greater than 350 MHz for a Stratix V device). The amount of logic in the partition
clocked by the kernel clock should be relatively small. This logic should not limit
the kernel clock speed for even the simplest OpenCL kernels. Therefore, at least
within the partition, the kernel clock should have a high clock constraint.

• Host-to-Memory Bandwidth

The host-to-memory bandwidth is the transfer speed between the host processor
to the physical memories on the accelerator card. To measure this memory
bandwidth, compile and run the host application included with the Custom
Platform Toolkit.

• Kernel-to-Memory Bandwidth

The kernel-to-memory bandwidth is the maximum transfer speed possible
between the OpenCL kernels and global memory.

To measure this memory bandwidth, compile and run the host program included in
the /tests/boardtest/host directory of the Custom Platform Toolkit.

• Fitter Quality of Results (QoR)

To ensure that OpenCL designs consuming much of the device's resources can still
achieve high clock frequencies, region-constrain the partition to the edges of the
FPGA. The constraint allows OpenCL kernel logic to occupy the center of the
device, which has the most connectivity with all other nodes.

Test compile large designs to ensure that other Fitter-induced artifacts in the
partition do not interfere with the QoR of the kernel compilations.

• Routability

The routing resources that the partition consumes can affect the routability of a
compiled OpenCL design. A kernel might use every digital signal processing (DSP)
block or memory block on the FPGA; however, routing resources that the partition
uses might render one of these blocks unroutable. This routing issue causes
compilation of the Intel Quartus Prime project to fail at the fitting step. Therefore,
it is imperative that you test a partition with designs that use all DSP and memory
blocks.

1.4.1.2. Establishing Guaranteed Timing Flow

Deliver a design partition for nonkernel logic that has a clean timing closure flow as
part of your Custom Platform.

1. Create a placed and routed design partition using the incremental compilation
feature of the Intel Quartus Prime software. This is the design partition for
nonkernel logic.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information on how to use the incremental compilation feature to
generate a timing-closed design partition, refer to the Intel Quartus Prime
Incremental Compilation for Hierarchical and Team-Based Design chapter in
Volume 1 of the Intel Quartus Prime Standard Edition Handbook.

2. Import the post-fit partition from 1 on page 13 into the top-level design as part of
the compilation flow.

3. Run the INTELFPGAOCLSDKROOT/ip/board/bsp/adjust_plls.tcl script as a
post-flow process, where INTELFPGAOCLSDKROOT points to the path of the Intel
FPGA SDK for OpenCL Standard Edition installation.

The adjust_plls.tcl script determines the maximum kernel clock frequency
and stores it in the pll_rom on-chip memory of the OpenCL Kernel Clock
Generator component.

Related Information

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

1.4.2. Creating the Board XML Files

Your Custom Platform must include the XML files that describe your Custom Platform
and each of your hardware system to the Intel FPGA SDK for OpenCL Standard
Edition. You may create these XML files in simple text editors (for example, WordPad
for Windows, and vi for Linux).

1.4.2.1. Creating the board_env.xml File

The board_env.xml file describes your Custom Platform to the SDK. Together with
the other contents of the Custom Platform, the board_env.xml file sets up the board
installation that enables the offline compiler to target a specific accelerator board.

A board_env.xml template is available in the /board_package directory of the
Custom Platform Toolkit.

1. Create a board_env top-level XML element. Within board_env, include the
following XML elements:

— hardware

— platform

Include a platform element for each operating system that your Custom
Platform supports.

2. Within each platform element, include the following XML elements:

— mmdlib

— linkflags

— linklibs

— utilbindir

3. Parameterize each element and corresponding attribute(s) with information
specific to your Custom Platform, as outline in the table below:

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

14

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#mwh1409958382198
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2. Specifications of XML Elements and Attributes in the board_env.xml File

Element Attribute Description

board_env version: The SDK's Custom Platform Toolkit release you use to create your Custom
Platform.
Attention: The Custom Platform version must match the SDK version you use to develop

the Custom Platform.

name: Name of the board installation directory containing your Custom Platform.

hardware dir: Name of the subdirectory, within the board installation directory, that contains the
board variants.
default: The default board variant that the offline compiler targets when the SDK user
does not specify an explicit argument for the --board <board_name> offline compiler
option.

platform name: Name of the operating system.
Refer to the Intel FPGA SDK for OpenCL Standard Edition Getting Started Guide and the
Intel FPGA RTE for OpenCL Standard Edition Getting Started Guide for more information.

mmdlib A string that specifies the path to the MMD library of your Custom Platform.
To load multiple libraries, specify them in an ordered, comma-separated list. The host
application will load the libraries in the order that they appear in the list.
Tip: You can use %b to reference your board installation directory.

linkflags A string that specifies the linker flags necessary for linking with the MMD layer available
with the board.
Tip: You can use %a to reference the SDK installation directory and %b to reference your

board installation directory.

linklibs A string that specifies the libraries the SDK must link against to use the MMD layer
available with the board.
Note: Include the alterahalmmd library, available with the SDK, in this field because the

library is necessary for all devices with an MMD layer.

utilbindir Directory in which the SDK expects to locate the its utility executables (that is, install,
uninstall, program, diagnose and flash).
Tip: You can use %a to reference the SDK installation directory and %b to reference your

board installation directory.

Your board_env.xml file should resemble the following example:

<?xml version="1.0"?>
<board_env version="<SDK_version>" name="<Custom_Platform_name>">
 <hardware dir="hardware" default="<board_name>"></hardware>
 <platform name="linux64">
 <mmdlib>%b/linux64/lib/libaltera_<Custom_Platform_name>_mmd.so</mmdlib>
 <linkflags>-L%b/linux64/lib</linkflags>
 <linklibs>-laltera_<Custom_Platform_name>_mmd</linklibs>
 <utilbindir>%b/linux64/libexec</utilbindir>
 </platform>

 <platform name="windows64">
 <mmdlib>%b/windows64/bin/altera_<Custom_Platform_name>_mmd.dll</mmdlib>
 <linkflags>/libpath:%b/windows64/lib</linkflags>
 <linklibs>altera_<Custom_Platform_name>_mmd.lib</linklibs>
 <utilbindir>%b/windows64/libexec</utilbindir>
 </platform>
</board_env>

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Where:

• <SDK_version> is the Intel FPGA SDK for OpenCL Standard Edition version.

• <customplatform_name> is the name of your Custom Platform (for example,
s5_net).

• <board_name> is the name of the FPGA board.

Related Information

• Prerequisites for the Intel FPGA SDK for OpenCL Standard Edition

• Prerequisites for the Intel FPGA RTE for OpenCL

1.4.2.1.1. Testing the board_env.xml File

After you generate the board_env.xml file, test the file within your board installation
directory to ensure that the Intel FPGA SDK for OpenCL Offline Compiler recognizes
the board installation.

1. Set the environment variable AOCL_BOARD_TOOLKIT_ROOT to point to the
Custom Platform subdirectory in which your board_env.xml file resides.

2. At the command prompt, invoke the aocl board-xml-test command to
verify that the Intel FPGA SDK for OpenCL Standard Edition can locate the correct
field values.

The SDK generates an output similar to the one below:

board-path = <path_to_customplatform>
board-version = <SDK_version>
board-name = <customplatform_name>
board-default = <board_name>
board-hw-path = <path_to_customplatform>/hardware/<customplatform_name>
board-link-flags = /libpath:<path_to_customplatform/windows64/lib
board-libs = alterahalmmd.lib altera_<customplatform_name>_mmd.lib
board-util-bin = <path_to_customplatform>/windows64/libexec
board-mmdlib = <path_to_customplatform>/windows64/bin/
altera_<customplatform_name>_mmd.dll

3. Invoke the aoc -list-boards command to verify that the offline compiler can
identify and report the board variants in the Custom Platform.
For example, if your Custom Platform includes two FPGA boards, the SDK
generates an output similar to the one below:

Board list:
 <board_name_1>
 <board_name_2>

The last board installation test takes place when you use the offline compiler to
generate a design for your board.

Related Information

• Testing the Hardware Design on page 25

• Creating the board_env.xml File on page 14

1.4.2.2. Creating the board_spec.xml File

The board_spec.xml XML file contains metadata necessary to describe your
hardware system to the Intel FPGA SDK for OpenCL Standard Edition.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

16

https://www.intel.com/content/www/us/en/programmable/documentation/xwm1515793070801.html#gzv1518726804688
https://www.intel.com/content/www/us/en/programmable/documentation/zci1516640751042.html#gzv1518726804688
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For detailed descriptions on the type of information you must include in the
board_spec.xml file, refer to the XML Elements, Attributes, and Parameters in the
board_spec.xml File section. A board_spec.xml template is available in the
INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/board_package/
hardware/template directory of the Custom Platform Toolkit.

1. Structure the board_spec.xml file to include the following XML elements and
attributes:

Table 3. XML Elements and Attributes Specified in the board_spec.xml File

Element Attribute

board version, name

device device_model, used_resources

global_mem name, max_bandwidth, interleaved_bytes, config_addr, [default],
interface

host kernel_config

[channels] interface

interfaces interface, kernel_clk_reset

compile project, revision, qsys_file, generic_kernel, generate_cmd,
synthesize_cmd, auto_migrate

2. For the board element, specify the board version and the name of the accelerator
board. The name of the board must match the name of the directory in which the
board_spec.xml file resides.

Important: The board version must match the SDK version you use to develop the
Custom Platform.

Attention: The board name must contain a combination of only letters, numbers,
underscores (_), hyphens (-), or periods (.) (for example: s5_net).

3. For the device element, perform the following steps to specify the name of the
device model file.

a. Navigate to the INTELFPGAOCLSDKROOT/share/models/dm directory,
where INTELFPGAOCLSDKROOT points to the path to the SDK installation. The
directory contains a list of device models files that describe available FPGA
resources on accelerator boards.

b. If your device is listed in the dm directory, specify the device_model
attribute with the name of the device model file. Proceed to Step 4.

For example, device_model="5sgsed8k2f40c2_dm.xml"

c. If your device is not listed in the dm directory, or if your board uses an FPGA
that does not have a device model, create a new device model by performing
the tasks described in Steps d to g:

d. Copy a device model from the INTELFPGAOCLSDKROOT/share/models/dm
directory (for example, 5sgxma7h2fe35c2_dm.xml).

e. Place your copy of the device model in the Custom Platform subdirectory in
which your board_spec.xml file resides.

f. Rename the file, and modify the values to describe the part your board uses.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Important: The file name must conform to the format
<part_number>_dm.xml, where <part_number> is the official
Intel FPGA device part number (for example, 5sgxma7h2fe35c2).

You can search for the Intel FPGA device part number on the Buy
page of the Intel FPGA website.

g. In the board_spec.xml file, update the device_model attribute of the
device element with the name of your file.

4. For the device element, specify the parameters in the used_resources
attribute to describe the FPGA resources that the board design consumes in the
absence of any OpenCL kernel.

If your design includes a defined partition around all the board logic, you can
extract the data from the Partition Statistics section of the Fitter report.

5. For each global memory type, specify the following information:

a. Name of the memory type.

b. The combined maximum global memory bandwidth.

You can calculate this bandwidth value from datasheets of your memories.

c. The size of the data that the Intel FPGA SDK for OpenCL Offline Compiler
interleaves across memory banks.

Note: interleaved_bytes = burst_size x width_bytes

d. If you have a homogeneous memory system, proceed to Step e. If you have a
heterogeneous memory system, for each global memory type, specify the
config_addr attribute with the base address of the ACL Mem Organization
Control Platform Designer (Standard) component (mem_org_mode).

e. If you choose to set a global memory type as default, assign a value of 1 to
the optional default attribute.

If you do not include this attribute, the first memory defined in the
board_spec.xml file becomes the default memory.

f. Specify the parameters in the interface attribute to describe the
characteristics of each memory interface.

6. For the host element, specify the parameters in the kernel_config attribute to
describe the offset at which the kernel resides. Determine the start of the offset
from the perspective of the kernel_cra master in the OpenCL Kernel Interface
Platform Designer (Standard) component.

7. If your board provides channels for direct OpenCL kernel-to-I/O accesses, include
the channels element for all channel interfaces. Specify the parameters in the
interface attribute to describe the characteristics of each channel interface.

8. Include the interfaces element to describe the kernel interfaces connecting to
and controlling OpenCL kernels. Include one of each interface types (that is
master, irq, and streamsource).

a. Specify the parameters in the interface attribute to describe the
characteristics of each kernel interface.

For the streamsource interface type, also specify the clock attribute with
the name of the clock the snoop stream uses. Usually, this clock is the kernel
clock.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

18

https://www.altera.com/buy.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Important: Update the width of the snoop interface (acl_internal_snoop)
specified with the streamsource kernel interface. Updating the
width ensures that the global_mem interface entries in
board_spec.xml match the characteristics of the bank<N>
Avalon Memory-Mapped (Avalon-MM) masters from corresponding
OpenCL Memory Bank Divider component for the default memory.

b. Specify the parameters in the kernel_clk_reset attribute to include the
exported kernel clock and reset interfaces as kernel interfaces.

9. Include the compile element and specify its attributes to control the Intel
Quartus Prime compilation, registration, and automigration.

Below is the XML code of an example board_spec.xml file:

<?xml version="1.0"?>
<board version="<SDK_version>" name="<board_name>">

 <compile name="top" project="top" revision="top" qsys_file="none"
generic_kernel="1">
 <generate cmd="quartus_sh -t scripts/pre_flow_pr.tcl"/>
 <synthesize cmd="quartus_cdb -t import_compile.tcl"/>
 <auto_migrate platform_type="<customplatform_name>" >
 <include fixes=""/>
 <exclude fixes=""/>
 </auto_migrate>
 </compile>

 <compile name="base" project="top" revision="base" qsys_file="none"
generic_kernel="1">
 <generate cmd="quartus_sh -t scripts/pre_flow_pr.tcl base"/>
 <synthesize cmd="quartus_sh --flow compile top -c base"/>
 <auto_migrate platform_type="<customplatform_name>" >
 <include fixes=""/>
 <exclude fixes="pre_skipbak,post_skipbak"/>
 </auto_migrate>
 </compile>

 <compile name="flat" project="top" revision="flat" qsys_file="none"
generic_kernel="1">
 <generate cmd="quartus_sh -t scripts/pre_flow_pr.tcl flat"/>
 <synthesize cmd="quartus_sh --flow compile top -c flat"/>
 <auto_migrate platform_type="<customplatform_name>" >
 <include fixes=""/>
 <exclude fixes="pre_skipbak,post_skipbak"/>
 </auto_migrate>
 </compile>

 <compile name="regenerate_cache" project="top" revision="top"
qsys_file="none" generic_kernel="1">
 <generate cmd="quartus_sh -t scripts/pre_flow_pr.tcl"/>
 <synthesize cmd="quartus_sh -t scripts/regenerate_cache.tcl
<customplatform_name> <board_name>"/>
 <auto_migrate platform_type="<customplatform_name>" >
 <include fixes=""/>
 <exclude fixes="pre_skipbak"/>
 </auto_migrate>
 </compile>

 <device device_model="<devicemodel_filename>">
 <used_resources>
 <alms num="33400"/> <!-- Total ALMs - ALMs available to
kernel_system_inst -->
 <ffs num="133600"/>
 <dsps num="0"/>
 <rams num="182"/>
 </used_resources>
 </device>

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 <!-- DDR4-2400 -->
 <global_mem name="DDR" max_bandwidth="19200" interleaved_bytes="1024"
config_addr="0x018">
 <interface name="board" port="kernel_mem0" type="slave" width="512"
maxburst="16" address="0x00000000" size="0x80000000" latency="240"
addpipe="1"/>
 </global_mem>

 <host>
 <kernel_config start="0x00000000" size="0x0100000"/>
 </host>

 <interfaces>
 <interface name="board" port="kernel_cra" type="master" width="64"
misc="0"/>
 <interface name="board" port="kernel_irq" type="irq" width="1"/>
 <interface name="board" port="acl_internal_snoop" type="streamsource"
enable="SNOOPENABLE" width="31" clock="board.kernel_clk"/>
 <kernel_clk_reset clk="board.kernel_clk" clk2x="board.kernel_clk2x"
reset="board.kernel_reset"/>
 </interfaces>

</board>

Related Information

XML Elements, Attributes, and Parameters in the board_spec.xml File on page 34

1.4.3. Creating the MMD Library

Your Custom Platform requires an MMD layer necessary for communication with the
accelerator board.

You must implement a file I/O-like software interface such as open, read, write, and
close to communicate with the accelerator board over any medium. The result of your
implementation is a set of linker arguments that allows an OpenCL host application to
link against the MMD layer of the target board. A dynamic link library (DLL) that fully
implements the MMD layer is also necessary for the communication.

Figure 2. Intel FPGA SDK for OpenCL Software Architecture
This figure depicts the four layers of the Intel FPGA SDK for OpenCL Standard Edition software architecture:
runtime, hardware abstraction layer (HAL), MMD layer, and kernel mode driver.

Runtime (OpenCL API)

HAL for memory transfers and kernel launches

MMD layer for raw read and write operations

Kernel mode driver for accessing communication medium

Board Hardware

The following tasks outline the procedure for creating an MMD library for use with PCI
Express® (PCIe®).

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Name a new library file that implements the MMD layer in the following manner:

<board_vendor_name>_<board_family_name>[_<unique_string>]_mmd.
<a|so|lib|dll>

Where:

• <board_vendor_name> is the entity responsible for the accelerator board.

• <board_family_name> is the board family name that the library supports.

• <unique_string> is a designation that you create. Intel recommends that you
include information such as revision and interface type.

• <a|so|lib|dll> is the file extension. It can be an archive file (.a), a shared
object file (.so), a library file (.lib), or a dynamic link library file (.dll).

Example library file name: altera_svdevkit_pcierev1_mmd.so

2. Include the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/mmd/aocl_mmd.h header file in the operating
system-specific implementation of the MMD layer.

The aocl_mmd.h file and the MMD API Descriptions reference section contain full
details on the MMD application programming interface (API) descriptions, their
arguments, and their return values.

3. Implement the MMD layer for your Custom Platform, and compile it into a C/C++
library.

Example source codes of a functional MMD library are available in the
<path_to_s5_net>/source/host/mmd directory of the Intel Stratix V
Reference Platform. In particular, the acl_pcie.cpp file implements the API
functions defined in the aocl_mmd.h file.

If the SDK users need to load a particular library at runtime, deliver the library in
a directory that the operating system can locate. Instruct the SDK users to add
the library path to the LD_LIBRARY_PATH (for Linux) or PATH (for Windows)
environment variable at runtime.

4. Modify the mmdlib and linkflags elements in the board_env.xml file by
specifying the library flags necessary for linking with the MMD layer.

Related Information

MMD API Descriptions on page 41

1.4.3.1. Kernel Power-up State

The OpenCL kernel is an unknown state after you power-up your system or reprogram
your FPGA. As a result, the MMD layer does not enable or respond to any interrupts
from the kernel during these periods. The kernel is in a known state only after
aocl_mmd_set_interrupt_handler is called. Therefore, enable interrupts from
the kernel only after the handler becomes available to the MMD layer.

The general sequence of calls for a single host application is as follows:

1. get_offline_info

2. open

3. get_info

4. set_status_handler

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. set_interrupt_handler

6. get_info /read/write/copy/yield

7. close

1.4.4. Setting Up the FPGA Client Driver

The Intel FPGA SDK for OpenCL Standard Edition supports the FPGA Client Driver
custom extension. The FPGA Client Driver (FCD) allows the SDK to automatically find
and load the Custom Platform libraries at host run time.

Attention: To allow SDK users to use FCD, you must remove the MMD library from the linklibs
element in the board_env.xml file.

Enumerating the Custom Platform FCD on Windows

Specify the Custom Platform libraries in the registry key HKEY_LOCAL_MACHINE
\SOFTWARE\Altera\OpenCL\Boards. Specify the value name to be the path to
the library, and specify the data to be a DWORD that is set to 0.

For example:

[HKEY_LOCAL_MACHINE\SOFTWARE\Altera\OpenCL\Boards] "c:
\board_vendor a\my_board_mmd.dll"=dword:00000000

To enumerate Custom Platform FCDs on Windows, the FCD Loader scans the value in
the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Altera\OpenCL\Boards.
For each value in this key, the name specifies the path to a DLL and the data is a
dword. If the dword data is 0, the Installable Client Driver (ICD) Loader attempts to
open the corresponding DLL. If the DLL is an MMD library, then the SDK attempts to
open any board that is associated with that library.

In this case, the FCD opens the library c:\board_vendor a\my_board_mmd.dll.

If the registry key specifies multiple libraries, the Loader loads the libraries in the
order that they appear in the key. If there is an order dependency between the
libraries available with your Custom Platform, ensure that you list the libraries
accordingly in the registry key.

Enumerating the Custom Platform FCD on Linux

Enter the absolute paths of Custom Platform libraries in a .fcd file (formerly, a .acd
file). Store the .fcd file in the /opt/Intel/OpenCL/Boards/ directory.

To enumerate Custom Platform FCDs on Linux, the FCD Loader scans the files with the
extension .fcd in the path /opt/Intel/OpenCL/Boards/. The FCD Loader opens
each .fcd file in this path as a text file. Each .fcd file should contain the absolute
path to every library in the Custom Platform, one library per line. The ICD Loader
attempts to open each library. If the library is an MMD library, then the SDK attempts
to open any board that is associated with that library.

For example, consider the file /opt/Intel/OpenCL/Boards/PlatformA.fcd. If it
contains the line /opt/PlatformA/libPlatformA_mmd.so, the FCD Loader loads
the library /opt/PlatformA/libPlatformA_mmd.so.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the .fcd file specifies multiple libraries, the Loader loads the libraries in the order
that they appear in the file. If there is an order dependency between the libraries
available with your Custom Platform, ensure that you list the libraries accordingly in
the .fcd file.

Starting in the Intel FPGA SDK for OpenCL version 16.1, FCD allows the SDK users to
load multiple heterogeneous boards from different Custom Platforms and use them
together in a single host application. However, this feature has limited support for
legacy Custom Platforms that are released prior to 16.1.

For more information on how SDK users link their host applications to the ICD and
FCD, refer to the Linking Your Host Application to the Khronos ICD Loader Library
section in the Intel FPGA SDK for OpenCL Standard Edition Programming Guide.

Related Information

Linking Your Host Application to the Khronos ICD Loader Library

1.4.5. Providing Intel FPGA SDK for OpenCL Standard Edition Utilities
Support

Each Custom Platform you develop for use with the Intel FPGA SDK for OpenCL
Standard Edition must support a set of SDK utilities. These utilities enable users to
manage the accelerator board through the SDK.

If you create a new Custom Platform, perform the following tasks to create
executables of the SDK utilities and then store them in the utilbindir directory of
your Custom Platform:

Tip: Within the <path_to_s5_net>/source/util directory of the Intel Stratix V
Network Reference Platform, you can find source code for the program and flash
utilities in the reprogram and flash subdirectories, respectively. Scripts for the
install and uninstall utilities are available in the <path_to_s5_net>/
<OS_platform>/libexec directory.

You can find the source code for the diagnose utility in the <path_to_s5_net>/
source/util/diagnostic directory within the Intel Stratix V Network Reference
Platform.

1. Create an install utility executable that sets up the current host computer with
the necessary drivers to communicate with the board via the MMD layer. The
install utility takes no argument.

For example, the PCIe-based MMD might need to install PCIe drivers into the host
operating system.

Executable call: aocl install <path_to_customplatform>

2. Create an uninstall utility executable that removes the current host computer
drivers (for example, PCIe drivers) used for communicating with the board. The
uninstall utility takes no argument.

Executable call: aocl uninstall <path_to_customplatform>

3. Create a diagnose utility executable that confirms the board's integrity and the
functionality of the MMD layer.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

23

https://www.intel.com/content/www/us/en/programmable/documentation/iee1516128926240.html#bni1521470978116
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The diagnose utility must support the following internal calling modes:

Calling Mode Description

-probe Prints all available devices in a Custom Platform. For a given hardware
configuration, the utility lists the devices in the same order, and each device
is associated with the same identification string each time.

-probe <device_name> Queries the specified device and prints summary statistics about the device.

<device_name>

where <device name> is the string that
corresponds to the FPGA device.

Performs a full diagnostic test for the specified device.
The utility generates the message DIAGNOSTIC_PASSED as the output.
Otherwise, the utility generates the message DIAGNOSTIC_FALIED.

When users invoke the diagnose utility command without an argument, it
queries the devices in the Custom Platform and supplies a list of valid
<device_name> strings assigned to the list of devices.

Executable call without argument: aocl diagnose

When users invoke the diagnose utility command with a <device_name>
argument, the utility runs your diagnostic test for the board. A user may give a
board a different logical device name than the physical device name associated
with the Custom Platform. The aocl utility simply converts the user-side logical
device name to the Custom Platform-side physical device name. If the diagnostic
test runs successfully, the utility generates the message DIAGNOSTIC_PASSED as
the output. Otherwise, the utility generates the message DIAGNOSTIC_FALIED.

Executable call with argument: aocl diagnose <device_name>.

4. Create a program utility executable that receives the fpga.bin file and the Intel
FPGA SDK for OpenCL Offline Compiler executable file (.aocx) and configures that
design onto the FPGA. Although the main method for FPGA programming is via the
host and the MMD, make this utility available to users who do not have a host
system or who perform offline reprogramming.

The program utility command takes <device_name>, fpga.bin, and
<kernel_filename>.aocx as arguments. When users invoke the command, the
SDK extracts the fpga.bin file and passes it to the program utility.

Important: Intel highly recommends that the program utility links with and calls
the aocl_mmd_reprogram function implemented in the MMD layer.
Refer to the aocl_mmd_reprogram and Reprogram Support reference
sections for more information.

Executable call: aocl program <device_name>
<kernel_filename>.aocx, where <device name> is the acl number that
corresponds to the FPGA device.

5. Create a flash utility executable that receives the fpga.bin file and programs
that design into the flash memory on the board. The flash utility command takes
<device_name> and a .aocx file name as arguments. When users invoke the
command, the SDK extracts the fpga.bin file and passes it to the flash utility.

Executable call: aocl flash <device_name> <kernel_filename>.aocx,
where <device name> is the acl number that corresponds to the FPGA device.

When users invoke a utility command, the utility probes the current Custom Platform's
board_env.xml file and executes the <utility_executable> file within the
utilbindir directory.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Creating the board_env.xml File on page 14

• Reprogram Support on page 52

• aocl_mmd_reprogram on page 51

1.4.6. Testing the Hardware Design

After you create the software utilities and the MMD layer, and your hardware design
achieves timing closure, test the design.

To test the hardware design, perform the following tasks:

1. Navigate to the boardtest.cl OpenCL kernel within the
INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/tests/
boardtest directory.

INTELFPGAOCLSDKROOT points to the location of the Intel FPGA SDK for OpenCL
Standard Edition installation.

2. Compile your kernel to generate an Intel FPGA SDK for OpenCL Offline Compiler
executable file (.aocx) by invoking the aoc -no-interleaving=default
boardtest.cl command.

3. Program the accelerator board by invoking the aocl program acl0
boardtest.aocx command.

4. Invoke the commands aocl compile-config and aocl link-config.
Confirm they include flags necessary for your MMD layer to compile and link
successfully.

5. Build the boardtest host application.

— For Windows systems, you may invoke the make -f Makefile.windows
command or use Microsoft Visual Studio.

If you invoke the make command, use the Makefile.windows file located in
the INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/tests/
boardtest directory.

If you build your host application in Microsoft Visual Studio, the
boardtest.sln and main.cpp files are located in the
INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/tests/
boardtest/host directory.

— For Linux systems, invoke the make -f Makefile.linux command.

The Makefile.linux file is located in the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/boardtest directory.

6. Run the boardtest executable.

Attention: To ensure that your hardware design produces consistent performance, you might
have to test it using multiple OpenCL kernels in addition to boardtest.cl.

To qualify as an Intel FPGA preferred board, rigorous testing across multiple boards is
necessary. Specifically, you should perform overnight testing of all Custom Platform
tests and executes the SDK example designs on multiple boards . All board variants
within a Custom Platform must go through the testing process.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5. Applying for the Intel FPGA SDK for OpenCL Standard Edition
Preferred Board Status

Registering your Custom Platform and the supported FPGA boards in the Intel FPGA
SDK for OpenCL Standard Edition Preferred Board Partner Program allows them to
benefit from ongoing internal testing across versions of the Intel Quartus Prime Design
Suite. Intel-tested Custom Platforms and boards are more likely to be forward
compatible with future Intel Quartus Prime Design Suite versions.

For your Custom Platform and the supported FPGA boards to achieve the Intel FPGA
SDK for OpenCL Preferred Board status, you must generate the following data and
submit it to Intel:

1. The output from invoking the aocl board-xml-test command.

2. The output from invoking the aoc -list-boards command.

3. The outputs from the host compilation, host execution, and all Intel Quartus Prime
report files (.rpt). Also, for each board in your Custom Platform, the
acl_quartus_report.txt file from the following tests:

a. All tests included in the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests directory, where
INTELFPGAOCLSDKROOT points to location of the Intel FPGA SDK for OpenCL
Standard Edition installation.

b. Compilations of the following examples on the OpenCL Design Examples page
of the Intel FPGA website:

i. Vector Addition

ii. Matrix Multiplication

iii. FFT (1D)

iv. FFT (2D)

v. Sobel Filter

vi. Finite Difference Computation (3D)

4. For each board in the Custom Platform, a summary of the following:

a. HOST-TO-MEMORY BANDWIDTH as reported by the boardtest test in the
Custom Platform Toolkit (/tests/boardtest).

b. KERNEL-TO-MEMORY BANDWIDTH as reported by the boardtest test.

c. Throughput in swap-and-execute(s) reported by the swapper test in the
Custom Platform Toolkit (/tests/swapper).

d. Actual clock freq as reported in the acl_quartus_report.txt file
from the blank test in the Custom Platform Toolkit (INTELFPGAOCLSDKROOT/
board/custom_platform_toolkit/tests/blank).

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Important: Use global routing to reduce consumption of local routing resources.
Using global routing is necessary because it helps meet timing and
improve kernel performance (Fmax). Use global or regional routing for
any net with fan-out greater than 5000, and for kernel clock, 2x clock
and reset. Check the Non-Global High Fan-Out Signals report in the
Resource subsection, which is under the Fitter section of the
Compilation Report.

5. Submit the necessary number of boards to Intel for in-house regression testing.
Regression testing tests the out-of-the-box experience for each board variant on
each operating system that your Custom Platform supports. Ensure that you test
the procedure outlined below before you submit your boards:

a. Install the board into the physical machine.

b. Boot the machine and invoke the aocl install
<path_to_customplatform> utility command.

c. Invoke the aocl diagnose command.

d. Run the SDK's test programs. The tester can also invoke the aocl program
<device_name> <kernel_filename>.cl command to verify the
functionality of the program utility.

Related Information

OpenCL Design Examples page on the Intel FPGA website

1.6. Shipping Recommendations

Before shipping your Intel-verified board to Intel FPGA SDK for OpenCL users,
program the flash memory of the board with the hello_world OpenCL design example.
Programming the flash memory of the board with the hello_world.aocx hardware
configuration file allows the SDK user to power on the board and observe a working
kernel.

Download the hello_world OpenCL design example from the OpenCL Design Examples
page on the Intel FPGA website.

For more information, refer to the README.txt file available with the hello_world
OpenCL design example and the Programming the Flash Memory of an FPGA sections
in the Intel FPGA SDK for OpenCL Standard Edition Getting Started Guide.

Related Information

• OpenCL Design Examples on the Intel FPGA website

• Programming the Flash Memory of an FPGA on Windows

• Programming the Flash Memory of an FPGA on Linux

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

27

https://www.altera.com/support/support-resources/design-examples/design-software/opencl.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl.html
https://www.intel.com/content/www/us/en/programmable/documentation/xwm1515793070801.html#nkg1518804702055
https://www.intel.com/content/www/us/en/programmable/documentation/xwm1515793070801.html#lmi1519157852898
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7. Intel FPGA SDK for OpenCL Standard Edition Custom Platform
Design Revision History

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1 • Maintenance release

2018.05.04 18.0 • Removed information pertaining to the Intel FPGA SDK for OpenCL Pro
Edition and the Intel Quartus Prime Pro Edition software.

• In Creating the board_spec.xml File on page 16, added a note to
specify that when creating a device model (i.e.
<part_number>_dm.xml), <part_number> must be the official Intel
FPGA device part number.

Table 4. Document Revision History of the Intel FPGA SDK for OpenCL Custom
Platform Design Chapter of the Intel FPGA SDK for OpenCL Custom Platform
Toolkit User Guide

Date Version Changes

November 2017 2017.11.03 • Rebranded the references to the following:
— ALTERAOCLSDKROOT to INTELFPGAOCLSDKROOT
— Arria 10 to Intel Arria® 10
— Qsys to Platform Designer (Standard)

• In Setting Up the FPGA Client Driver, updated the /opt/Altera/
OpenCL/Boards/ directory to /opt/Intel/OpenCL/Boards/

• Updated instances of aocl install to aocl install
<path_to_customplatform>.

• Updated instances of aocl uninstall to aocl uninstall
<path_to_customplatform>.

• Removed references to AOCL_BOARD_PACKAGE_ROOT throughout the
guide since it is deprecated.

• In Creating the board_env.xml File, updated the board_env version to
17.1 in the board_env.xml file.

• In Testing the board_env.xml File, updated board_default and board-
version values.

• In Creating the board_spec.xml File, updated the board_spec.xml file code
example.

• Implemented the conventions single dash and -option=<value> in the
following topics:
— Customizing Automigration
— Testing the board_env.xml File
— Testing the Hardware Design
— Applying for the Intel FPGA SDK for OpenCL Preferred Board Status

May 2017 2017.05.08 • Rebranded Altera Client Driver (ACD) to FPGA Client Driver (FCD).
• Updated example code of the board_env.xml and board_spec.xml

files to the 17.0 version of corresponding files in the Arria 10 GX FPGA
Development Kit Reference Platform.

October 2016 2016.10.31 • Rebranded Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.
• Rebranded Altera Offline Compiler to Intel FPGA SDK for OpenCL Offline

Compiler.
• Updated example code of the board_env.xml and board_spec.xml

files to the 16.1 version of corresponding files in the Arria 10 GX FPGA
Development Kit Reference Platform.

• In Setting Up the Altera Client Driver, updated the text for clarity.
• In Testing the Hardware Design, modified the Windows make command in

Step 5 to make -f Makefile.windows.

continued...

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2016 2016.05.02 • In Creating the board_spec.xml File, updated the example XML code for
board_spec.xml to the current version, and updated the examples
embedded in the procedure to match the example .xml file.

• Updated implementation requirement for the program utility in the
Providing AOCL Utilities Support section.

• In Setting Up the Altera Client Driver, modified the Linux directory for
the .acd file from /opt/Altera/OpenCL_boards/ to /opt/Altera/
OpenCL/Boards/.

November 2015 2015.11.02 • Changed instances of Quartus II to Quartus Prime.
• Changed instances of Altera® Complete Design Suite to Intel Quartus

Prime Design Suite.
• Updated the support requirement for the diagnose utility in the Providing

AOCL Utilities Support section.
• In the Creating the board_env.xml File section, added the mmdlib XML

element to the list of elements included in the board_env.xml file.

May 2015 15.0.0 • Added the Setting Up the Altera Client Driver section.

December 2014 14.1.0 • Specified that the Custom Platform Toolkit is available in the
ALTERAOCLSDKROOT/board directory.

• Added the uninstall utility executable in the Providing AOCL Utilities
Support section.

• Indicated that the version attributes in the board_env.xml and
board_spec.xml files have to match the Altera Complete Design Suite
and Altera SDK for OpenCL version you use to develop the Custom
Platform.

• Added instruction for including the compile eXtensible Markup Language
element and its associated attributes in the board_spec.xml file in the
section Creating the board_spec.xml File.

• Added information on the automigration of Custom Platform in sections
Custom Platform Automigration and Customizing Automigration.

• Removed the Generating the Rapid Prototyping Library section.

October 2014 14.0.1 • Reorganized existing document into two chapters.

June 2014 14.0.0 • Initial release.

1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Intel FPGA SDK for OpenCL Standard Edition Custom
Platform Toolkit Reference Material

The Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference
Material chapter provides supplementary information that can assist you in the
implementation of your Custom Platform.

2.1. The Board Platform Designer (Standard) Subsystem

When designing your board hardware, you have the option to create a Platform
Designer (Standard) subsystem within the top-level Platform Designer (Standard)
system (system.qsys) that contains all nonkernel logic. The board Platform Designer
(Standard) subsystem is the main design entry point for a new accelerator board. It is
the location where the instantiations of the OpenCL host and global memory interfaces
occur. Your board design must have a minimum of 128 kilobytes (KB) of external
memory. Any Avalon Memory-Mapped (Avalon-MM) slave interface (for example, a
block RAM) can potentially be a memory interface.

The diagram below represents a board system implementation in more details:

Host*
Interface

Host Controller
Pipeline Bridge*

Kernel Memory
Clock Crossing Bridge*

Kernel Memory
Clock Crossing Bridge*

Config Clock

Global Reset

PLL Ref Clock

Kernel Memory
Interface

Kernel Memory Interface

Kernel
Interface

Kernel Clock
Generator

Memory
Bank Divider

Memory*
Interface

Memory*
Interface

Kernel CRA Interface

Memory Org. Interface

Kernel Clk/Clk2x

Kernel Reset

Internal Snoop Interface

Note: Blocks denoted with an asterisk (*) are blocks that you have to add to the board
Platform Designer (Standard) subsystem.

The OpenCL host communication interface and global memory interface are the main
components of the board system. The memory-mapped device (MMD) layer
communicates, over some medium, with the intellectual property (IP) core
instantiated in this Platform Designer (Standard) system.

UG-20153 | 2018.09.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

For example, an MMD layer executes on a PCI Express® (PCIe)-based host interface,
and the host interface generates Avalon interface requests from an Intel PCIe endpoint
on the FPGA.

Within the board Platform Designer (Standard) subsystem, you can also define the
global memory system available to the OpenCL kernel. The global memory system
may consist of different types of memory interfaces. Each memory type may consist of
one, two, four, or eight banks of physical memory. All the banks of a given memory
type must be the same size in bytes and have equivalent interfaces. If you have
streaming I/O, you must also include the corresponding IP in the board Platform
Designer (Standard) system. In addition, you must update the board_spec.xml file
to describe the channel interfaces.

2.1.1. Intel FPGA SDK for OpenCL Standard Edition-Specific Platform
Designer (Standard) System Components

The Platform Designer (Standard) system for your board logic includes components
specific to the Intel FPGA SDK for OpenCL Standard Edition that are necessary for
implementing features that instantiate host communication and global memory
interfaces.

The board Platform Designer (Standard) system must export an Avalon-MM master for
controlling OpenCL kernels. It must also export one or more Avalon-MM slave ports
that the kernels use as global memory interfaces. The INTELFPGAOCLSDKROOT/ip/
board directory of the SDK includes a library that contains SDK-specific Platform
Designer (Standard) system components, where INTELFPGAOCLSDKROOT points to
the location of the SDK installation. These components are necessary for
implementing features such as Avalon-MM interfaces, organizing programmable banks,
cache snooping, and supporting Altera's guaranteed timing closures.

1. OpenCL Kernel Clock Generator on page 31

2. OpenCL Kernel Interface on page 32

3. OpenCL Memory Bank Divider on page 33

2.1.1.1. OpenCL Kernel Clock Generator

The OpenCL Kernel Clock Generator is a Platform Designer (Standard) component that
generates a clock output and a clock 2x output for use by the OpenCL kernels. An
Avalon-MM slave interface allows reprogramming of the phase-locked loops (PLLs) and
kernel clock status information.

Table 5. Parameter Settings for the OpenCL Kernel Clock Generator Component

Parameter Description

REF_CLK_RATE Frequency of the reference clock that drives the kernel PLL (that is,
pll_refclk).

KERNEL_TARGET_CLOCK_RATE Frequency that the Intel Quartus Prime Standard Edition software attempts to
achieve during compilation.
Keep this parameter at its default setting.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6. Signals and Ports for the OpenCL Kernel Clock Generator Component

Signal or Port Description

pll_refclk The reference clock for the kernel PLL. The frequency of this clock must match
the frequency you specify for the REF_CLK_RATE component parameter.

clk The clock used for the host control interface. The clock rate of clk can be
slow.

reset The reset signal that resets the PLL and the control logic. Resetting the PLL
disables the kernel clocks temporarily. Connect this reset signal to the power-
on reset signal in your system.

ctrl The slave port used to connect to the OpenCL host interface and to adjust the
frequency based on the OpenCL kernel.

kernel_clk

kernel_clk2x

The kernel clock and its 2x variant that runs on twice the speed. The
kernel_clk2x signal is directly exported from this interface. Because
kernel_clk has internal Platform Designer (Standard) connections, export it
using a clock source component. You can also use the clock source to export
the kernel reset. In addition, clock all logic at the board Platform Designer
(Standard) system interface with kernel_clk, except for any I/O that you
add.

kernel_pll_locked (Optional) If the PLL is locked onto the reference clock, the value of this signal
is 1. The host interface manages this signal normally; however, this signal is
made available in the board Platform Designer (Standard) system.

2.1.1.2. OpenCL Kernel Interface

The OpenCL Kernel Interface is a Platform Designer (Standard) component that allows
the host interface to access and control the OpenCL kernel.

Table 7. Parameter Settings for the OpenCL Kernel Interface Component

Parameter Description

Number of global memory systems Number of global memory types in your board design.

Table 8. Signals and Ports for the OpenCL Kernel Interface Component

Signal or Port Description

clk The clock input used for the host control interface. The clock rate of clk can
be slow.

reset This reset input resets the control interface. It also triggers the
kernel_reset signal, which resets all kernel logic.

kernel_ctrl Use this slave port to connect to the OpenCL host interface. This interface is a
low-speed interface with which you set kernel arguments and start the
kernel's execution.

kernel_clk The kernel_clk output from the OpenCL Kernel Clock Generator drives this
clock input.

kernel_cra This Avalon-MM master interface communicates directly with the kernels
generated by the Intel FPGA SDK for OpenCL Offline Compiler. Export the
Avalon-MM interface to the OpenCL Kernel Interface and name it in the
board_spec.xml file.

sw_reset_in When necessary, the OpenCL host interface resets the kernel via the
kernel_ctrl interface. If the board design requires a kernel reset, it can do
so via this reset input. Otherwise, connect the interface to a global power-on
reset.

continued...

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal or Port Description

kernel_reset Use this reset output to reset the kernel and any other hardware that
communicates with the kernel.
Warning: This reset occurs between the MMD open and close calls.

Therefore, it must not reset anything necessary for the operation
of your MMD.

sw_reset_export This reset output is the same as kernel_reset, but it is synchronized to the
clk interface. Use this output to reset logic that is not in the kernel_clk
clock domain but should be reset whenever the kernel resets.

acl_bsp_memorg_host The memory interfaces use these signals.
Based on the number of global memory systems you specify in the OpenCL
Kernel Interface component parameter editor, the Intel Quartus Prime
Standard Edition software creates the corresponding number of copies of this
signal, each with a different hexadecimal suffix. Connect each signal to the
OpenCL Memory Bank Divider component associated with each global memory
system (for example, DDR). Then, list the hexadecimal suffix in the
config_addr attribute of the global_mem element in the board_spec.xml
file.

kernel_irq_from_kernel An interrupt input from the kernel. This signal will be exported and named in
the board_spec.xml file.

kernel_irq_to_host An interrupt output from the kernel. This signal will connect to the host
interface.

2.1.1.3. OpenCL Memory Bank Divider

The OpenCL Memory Bank Divider is a Platform Designer (Standard) component that
takes an incoming request from the host interface on the Avalon-MM slave port and
routes it to the appropriate bank master port. This component must reside on the path
between the host and the global memory interfaces. In addition, it must reside outside
of the path between the kernel and the global memory interfaces.

Table 9. Parameter Settings for the OpenCL Memory Bank Divider Component

Parameter Description

Number of banks Number of memory banks for each of the global memory types included in
your board system.

Separate read/write ports Enable this parameter so that each bank has one port for read operation and
one for write operation.

Add pipeline stage to output Enable this parameter to allow for potential timing improvements.

Data Width Width of the data bus to the memory in bits.

Address Width (total addressable) Total number of address bits necessary to address all global memory.

Burst size (maximum) The maxburst value defined in the interface attribute of the global_mem
element in the board_spec.xml file.

Maximum Pending Reads Maximum number of pending read transfers the component can process
without asserting a waitrequest signal.
Caution: A high Maximum Pending Reads value causes Platform Designer

(Standard) to insert a deep response FIFO buffer, between the
component's master and slave, that consumes a lot of device
resources. It also increases the achievable bandwidth between
host and memory interfaces.

Split read/write bursts on burst word
boundary

Enable splitting of read and write bursts on burst word boundary.
Enable this parameter if the Number of banks parameter value is greater
than 1, and the burst reads and writes that the host controller sends to the
slave port crosses burst word boundary.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10. Signals and Ports for the OpenCL Memory Bank Divider Component

Signal or Port Description

clk The bank divider logic uses this clock input. If the IP of your host and memory
interfaces have different clocks, ensure that clk clock rate is not slower than
the slowest of the two IP clocks.

reset The reset input that connects to the board power-on reset.

s The slave port that connects to the host interface controller.

kernel_clk The kernel_clk output from the OpenCL Kernel Clock Generator drives this
clock input.

kernel_reset The kernel_reset output from the OpenCL Kernel Interface drives this reset
input.

acl_bsp_snoop Export this Avalon Streaming (Avalon-ST) source. In the board_spec.xml
file, under interfaces, describe only the snoop interface for the default
memory (acl_internal_snoop). If you have a heterogeneous memory
design, perform these tasks only for the OpenCL Memory Bank Divider
component associated with the default memory.
Important: The memory system you build in Platform Designer (Standard)

alters the width of acl_bsp_snoop. You must update the width
of the streamsource interface within the channels element in
the board_spec.xml file to match the width of
acl_bsp_snoop.

Important: In the board_spec.xml file, update the width of the snoop
interface (acl_internal_snoop) specified with the
streamsource kernel interface within the interfaces
element. Updating the width ensures that the global_mem
interface entries in board_spec.xml match the characteristics
of the bank<N> Avalon-MM masters from corresponding OpenCL
Memory Bank Divider component for the default memory.

acl_bsp_memorg_host This conduit connects to the acl_bsp_memorg_host interface of the OpenCL
Kernel Interface.

bank1, bank2, ..., bank8 The number of memory masters available in the OpenCL Memory Bank
Divider depends on the number of memory banks that were included when
the unit was instantiated. Connect each bank with each memory interface in
the same order as the starting address for the corresponding kernel memory
interface specified in the board_spec.xml file.
For example, global_mem interface that begins at address 0 must
correspond to the memory master in bank1 from the OpenCL Memory Bank
Divider.

Related Information

• OpenCL Kernel Interface on page 32

• global_mem on page 36

• channels on page 38

• interfaces on page 38

2.2. XML Elements, Attributes, and Parameters in the
board_spec.xml File

This section describes the metadata you must include in the board_spec.xml file.

board on page 35

device on page 35

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

global_mem on page 36

host on page 37

channels on page 38

interfaces on page 38

interface on page 39

compile on page 40

2.2.1. board

The board element of the board_spec.xml file provides the version and the name
of the accelerator board.

Example eXtensible Markup Language (XML) code:

<board version="<version>" name="<Custom_Platform_name>">
...
</board>

Table 11. Attributes for the board Element

Attribute Description

version The version of the board. The board version must match the version of the Intel
Quartus Prime Standard Edition software you use to develop the Custom Platform.

name The name of the accelerator board, which must match the name of the directory in
which the board_spec.xml file resides. The name must contain a combination of only
letters, numbers, underscores (_), hyphens (-), or periods (.) (for example, a10_ref).

2.2.2. device

The device element of the board_spec.xml file provides the device model and the
resources that the board design uses.

Example XML code:

<device device_model="5sgsed8k2f40c2_dm.xml">
 <used_resources>
 <alms num="45000"/>
 <!-- ALMs used in final placement - ALMs used for registers -->
 <ffs num="117500"/>
 <dsps num="0"/>
 <rams num="511"/>
 </used_resources>
 </device>

Table 12. Attributes for the device Element

Attribute Description

device_model The file name of the device model file that describes the available FPGA resources on
the accelerator board.

used_resources Reports the number of adaptive logic modules (ALMs), flip-flops, digital signal
processor (DSP) blocks and RAM blocks that the board design consumes, in the
absence of any kernel, to the Intel FPGA SDK for OpenCL Standard Edition. If you
create a defined partition around all the board logic, you can obtain the used resources
data from the Partition Statistics section of the Fitter report.

continued...

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Attribute Description

Extract the information from the following parameters:
• alms num—The number of logic ALMs used, excluding the number of ALMs with

only their registers used. The value should correspond to [a]+[b]+[d] from part [A]
of the Fitter Partition Statistics.

• ffs num—The number of flip flops.
• dsps num—The number of DSP blocks.
• rams num—The number of RAM blocks.

2.2.3. global_mem

The global_mem and interface elements of the board_spec.xml file provides
information on the memory interfaces that connect to the kernel.

Example XML code:

<!-- DDR3-1600 -->
<global_mem name="DDR" max_bandwidth="25600" interleaved_bytes="1024"
 config_addr="0x018">
 <interface name="board" port="kernel_mem0" type="slave" width="512"
maxburst="16"
 address="0x00000000" size="0x100000000" latency="240"/>
 <interface name="board" port="kernel_mem1" type="slave" width="512"
maxburst="16"
 address="0x100000000" size="0x100000000" latency="240"/>
</global_mem>

<!-- QDRII -->
 <global_mem name="QDR" max_bandwidth="17600" interleaved_bytes="8"
 config_addr="0x100">
 <interface name="board" type="slave" width="64" maxburst="1"
 address="0x200000000" size="0x1000000" latency="150" addpipe="1">
 <port name="kernel_qdr0_r" direction="r"/>
 <port name="kernel_qdr0_w" direction="w"/>
 </interface>
 <interface name="board" type="slave" width="64" maxburst="1"
 address="0x201000000" size="0x1000000" latency="150" addpipe="1">
 <port name="kernel_qdr1_r" direction="r"/>
 <port name="kernel_qdr1_w" direction="w"/>
 </interface>
 <interface name="board" type="slave" width="64" maxburst="1"
 address="0x202000000" size="0x1000000" latency="150" addpipe="1">
 <port name="kernel_qdr2_r" direction="r"/>
 <port name="kernel_qdr2_w" direction="w"/>
 </interface>
 <interface name="board" type="slave" width="64" maxburst="1"
 address="0x203000000" size="0x1000000" latency="150" addpipe="1">
 <port name="kernel_qdr3_r" direction="r"/>
 <port name="kernel_qdr3_w" direction="w"/>
 </interface>
 </global_mem>

Note: For each global memory that the kernel accesses, you must include one interface
element that describes its characteristics.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 13. Attributes for the global_mem Element

Attribute Description

name The name the Intel FPGA SDK for OpenCL Standard Edition user uses to identify the
memory type. Each name must be unique and must comprise of less than 32
characters.

max_bandwidth The maximum bandwidth, in megabytes per second (MB/s), of all global memory
interfaces combined in their current configuration. The Intel FPGA SDK for OpenCL
Offline Compiler uses max_bandwidth to choose an architecture suitable for the
application and the board.
Compute this bandwidth value from datasheets of your memories.
Example max_bandwidth calculation for a 64-bit DDR3 interface running at 800 MHz:
max_bandwidth = 800 MHz x 2 x 64 bits ÷ 8-bits = 12800 MB/s
You have the option to use block RAM instead of or in conjunction with external
memory as global memory. The formula for calculating max_bandwidth for block RAM
is max_bandwidth = block RAM speed x (block RAM interface size ÷ 8 bits)
Example max_bandwidth calculation for a 512-bit block RAM running at 100 MHz:
max_bandwidth = 100 MHz x 512 bits ÷ 8 bits = 6400 MB/s

interleaved_bytes Include the interleaved_bytes attribute in the board_spec.xml file when you
instantiate multiple interfaces for a given global memory system. This attribute
controls the size of data that the offline compiler distributes across the interfaces.
The offline compiler currently can interleave data across banks no finer than the size of
one full burst. This attribute specifies this size in bytes, which is generally computed by
burst_size x width_bytes. The interleaved_bytes value must be the same for
the host interface and the kernels. Therefore, the configuration of the OpenCL Memory
Bank Divider must match the exported kernel slave interfaces in this respect.
For block RAM, interleaved_bytes equals the width of the interface in bytes.

config_addr The address of the ACL Mem Organization Control Platform Designer (Standard)
component (mem_org_mode) that the host software uses to configure memory. You
may omit this attribute if your board has homogeneous memory; the software will use
the default address (0x18) for this component. If your board has heterogeneous
memory, there is a mem_org_mode component in the board system for each memory
type.
Enter the config_addr attribute and set it to the value of the base address of the
mem_org_mode component(s).

default Include this optional attribute and assign a value of 1 to set the global memory as the
default memory interface.
If you do not implement this attribute, the first memory type defined in the
board_spec.xml file becomes the default memory interface.

interface See the interface section for the parameters you must specify for each interface.

Related Information

interface on page 39

2.2.4. host

The host element of the board_spec.xml file provides information on the interface
from the host to the kernel.

Example XML code:

<host>
 <kernel_config start="0x00000000" size="0x0100000"/>
</host>

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 14. Attributes for the host Element

Attribute Description

kernel_config This attribute informs the Intel FPGA SDK for OpenCL Offline Compiler at what offset
the kernel resides, from the perspective of the kernel_cra master on the
kernel_interface module.
start: the starting address of the kernel. Normally, this attribute has a value of 0
because the kernel_cra master should not master anything except kernels.
size: keep this parameter at the default value of 0x0100000.

2.2.5. channels

The Intel FPGA SDK for OpenCL Standard Edition supports data streaming directly
between kernels and I/O via explicitly named channels. Include the channels
element in the board_spec.xml file if your accelerator board provides channels for
direct kernel-to-I/O accesses. For the channels element, you must identify all the
channel interfaces, which are implemented using the Avalon-ST specification. Specify
each channel interface via the interface attribute. Refer to the interface section for
the parameters you must specify for each interface. The channel interface only
supports data, and valid and ready Avalon-ST signals. The I/O channel defaults to 8-
bit symbols and big-endian ordering at the interface level.

Example XML code:

<channels>
 <interface name="udp_0" port="udp0_out" type="streamsource" width="256"
 chan_id="eth0_in"/>
 <interface name="udp_0" port="udp0_in" type="streamsink" width="256"
 chan_id="eth0_out"/>
 <interface name="udp_0" port="udp1_out" type="streamsource" width="256"
 chan_id="eth1_in"/>
 <interface name="udp_0" port="udp1_in" type="streamsink" width="256"
 chan_id="eth1_out"/>
</channels>

Related Information

interface on page 39

2.2.6. interfaces

The interfaces element of the board_spec.xml file describes the kernel interfaces
which will connect to OpenCL kernels and control their behaviors. For this element,
include one of each interface of types master, irq and streamsource. Refer to the
interface section for the parameters you must specify for each interface.

Example XML code:

<interfaces>
 <interface name="board" port="kernel_cra" type="master" width="64"
misc="0"/>
 <interface name="board" port="kernel_irq" type="irq" width="1"/>
 <interface name="board" port="acl_internal_snoop" type="streamsource"
 enable="SNOOPENABLE" width="31" clock="board.kernel_clk"/>
 <kernel_clk_reset clk="board.kernel_clk" clk2x="board.kernel_clk2x"
reset="board.kernel_reset"/>
</interfaces>

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In addition to the master, irq, and streamsource interfaces, if your design
includes a separate Platform Designer (Standard) subsystem containing the board
logic, the kernel clock and reset interfaces exported from it are also part of the
interfaces element. Specify these interfaces with the kernel_clk_reset
attribute and its corresponding parameters.

Table 15. Parameters for the kernel_clk_reset Attribute

Important: Name the kernel clock and reset interfaces in the Platform Designer (Standard) connection
format (that is, <instance_name>.<interface_name>).

For example: board.kernel_clk

Attribute Description

clk The Platform Designer (Standard) name for the kernel clock interface. The
kernel_clk output from the OpenCL Kernel Clock Generator component drives this
interface.

clk2x The Platform Designer (Standard) name for the kernel clock interface. The
kernel_clk2x output from the OpenCL Kernel Clock Generator component drives this
interface.

reset The Platform Designer (Standard) connection for the kernel reset. The kernel_reset
output from the OpenCL Kernel Interface component drives this interface.

Related Information

interface on page 39

2.2.7. interface

In the board_spec.xml file, each global memory, channel or kernel interface is
comprised of individual interfaces. For the global_mem, channels, and interfaces
XML elements, include an interface attribute for each interface and specify the
corresponding parameters.

Table 16. Parameters for the interface XML Attribute

Parameter Applicable Interface Description

name All For global_mem: instance name of the Platform Designer (Standard)
component.
For channels: instance name of the Platform Designer (Standard)
component that has the channel interface.
For interfaces: name of the entity in which the kernel interface resides
(for example, board).

port For global_mem: name of the Avalon-MM interface in the Platform Designer
(Standard) component that corresponds to the interface attribute.
For channels: name of the streaming interface in the Platform Designer
(Standard) component.
For interfaces: name of the interface to the OpenCL Kernel Interface
Platform Designer (Standard) component. For example, kernel_cra is the
Avalon-MM interface, and kernel_irq is an interrupt.

type For global_mem: set to slave.

continued...

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Applicable Interface Description

For channels:
• Set to streamsource for a stream source that provides data to the

kernel.
• Set to streamsink for a stream sink interface that consumes data from

the kernel.
For interfaces: set to either master, irq, or streamsource.

width For global_mem: width of the memory interface in bits.
For channels: number of bits in the channel interface.
For interfaces: width of the kernel interface in bits.

waitrequest_
allowance

For global_mem: [Optional] Amount of Avalon-MM waitrequest allowance
supported on the slave interface (that is, kernel-facing interface) of the
clock-crossing bridge that spans between the memory and the kernel clock
domains.
For kernel_cra: [Optional] Amount of Avalon-MM waitrequest allowance
that the kernel_cra slave interface must support.
This parameter defaults to 0 if you do not specify it in the board_spec.xml
file. A value of 0 indicates that this waitrequest allowance feature is
disabled.

maxburst global_mem Maximum burst size for the slave interface.
Attention: The value of width ÷ 8 x maxburst must equal to the value of

interleaved_bytes.

address Starting address of the memory interface that corresponds to the host
interface-side address.
For example, address 0 should correspond to the bank1 memory master
from the OpenCL Memory Bank Divider. In addition, any non-zero starting
address must abut the end address of the previous memory.

size Size of the memory interface in bytes. The sizes of all memory interfaces
should be equal.

latency_type If the memory interface has variable latency, set this parameter to average
to signify that the specified latency is considered the average case. If the
complete kernel-to-memory path has a guaranteed fixed latency, set this
parameter to fixed.

chan_id channels A string used to identify the channel interface. The string may have up to
128 characters.

clock interfaces For the streamsource kernel interface type, the parameter specifies the
name of the clock that the snoop stream uses. Usually, this clock is the
kernel clock.

2.2.8. compile

The compile element of the board_spec.xml file and its associated attributes and
parameters describe the general control of Intel Quartus Prime compilation,
registration, and automigration.

Example XML code:

<compile project="top" revision="top" qsys_file="none" generic_kernel="1">
 <generate cmd="echo"/>
 <synthesize cmd="quartus_sh -t import_compile.tcl"/>
 <auto_migrate platform_type="s5_net" >
 <include fixes=""/>
 <exclude fixes=""/>
 </auto_migrate>
</compile>

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Attribute Description

project Name of the Intel Quartus Prime project file (.qpf) that the Intel Quartus Prime
Standard Edition software intends to compile.

revision Name of the revision within the Intel Quartus Prime project that the Intel Quartus
Prime Standard Edition software compiles to generate the Intel FPGA SDK for OpenCL
Offline Compiler executable file (.aocx).

qsys_file Name of the Platform Designer (Standard) file into which the OpenCL kernel is
embedded.
You have the option to assign a value of "none" to qsys_file if you do not require
the Intel Quartus Prime Standard Edition software to create a top-level .qsys file for
your design.

generic_kernel Set this value to 1 if you want the offline compiler to generate a common Verilog
interface for all OpenCL compilations. This setting is necessary in situations where you
must set up Intel Quartus Prime design partitions around the kernel, such as in the
Configuration via Protocol (CvP) flow.

generate_cmd Command required to prepare for full compilation, such as to generate the Verilog files
for the Platform Designer (Standard) system into which the OpenCL kernel is
embedded.

synthesize_cmd Command required to generate the fpga.bin file from the Custom Platform. Usually,
this command instructs the Intel Quartus Prime Standard Edition software to perform a
full compilation.

auto_migrate • platform_type—Choose this value based on the value referenced in the Intel
FPGA Reference Platform from which you derive your Custom Platform. Valid values
are none, s5_net, c5soc.

• include fixes—Comma-separated list of named fixes that you want to apply to
the Custom Platform.

• exclude fixes—Comma-separated list of named fixes that you do not want to
apply to the Custom Platform.

2.3. MMD API Descriptions

The MMD interface is a cumulation of all the MMD application programming interface
(API) functions.

Important: Full details about these functions, their arguments, and their return values are
available in the aocl_mmd.h file. The aocl_mmd.h file is part of the Intel FPGA SDK
for OpenCL Standard Edition Custom Platform Toolkit. Include the file in the operating
system-specific implementations of the MMD layer.

aocl_mmd_get_offline_info on page 42

aocl_mmd_get_info on page 43

aocl_mmd_open on page 44

aocl_mmd_close on page 45

aocl_mmd_read on page 45

aocl_mmd_write on page 46

aocl_mmd_copy on page 47

aocl_mmd_set_interrupt_handler on page 48

aocl_mmd_set_status_handler on page 49

aocl_mmd_yield on page 49

aocl_mmd_shared_mem_alloc on page 50

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

aocl_mmd_shared_mem_free on page 51

aocl_mmd_reprogram on page 51

aocl_mmd_hostchannel_create on page 52

aocl_mmd_hostchannel_destroy on page 53

aocl_mmd_hostchannel_get_buffer on page 53

aocl_mmd_hostchannel_ack_buffer on page 54

2.3.1. aocl_mmd_get_offline_info

The aocl_mmd_get_offline_info function obtains offline information about the
board specified in the requested_info_id argument. This function is offline
because it is device-independent and does not require a handle from the
aocl_mmd_open() call.

Syntax

int aocl_mmd_get_offline_info(aocl_mmd_offline_info_t requested_info_id,
 size_t param_value_size,
 void* param_value,
 size_t* param_size_ret)

Function Arguments

1. requested_info_id—An enum value of type aocl_mmd_offline_info_t that
indicates the offline device information returning to the caller.

Table 17. Possible Enum Values for the requested_info_id Argument

Name Description Type

AOCL_MMD_VERSION Version of MMD layer char*

AOCL_MMD_NUM_BOARDS Number of candidate boards int

AOCL_MMD_BOARD_NAMES Names of available boards
Attention: Separate each board name by a semicolon (;)

delimiter.

char*

AOCL_MMD_VENDOR_NAME Name of board vendor char*

AOCL_MMD_VENDOR_ID An integer board vendor ID int

AOCL_MMD_USES_YIELD A value of 0 instructs the Intel FPGA SDK for OpenCL
Standard Edition host runtime to suspend user's processes.
The host runtime resumes these processes after it receives
an event update (for example, an interrupt) from the MMD
layer .
A value of 1 instructs the SDK's host runtime to
continuously call the aocl_mmd_yield function while it
waits for events to complete.
Caution: Setting AOCL_MMD_USES_YIELD to 1 might

cause high CPU utilization if the
aocl_mmd_yield function does not suspend the
current thread.

int

AOCL_MMD_MEM_TYPES_SUPPORTE
D

A bit field listing all memory types that the Custom Platform
supports. You may combine the following enum values in
this bit field:

int (bit field)

continued...

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description Type

AOCL_MMD_PHYSICAL_MEMORY—Custom Platform includes
IP to communicate directly with physical memory (for
example, DDR and QDR).
AOCL_MMD_SVM_COARSE_GRAIN_BUFFER—Custom
Platform supports both the caching of shared virtual
memory (SVM) pointer data for OpenCL cl_mem objects
and the requirement of explicit user function calls to
synchronize the cache between the host processor and the
FPGA.
Note: Currently, Intel does not support this level of SVM

except for a subset of
AOCL_MMD_SVM_FINE_GRAIN_SYSTEM support.

AOCL_MMD_SVM_FINE_GRAIN_BUFFER—Custom Platform
supports caching of SVM pointer data for individual bytes.
To synchronize the cache between the host processor and
the FPGA, the Custom Platform requires information from
the host runtime collected during pointer allocation. After
an SVM pointer receives this additional data, the board
interface synchronizes the cache between the host
processor and the FPGA automatically.
Note: Currently, Intel does not support this level of SVM

except for a subset of
AOCL_MMD_SVM_FINE_GRAIN_SYSTEM support.

AOCL_MMD_SVM_FINE_GRAIN_SYSTEM—Custom Platform
supports caching of SVM pointer data for individual bytes
and it does not require additional information from the host
runtime to synchronize the cache between the host
processor and the FPGA. The board interface synchronizes
the cache between the host processor and the FPGA
automatically for all SVM pointers.
Attention: Intel's support for this level of SVM is

preliminary. Some features might not be fully
supported.

2. param_value_size—Size of the param_value field in bytes. This size_t value
should match the size of the expected return type that the enum definition
indicates.

For example, if AOCL_MMD_NUM_BOARDS returns a value of type int, set the
param_value_size to sizeof (int). You should see the same number of
bytes returned in the param_size_ret argument.

3. param_value—A void* pointer to the variable that receives the returned
information.

4. param_size_ret—A pointer argument of type size_t* that receives the
number of bytes of returned data.

Return Value

A negative return value indicates an error.

2.3.2. aocl_mmd_get_info

The aocl_mmd_get_info function obtains information about the board specified in
the requested_info_id argument.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Syntax

int aocl_mmd_get_info(int handle,
 aocl_mmd_info_t requested_info_id,
 size_t param_value_size,
 void* param_value,
 size_t* param_size_ret);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. requested_info_id—An enum value of type aocl_mmd_offline_info_t that
indicates the device information returning to the caller.

Table 18. Possible Enum Values for the requested_info_id Argument

Name Description Type

AOCL_MMD_NUM_KERNEL_INTERFACES Number of kernel interfaces int

AOCL_MMD_KERNEL_INTERFACES Kernel interfaces int*

AOCL_MMD_PLL_INTERFACES Kernel clock handles int*

AOCL_MMD_MEMORY_INTERFACE Global memory handle int

AOCL_MMD_TERMPERATURE Temperature measurement float

AOCL_MMD_PCIE_INFO PCIe information char*

AOCL_MMD_BOARD_NAME Board name char*

AOCL_MMD_BOARD_UNIQUE_ID Unique board ID char*

3. param_value_size—Size of the param_value field in bytes. This size_t value
should match the size of the expected return type that the enum definition
indicates.

For example, if AOCL_MMD_TEMPERATURE returns a value of type float, set the
param_value_size to sizeof (float). You should see the same number of
bytes returned in the param_size_ret argument.

4. param_value—A void* pointer to the variable that receives the returned
information.

5. param_size_ret—A pointer argument of type size_t* that receives the
number of bytes of returned data.

Return Value

A negative return value indicates an error.

2.3.3. aocl_mmd_open

The aocl_mmd_open function opens and initializes the specified device.

Syntax

int aocl_mmd_open(const char* name);

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function Arguments

name—The function opens the board with a name that matches this const char*
string. The name typically matches the one specified by the AOCL_MMD_BOARD_NAMES
offline information.

The OpenCL runtime first queries the AOCL_MMD_BOARD_NAMES offline information to
identify the boards that it might be able to open. Then it attempts to open all possible
devices by calling aocl_mmd_open and using each of the board names as argument.

Important: The name must be a C-style NULL-terminated ASCII string.

Return Value

If aocl_mmd_open() executes successfully, the return value is a positive integer that
acts as a handle to the board.

If aocl_mmd_open() fails to execute, a negative return value indicates an error. In
the event of an error, the OpenCL runtime proceeds to open other known devices.
Therefore, it is imperative that the MMD layer does not exit the application if an open
call fails.

2.3.4. aocl_mmd_close

The aocl_mmd_close function closes an opened device via its handle.

Syntax

int aocl_mmd_close(int handle);

Function Arguments

handle—A positive int value representing the handle to the board obtained from the
aocl_mmd_open() call.

Return Value

If the aocl_mmd_close() executes successfully, the return value is 0.

If aocl_mmd_close() fails to execute, a negative return value indicates an error.

2.3.5. aocl_mmd_read

The aocl_mmd_read function is the read operation on a single interface.

Syntax

int aocl_mmd_read(int handle,
 aocl_mmd_op_t op,
 size_t len,
 void* dst,
 aocl_mmd_interface_t interface,
 size_t offset);

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. op—The operation object of type aocl_mmd_op_t used to track the progress of
the operation. If op is NULL, the call must block, and return only after the
operation completes.

Note: aocl_mmd_op_t is defined as follows:

typedef void* aocl_mmd_op_t;

3. len—The size of the data, in bytes, that the function transfers. Declare len with
type size_t.

4. dst—The host buffer, of type void*, to which data is written.

5. interface—The handle to the interface that aocl_mmd_read is accessing. For
example, to access global memory, this handle is the enum value
aocl_mmd_get_info() returns when its requested_info_id argument is
AOCL_MMD_MEMORY_INTERFACE. The interface argument is of type
aocl_mmd_interface_t, and can take one of the following values:

Name Description

AOCL_MMD_KERNEL Control interface into the kernel interface

AOCL_MMD_MEMORY Data interface to device memory

AOCL_MMD_PLL Interface for reconfigurable PLL

6. offset—The size_t byte offset within the interface at which the data transfer
begins.

Return Value

If the read operation is successful, the return value is 0.

If the read operation fails, a negative return value indicates an error.

2.3.6. aocl_mmd_write

The aocl_mmd_write function is the write operation on a single interface.

Syntax

int aocl_mmd_write(int handle,
 aocl_mmd_op_t op,
 size_t len,
 const void* src,
 aocl_mmd_interface_t interface,
 size_t offset);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. op—The operation object of type aocl_mmd_op_t used to track the progress of
the operation. If op is NULL, the call must block, and return only after the
operation completes.

Note: aocl_mmd_op_t is defined as follows:

typedef void* aocl_mmd_op_t;

3. len—The size of the data, in bytes, that the function transfers. Declare len with
type size_t.

4. src—The host buffer, of type const void*, from which data is read.

5. interface—The handle to the interface that aocl_mmd_write is accessing. For
example, to access global memory, this handle is the enum value
aocl_mmd_get_info() returns when its requested_info_id argument is
AOCL_MMD_MEMORY_INTERFACE. The interface argument is of type
aocl_mmd_interface_t, and can take one of the following values:

Name Description

AOCL_MMD_KERNEL Control interface into the kernel interface

AOCL_MMD_MEMORY Data interface to device memory

AOCL_MMD_PLL Interface for reconfigurable PLL

6. offset—The size_t byte offset within the interface at which the data transfer
begins.

Return Value

If the read operation is successful, the return value is 0.

If the read operation fails, a negative return value indicates an error.

2.3.7. aocl_mmd_copy

The aocl_mmd_copy function is the copy operation on a single interface.

Syntax

int aocl_mmd_copy(int handle,
 aocl_mmd_op_t op,
 size_t len,
 aocl_mmd_interface_t intf,
 size_t src_offset,
 size_t dst_offset);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. op—The operation object of type aocl_mmd_op_t used to track the progress of
the operation. If op is NULL, the call must block, and return only after the
operation completes.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: aocl_mmd_op_t is defined as follows:

typedef void* aocl_mmd_op_t;

3. len—The size of the data, in bytes, that the function transfers. Declare len with
type size_t.

4. intf—The handle to the interface that aocl_mmd_read is accessing. For
example, to access global memory, this handle is the enum value
aocl_mmd_get_info() returns when its requested_info_id argument is
AOCL_MMD_MEMORY_INTERFACE. The interface argument is of type
aocl_mmd_interface_t, and can take one of the following values:

Name Description

AOCL_MMD_KERNEL Control interface into the kernel interface

AOCL_MMD_MEMORY Data interface to device memory

AOCL_MMD_PLL Interface for reconfigurable PLL

5. src_offset—The size_t byte offset within the source interface at which the
data transfer begins.

6. dst_offset—The size_t byte offset within the destination interface at which
the data transfer begins.

Return Value

If the copy operation is successful, the return value is 0.

If the copy operation fails, a negative return value indicates an error.

2.3.8. aocl_mmd_set_interrupt_handler

The aocl_mmd_set_interrupt_handler function sets the interrupt handler for the
opened device. When the device internals identify an asynchronous kernel event (for
example, a kernel completion), the interrupt handler is called to notify the OpenCL
runtime of the event.

Attention: Ignore the interrupts from the kernel until this handler is set.

Syntax

int aocl_mmd_set_interrupt_handler(int handle,
 aocl_mmd_interrupt_handler_fn fn,
 void* user_data);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. fn—The callback function to invoke when a kernel interrupt occurs. The fn
argument is of type aocl_mmd_interrupt_handler_fn, which is defined as
follows:

typedef void (*aocl_mmd_interrupt_handler_fn)(int handle, void*
user_data);

3. user_data—The void* type user-provided data that passes to fn when it is
called.

Return Value

If the function executes successfully, the return value is 0.

If the function fails to execute, a negative return value indicates an error.

2.3.9. aocl_mmd_set_status_handler

The aocl_mmd_set_status_handler function sets the operation status handler for
the opened device. The operation status handler is called under the following
circumstances:

• When the operation completes successfully and status is 0.

• When the operation completes with errors and status is a negative value.

Syntax

int aocl_mmd_set_status_handler(int handle,
 aocl_mmd_status_handler_fn fn,
 void* user_data);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. fn—The callback function to invoke when a status update occurs. The fn
argument is of type aocl_mmd_status_handler_fn, which is defined as
follows:

type void (*aocl_mmd_status_handler_fn)(int handle, void* user_data,
aocl_mmd_op_t op, int status);

3. user_data—The void* type user-provided data that passes to fn when it is
called.

Return Value

If the function executes successfully, the return value is 0.

If the function fails to execute, a negative return value indicates an error.

2.3.10. aocl_mmd_yield

The aocl_mmd_yield function is called when the host interface is idle. The host
interface might be idle because it is waiting for the device to process certain events.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Syntax
int aocl_mmd_yield(int handle);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

Return Value

A nonzero return value indicates that the yield function performed work necessary for
proper device functioning such as processing direct memory access (DMA)
transactions.

A return value of 0 indicates that the yield function did not perform work necessary for
proper device functioning.

Note: The yield function might be called continuously as long as it reports that it has
necessary work to perform.

2.3.11. aocl_mmd_shared_mem_alloc

The aocl_mmd_shared_mem_alloc function allocates shared memory between the
host and the FPGA. The host accesses the shared memory via the pointer returned by
aocl_mmd_shared_mem_alloc. The FPGA accesses the shared memory via
device_ptr_out. If shared memory is not available,
aocl_mmd_shared_mem_alloc returns NULL. If you do not reboot the CPU after you
reprogram the FPGA, the shared memory will persist.

Syntax

void * aocl_mmd_shared_mem_alloc(int handle,
 size_t size,
 unsigned long long *device_ptr_out);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. size—The size of the shared memory that the function allocates. Declare size
with the type size_t.

3. device_ptr_out—The argument that receives the pointer value the device uses
to access shared memory. The device_ptr_out is of type unsigned long
long to handle cases where the host has a smaller pointer size than the device.
The device_ptr_out argument cannot have a NULL value.

Return Value

If aocl_mmd_shared_mem_alloc executes successfully, the return value is the
pointer value that the host uses to access the shared memory. Otherwise, the return
value is NULL.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.12. aocl_mmd_shared_mem_free

The aocl_mmd_shared_mem_free function frees allocated shared memory. This
function does nothing if shared memory is not available.

Syntax

void aocl_mmd_shared_mem_free(int handle,
 void* host_ptr,
 size_t size);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. host_ptr—The host pointer that points to the shared memory, as returned by the
aocl_mmd_shared_mem_alloc() function.

3. size—The size of the allocated shared memory that the function frees. Declare
size with the type size_t.

Return Value

The aocl_mmd_shared_mem_free function has no return value.

2.3.13. aocl_mmd_reprogram

The aocl_mmd_reprogram function is the reprogram operation for the specified
device. The host must guarantee that no other OpenCL operations are executing on
the device during the reprogram operation. During aocl_mmd_reprogram execution,
the kernels are idle and no read, write, or copy operation can occur.

Disable interrupts and reprogram the FPGA with the data from user_data, which has
a size specified by the size argument. The host then calls
aocl_mmd_set_status_handler and aocl_mmd_set_interrupt_handler
again, which enable the interrupts. If events such as interrupts occur during
aocl_mmd_reprogram execution, race conditions or data corruption might occur.

Syntax

int aocl_mmd_reprogram(int handle,
 void* user_data,
 size_t size);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. user_data—The void* type binary contents of the fpga.bin file that are
created during compilation.

3. size—The size of user_data in bytes. The size argument is of size_t.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value

If aocl_mmd_reprogram executes successfully, the return value is the pointer value
that the host uses to access shared memory.

2.3.13.1. Reprogram Support

For Intel FPGA SDK for OpenCL Standard Edition users who program their FPGAs with
the clCreateProgramWithBinary flow (that is, reprogram-on-the-fly), the
aocl_mmd_reprogram subroutine is used to configure the FPGA from within the host
applications. The host ensures that this call executes only when the FPGA is idle,
meaning that no kernels are running and no transfers are outstanding. The MMD layer
must then reconfigure the device with the data in the user_data argument of
aocl_mmd_reprogram.

The data in the user_data argument is the same fpga.bin data created during
Intel Quartus Prime compilation. The Intel FPGA SDK for OpenCL Offline Compiler
packages the exact contents of fpga.bin into the .aocx file during compilation. The
contents of the fpga.bin is irrelevant to the offline compiler. It simply passes the file
contents through the host and to the aocl_mmd_reprogram call via the user_data
argument.

For more information on the clCreateProgramWithBinary function, refer to the
OpenCL Specification version 1.0 and the Programming an FPGA via the Host section
of the Intel FPGA SDK for OpenCL Standard Edition Programming Guide.

Related Information

• OpenCL Specification version 1.0

• Programming an FPGA via the Host

2.3.14. aocl_mmd_hostchannel_create

The aocl_mmd_hostchannel_create function creates a channel interface.

Syntax

int aocl_mmd_hostchannel_create(int handle,
 char *channel_name,
 size_t queue_depth,
 int direction);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. channel_name—Name of the channel to be initialized. The channel name is same
as that used in the board_spec.xml file.

3. queue_depth—The size of pinned internal buffer in bytes. Pointer to the internal
buffer is provided when the user calls the
aocl_mmd_hostchannel_get_buffer() function.

4. direction—The direction of the channel.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

52

http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/iee1516128926240.html#luv1521470982520
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value

If the function executes successfully, the return value is positive and is handle to the
channel.

If the function fails to execute, a negative return value indicates an error.

2.3.15. aocl_mmd_hostchannel_destroy

The aocl_mmd_hostchannel_destroy function destroys the channel interface.

Syntax

int aocl_mmd_hostchannel_destroy(int handle,
 int channel);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. channel—A positive int value representing handle to the channel to close
obtained from the aocl_mmd_hostchannel_create() call.

Return Value

If the function executes successfully, the return value is 0.

If the function fails to execute, a negative return value indicates an error.

2.3.16. aocl_mmd_hostchannel_get_buffer

The aocl_mmd_hostchannel_get_buffer function provides a host with a pointer
to the buffer they can access to write or read from the channel interface, along with
the space or data available in the buffer, in bytes.

Syntax

void *aocl_mmd_hostchannel_get_buffer(int handle,
 int channel,
 size_t *buffer_size,
 int *status);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. channel—A positive int value representing handle to the channel to close
obtained from the aocl_mmd_hostchannel_create() call.

3. buffer_size—A pointer to size_t that the function will write available buffer
space or size to.

4. status—A pointer to int that the function will write result of the call to.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Return Value

If the function executes successfully, int pointed to by the status pointer will be 0.
Returned void* may still be NULL, in which case size_t pointed by the
buffer_size will be 0.

If the function fails to execute, int pointed by the status pointer will be a negative
value.

2.3.17. aocl_mmd_hostchannel_ack_buffer

You can acknowledge write or read from the channel by calling
aocl_mmd_hostchannel_ack_buffer.

Syntax

size_t aocl_mmd_hostchannel_ack_buffer(int handle,
 int channel,
 size_t send_size,
 int *status);

Function Arguments

1. handle—A positive int value representing the handle to the board obtained from
the aocl_mmd_open() call.

2. channel—A positive int value representing handle to the channel to close
obtained from the aocl_mmd_hostchannel_create() call.

3. send_size—The size in bytes that the user is acknowledging.

4. status—A pointer to int that the function will write result of the call to.

Return Value

If the function executes successfully, int pointed to by status pointer will be 0. Also,
there is no guarantee that the user's send_size will be the actual size that gets
acknowledged. The returned size_t will be the amount of bytes that was actually
acknowledged.

If the function fails to execute, int pointed by status pointer will be a negative
value.

2.4. Intel FPGA SDK for OpenCL Standard Edition Custom Platform
Toolkit Reference Manual Revision History

Document Version Intel Quartus
Prime Version

Changes

2018.09.24 18.1 • Maintenance release

2018.05.04 18.0 • Removed information pertaining to the Intel FPGA SDK for OpenCL Pro
Edition and the Intel Quartus Prime Pro Edition software.

• In interface on page 39, added information on the
waitrequest_allowance parameter.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November 2017 2017.11.03 • Added the following new pages:
— aocl_mmd_hostchannel_create
— aocl_mmd_hostchannel_destroy
— aocl_mmd_hostchannel_get_buffer
— aocl_mmd_hostchannel_ack_buffer

May 2017 2017.05.08 • Maintenance release.

October 2016 2016.10.31 • Rebranded Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.
• Rebranded Altera Offline Compiler to Intel FPGA SDK for OpenCL Offline

Compiler
• In OpenCL Memory Bank Divider, added information about the Split

read/write bursts on burst word boundary parameter..

May 2016 2016.05.02 • In the global_mem section under XML Elements, Attributes, and
Parameters in the board_spec.xml File, added example calculations for
determining the max_bandwidth value.

• In the interface section under XML Elements, Attributes, and Parameters
in the board_spec.xml File, modified the global_mem-specific definitions
for the name and port attributes.

• Added the option to assign a value of none to the qsys_file attribute
within the compile element.

• Fixed a documentation error in the aocl_mmd_copy section.

November 2015 2015.11.02 • Maintenance release, and changed instances of Quartus II to Quartus
Prime.

May 2015 15.0.0 • Maintenance release.

December 2014 14.1.0 • Under XML Elements, Attributes, and Parameters in the board_spec.xml
File, added information on the compile eXtensible Markup Language
element and its associated attributes and parameters.

• Under MMD API Descriptions, added information on the
AOCL_MMD_USES_YIELD and the AOCL_MMD_MEM_TYPES_SUPPORTED
enum values for the requested_info_id variable in the
aocl_mmd_get_offline_info function.

October 2014 14.0.1 • Reorganized existing document into two chapters.

June 2014 14.0.0 • Initial release.

2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material

UG-20153 | 2018.09.24

Send Feedback Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User
Guide

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Standard%20Edition%20Custom%20Platform%20Toolkit%20User%20Guide%20(UG-20153%202018.09.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel FPGA SDK for OpenCL Standard Edition: Custom Platform Toolkit User Guide
	Contents
	1. Intel® FPGA SDK for OpenCL™ Standard Edition Custom Platform Toolkit User Guide
	1.1. Prerequisites for the Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit
	1.2. Overview of the Intel FPGA SDK for OpenCL Standard Edition Custom Platform
	1.2.1. Directories and Files in an Intel FPGA SDK for OpenCL Standard Edition Custom Platform
	1.2.2. Recommendations for Structuring the Custom Platform Directory

	1.3. Custom Platform Automigration for Forward Compatibility
	1.3.1. Customizing Automigration

	1.4. Creating an Intel FPGA SDK for OpenCL Standard Edition Custom Platform
	1.4.1. Designing the Board Hardware
	1.4.1.1. Creating the Board Platform Designer (Standard) System
	1.4.1.1.1. General Quality of Results Considerations for the Exported Board Partition

	1.4.1.2. Establishing Guaranteed Timing Flow

	1.4.2. Creating the Board XML Files
	1.4.2.1. Creating the board_env.xml File
	1.4.2.1.1. Testing the board_env.xml File

	1.4.2.2. Creating the board_spec.xml File

	1.4.3. Creating the MMD Library
	1.4.3.1. Kernel Power-up State

	1.4.4. Setting Up the FPGA Client Driver
	1.4.5. Providing Intel FPGA SDK for OpenCL Standard Edition Utilities Support
	1.4.6. Testing the Hardware Design

	1.5. Applying for the Intel FPGA SDK for OpenCL Standard Edition Preferred Board Status
	1.6. Shipping Recommendations
	1.7. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Design Revision History

	2. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Material
	2.1. The Board Platform Designer (Standard) Subsystem
	2.1.1. Intel FPGA SDK for OpenCL Standard Edition-Specific Platform Designer (Standard) System Components
	2.1.1.1. OpenCL Kernel Clock Generator
	2.1.1.2. OpenCL Kernel Interface
	2.1.1.3. OpenCL Memory Bank Divider

	2.2. XML Elements, Attributes, and Parameters in the board_spec.xml File
	2.2.1. board
	2.2.2. device
	2.2.3. global_mem
	2.2.4. host
	2.2.5. channels
	2.2.6. interfaces
	2.2.7. interface
	2.2.8. compile

	2.3. MMD API Descriptions
	2.3.1. aocl_mmd_get_offline_info
	2.3.2. aocl_mmd_get_info
	2.3.3. aocl_mmd_open
	2.3.4. aocl_mmd_close
	2.3.5. aocl_mmd_read
	2.3.6. aocl_mmd_write
	2.3.7. aocl_mmd_copy
	2.3.8. aocl_mmd_set_interrupt_handler
	2.3.9. aocl_mmd_set_status_handler
	2.3.10. aocl_mmd_yield
	2.3.11. aocl_mmd_shared_mem_alloc
	2.3.12. aocl_mmd_shared_mem_free
	2.3.13. aocl_mmd_reprogram
	2.3.13.1. Reprogram Support

	2.3.14. aocl_mmd_hostchannel_create
	2.3.15. aocl_mmd_hostchannel_destroy
	2.3.16. aocl_mmd_hostchannel_get_buffer
	2.3.17. aocl_mmd_hostchannel_ack_buffer

	2.4. Intel FPGA SDK for OpenCL Standard Edition Custom Platform Toolkit Reference Manual Revision History

