








https://www.altera.com/documentation/ewa1402666946838.html#mwh1391804342074
https://www.altera.com/documentation/bba1475671648402.html#bba1475671648402
https://www.altera.com/documentation/bba1475671648402.html#bba1475671648402
https://www.altera.com/documentation/ewa1403875738903.html#ewa1403886518038
https://www.altera.com/documentation/ewa1403875738903.html#ewa1403886518038
https://www.altera.com/documentation/ewa1404851957878.html#ewa1404852921684


Features of the a10_ref Reference Platform:

• OpenCL Host

The a10_ref Reference Platform uses a PCIe-based host that connects to the Intel
Arria 10 PCIe Gen3 x8 hard IP core.

• OpenCL Global Memory

The hardware provides one 2-gigabyte (GB) DDR4 SDRAM daughtercard that is
mounted on the HiLo connector (J14 in Figure 1 on page 5).

• FPGA Programming via one of the following methods:

— Partial Reconfiguration (PR) over PCIe.

— External cable and the Intel Arria 10 GX FPGA Development Kit's on-board
Intel FPGA Download Cable II interface.

— External Intel FPGA Download Cable II interface connected to a 10-pin JTAG
header.

• Guaranteed Timing

The a10_ref Reference Platform relies on the Intel Quartus Prime Pro Edition
compilation flow to provide guaranteed timing closure. The timing-clean a10_ref
Reference Platform is preserved in the form of a precompiled post-fit netlist (that
is, the base.qdb Intel Quartus Prime Database Export File). The Intel FPGA SDK
for OpenCL Offline Compiler imports this preserved post-fit netlist into each
OpenCL kernel compilation.

• OpenCL Host Pipe

Using direct memory access (DMA) in Intel Arria 10 PCIe Gen3 x8 hard IP core
a10gx_hostch board variant has a direct host to kernel and kernel to host pipe.

1.2.1 Intel Arria 10 GX FPGA Development Kit Reference Platform Board
Variants

The Intel Arria 10 GX FPGA Development Kit Reference Platform has two board
variants (that is, a10gx and a10gx_hostch) that targets the Intel Arria 10 GX FPGA
Development Kit containing the production silicon for Intel Arria 10 FPGA (-1 speed
grade) and DDR4-2400 SDRAM .

To compile your OpenCL kernel for a specific board variant, include the -
board=<board_name> option in your aoc command (for example, aoc -
board=a10gx myKernel.cl).

Related Links

Compiling a Kernel for a Specific FPGA Board (-board=<board_name>)

1.3 Contents of the Intel Arria 10 GX FPGA Development Kit
Reference Platform

Familiarize yourself with the directories and files within the Intel Arria 10 GX FPGA
Development Kit Reference Platform because they are referenced throughout this
document.

1 Intel® FPGA SDK for OpenCL™ Intel Arria 10 GX FPGA Development Kit Reference Platform
Porting Guide

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
6

https://www.altera.com/documentation/mwh1391807965224.html#ewa1412799935217


Table 1. Highlights of the Intel Arria 10 GX FPGA Development Kit Reference Platform
Directory

Windows File or Folder Linux File or Directory Description

board_env.xml board_env.xml eXtensible Markup Language (XML) file that describes the
Reference Platform to the Intel FPGA SDK for OpenCL.

hardware hardware Contains the Intel Quartus Prime project templates for the
a10gx board variant.
See Table 2 on page 7 for a list of files in this directory.

windows64 linux64 Contains the MMD library, kernel mode driver, and executable
files of the SDK utilities (that is, install, uninstall, flash,
program, diagnose) for your 64-bit operating system.

source source For Windows, the source folder contains source codes for the
MMD library and SDK utilities. The MMD library and the SDK
utilities are in the windows64 folder.
For Linux, the source directory contains source codes for the
MMD library and SDK utilities. The MMD library and the SDK
utilities are in the linux64 directory.

Table 2. Contents of the a10gx Directory
The following table lists the files in the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx
directory, where INTELFPGAOCLSDKROOT points to the location of the SDK installation.

File Description

mem.qsys Platform Designer system that, together with the .ip files in the
ip/mem subdirectory, implements the mem component.

ddr4.qsys Platform Designer system that, together with the .ip files in the ip/
ddr4 subdirectory, implements the ddr4 component.

base.qsf Intel Quartus Prime Settings File for the base project revision. This file
includes, by reference, all the settings in the flat.qsf file.
Use this revision when porting the a10_ref Reference Platform to your
own Custom Platform. The Intel Quartus Prime Pro Edition software
compiles this base project revision from source code.

base.qar Intel Quartus Prime Archive File that contains base.qdb, pr_base.id,
and base.sdc. This file is generated by the scripts/
post_flow_pr.tcl file during base revision compile, and is used
during import revision compilation.

base.qdb Intel Quartus Prime Database Export File the contains
the precompiled netlist of the static regions of the
design.

pr_base.id Text file containing a unique number for a given base
compilation that the runtime uses to determine whether
it is safe to use PR programming.

base.sdc Synopsys Design Constraints File that the Intel Quartus
Prime software autogenerates during a base
compilation. The base.sdc file is used in the top
revision compilation to import all the timing constraints
from the static region.

board.qsys Platform Designer system that implements the board interfaces (that is,
the static region) of the OpenCL hardware system.

board_spec.xml XML file that provides the definition of the board hardware interfaces to
the SDK.

continued...   

1 Intel® FPGA SDK for OpenCL™ Intel Arria 10 GX FPGA Development Kit Reference Platform
Porting Guide

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
7



File Description

device.tcl Tcl file that is included in all revisions and contains all device-specific
information (for example, device family, ordering part number (OPN),
voltage settings, etc.)

flat.qsf Intel Quartus Prime Settings File for the flat project revision. This file
includes all the common settings, such as pin location assignments, that
are used in the other revisions of the project (that is, base, top, and
top_synth). The base.qsf, top.qsf, and top_synth.qsf files
include, by reference, all the settings in the flat.qsf file.
The Intel Quartus Prime software compiles the flat revision with minimal
location constraints. The flat revision compilation does not generate a
base.qar file that you can use for future import compilations and does
not implement the guaranteed timing flow.

import_compile.tcl Tcl script for the SDK-user compilation flow (that is, import revision
compilation).

max5_150.pof Programming file for the MAX® V device on the Intel Arria 10 GX FPGA
Development Kit that sets the memory reference clock to 150 MHz by
default at power-up.
You must program the max5_150.pof file onto your a10gx board.

opencl_bsp_ip.qsf Intel Quartus Prime Settings File that collects all the required .ip files
in a unique location.
During flat and base revision compilations, the board.qsys, mem.qsys
and ddr4.qsys Platform Designer files are added to the
opencl_bsp_ip.qsf file.

quartus.ini Contains any special Intel Quartus Prime software options that you need
to compile OpenCL kernels for the a10_ref Reference Platform.

top.qpf Intel Quartus Prime Project File for the OpenCL hardware system.

top.qsf Intel Quartus Prime Settings File for the SDK-user compilation flow.

top.sdc Synopsys Design Constraints File that contains board-specific timing
constraints.

top.v Top-level Verilog Design File for the OpenCL hardware system.

top_post.sdc Platform Designer and Intel FPGA SDK for OpenCL IP-specific timing
constraints.

top_synth.qsf Intel Quartus Prime Settings File for the Intel Quartus Prime revision in
which the OpenCL kernel system is synthesized.

ip/mem/<file_name> Directory containing the .ip files that the Intel Quartus Prime Pro
Edition software needs to parameterize the mem component.
You must provide both the mem.qsys file and the corresponding .ip
files in this directory to the Intel Quartus Prime Pro Edition software.

ip/ddr4/<file_name> Directory containing the .ip files that the Intel Quartus Prime Pro
Edition software needs to parameterize the ddr4 component.
You must provide both the ddr4.qsys file and the corresponding .ip
files in this directory to the Intel Quartus Prime Pro Edition software.

ip/board/<file_name> Directory containing the .ip files that the Intel Quartus Prime Pro
Edition software needs to parameterize the board instance.
You must provide both the board.qsys file and the corresponding .ip
files in this directory to the Intel Quartus Prime Pro Edition software.

ip/freeze_wrapper.v Verilog Design File that implements the freeze logic placed at outputs of
the Partial Reconfiguration region.

ip/irq_controller/<file_name> IP that receives interrupts from the OpenCL kernel system and sends
message signaled interrupts (MSI) to the host.

continued...   

1 Intel® FPGA SDK for OpenCL™ Intel Arria 10 GX FPGA Development Kit Reference Platform
Porting Guide

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
8



File Description

Refer to the Message Signaled Interrupts section for more information.

ip/host_channel IP that implements the DMA descriptor controller as well as AVMM-to-
AVST and AVST-to-AVMM between DMA and kernel.
Attention: This IP is available only in the a10gx_hostch board variant.

scripts/base_write_sdc.tcl Tcl script that the base revision compilation uses to generate the
base.sdc file containing all the constraints collected in the base
revision compilation. The Intel Quartus Prime Pro Edition software uses
the base.sdc file when compiling the import (top) revision.

scripts/create_fpga_bin_pr.tcl Tcl script that generates the fpga.bin file. The fpga.bin file contains
all the necessary files for configuring the FPGA.
For more information on the fpga.bin file, refer to the Define the
Contents of the fpga.bin File for the Intel Arria 10 GX FPGA
Development Kit Reference Platform section.

scripts/post_flow_pr.tcl Tcl script that implements the guaranteed timing closure flow, as
described in the Guaranteed Timing Closure of the Intel Arria 10 GX
FPGA Development Kit Reference Platform Design section.

scripts/pre_flow_pr.tcl Tcl script that executes before the invocation of the Intel Quartus Prime
software compilation. Running the script generates the Platform
Designer HDL for board.qsys and kernel_system.qsys. It also
creates a unique ID for the PR base revision (that is, static region). This
unique ID is stored in the pr_base.id file.

scripts/regenerate_cache.tcl Tcl script that regenerates the BAK cache file in your temporary
directory.

scripts/qar_ip_files.tcl Tcl script that packages up base.qdb, pr_base.id and base.sdc
during base revision compile.

scripts/create_acds_ver_hex.tcl Tcl script called by the pre_flow_pr.tcl script to create contents of
the ACDS version ROM.

Related Links

• Guaranteed Timing Closure of the Intel Arria 10 GX FPGA Development Kit
Reference Platform Design on page 43

• Message Signaled Interrupt on page 30

• Define the Contents of the fpga.bin File for the Intel Arria 10 GX FPGA
Development Kit Reference Platform on page 54

• Hash Checking on page 50

1.4 Changes in Intel Arria 10 Development Kit Reference Platform
from 17.0 to 17.1

Following is a list of what has changed for a10_ref Reference Platform from 17.0 to
17.1 release:

Table 3. Changes in a10_ref Reference Platform from 17.0 to 17.1

File Change

acl_ddr4_a10_core.qsys Renamed as ddr4.qsys to reduce long path issues in Windows.

All .ip files in the ip/acl_ddr4_a10_core/directory Renamed as ip/ddr4/ to reduce long path issues in Windows.

acl_ddr4_a10.qsys Renamed as mem.qsys to reduce long path issues in Windows.

continued...   

1 Intel® FPGA SDK for OpenCL™ Intel Arria 10 GX FPGA Development Kit Reference Platform
Porting Guide

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
9



File Change

All .ip files in the ip/acl_ddr4_a10/directory Renamed as ip/mem/ to reduce long path issues in Windows.

board.qsys • Added ACDS version ROM.
• Updated board interface version ID.

base.qsf Changed the hierarchy for Logic Lock regions due to the
renaming of .qsys files.

flat.qsf • Added path to ACDS version ROM memory initialization file
(MIF).

• Changed the hierarchy for global signal due to the renaming
of .qsys files.

• Removed GENERATE_RBF_FILE ON assignment.

top.qsf Added GENERATE_PR_RBF_FILE ON and
QDB_FILE_PARTITION assignments.

top_post.sdc Changed the hierarchy of asynchronous clock groups and false
path due to the renaming of.qsys files.

import_compiles.tcl • Rebranded ALTERA to INTEL.
• Updated the file for incremental and fast compile features.

board_spec.xml Updated version from 17.0 to 17.1

quartus.ini • Removed bak_eco_a10_pcie_1602_1611=on INI
• Added qhd_skip_pr_revision_type_check=on INI

base.qar Updated the file with ACDS 17.1 static region.

scripts/pre_flow_pr.tcl • Rebranded ALTERA to INTEL.
• Added a call to create_acds_ver_hex.tcl for ACDS

version ROM.
• Updated pr_base.id file also in flat revision compiles so

that the unique flat compiles can be identified.

scripts/post_flow_pr.tcl • Rebranded ALTERA to INTEL.
• Updated the file to enable fast compiles and update ACDS

version ROM
• Removed manual call to quartus_cpf for creating partial

reconfiguration programming file since it is now done
automatically in the flow.

scripts/create_fpga_bin_pr.tcl • Rebranded ALTERA to INTEL.
• Added the Quartus version as part of fpga.bin.

scripts/qar_ip_files.tcl • Rebranded ALTERA to INTEL.
• Changes required for renaming .qsys files.
• Changes required for moving other tcl scripts into Intel FPGA

SDK for OpenCL.

scripts/regenerate_cache.tcl Changes needed for moving bak_flow.tcl into Intel FPGA
SDK for OpenCL

scripts/bak_flow.tcl Moved the script into Intel FPGA SDK for OpenCL.

scripts/helpers.tcl Moved the script into Intel FPGA SDK for OpenCL.

scripts/create_acds_ver_hex.tcl Added the script to create the contents of the ACDS version
ROM.

ip/host_channel Added the IP for a10gx_hostch board variant.

1 Intel® FPGA SDK for OpenCL™ Intel Arria 10 GX FPGA Development Kit Reference Platform
Porting Guide

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
10



2 Developing Your Intel Arria 10 Custom Platform
Use the tools available in Intel Arria 10 GX FPGA Development Kit Reference Platform
(a10_ref) and the Intel FPGA SDK for OpenCL Custom Platform Toolkit together to
create your own Custom Platform.

Developing your Custom Platform requires in-depth knowledge of the contents in the
following documents and tools:

• Intel FPGA SDK for OpenCL Custom Platform User Guide

• Contents of the SDK Custom Platform Toolkit

• Stratix V Network Reference Platform Porting Guide

• Documentation for all the Intel FPGA IP in your Custom Platform

• Intel FPGA SDK for OpenCL Getting Started Guide

• Intel FPGA SDK for OpenCL Programming Guide

In addition, you must independently verify all IP on your computing card (for example,
PCIe controllers and DDR4 external memory).

Related Links

• Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide

• Intel FPGA SDK for OpenCL Intel Arria 10 SoC Development Kit Reference Platform
Porting Guide

• Intel FPGA SDK for OpenCL Intel Cyclone V SoC Development Kit Reference
Platform Porting Guide

• Intel FPGA SDK for OpenCL Intel Stratix V Network Reference Platform Porting
Guide

• Intel FPGA SDK for OpenCL Getting Started Guide

• Intel FPGA SDK for OpenCL Programming Guide

2.1 Initializing Your Intel Arria 10 Custom Platform

To initialize your Intel FPGA SDK for OpenCL Custom Platform, copy the Intel Arria 10
GX FPGA Development Kit Reference Platform to another directory and rename it.

UG-OCL010 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/ewa1402666946838.html#mwh1391804342074
https://www.altera.com/documentation/bba1475671648402.html#qak1475673753934
https://www.altera.com/documentation/bba1475671648402.html#qak1475673753934
https://www.altera.com/documentation/ewa1403875738903.html#ewa1403886518038
https://www.altera.com/documentation/ewa1403875738903.html#ewa1403886518038
https://www.altera.com/documentation/ewa1404851957878.html#ewa1404852921684
https://www.altera.com/documentation/ewa1404851957878.html#ewa1404852921684
https://www.altera.com/documentation/mwh1391807309901.html#mwh1391807297091
https://www.altera.com/documentation/mwh1391807965224.html#mwh1391807939093
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


1. Copy the INTELFPGAOCLSDKROOT/board/a10_ref directory, where
INTELFPGAOCLSDKROOT is the location of the SDK installation.

2. Paste the a10_ref directory into a directory that you own (that is, not a system
directory) and then rename it (<your_custom_platform>).

3. Choose the a10gx board variant in the <your_custom_platform>/hardware
directory to match the production silicon for the Intel Arria 10 FPGA as the basis of
your design.

4. Rename a10gx board variant to match the name of your FPGA board
(<your_custom_platform>/hardware/<board_name>).

5. Modify the <your_custom_platform>/board_env.xml file so that the name
and default fields match the changes you made in step 2 on page 12 and step 4
on page 12, respectively.

6. Modify the my_board name in the inside <your_custom_platform>/
hardware/<board_name>/board_spec.xml file to match the change you
made in step 2 on page 12.

> aoc -list-boards
Board list:
  my_board

7. In the SDK, invoke the command aoc -list-boards to confirm that the Intel
FPGA SDK for OpenCL Offline Compiler displays the board name in your Custom
Platform.

Related Links

• Setting the Intel FPGA SDK for OpenCL User Environment Variables for Windows

• Setting the Intel FPGA SDK for OpenCL User Environment Variables for Linux

• Describe the Intel Arria 10 GX FPGA Development Kit Reference Platform to the
Intel FPGA SDK for OpenCL on page 51

2.2 Modifying the Intel Arria 10 GX FPGA Development Kit
Reference Platform Design

Modify the Intel Quartus Prime design for the Intel Arria 10 GX FPGA Development Kit
Reference Platform to fit your design needs.

You can add a component in Platform Designer and connect it to the existing system,
or add a Verilog file to the available system. After adding the custom components,
connect those components in Platform Designer.

1. Instantiate your PCIe controller, as described in Host-to-Intel Arria 10
Communication over PCIe section.

2. Instantiate any memory controllers and I/O channels. You can add the board
interface hardware either as Platform Designer components in the board.qsys
Platform Designer system or as HDL in the top.v file.

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
12

https://www.altera.com/documentation/mwh1391807309901.html#ewa1416586552764
https://www.altera.com/documentation/mwh1391807309901.html#ewa1416591141201


The board.qsys file and the top.v file are in the <your_custom_platform>/
hardware/<board_name> directory.

3. Modify the device.tcl file to match all the correct settings for the device on
your board.

4. Modify the <your_custom_platform>/hardware/<board_name>/flat.qsf
file to use only the pin-outs and settings for your system. The base.qsf,
top.qsf, and top_synth.qsf files will include all the settings from the
flat.qsf file.

The top.qsf file and top_synth.qsf file are in the
<your_custom_platform>/hardware/<board_name> directory.

Related Links

Host-to-Intel Arria 10 FPGA Communication over PCIe on page 22

2.3 Integrating Your Intel Arria 10 Custom Platform with the Intel
FPGA SDK for OpenCL

After you modify your Intel Quartus Prime design files, integrate your Custom Platform
with the Intel FPGA SDK for OpenCL.

1. Update the <your_custom_platform>/hardware/<board_name>/
board_spec.xml file. Ensure that there is at least one global memory interface,
and all the global memory interfaces correspond to the exported interfaces from
the board.qsys Platform Designer System File.

2. Set the environment variable ACL_DEFAULT_FLOW to flat.

Setting this environment variable instructs the SDK to compile the flat revision
corresponding to <your_custom_platform>/hardware/<board_name>/
flat.qsf file without the partitions or Logic Locks.

Tip: Intel recommends to get a timing clean flat revision compiled before
proceeding to the base revision compiles. You can also invoke the following
command with the -bsp-flow=<revision_type> attribute to run different
revisions of your project (for example, flat or base compiles).

aoc -bsp-flow=flat boardtest.cl -o=bin/boardtest.aocx

3. Set the environment variable ACL_DEFAULT_FLOW to base.

Setting this environment variable instructs the SDK to compile the base revision
corresponding to the <your_custom_platform>/hardware/<board_name>/
base.qsf file.

4. Perform the steps outlined in the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/README.txt file to compile the
INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/tests/
boardtest/boardtest.cl OpenCL kernel source file.

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
13



The environment variable INTELFPGAOCLSDKROOT points to the location of the
SDK installation.

5. If compilation fails because of timing failures, fix the errors, or compile
INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/tests/
boardtest.cl with different seeds. To compile the kernel with a different seed,
include the -seed=<N> option in the aoc command (for example, aoc -
seed=2 boardtest.cl).

You might be able to fix minor timing issues by simply compiling your kernel with
a different seed.

Related Links

Describe the Intel Arria 10 GX FPGA Development Kit Reference Platform Hardware to
the Intel FPGA SDK for OpenCL on page 52

2.4 Setting up the Intel Arria 10 Custom Platform Software
Development Environment

Prior to building the software layer for your Intel FPGA SDK for OpenCL Custom
Platform, set up the software development environment.

• To compile the MMD layer for Windows, perform the following tasks:

a. Install the GNU make utility on your development machine.

b. Install a version of Microsoft Visual Studio that has the ability to compile 64-
bit software (for example, Microsoft Visual Studio version 2010 Professional).

c. Set the development environment so that SDK users can invoke commands
and utilities at the command prompt.

d. Modify the <your_custom_platform_name>/source/Makefile.common
file so that TOP_DEST_DIR points to the top-level directory of your Custom
Platform.

e. In the Makefile.common file or the development environment, set the
JUNGO_LICENSE variable to your Jungo WinDriver license.

f. To check that you have set up the software development environment
properly, invoke the gmake or gmake clean command.

• To compile the MMD layer for Linux, perform the following tasks:

a. Ensure that you use a Linux distribution that Intel supports (for example, GNU
Compiler Collection (GCC) version 4.47).

b. Modify the <your_custom_platform>/source/Makefile.common file so
that TOP_DEST_DIR points to the top-level directory of your Custom Platform.

• To check that you have set up the software environment properly, invoke the make
or make clean command.

Related Links

Jungo Connectivity Ltd. website

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
14

http://www.jungo.com/


2.5 Establishing Intel Arria 10 Custom Platform Host
Communication

After modifying and rebranding the Intel Arria 10 GX FPGA Development Kit Reference
Platform to your own Custom Platform, use the tools and utilities in your Custom
Platform to establish communication between your FPGA accelerator board and your
host application.

1. Program your FPGA device with the <your_custom_platform>/hardware/
<board_name>/base.sof file and then reboot your system.

You should have created the base.sof file when integrating your Custom
Platform with the Intel FPGA SDK for OpenCL. Refer to the Integrating Your Intel
Arria 10 Custom Platform with the Intel FPGA SDK for OpenCL section for more
information.

2. Confirm that your operating system recognizes a PCIe device with your vendor
and device IDs.

— For Windows, open the Device Manager and verify that the correct device
and IDs appear in the listed information.

— For Linux, invoke the lspci command and verify that the correct device and
IDs appear in the listed information.

3. Run the aocl install <path_to_customplatform> utility command to
install the kernel driver on your machine.

4. For Windows, set the PATH environment variable. For Linux, set the
LD_LIBRARY_PATH environment variable.

For more information about the settings for PATH and LD_LIBRARY_PATH, refer to
Setting the Intel FPGA SDK for OpenCL User Environment Variables in the Intel
FPGA SDK for OpenCL Getting Started Guide.

5. Modify the version_id_test function in your <your_custom_platform>/
source/host/mmd/acl_pcie_device.cpp MMD source code file to exit after
reading from the version ID register.

6. Run the aocl diagnose utility command and confirm that the version ID
register reads back the ID successfully. You may set the environment variables
ACL_HAL_DEBUG and ACL_PCIE_DEBUG to a value of 1 to visualize the result of
the diagnostic test on your terminal.

Related Links

• Integrating Your Intel Arria 10 Custom Platform with the Intel FPGA SDK for
OpenCL on page 13

• Setting the Intel FPGA SDK for OpenCL Environment Variables for Linux

• Setting the Intel FPGA SDK for OpenCL User Environment Variables for Windows

2.6 Branding Your Intel Arria 10 Custom Platform

Modify the library, driver and source files in the Intel Arria 10 GX FPGA Development
Kit Reference Platform to reference your Intel FPGA SDK for OpenCL Custom Platform.

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
15

https://www.altera.com/documentation/mwh1391807309901.html#ewa1416591141201
https://www.altera.com/documentation/mwh1391807309901.html#ewa1416586552764


1. In the software development environment available with the a10_ref Reference
Platform, replace all references of "a10_ref" with the name of your Custom
Platform.

2. Modify the PACKAGE_NAME and MMD_LIB_NAME fields in the
<your_custom_platform>/source/Makefile.common file.

3. Modify the name, linklib, and mmlibs elements in
<your_custom_platform>/board_env.xml file to your custom MMD library
name.

4. In your Custom Platform, modify the following lines of code in the
hw_pcie_constants.h file to include information of your Custom Platform:

#define ACL_BOARD_PKG_NAME "a10_ref"
#define ACL_VENDOR_NAME "Intel Corporation"
#define ACL_BOARD_NAME "Arria 10 Reference Platform"

For Windows, the hw_pcie_constants.h file is in the
<your_custom_platform>\source_windows64\include folder. For Linux,
the hw_pcie_constants.h file is in the <your_custom_platform>/linux64/
driver directory.

Note: The ACL_BOARD_PKG_NAME variable setting must match the name
attribute of the board_env element that you specified in the
board_env.xml file.

5. Define the Device ID, Subsystem Vendor ID, Subsystem Device ID, and Revision
ID, as defined in the Device Identification Registers for Intel Arria 10 PCIe Hard IP
section.

Note: The PCIe IDs in the hw_pcie_constants.h file must match the
parameters in the PCIe controller hardware.

6. Update your Custom Platform's board.qsys Platform Designer system and the
hw_pcie_constants.h file with the IDs defined in 5 on page 16.

7. For Windows, update DeviceList fields in the <your_custom_platform>
\windows64\driver\acl_boards_a10_ref.inf file to match your PCIe ID
values and then rename the file to
acl_board_<your_custom_platform>.inf.

Note: The <your_custom_platform> string in
acl_board_<your_custom_platform>.inf must match the string you
specify for the name field in the board_env.xml file.

8. Run make in the<your_custom_platform>/source directory to generate the
driver.

Related Links

Device Identification Registers for Intel Arria 10 PCIe Hard IP on page 24

2.7 Changing the Device Part Number

When porting the Intel Arria 10 GX FPGA Development Kit Reference Platform to your
own board, change the device part number, where applicable, to the part number of
the device on your board.

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
16



Update the device part number in the following files within the
<your_custom_platform>/hardware/<board_name> directory:

• In the device.tcl file, change the device part number in the set global
assignment -name DEVICE 10AX115S2F45I1SG QSF assignment.
The updated device number will appear in the base.qsf, top.qsf, and
top_synth.qsf files.

• In the board.qsys, mem.qsys, and ddr4.qsys files, change all occurrences of
10AX115S2F45I1SG.

2.8 Connecting the Memory in the Intel Arria 10 Custom Platform

Calibrate the external memory IP and controllers in your Custom Platform, and
connect them to the host.

1. In your Custom Platform, instantiate your external memory IP based on the
information in the DDR4 as Global Memory for OpenCL Applications section.
Update the information pertaining to the global_mem element in the
<your_custom_platform>/hardware/<board_name>/board_spec.xml file.

2. Remove the boardtest hardware configuration file that you created during the
integration of your Custom Platform with the Intel FPGA SDK for OpenCL.

3. Recompile the INTELFPGAOCLSDKROOT/board/custom_platform_toolkit/
tests/boardtest/boardtest.cl kernel source file.

The environment variable INTELFPGAOCLSDKROOT points to the location of the
SDK installation.

4. Reprogram the FPGA with the new boardtest hardware configuration file and
then reboot your machine.

5. Modify the wait_for_uniphy function in the acl_pcie_device.cpp MMD
source code file to exit after checking the UniPHY status register. Rebuild the MMD
software.

For Windows, the acl_pcie_device.cpp file is in the
<your_custom_platform>\source\host\mmd folder. For Linux, the
acl_pcie_device.cpp file is in the <your_custom_platform>/source/
host/mmd directory.

6. Run the aocl diagnose SDK utility and confirm that the host reads back both
the version ID and the value 0 from the uniphy_status component.
The utility should return the message Uniphy are calibrated.

7. Consider analyzing your design in the Signal Tap logic analyzer to confirm the
successful calibration of all memory controllers.

Note: For more information on Signal Tap logic analyzer, download the Signal Tap
II Logic Analyzer tutorial from the University Program Tutorial page.

Related Links

• DDR4 as Global Memory for OpenCL Applications on page 34

• Integrating Your Intel Arria 10 Custom Platform with the Intel FPGA SDK for
OpenCL on page 13

• Signal Tap II with Verilog Designs

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
17

https://www.altera.com/support/training/university/materials-tutorials.html
ftp://ftp.altera.com/up/pub/Intel_Material/16.1/Tutorials/Verilog/SignalTap.pdf


2.9 Modifying the Kernel PLL Reference Clock

The Intel Arria 10 GX FPGA Reference Platform uses an external 125 MHz clock as a
reference for the I/O PLL. The I/O PLL relies on this reference clock to generate the
internal kernel_clk clock, and the kernel_clk2x clock that runs at twice the
frequency of kernel_clk. When porting the a10_ref Reference Platform to your own
board using a different reference clock, update the board.qsys and top.sdc files
with the new reference clock speed.

1. In the <your_custom_platform>/hardware/<board_name>/board.qsys
file, update the REF_CLK_RATE parameter value on the kernel_clk_gen IP
module.

2. In the <your_custom_platform>/hardware/<board_name>/top.sdc file,
update the create_clock assignment for kernel_pll_refclk.

3. [Optional] In the <your_custom_platform>/hardware/<board_name>/
top.v file, update the comment for the kernel_pll_refclk input port.

After you update the board.qsys and the top.sdc files, the post_flow_pr.tcl
script will automatically determine the I/O PLL reference frequency and compute the
correct PLL settings.

2.10 Integrating an OpenCL Kernel in Your Intel Arria 10 Custom
Platform

After you establish host communication and connect the external memory, test the
FPGA programming process from kernel creation to program execution.

1. Perform the steps outlined in INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/README.txt file to build the hardware
configuration file from the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/boardtest/boardtest.cl kernel source
file.

The environment variable INTELFPGAOCLSDKROOT points to the location of the
Intel FPGA SDK for OpenCL installation.

2. Program your FPGA device with the hardware configuration file you created in 1 on
page 18 and then reboot your machine.

3. Remove the early-exit modification in the version_id_test function in the
acl_pcie_device.cpp file that you implemented when you established
communication between the board and the host interface.

For Windows, the acl_pcie_device.cpp file is in the
<your_custom_platform>\source\host\mmd folder. For Linux, the
acl_pcie_device.cpp file is in the <your_custom_platform>/source/
host/mmd directory.

4. Invoke the aocl diagnose <device_name> command, where
<device_name> is the string you define in your Custom Platform to identify each
board.

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
18



By default, <device_name> is the acl number (for example, acl0 to acl31) that
corresponds to your FPGA device. In this case, invoke the aocl diagnose
acl0 command.

5. Build the boardtest host application using the .sln file (Windows) or Makefile
(Linux) in the SDK's Custom Platform Toolkit.

For Windows, the .sln file for Windows is in the INTELFPGAOCLSDKROOT\board
\custom_platform_toolkit\tests\boardtest\host folder. For Linux, the
Makefile is in the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/boardtest directory.

6. Set the environment variable CL_CONTEXT_COMPILER_MODE_INTELFPGA to a
value of 3 and run the boardtest host application.

For more information on CL_CONTEXT_COMPILER_MODE_INTELFPGA, refer to
Troubleshooting Intel Arria 10 GX FPGA Development Kit Reference Platform
Porting Issues.

Related Links

• Establishing Intel Arria 10 Custom Platform Host Communication on page 15

• Troubleshooting Intel Arria 10 GX FPGA Development Kit Reference Platform
Porting Issues on page 20

2.11 Guaranteeing Timing Closure in the Intel Arria 10 Custom
Platform

When modifying the Intel Arria 10 GX FPGA Development Kit Reference Platform into
your own Custom Platform, ensure that guaranteed timing closure holds true for your
Custom Platform.

1. Establish the floorplan of your design.

Important: Consider all design criteria outlined in the FPGA System Design section
of the Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide.

2. Compile several seeds of the INTELFPGAOCLSDKROOT/board/
custom_platform_toolkit/tests/boardtest/boardtest.cl file until you
generate a design that closes timing cleanly.

To specify the seed number, include the -seed=<N> option in your aoc
command.

3. Copy the base.qar file from the INTELFPGAOCLSDKROOT/board/a10_ref/
hardware/a10gx directory into your Custom Platform.

4. Use the flat.qsf file in the a10_ref Reference Platform as references to
determine the type of information you must include in the flat.qsf file for your
Custom Platform.

The base.qsf, top.qsf, and top_synth.qsf files automatically inherit all the
settings in the flat.qsf file. However, if you need to modify Logic Lock Plus
region or PR assignments, only make these changes in the base.qsf file.

5. Confirm that you can use the .aocx file to reprogram the FPGA by invoking the
aocl program acl0 boardtest.aocx command.

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
19



6. Remove the ACL_DEFAULT_FLOW environment variable that you added when
integrating your Custom Platform with the Intel FPGA SDK for OpenCL.

7. Ensure that the environment variable CL_CONTEXT_COMPILER_MODE_INTELFPGA
is not set.

8. Run the boardtest_host executable.

Related Links

• Intel Arria 10 FPGA System Design on page 36

• FPGA System Design

• Integrating Your Intel Arria 10 Custom Platform with the Intel FPGA SDK for
OpenCL on page 13

2.11.1 Generating the base.qar Post-Fit Netlist for Your Intel Arria 10
Custom Platform

To implement the compilation flow, you must generate a base.qar Intel Quartus
Prime Archive File for your Intel Arria 10 Custom Platform.

The steps below represent a general procedure for regenerating the base.qar file:

1. Port the system design and the flat.qsf file to your computing card.

2. Compile the INTELFPGAOCLSDKROOT/board/custom_platform_ toolkit/
tests/boardtest/boardtest.cl kernel source file using the base revision. Fix
any timing failures and recompile the kernel until timing is clean. You can add the
-bsp-flow=base argument to the aoc command to generate a base.qar file
during the kernel compilation.

INTELFPGAOCLSDKROOT points to the location of the Intel FPGA SDK for OpenCL
installation.

3. Copy the generated base.qar file into your Custom Platform.

4. Using the default compilation flow, test the base.qar file across several OpenCL
design examples and confirm that the following criteria are satisfied:

• All compilations close timing.

• The OpenCL design examples achieve satisfactory Fmax.

• The OpenCL design examples function on the accelerator board.

Related Links

• Integrating Your Intel Arria 10 Custom Platform with the Intel FPGA SDK for
OpenCL on page 13

• Provide a Timing-Closed Post-Fit Netlist on page 45

2.12 Troubleshooting Intel Arria 10 GX FPGA Development Kit
Reference Platform Porting Issues

Set Intel FPGA SDK for OpenCL-specific environment variables to help diagnose
Custom Platform design problems.

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
20

https://www.altera.com/documentation/ewa1404851957878.html#ewa1405017967979


Table 4. Intel FPGA SDK for OpenCL-Specific Environment Variables for Identifying
Custom Platform Design Problems

Environment Variable Description

ACL_HAL_DEBUG Set this variable to a value of 1 to 5 to enable increasing debug
output from the Hardware Abstraction Layer (HAL), which
interfaces directly with the MMD layer.

ACL_PCIE_DEBUG Set this variable to a value of 1 to 10000 to enable increasing
debug output from the MMD. This variable setting is useful for
confirming that the version ID register was read correctly and
the UniPHY IP cores are calibrated.

ACL_PCIE_JTAG_CABLE Set this variable to override the default quartus_pgm argument
that specifies the cable number. The default is cable 1. If there are
multiple Intel FPGA Download Cable, you can specify a particular
one here.

ACL_PCIE_JTAG_DEVICE_INDEX Set this variable to override the default quartus_pgm argument
that specifies the FPGA device index. By default, this variable has
a value of 1. If the FPGA is not the first device in the JTAG chain,
you can customize the value.

ACL_PCIE_USE_JTAG_PROGRAMMING Set this variable to force the MMD to reprogram the FPGA using
the JTAG cable instead of Partial Reconfiguration.

ACL_PCIE_DMA_USE_MSI Set this variable if you want to use MSI for DMA transfers on
Windows.

CL_CONTEXT_COMPILER_MODE_INTELFPGA Unset this variable or set it to a value of 3. The OpenCL host
runtime reprograms the FPGA as needed, which it does at least
once during initialization. To prevent the host application from
programming the FPGA, set this variable to a value of 3.

2 Developing Your Intel Arria 10 Custom Platform

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
21



3 Intel Arria 10 GX FPGA Development Kit Reference
Platform Design Architecture

Intel created the Intel Arria 10 GX FPGA Development Kit Reference Platform
(a10_ref) based on various design considerations. Familiarize yourself with these
design considerations. Having a thorough understanding of the design decision-
making process might help in the design of your own Intel FPGA SDK for OpenCL
Custom Platform.

Host-to-Intel Arria 10 FPGA Communication over PCIe on page 22

DDR4 as Global Memory for OpenCL Applications on page 34

Host Connection to OpenCL Kernels on page 36

Intel Arria 10 FPGA System Design on page 36

Dynamic PLL Reconfiguration on page 43

Guaranteed Timing Closure of the Intel Arria 10 GX FPGA Development Kit Reference
Platform Design on page 43

Intel Quartus Prime Compilation Flow and Scripts on page 46

Addition of Timing Constraints on page 51

Connection of the Intel Arria 10 GX FPGA Development Kit Reference Platform to the
Intel FPGA SDK for OpenCL on page 51

Intel Arria 10 FPGA Programming Flow on page 53

Host-to-Device MMD Software Implementation on page 54

Implementation of Intel FPGA SDK for OpenCL Utilities on page 55

Intel Arria 10 FPGA Development Kit Reference Platform Scripts on page 58

Considerations in Intel Arria 10 GX FPGA Development Kit Reference Platform
Implementation on page 59

3.1 Host-to-Intel Arria 10 FPGA Communication over PCIe

The Intel Arria 10 GX FPGA Development Kit Reference Platform instantiates the Intel
Arria 10 PCIe hard IP to implement a host-to-device connection over PCIe.

3.1.1 Instantiation of Intel Arria 10 PCIe Hard IP with Direct Memory
Access

The Intel Arria 10 GX FPGA Development Kit Reference Platform instantiates the Intel
Arria 10 PCIe hard IP with direct memory access (DMA) to implement a host-to-device
connection over PCIe.

UG-OCL010 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Dependencies

• Intel Arria 10 PCIe hard IP core

• Parameter Settings section of the Intel Arria 10 Avalon-MM DMA Interface for PCIe
Solutions User Guide

Table 5. Highlights of Intel Arria 10 PCIe Hard IP Parameter Settings
Set the parameters for the Intel Arria 10 PCIe hard IP in the parameter editor within the Intel Quartus Prime
Pro Edition software.

Parameter(s) Setting

System Settings

Application interface type Avalon-MM with DMA
This Avalon Memory-Mapped (Avalon-MM) interface
instantiates the embedded DMA of the PCIe hard IP core.

Hard IP mode Gen3x8, Interface: 256-bit, 250 MHz
Number of Lanes: x8
Lane Rate: Gen3 (8.0 Gbps)
Note: This setting is the fastest configuration that the

Avalon-MM DMA slave interface currently supports.

Rx Buffer credit allocation Low
Note: This setting is derived experimentally.

Intel Arria 10 Avalon-MM Settings

Export MSI/MSI-X conduit interfaces Enabled
Export the MSI interface in order to connect the interrupt
sent from the kernel interface to the MSI.

Instantiate Internal Descriptor Controller Enabled
Instantiates the descriptor controller in the Avalon-MM DMA
bridge. Use the 128-entry descriptor controller that the PCIe
hard IP core provides.
Disabled for a10gx_hostch board variant
The descriptor controller is implemented in the ip/
host_channel subdirectory.

Address width of accessible PCIe memory space 64 bits
This value is machine dependent. To avoid truncation of the
MSI memory address, 64-bit machines should allot 64 bits
to access the PCIe address space.

Base Address Register (BAR) Settings

Base Address Registers (BARs) This design uses two BARs.
For BAR 0, set Type to 64-bit prefetchable memory. The
Size parameter setting is disabled because the Instantiate
Internal Descriptor Controller parameter is enabled in
the Avalon-MM system settings.
BAR 0 is only used to access the DMA Descriptor Controller,
as described in the Intel Arria 10 Avalon-MM DMA for PCI
Express section of the Intel Arria 10 Avalon-MM DMA
Interface for PCIe Solutions User Guide.
For Bar 4, set Type to 64-bit prefetchable memory, and
set Size to 256 KBytes - 18 bits.
BAR 4 is used to connect PCIe to the OpenCL kernel
systems and other board modules.

Related Links

• Parameter Settings for Intel Arria 10 Avalon-MM DMA Interface for PCIe Solutions

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
23

https://www.altera.com/documentation/lbl1415138844137.html#nik1410564822797


• Intel Arria 10 Avalon-MM DMA for PCI Express

3.1.2 Device Identification Registers for Intel Arria 10 PCIe Hard IP

To build PCIe hardware, you must set PCIe IDs related to the device hardware.

Table 6. Device Hardware-Related PCIe ID Registers

ID Register Name ID Provider Description Parameter Name in PCIe
IP Core

Vendor ID PCI-SIG® Identifies the FPGA manufacturer.
Always set this register to 0x1172, which is Intel
vendor ID.

vendor_id_hwtcl

Device ID Intel Describes the PCIe configuration on the FPGA
according to Intel's internal guideline.
Set the device ID to the device code of the FPGA
on your accelerator board.
For the Intel Arria 10 GX FPGA Development Kit
Reference Platform, set the Device ID register to
0x2494, which signifies Gen 3 speed, 8 lanes,
Intel Arria 10 device family, and Avalon-MM
interface, respectively.
Refer to Table 7 on page 25 for more information.

device_id_hwtcl

Revision ID When setting this ID, ensure that it matches the
following revision IDs:
• For Windows, the revision ID specified for the

DeviceList field in the
<your_custom_platform>
\windows64\driver
\acl_boards_<your_custom_platform>.i
nf file.

• For Linux, the revision ID specified for the
ACL_PCI_REVISION variable in the
<your_custom_platform>/linux64/
driver/hw_pcie_constants.h file.

—

Class Code Intel The Intel FPGA SDK for OpenCL utility checks the
base class value to verify whether the board is an
OpenCL device.
Do not modify the class code settings.
• Base class: 0x12 for processing accelerator
• Sub class: 0x00
• Programming interface: 0x01

—

Subsystem
Vendor ID

Board vendor Identifies the manufacturer of the accelerator
board.
Set this register to the vendor ID of manufacturer
of your accelerator board. For the a10_ref
Reference Platform, the subsystem vendor ID is
0x1172.
If you are a board vendor, set this register to your
vendor ID.

subsystem_vendor_id_hw
tcl

Subsystem
Device ID

Board vendor Identifies the accelerator board.
The SDK uses this ID to identify the board because
the software might perform differently on different
boards. If you create a Custom Platform that
supports multiple boards, use this ID to distinguish
between the boards. Alternatively, if you have
multiple Custom Platforms, each supporting a
single board, you can use this ID to distinguish
between the Custom Platforms.

subsystem_device_id_hw
tcl

continued...   

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
24

https://www.altera.com/documentation/lbl1415138844137.html#nik1410905730232


ID Register Name ID Provider Description Parameter Name in PCIe
IP Core

Important: Make this ID unique to your Custom
Platform. For example, for the a10_ref
Reference Platform, the ID is
0xA151.

You can find these PCIe ID definitions in the PCIe controller instantiated in the
INTELFPGAOCLSDKROOTboard/a10_ref/hardware/a10gx/board.qsys Platform
Designer System File. These IDs are necessary in the driver and the SDK's
programming flow. The kernel driver uses the Vendor ID, Subsystem Vendor ID
and the Subsystem Device ID to identify the boards it supports. The SDK's
programming flow checks the Device ID to ensure that it programs a device with
a .aocx Intel FPGA SDK for OpenCL Offline Compiler executable file targeting that
specific device.

Table 7. Intel FPGA SDK for OpenCL's Numbering Convention for PCIe Hard IP Device
ID

Location in ID Definition

15:14 RESERVED

13:12 Speed
• 0 — Gen 1
• 1 — Gen 2
• 2 — Gen 3
• 3 — Gen 4

11 RESERVED

10:8 Number of lanes
• 0 — 1 lane
• 1 — 2 lanes
• 3 — 4 lanes
• 4 — 8 lanes
• 5 — 16 lanes
• 6 — 32 lanes

7:4 Device family
• 0 — Altera Stratix IV GX
• 1 — Altera Arria II GX
• 2 — Stratix II GX
• 3 — Arria GX
• 4 — Cyclone IV GX
• 5 — External
• 6 — Stratix V
• 7 — Arria V
• 8 — Cyclone V
• 9 — Arria 10

3 1 — Soft IP (SIP)
This ID indicates that the PCIe protocol stack is implemented in soft logic.
If unspecified, the IP is considered a hard IP.

2:0 Platform Designer PCIe interface type
continued...   

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
25



Location in ID Definition

• 0 — 64 bits
• 1 — 128 bits
• 2 — 256 bits
• 3 — Desc/Data (that is, Avalon-Streaming (Avalon-ST) interface)
• 4 — Avalon-MM interface

3.1.3 Instantiation of the version_id Component

Intel specifies an additional version ID and uses it to verify the address map of the
system. The host verifies the version ID of the Intel Arria 10 GX FPGA Development
Kit Reference Platform when instantiating the version_id component that connects to
the PCIe Avalon master.

The version ID for the a10_ref Reference Platform is A0C7C1E6 in 17.1 release.

Before communicating with any part of the FPGA system, the host first reads from this
version_id register to confirm the following:

• The PCIe can access the FPGA fabric successfully.

• The address map matches the map in the MMD software.

Update the VERSION_ID parameter in the version_id component to a new value with
every slave addition or removal from the PCIe BAR 4 bus, or whenever the address
map changes.

3.1.4 Definitions of Intel Arria 10 FPGA Development Kit Reference
Platform Hardware Constraints in Software Headers Files

After you build the PCIe component in your hardware design, you need a software
layer to communicate with the board via PCIe. To enable communication between the
board and the host interface, define the hardware constants for the software in header
files.

The two header files that describe the hardware design to the software are in the
following locations:

• For Windows systems, the header files are in the INTELFPGAOCLSDKROOT\board
\a10_ref\source\include folder, where INTELFPGAOCLSDKROOT is the path
to the SDK installation.

• For Linux systems, the header files are in the INTELFPGAOCLSDKROOT/board/
a10_ref/linux64/driver directory.

Table 8. Intel Arria 10 GX FPGA Development Kit Reference Platform Header Files

Header File Name Description

hw_pcie_constants.h Header file that defines most of the hardware constants for the board design.
This file includes constants such as the IDs described in PCIe Device Identification
Registers, BAR number, and offset for different components in your design. In
addition, this header file also defines the name strings of ACL_BOARD_PKG_NAME,
ACL_VENDOR_NAME, and ACL_BOARD_NAME.

continued...   

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
26



Header File Name Description

Update the information in this file whenever you change the board design.

hw_pcie_dma.h Header file that defines DMA-related hardware constants.
• ACL_PCIE_DMA_ONCHIP_RD_FIFO_BASE refers to the Platform Designer address

of rd_dts_slave on the PCIe IP's dma_rd_master.
• ACL_PCIE_DMA_ONCHIP_WR_FIFO_BASE refers to the Platform Designer address

of wr_dts_slave on the PCIe IP's dma_rd_master.
Update these addresses whenever you change the board design. Refer to the Direct
Memory Access section for more information.
• ACL_PCIE_DMA_TABLE_SIZE refers to the DMA descriptor FIFO depth connected

to the DMA. When using the internal descriptor controller, refer to the DMA
Descriptor Controller Registers section in the Intel Arria 10 Avalon-MM DMA
Interface for PCIe Solutions User Guide for the required size.

• ACL_PCIE_DMA_PAGES_LOCKED specifies the maximum pages you can lock. You
may modify this constant to improve performance.

• ACL_PCIE_DMA_NON_ALIGNED_TRANS_LOG specifies the starting and ending
power-of-two values that non-aligned DMA transfers should have. You may modify
this constant to improve performance.

hw_host_channel.h Header file that defines the host channel IP control register address and names of the
channels.

Related Links

• Direct Memory Access on page 28

• Device Identification Registers for Intel Arria 10 PCIe Hard IP on page 24

• DMA Descriptor Controller Registers

3.1.5 PCIe Kernel Driver for the Intel Arria 10 GX FPGA Development Kit
Reference Platform

A PCIe kernel driver is necessary for the OpenCL runtime library to access your board
design via a PCIe bus.

Use the Intel FPGA SDK for OpenCL install utility to install the kernel driver.

The a10_ref Reference Platform

• For Windows systems, the driver is in the <path_to_al0pciedk>
\windows64\driver folder.

The kernel driver, the WinDriver application programming interface (API), is a
third-party driver from Jungo Connectivity Ltd. For more information about the
WinDriver, refer to the Jungo Connectivity Ltd. website or contact a Jungo
Connectivity representative.

• For Linux, an open-source MMD-compatible kernel driver is in the
<path_to_al0pciedk>/linux64/driver directory. The table below highlights
some of the files that are available in this directory.

Table 9. Highlights of the Intel Arria 10 GX FPGA Development Kit Reference
Platform's Linux PCIe Kernel Driver Directory

File Description

pcie_linux_driver_exports.h Header file that defines the special commands that the kernel driver
supports.

continued...   

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
27

https://www.altera.com/documentation/lbl1415138844137.html#nik1410905614614


File Description

The installed kernel driver works as a character device. The basic operations
to the driver are open(), close(), read(), and write().
To execute a complicated command, create a variable as an acl_cmd struct
type, specify the command with the proper parameters, and then send the
command through a read() or write() operation. This header file defines
the interface of the kernel driver, which the MMD layer uses to communicate
with the device.

aclpci.c File that implements the Linux kernel driver's basic structures and
functions, such as the init, remove, and probe functions, as well as
hardware design-specific functions that handle interrupts.
For more information on the interrupt handler, refer to the Message
Signaled Interrupts section.

aclpci fileio.c File that implements the kernel driver's file I/O operations.
The kernel driver that is available with the a10_ref Reference Platform
supports four file I/O operations: open(), close(), read(), and
write(). Implementing these file I/O operations allows the OpenCL user
program to access the kernel driver through the file I/O system calls (that
is, open, read, write, or close).

aclpci cmd.c File that implements the specific commands defined in the
pcie_linux_driver_exports.h file.
These special commands include SAVE_PCI_CONTROL_REGS,
LOAD_PCI_CONTROL_REGS, DO_PR, GET_PCI_SLOT_INFO, etc.

aclpci dma.c File that implements DMA and host channel-related routines in the kernel
driver.
Refer to the Direct Memory Access section for more information.

aclpci pr.c File that implements PR-related routines in the kernel driver.
Refer to the Partial Reconfiguration section for more information.

aclpci queue.c File that implements a queue structure for use in the kernel driver to
simplify programming.

Related Links

• Partial Reconfiguration on page 31

• aocl install on page 55

• Message Signaled Interrupt on page 30

• Direct Memory Access on page 28

• Jungo Connectivity Ltd. website

3.1.6 Direct Memory Access

The Intel Arria 10 GX FPGA Development Kit Reference Platform relies on the PCIe
hard IP core's soft DMA engine to transfer data. The Intel Arria 10 PCIe hard IP core's
DMA interface is instantiated as a soft IP inside the PCIe hardware when the Avalon-
MM with DMA application interface type is selected in the IP parameter editor.

Note: The DMA interface is capable of full duplex data transfers. However, the driver handles
one read or write transfer at a time.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
28

http://www.jungo.com/


Hardware Considerations

The instantiation process exports the DMA controller slave ports (that is,
rd_dts_slave and wr_dts_slave) and master ports (that is, rd_dcm_master and
wr_dcm_master) into the PCIe module. Two additional master ports,
dma_rd_master and dma_wr_master, are exported for DMA read and write
operations, respectively. For the DMA interface to function properly, all these ports
must be connected correctly in the board.qsys Platform Designer system, where the
PCIe hard IP is instantiated.

At the start of DMA transfer, the DMA Descriptor Controller reads from the DMA
descriptor table in user memory, and stores the status and the descriptor table into a
FIFO address. There are two FIFO addresses: Read Descriptor FIFO address and
Write Descriptor FIFO address. After storing the descriptor table into a FIFO
address, DMA transfer into the FIFO address can occur. The dma_rd_master port,
which moves data from user memory to the device, must connect to the
rd_dts_slave and wr_dts_slave ports. Because the dma_rd_master port
connects to DDR4 memory also, the locations of the rd_dts_slave and
wr_dts_slave ports in the address space must be defined in the hw_pcie_dma.h
file.

The rd_dcm_master and wr_dcm_master ports must connect to the txs port. At
the end of the DMA transfer, the DMA controller writes the MSI data and the done
status into the user memory via the txs slave. The txs slave is part of the PCIe hard
IP in board.qsys.

All modules that use DMA must connect to the dma_rd_master and dma_wr_master
ports. For DDR4 memory connection, Intel recommends implementing an additional
pipeline to connect the two 256-bit PCIe DMA ports to the 512-bit memory slave. For
more information, refer to the DDR4 Connection to PCIe Host section.

Software Considerations

The MMD layer uses DMA to transfer data if it receives a data transfer request that
satisfies both of the following conditions:

• A transfer size that is greater than 1024 bytes.

• The starting addresses for both the host buffer and the device offset are aligned to
64 bytes.

Related Links

• Definitions of Intel Arria 10 FPGA Development Kit Reference Platform Hardware
Constraints in Software Headers Files on page 26

• Intel Arria 10 DMA Avalon-MM DMA Interface to the Application Layer

• DMA Descriptor Controller Registers

• Implementing a DMA Transfer on page 30

• DDR4 Connection to PCIe Host on page 35

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
29

https://www.altera.com/documentation/lbl1415138844137.html#nik1410905443716
https://www.altera.com/documentation/lbl1415138844137.html#nik1410905614614


3.1.6.1 Implementing a DMA Transfer

Implement a DMA transfer in the MMD on Windows (INTELFPGAOCLSDKROOT\board
\a10_ref\source\host\mmd\acl_pcie_dma_windows.cpp) or in the kernel
driver on Linux (INTELFPGAOCLSDKROOT/board/a10_ref/linux64/driver/
aclpci_dma).

Note: For Windows, the Jungo WinDriver imposes a 5000 to 10000 limit on the number of
interrupts received per second in user mode. This limit translates to a 2.5 gigabytes
per second (GBps) to 5 GBps DMA bandwidth when a full 128-entry table of 4 KB page
is transferred per interrupt.

On Windows, polling is the default method for maximizing PCIe DMA bandwidth at the
expense of CPU run time. To use interrupts instead of polling, assign a non-NULL value
to the ACL_PCIE_DMA_USE_MSI environment variable.

The steps below describe the general procedure for implementing a DMA transfer:

1. Verify that the previous DMA transfer sent all the requested bytes of data.

2. Map the virtual memories that are requested for DMA transfer to physical
addresses.

Note: The amount of virtual memory that can be mapped at a time is system
dependent. Large DMA transfers will require multiple mapping or unmapping
operations. For a higher bandwidth, map the virtual memory ahead in a
separate thread that is in parallel to the transfer.

3. Set up the DMA descriptor table on local memory.

4. Write the location of the DMA descriptor table, which is in user memory, to the
DMA control registers (that is, RC Read Status and Descriptor Base and
RC Write Status and Descriptor Base).

5. Write the Platform Designer address of descriptor FIFOs to the DMA control
registers (that is EP Read Descriptor FIFO Base and EP Write Status
and Descriptor FIFO Base).

6. Write the start signal to the RD_DMA_LAST_PTR and WR_DMA_LAST_PTR DMA
control registers.

7. After the current DMA transfer finishes, repeat the procedure to implement the
next DMA transfer.

Related Links

Direct Memory Access on page 28

3.1.7 Message Signaled Interrupt

The Intel Arria 10 GX FPGA Development Kit Reference Platform uses one MSI line for
both DMA and the kernel interface.

Two different modules generate the signal for the MSI line. The DMA controller in the
PCIe hard IP core generates the DMA's MSI. The PCI Express interrupt request (IRQ)
module (that is, the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/
a10gx/ip/irq_controller directory) generates the kernel interface's MSI.

For more information on the PCI Express IRQ module, refer to Handling PCIe
Interrupts webpage.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
30



Hardware Considerations

In INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/board.qsys, the
DMA MSI is connected internally; however, you must connect the kernel interface
interrupt manually. For the kernel interface interrupt, the PCI Express IRQ module is
instantiated as pcie_irq_0 in board.qsys. The kernel interface interrupts
connections are as follows:

• The kernel_irq_to_host port from the OpenCL Kernel Interface
(kernel_interface) connects to the interrupt receiver, which allows the
OpenCL kernels to signal the PCI Express IRQ module to send an MSI.

• The PCIe hard IP's msi_intfc port connects to the MSI_Interface port in the
PCI Express IRQ module. The kernel interface interrupt receives the MSI address
and the data necessary to generate the interrupt via msi_intfc.

• The IRQ_Gen_Master port on the PCI Express IRQ module, which is used to write
the MSI, connects to the txs port on the PCIe hard IP.

• The IRQ_Read_Slave and IRQ_Mask_Slave ports connect to the
pipe_stage_host_ctrl module on Bar 4. After receiving an MSI, the user
driver can read the IRQ_Read_Slave port to check the status of the kernel
interface interrupt, and read the IRQ_Mask_Slave port to mask the interrupt.

Software Considerations

The interrupt service routine in the Linux driver checks which module generates the
interrupt. For the DMA's MSI, the driver reads the DMA descriptor table's status bit in
local memory, as specified in the Read DMA Example section of the Intel Arria 10
Avalon-MM DMA Interface for PCIe Solutions User Guide. For kernel interface's MSI,
the driver reads the interrupt line sent by the kernel interface.

The interrupt service routine involves the following tasks:

1. Check DMA status on the DMA descriptor table.

2. Read the kernel status from the IRQ_READ_SLAVE port on the PCI Express IRQ
module.

3. If a kernel interrupt was triggered, mask the interrupt by writing to the
IRQ_MASK_SLAVE port on the PCI Express IRQ module. Then, execute the kernel
interrupt service routine.

4. If a DMA interrupt was triggered, reset the DMA descriptor table and execute the
DMA interrupt service routine.

5. If applicable, unmask a masked kernel interrupt.

Related Links

• Handling PCIe Interrupts

• Read DMA Example

3.1.8 Partial Reconfiguration

The Intel Arria 10 GX FPGA Development Kit Reference Platform uses partial
reconfiguration (PR) as a default mechanism to reconfigure the OpenCL kernel-related
partition of the design without altering the static board interface that is in a running
state.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
31

http://www.alterawiki.com/wiki/Handling_PCIe_Interrupts
https://www.altera.com/documentation/lbl1415138844137.html#nik1410905618754


You can only use PR when the static board interface, generated during base
compilations, matches the static region of the design that is used to compile the
OpenCL kernel's PR region.

For Windows MMD implementation, the INTELFPGAOCLSDKROOT\board\a10_ref
\source\host\mmd\acl_pcie_config.cpp file contains the MMD code that
communicates with the PR configuration controller within the static region of the
design. The program_core_with_PR_file function within the
acl_pcie_config.cpp file requires a handle to the PR bitstream and the length of
the PR bitstream in order to perform the PR operation.

For Linux driver implementation, the INTELFPGAOCLSDKROOT/board/a10_ref/
linux64/driver/aclpci_pr.c file includes the main host driver routine that
communicates with the PR configuration controller within the static region of the
design. The aclpci_pr function within the acl_pci_pr.c file requires the following
information in order to perform the PR operation:

• A handle to the board

• A handle to the PR bitstream

• The length of the PR bitstream

After verifying that the device is opened, the bitstream is of adequate length, and the
PCIe endpoint of the device is reachable, the aclpci_pr function writes 0x1 to the
PR IP status register. Then, the aclpci_pr function writes the complete bitstream, 32
bits at a time, to the PR IP. After the bitstream transfer is complete, the aclpci_pr
function performs a read operation to the PR IP status register to verify whether PR is
successful. A return value of 0x14 indicates a successful PR operation; any other
return value indicates an error.

To override the default reconfiguration mechanism, set the
ACL_PCIE_USE_JTAG_PROGRAMMING environment variable, as shown below:

• For Windows, type set ACL_PCIE_USE_JTAG_PROGRAMMING=1 at the command
prompt.

• For Linux, type export ACL_PCIE_USE_JTAG_PROGRAMMING=1 at the command
prompt.

Setting ACL_PCIE_USE_JTAG_PROGRAMMING specifies that JTAG full-chip
configuration is the default mechanism for reconfiguring the device.

Related Links

Partial Reconfiguration IP Core

3.1.9 Cable Autodetect

If partial reconfiguration (PR) cannot be used or fails to reconfigure the OpenCL
kernel-related partition of the design, an attempt is made to do a full JTAG
programming over the Intel FPGA Download Cable (formerly USB-Blaster).

The Intel Arria 10 GX FPGA Development Kit Reference Platform automatically tries to
detect the cable by default when programming the FPGA via the Intel FPGA Download
Cable.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
32

https://www.altera.com/documentation/mwh1393631425397.html#mwh1393631402541


You can set the ACL_PCIE_JTAG_CABLE or ACL_PCIE_JTAG_DEVICE_INDEX
environment variables to disable the auto-detect feature and use values that you
define.

Cable autodetect is useful when you have multiple devices connected to a single host
and PR cannot be used to program the FPGA.

The memory-mapped device (MMD) uses in-system sources and probes to identify the
cable connected to the target board. You must instantiate the cade_id register block
and connect it to Bar 4 with the correct address map. You must also instantiate
board_in_system_sources_probes_cade_id, which is an in-system sources and
probe component, and connect it to cade_id register.

The MMD must be updated to take in the relevant changes. Add the scripts/
find_jtag_cable.tcl script to be added to your custom platform.

When the FPGA is being programmed via the Intel FPGA Download Cable, the MMD
invokes quartus_stp to execute the find_jtag_cable.tcl script. The script
identifies the cable and index number which is then used to program the FPGA
through the quartus_pgm command.

3.1.10 Host Channel

The a10gx_hostch board variant of Intel Arria 10 GX FPGA Development Kit Reference
Platform uses host channel to provide direct streaming interface between OpenCL host
and kernel by using DMA.

The streaming interface makes use of DMA.

3.1.10.1 Host Channel IP Instantiation

In Platform Designer, the host channel IP can be instantiated from Intel Arria 10 board
support package components in the IP catalog. The name of the IP is
acl_hostchannel_top.

Table 10. Host Channel Top Configuration Setting

IP Parameters Description

HOST_CHANNEL_DEPTH - 2048 Depth of the internal buffer that DMA transfers data to and
from.
There are two buffers, and both of their depths are set by
this parameter.

HOST_CHANNEL_VALID_BUFFER_USE_LAB - 0 Set to 1 to use LABs to instantiate the internal buffer, and 0
to use block RAMs.

3.1.10.2 Host Channel Top Connection to PCIe DMA

In addition to the ports connected in DMA section, by disabling Instantiate
internal descriptor controller setting on Intel Arria 10 Hard IP for PCI
Express, ReadDCS, WrDCS, rd_ast_rx, wr_ast_rx, RdDmaRx and WrDmaRx ports
are exposed on the IP.

These ports must be connected to the DMA descriptor controller in the host channel IP.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
33



Base address offset must match the address mentioned in the board.qsys file, since
these addresses are used by the internal descriptor controller of a10gx board variant.

You need to make the following connections:

• On acl_hostchannel_top IP, rd_dma and wr_dma ports are used to receive
and send data to DMA. These ports must be connected to the corresponding ports
on PCIe IP with base address offset matching in the hw_host_channel.h header
file.

• The cra port must be connected to the host_ctrl.

• The msi_interface port must be connected to Intel Arria 10 Hard IP for PCI
Express, and the msi_interface_out must be connected to the
msi_interface port of the pcie_irq.

3.1.10.3 Host Channel Top Connection to OpenCL Kernel

To stream data to kernel, Avalon-Streaming stin and stout ports are used. To clock
cross into kernel clock, two Avalon-ST dual clock FIFO should be instantiated.

For one FIFO, the in port should be connected to the stout port of the host channel
top, while the out port is exported. For the second FIFO, out port should be
connected to the stin port of the host channel top, while the in port is exported.

In the board_spec.xml, the host channel ports are IO ports.

3.2 DDR4 as Global Memory for OpenCL Applications

The Intel Arria 10 GX FPGA Development Kit has one bank of 2GB x72 DDR4-2400
SDRAM. The DDR4 SDRAM is a daughtercard that is mounted to the development kit's
HiLo connector.

In the current version of the a10_ref Reference Platform, all Platform Designer
components related to the DDR4 global memory are now part of the
INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/
acl_ddr4_a10.qsys Platform Designer subsystem within board.qsys. In addition,
the location of the clock domain crossings has changed to increase the number of
blocks operating in the slower PCIe domain. With this modified structure, you can add
multiple memories with different clock domains to the system.

If you have a Custom Platform that is ported from a previous version of the a10_ref
Reference Platform, you have the option to modify your Custom Platform as described
above. This modification is not mandatory.

Dependencies

DDR4 external memory interfaces

For more information on the DDR4 external memory interface IP, refer to the DDR2,
DDR3, and DDR4 SDRAM Board Design Guidelines section in External Memory
Interface Handbook Volume 2: Design Guidelines.

To use the DDR4 SDRAM as global memory for Intel FPGA SDK for OpenCL designs,
you must instantiate the memory controller IP, connect the memory IP to the host,
and connect the memory IP to the kernel.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
34



Related Links

DDR2, DDR3, and DDR4 SDRAM Board Design Guidelines

3.2.1 DDR4 IP Instantiation

The Intel Arria 10 GX FPGA Development Kit Reference Platform uses one DDR4
Controller IP to communicate with the physical memory.

Table 11. DDR4 SDRAM Controller IP Configuration Settings

IP Parameter Configuration Setting

Timing Parameters As per the computing card's data specifications.

Avalon Width Power of 2 Currently, OpenCL does not support non-power-of-2 bus widths. As a result, the
a10_ref Reference Platform uses the option that forces the DDR4 controller to power
of 2. Use the additional pins of this x72 core for error checking between the memory
controller and the physical module.

Byte Enable Support Enabled
Byte enable support is necessary in the core because the Intel FPGA SDK for OpenCL
requires byte-level granularity to all memories.

Performance Enabling the reordering of DDR4 memory accesses and a deeper command queue
look-ahead depth might provide increased bandwidth for some OpenCL kernels. For a
target application, adjust these and other parameters as necessary.
Note: Increasing the command queue look-ahead depth allows the DDR4 memory

controller to reorder more memory accesses to increase efficiency, which
improves overall memory throughput.

Debug Disabled for production.

3.2.2 DDR4 Connection to PCIe Host

Connect all global memory systems in the Intel Arria 10 GX FPGA Development Kit
Reference Platform to the host via the OpenCL Memory Bank Divider component.

The DDR4 IP core has one bank where its width and address configurations match
those of the DDR4 SDRAM. Intel tunes the other parameters such as burst size,
pending reads, and pipelining. These parameters are customizable for an end
application or board design.

The Avalon master interfaces from the OpenCL Memory Bank Divider component
connect to their respective memory controllers. The Avalon slave connects to the PCIe
and DMA IP core. Implementations of appropriate clock crossing and pipelining are
based on the design floorplan and the clock domains specific to the computing card.
The OpenCL Memory Bank Divider section in the Intel FPGA SDK for OpenCL Custom
Platform Toolkit User Guide specifies the connection details of the snoop and memorg
ports.

Important: Instruct the host to verify the successful calibration of the memory controller.

The INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/board.qsys
Platform Designer system uses a custom UniPHY Status to AVS IP component to
aggregate different UniPHY status conduits into a single Avalon slave port named s.
This slave port connects to the pipe_stage_host_ctrl component so that the PCIe
host can access it.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
35

https://www.altera.com/documentation/hco1416492180052.html#hco1416490962387


Related Links

OpenCL Memory Bank Divider

3.2.3 DDR4 Connection to the OpenCL Kernel

The OpenCL kernel needs to connect directly to the memory controller in the Intel
Arria 10 GX FPGA Development Kit Reference Platform via a FIFO-based clock crosser.

A clock crosser is necessary because the kernel interface for the compiler must be
clocked in the kernel clock domain. In addition, the width, address width, and burst
size characteristics of the kernel interface must match those specified in the OpenCL
Memory Bank Divider connecting to the host. Appropriate pipelining also exists
between the clock crosser and the memory controller.

3.3 Host Connection to OpenCL Kernels

The PCIe host needs to pass commands and arguments to the OpenCL kernels via the
control register access (CRA) Avalon slave port that each OpenCL kernel generates.
The OpenCL Kernel Interface component exports an Avalon master interface
(kernel_cra) that connects to this slave port. The OpenCL Kernel Interface
component also generates the kernel reset (kernel_reset) that resets all logic in
the kernel clock domain.

The Intel Arria 10 FPGA Development Kit Reference Platform has one DDR4 memory
bank. As a result, the Reference Platform instantiates the OpenCL Kernel Interface
component and sets the Number of global memory systems parameter to 1.

3.4 Intel Arria 10 FPGA System Design

To integrate all components, close timing, and deliver a post-fit netlist that functions
in the hardware, you must first address several additional FPGA design complexities.

Examples of design complexities:

• Designing a robust reset sequence

• Establishing a design floorplan

• Managing global routing

• Pipelining

Optimizations of these design complexities occur in tandem with one another in order
to meet timing and board hardware optimization requirements.

3.4.1 Clocks

Several clock domains affect the Platform Designer hardware system of the Intel Arria
10 GX FPGA Development Kit Reference Platform.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
36

https://www.altera.com/documentation/ewa1402666946838.html#ewa1403034187264


These clock domains include:

• 250 MHz PCIe clock

• 300 MHz DDR4 clock

• 50 MHz general clock (config_clk)

• 125 MHz kernel reference clock

• Kernel clock that can have any clock frequency

With the exception of the kernel clock, the a10_ref Reference Platform is responsible
for the timing closure of these clocks. However, because the board design must clock
cross all interfaces in the kernel clock domain, the board design also has logic in the
kernel clock domain. It is crucial that this logic is minimal and achieves an Fmax
higher than typical kernel performance.

Related Links

Guaranteed Timing Closure of the Intel Arria 10 GX FPGA Development Kit Reference
Platform Design on page 43

3.4.2 Resets

The Intel Arria 10 GX FPGA Development Kit Reference Platform design includes the
implementation of reset drivers.

These reset drivers include:

• The por_reset_counter in the INTELFPGAOCLSDKROOT/board/a10_ref/
hardware/a10gx/board.qsys Platform Designer system implements the
power-on-reset. The power-on-reset resets all the hardware on the device by
issuing a reset for a number of cycles after the FPGA completes configuration.

• The PCIe bus issues a perst reset that resets all hardware on the device.

• The OpenCL Kernel Interface component issues the kernel_reset that resets all
logic in the kernel clock domain.

The power-on-reset and the perst reset are combined into a single global_reset;
therefore, there are only two reset sources in the system (that is, global_reset and
kernel_reset). However, these resets are explicitly synchronized across the various
clock domains, resulting in several reset interfaces.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
37



Important Considerations Regarding Resets

• Synchronizing resets to different clock domains might cause several high fan-out
resets.

Platform Designer automatically synchronizes resets to the clock domain of each
connected component. In doing so, Platform Designer instantiates new reset
controllers with derived names that might change when the design changes. This
name change makes it difficult to make and maintain global clock assignments to
some of the resets. As a result, for each clock domain, there are explicit reset
controllers. For example, global_reset drives reset_controller_pcie and
reset_controller_ddr4; however, they are synchronized to the PCIe and
DDR4 clock domains, respectively.

• Resets and clocks must work together to propagate reset to all logic.

Resetting a circuit in a given clock domain involves asserting the reset over a
number of clock cycles. However, your design may apply resets to the PLLs that
generate the clocks for a given clock domain. This means a clock domain can hold
in reset without receiving the clock edge that is necessary for synchronous resets.
In addition, a clock holding in reset might prevent the propagation of a reset
signal because it is synchronized to and from that clock domain. Avoid such
situations by ensuring that your design satisfies the following criteria:

— Generate the global_reset signal off the free-running config_clk.

— The ddr4_calibrate IP resets the External Memory Interface controller
separately.

• Apply resets to both reset interfaces of a clock-crossing bridge or FIFO component.

FIFO content corruption might occur if only part of a clock-crossing bridge or a
dual-clock FIFO component is reset. These components typically provide a reset
input for each clock domain; therefore, reset both interfaces or none at all. For
example, in the a10_ref Reference Platform, kernel_reset resets all the kernel
clock-crossing bridges between DDR on both the m0_reset and s0_reset
interfaces.

3.4.3 Floorplan

Intel establishes the floorplan of the Intel Arria 10 GX FPGA Development Kit
Reference Platform by iterating on the design and IP placements.

Dependencies

• Partial Reconfiguration

• Chip Planner

• Logic Lock Plus regions

Intel performed the following tasks iteratively to derive the floorplan of the a10_ref
Reference Platform:

1. Compile a design without any region or floorplanning constraints.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
38



Intel recommends that you compile the design with several seeds.

2. Examine the placement of the IP cores (for example, PCIe, DDR4, Avalon
interconnect pipeline stages and adapters) for candidate locations, as determined
by the Intel Quartus Prime Pro Edition software's Fitter. In particular, Intel
recommends examining the seeds that meet or almost meet the timing
constraints.

For the a10_ref Reference Platform, the PCIe I/O is located in the lower left corner of
the Intel Arria 10 FPGA. The DDR4 I/O is located on the top part of the left I/O column
of the device. Because the placements of the PCIe and DDR4 IP components tend to
be close to the locations of their respective I/Os, you can apply Logic Lock Plus regions
to constrain the IP components to those candidate regions.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
39



Figure 2. Floorplan of the Intel Arria 10 FPGA Development Kit Reference Platform

As shown in this Chip Planner view of the floorplan, the two Logic Lock Plus regions
spread out between the PCIe I/O and the top region of the left I/O column (that is, the
DDR4 I/O area).

• The largest Logic Lock Plus region (Region 1) covers the PCIe I/O and contains
most of the static board interface logic.

• Regions 2 contains an Avalon interconnect pipeline stage that bridges the PCIe I/O
and DDR4 I/O regions. The Avalon interconnect pipeline stages also help improve
the timing closure rate of the static board interface part of the design.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
40



You must create a dedicated Logic Lock Plus region for the OpenCL kernel system.
Furthermore, do not place kernel logic in the board's Logic Lock Plus regions (that is,
static region). The static region and the OpenCL kernel system region (that is, PR
region) do not overlap each other. As shown in Figure 2 on page 40, the logic for the
boardtest.clOpenCL kernel, that is, the scatter area, can be placed anywhere
except within the seven Logic Lock Plus regions.

Intel recommends the following strategies to maximize the available FPGA resources
for the OpenCL kernel system to improve kernel routability:

• The OpenCL kernel system PR region should cover the entire device except the
Logic Lock Plus regions of the board.

• The size of a Logic Lock Plus region should be just large enough to contain the
board logic and to meet timing constraints of the board clocks. Oversized Logic
Lock Plus regions consume FPGA resources unnecessarily.

• Avoid creating tightly-packed Logic Lock Plus regions that cause very high logic
utilization and high routing congestion.

High routing congestion within the Logic Lock Plus regions might decrease the
Fitter's ability to route OpenCL kernel signals through the regions.

In the case where the board clocks are not meeting timing and the critical path is
between the Logic Lock Plus regions (that is, across region-to-region gap), insert
back-to-back pipeline stages on paths that cross the gap. For example, if the critical
path is between Region 1 and Region 2, lock down the first pipeline stage (an Avalon-
MM Pipeline Bridge component) to Region 1, lock down the second pipeline stage to
Region 2, and connect the two pipeline stages directly. This technique ensures that
pipeline registers are on both sides of the region-to-region gap, thereby minimizing
the delay of paths crossing the gap.

Refer to the Pipelining section for more information.

Related Links

• Pipelining on page 42

• Creating Logic Lock Plus Regions

3.4.4 Global Routing

FPGAs have dedicated clock trees that distribute high fan-out signals to various
sections of the devices. In the FPGA system that the Intel Arria 10 FPGA Development
Kit Reference Platform targets, global routing can distribute high fan-out signals
regionally or globally.

• Regional distribution applies across any quadrant of the device.

• Global distribution applies across the entire device.

There is no restriction on the placement location of the OpenCL kernel on the device.
As a result, the kernel clocks and kernel reset must distribute high fan-out signals
globally.

Note: To support PR, global routing for the Kernel Reset signal that drives logic inside a PR
region requires special handling. Refer to the Partial Reconfiguration section for more
information.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
41

http://quartushelp.altera.com/current/index_frames.htm?q=/current/optimize/lock/lock_pro_create_llplus_region.htm


Related Links

Partial Reconfiguration on page 31

3.4.5 Pipelining

You must manually insert pipelines throughout the FPGA system.

In Platform Designer, you can implement pipelines via an Avalon-MM Pipeline Bridge
component by setting the following pipelining parameters within the Avalon-MM
Pipeline Bridge dialog box:

• Select Pipeline command signals

• Select Pipeline response signals

• Select both Pipeline command signals and Pipeline response signals

Examples of Pipeline Implementation

• Signals that traverse long distances because of the floorplan's shape or the
region-to-region gaps require additional pipelines.

The DMA at the bottom of the FPGA must connect to the DDR4 memory at the top
of the FPGA. To achieve timing closure of the board interface logic at a DDR4 clock
speed of 300 MHz, additional pipeline stages between the OpenCL Memory Bank
Divider component and the DDR4 controller IP are necessary. In the Intel Arria 10
GX FPGA Development Kit Reference Platform's board.qsys Platform Designer
system, the pipeline stages are named pipe_stage_ddr4a_dimm_*.

The middle pipeline stage, pipe_stage_ddr4a_dimm, combines both the direct
kernel DDR4 accesses and the accesses through the OpenCL Memory Bank
Divider. The multistage pipeline approach ensures that the kernel entry point to
the pipeline is geared towards neither the OpenCL Memory Bank Divider, which is
close to the PCIe IP core, nor the DDR4 IP core, which is at the very top of the
FPGA.

3.4.6 DDR4 Calibration

The Intel Arria 10 GX FPGA Development Kit Reference Platform includes special
mechanisms to ensure the functional stability of the Intel Arria 10 silicon. For
example, the DDR4 memory might not calibrate successfully after FPGA
reconfiguration. The driver within the a10_ref Reference Platform can detect a failed
calibration via the Uniphy Status to AVS IP, and retrigger calibration through the
ddr4_calibrate IP block.

3.4.7 Kernel Reprogramming via Partial Reconfiguration

The Intel Arria 10 GX FPGA Development Kit Reference Platform provides the ability to
modify the OpenCL kernel and reprograms it onto the FPGA. The a10_ref Reference
Platform places the OpenCL kernel in a PR region of the device. Doing so allows you to
reprogram the kernel-specific portion of the FPGA across the PCIe bus without
affecting the board interface region (that is, static region) of the device.

Dependencies
Intel Quartus Prime Pro Edition software's Partial Reconfiguration feature

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
42



To ensure that the device functions properly during and after PR reprogramming,
following these rules:

• Place a freeze wrapper around the PR region. The freeze wrapper holds the critical
control outputs from the PR region in a known, inactive state during the
reprogramming of the logic inside the PR region.

The INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/ip/
freeze_wrapper.v file implements the freeze wrapper, where
INTELFPGAOCLSDKROOT is the path to the SDK installation.

• Hold the kernel_reset_n signal, which is routed using Global Clock resources,
in a logic 1 (deasserted) state during reprogramming of the PR region. When
programming completes, assert the kernel_reset_n signal (that is, set it to the
low state) before disabling the freeze wrapper. Asserting the kernel_reset_n
signal resets all logic in the PR region to a known state. This assertion step is
necessary because the state of all flipflops in the PR region is undefined after PR
programming. The logic in the freeze_wrapper.v file implements the required
behavior for the reset and freeze signals.

3.5 Dynamic PLL Reconfiguration

PLL that is used to generate the OpenCL kernel clocks resides in the static region of
the design's floorplan. As a result, reprogramming of the kernel partition via PR does
not modify the PLL settings. The Intel FPGA SDK for OpenCL relies on the
post_flow_pr.tcl Tcl script and the instantiation of the acl_kernel_clk_a10
Platform Designer component to modify kernel PLL.

In both PR reprogramming and full-chip JTAG programming, the PLL is dynamically
reconfigured by default after FPGA configuration completes. This default dynamic PLL
reconfiguration step is unnecessary after full-chip programming because the correct
PLL settings are already part of the .sof file programmed onto the FPGA over JTAG.

3.6 Guaranteed Timing Closure of the Intel Arria 10 GX FPGA
Development Kit Reference Platform Design

One of the key features of the Intel FPGA SDK for OpenCL is that it abstracts away
hardware details, such as timing closure, for software developers. Both the SDK and
the Custom Platform contribute to the implementation of the SDK's guaranteed timing
closure feature.

The SDK provides the IP to generate the kernel clock, and a post-flow script that
ensures this clock is configured with a safe operating frequency confirmed by timing
analysis. The Custom Platform developer imports a post-fit netlist that has already
achieved timing closure on all non-kernel clocks.

3.6.1 Supply the Kernel Clock

In the Intel Arria 10 GX FPGA Development Kit Reference Platform, the OpenCL Kernel
Clock Generator component provides the kernel clock and its 2x variant.

The REF_CLK_RATE parameter specifies the frequency of the reference clock that
connects to the kernel PLL ( pll_refclk). For the a10_ref Reference Platform, the
REF_CLK_RATE frequency is 125 MHz.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
43



The KERNEL_TARGET_CLOCK_RATE parameter specifies the frequency that the
Intel Quartus Prime Pro Edition software attempts to achieve during compilation. The
board hardware contains some logic that the kernel clock clocks. At a minimum, the
board hardware includes the clock crossing hardware. To prevent this logic from
limiting the Fmax achievable by a kernel, the KERNEL_TARGET_CLOCK_RATE must
be higher than the frequency that a simple kernel can achieve on your device. For the
Intel Arria 10 GX FPGA Development Kit that the a10_ref Reference Platform targets,
the KERNEL_TARGET_CLOCK_RATE is 400 MHz.

Caution: When developing a Custom Platform, setting a high target Fmax might cause difficulty
in achieving timing closure.

When developing your Custom Platform and attempting to close timing, add an
overriding SDC definition to relax the timing of the kernel. The following code example
from the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/
top_post.sdc file applies a 5 ns (200 MHz) maximum delay constraint on the
OpenCL kernel during base revision compilations:

if {! [string equal $::TimeQuestInfo(nameofexecutable) "quartus_map"]}
{
  if { [get_current_revision] eq "base" }
  {
    post_message -type critical_warning "Compiling with slowed OpenCL Kernel 
clock.
      This is to help achieve timing closure for board bringup."

    if {! [string equal $::TimeQuestInfo(nameofexecutable) "quartus_sta"]}
    {
      set kernel_keepers [get_keepers system_inst\|kernel_system\|*] 
      set_max_delay 5 -from $kernel_keepers -to $kernel_keepers
    }
  }
}

3.6.2 Guarantee Kernel Clock Timing

The Intel Quartus Prime database interface executable (quartus_cdb) runs a script
after every Intel Quartus Prime Pro Edition software compilation as a post-flow script.
In the Intel Arria 10 GX FPGA Development Kit Reference Platform, the OpenCL Kernel
Clock Generator component works together with the post-flow script to guarantee
kernel clock timing.

In the import revision compilation, the compilation script import_compile.tcl
invokes the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/
scripts/post_flow.tcl Tcl script in the a10_ref Reference Platform after every
Intel Quartus Prime Pro Edition software compilation using quartus_cdb.

The post_flow.tcl script also determines the kernel clock and configures it to a
functional frequency.

Important: Execute this post flow script for every Intel Quartus Prime compilation.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
44



3.6.3 Provide a Timing-Closed Post-Fit Netlist

Each Intel FPGA SDK for OpenCL-compatible Reference and Custom Platform, such as
the Intel Arria 10 GX FPGA Development Kit Reference Platform, provides a timing-
closed post-fit netlist that imports placement and routing information for all nodes
clocked by non-kernel clocks.

Dependencies

Intel Quartus Prime Pro Edition compiler

Intel Quartus Prime software provides several mechanisms for preserving the
placement and routing of some previously compiled logic and importing this logic into
a new compilation. For Intel Arria 10 devices, the previously compiled logic is
imported into the compilation flow.

Figure 3. Custom Platform Development Flow and Hand-Off between Board Developer
and End User
This figure illustrates the hand-off between the board vendor and the SDK end user. The board developer is
responsible for porting the a10_ref Reference Platform to their own board, closing timing, and locking down the
static part of the board.

Intel Arria 10 GX FPGA Development Kit
Reference Platform porting and

customization

Board Interface Lock-Down Flow

Guaranteed Timing Flow

Hardware Runs

Timing clean and locked down Custom Platform 

Board Developer
(STEP 1)

Intel FPGA SDK for OpenCL
End User
(STEP 2)

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
45



Figure 4. Structure of the Hierarchy for the OpenCL Hardware System on the Intel
Arria 10 Device
This figure illustrates that the placement and routing for everything outside the kernel_system partition are
preserved and are imported in the top revision compilations. The kernel_system partition itself is not
preserved and is compiled from source.

root_partition (top.v)

Board Interface
(board.qsys)

Freeze Wrapper (freeze_wrapper.v)

OpenCL Kernel
(kernel_system.qsys)

The Intel Quartus Prime Pro Edition compilation flow can preserve the placement and
routing of the board interface partition via the exported Intel Quartus Prime Archive
File. The base.qdb file contains all the database files for the base compilation of
root_partition. The a10_ref Reference Platform is configured with the project
revisions and partitioning that are necessary to implement the compilation flow. By
default, the SDK invokes the Intel Quartus Prime Pro Edition software on the top
revision. This revision is configured to import and restore the base.qdb file, which
has been precompiled and exported from a base revision compilation.

When developing your Custom Platform from the a10_ref Reference Platform, it is
essential to maintain the flat.qsf, base.qsf, top.qsf, and top_synth.qsf Intel
Quartus Prime Settings Files.

The a10_ref Reference Platform includes two additional partitions: the Top partition
and the kernel_system partition. The Top partition contains all logic, and the
kernel_system partition contains the logic in the PR region. The PR region is
specified by the following assignments:

set_instance_assignment -name PARTIAL_RECONFIGURATION_PARTITION ON -to 
freeze_wrapper_inst|kernel_system_inst

Related Links

Generating the base.qar Post-Fit Netlist for Your Intel Arria 10 Custom Platform on
page 20

3.7 Intel Quartus Prime Compilation Flow and Scripts

The import_compile.tcl Tcl Script File in the Intel Arria 10 GX FPGA Development
Kit Reference Platform controls the Intel Quartus Prime compilation flow.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
46



Invoke the Intel Quartus Prime compilation flow by calling the following quartus_sh
executables:

• The board developer runs the quartus_sh --flow compile top -c base
command to execute the base revision compilation. This compilation closes timing,
locks down the static region, and generates the base.qdb file.

• The user of the Intel Arria 10 FPGA Development Kit Reference Platform or a
Custom Platform runs the quartus_sh -t import_compile.tcl command to
execute the import revision compilation. This compilation generates programming
files that are guaranteed to be timing closed and PR-compatible with each other.

3.7.1 Enabling the Intel Quartus Prime Forward-Compatibility Flow

The forward-compatibility flow allows you to use base.qdb files that are forward
compatible with future versions of the Intel Quartus Prime Pro Edition software.

Enabling the forward-compatibility flow allows you to use board vendor-generated
precompiled post-fit netlists, in the form of the base.qdb file, in a future Intel
Quartus Prime Pro Edition software version. The forward-compatibility flow eliminates
the need to match the Intel Quartus Prime Pro Edition software version used to
develop the Custom Platform and the version used to run the Custom Platform.

Warning: Intel does not guarantee that the compilation of your board design in a future version
of the Intel Quartus Prime Pro Edition software will be successful. It is possible that
your base.qdb file implements a configuration that will become illegal in future Intel
Quartus Prime Pro Edition software versions.

If you are migrating a previous version of the Intel Arria 10 GX FPGA Development Kit
Reference Platform to the current version and you want to incorporate the forward-
compatibility flow, perform the following tasks:

1. Add the following command in the INTELFPGAOCLSDKROOT/board/a10_ref/
hardware/a10gx/scripts/post_flow_pr.tcl script to generate a forward-
compatible base.qdb file:

quartus_cdb top -c base --export_design --snapshot final --
file base.qdb

For information on the function of the post_flow_pr.tcl script, refer to
Quartus Prime Compilation Flow for Board Developers.

2. In the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/
import_compile.tcl script, add the quartus_fit and then the quartus_asm
commands after importing the base.qdb file.
Running these commands verifies that the imported base.qdb file is usable in the
Intel Quartus Prime Pro Edition software version that Custom Platform users work
with.

For more information on the function of the import_compile.tcl script, refer to
the Intel Quartus Prime Compilation Flow for Custom Platform Users.

Related Links

• Intel Quartus Prime Compilation Flow for Board Developers on page 48

• Intel Quartus Prime Compilation Flow for Custom Platform Users on page 49

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
47



3.7.2 Intel Quartus Prime Compilation Flow for Board Developers

The quartus_sh --flow compile top -c base command executes the Intel
Quartus Prime compilation flow that generates a base.sof full-chip JTAG
programming file within the .aocx file.

The script performs the necessary tasks to ensure that the import revision
compilations using the timing-closed and locked-down static region are PR-compatible
with each other.

Running the quartus_sh --flow compile top -c base command executes the
following tasks:

• Runs quartus_syn to execute the Analysis and Synthesis stage of the Intel
Quartus Prime compilation flow.

• Runs quartus_fit to execute the Place and Route stage of the Intel Quartus
Prime compilation flow.

• Runs quartus_sta to execute the Static Timing Analysis stage of the Intel
Quartus Prime compilation flow.

• Runs the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/
scripts/post_flow_pr.tcl file.

The post_flow_pr.tcl script determines the maximum frequency at which the
OpenCL kernel can run and generates the corresponding PLL settings. The script
then reruns static timing analysis. The script also exports the compilation
database of the base revision compilation results as a forward-compatible Partition
Database File (.qdb). Refer to the QDB File Generation section for more
information.

• Runs quartus_asm to generate the .sof file with updated embedded PLL
settings. Updating the .sof file allows it to run safely on the board with the
maximum kernel frequency.

• Generates the fpga.bin file, which contains the full-chip programming file. The
full-chip programming file (base.sof) is in the .acl.sof section of the
fpga.bin file.

The .aocx file that the base revision compilation flow generates only contains
the .sof full-chip programming file. It does not contain a programming file that can
be used with PR because this .aocx file is only intended to be written to Flash
memory as the default FPGA image. The Intel FPGA SDK for OpenCL program utility
automatically uses JTAG programming when it programs with a .aocx file from the
base revision compilation. Only the import revision compilation flow, executed by the
SDK user, generates a .aocx file that can be used with PR.

Related Links

• Hash Checking on page 50

• Platform Designer System Generation on page 50

• QDB File Generation on page 50

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
48



3.7.3 Intel Quartus Prime Compilation Flow for Custom Platform Users

The import_compile.tcl script executes the Intel Quartus Prime compilation flow
that generates a top.sof full-chip JTAG programming file and a top.rbf PR
bitstream file within the .aocx file.

The import_compile.tcl script executes the following tasks:

• Runs the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/
scripts/pre_flow_pr.tcl file. The pre_flow_pr.tcl script generates the
board.qsys and the kernel_system.qsys Platform Designer System Files.

Refer to the Platform Designer System Generation section for more information.

• Imports the base revision compilation results as a .qdb file.

Refer to the QDB File Generation section for more information.

• Runs quartus_fit and quartus_asm to verify that the .qdb file is forward
compatible.

• Runs quartus_syn to execute the Analysis and Synthesis stage of the Intel
Quartus Prime compilation flow for the kernel partition only.

• Runs quartus_fit to execute the Place and Route stage of the Intel Quartus
Prime compilation flow for the entire design.

• Runs quartus_sta to execute the Static Timing Analysis stage of the Intel
Quartus Prime compilation flow.

• Runs the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/
scripts/post_flow_pr.tcl file. The post_flow_pr.tcl script determines
the maximum frequency at which the OpenCL kernel can run and generates the
corresponding PLL settings. The script then reruns the static timing analysis.

• Runs quartus_asm to generate the full-chip programming files for the base
revision.

• Runs quartus_asm to generate the full-chip programming files for the import
revision.

• Generates the fpga.bin file, which contains the following files and IDs:

— The top.sof full-chip programming file.

— The top.rbf PR programming file.

— The pr_base.id unique ID for PR base revision.

Before quartus_asm generates the .sof file in an import revision compilation, the
static region of the import revision compilation is compared to the static region of the
base revision compilation to check for errors. To prevent a mismatch error in the I/O
configuration shift register (IOCSR) bits, the PLL settings in the base.sof and
top.sof files must be identical. When designing the Intel Arria 10 FPGA Development
Kit Reference Platform, Intel ensured in the import_compile.tcl Tcl script that the
PLL settings in both the base.sof file and the top.sof file are identical, resulting in
an additional quartus_asm execution step to regenerate the base.sof file.

Related Links

• Platform Designer System Generation on page 50

• QDB File Generation on page 50

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
49



3.7.4 Platform Designer System Generation

The Intel FPGA SDK for OpenCL Offline Compiler generates the board.qsys and
kernel_system.qsys Platform Designer systems in the INTELFPGAOCLSDKROOT/
board/<custom_platform>/hardware/<board_name> directory after successfully
completing a first-stage compilation. The INTELFPGAOCLSDKROOT environment
variable points to the location of the Intel FPGA SDK for OpenCL installation directory.

The board.qsys Platform Designer system represents the bulk of the static region.
The kernel_system.qsys Platform Designer system is the top-level of the PR
region. The pre_flow_pr.tcl script generates both Platform Designer systems on
the fly before the beginning of the Intel Quartus Prime compilation flow in both the
base and import revision compilations.

3.7.5 QDB File Generation

The base.qdb Intel Quartus Prime Compilation Database File contains all the
necessary compilation database information for importing a timing-closed and placed-
and-routed netlist of the static region.

The INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/scripts/
post_flow_pr.tcl script creates the base.qdb file. The .tcl file invokes the
export_design command to export the entire base revision compilation database to
the base.qar file that also contains the base.sdc and pr_baseid files. For your
Custom Platform, you do not need to add the base.sdc and pr_base.id files to the
board directory (that is, INTELFPGAOCLSDKROOT/board/<custom_platform>/
hardware/<board_name>) separately.

3.7.6 Hash Checking

Intel assigns a unique ID to each base revision compilation to ensure a safe way of
only partially reconfiguring a PR region on top of a design that has a matching static
region.

The unique ID is generated at the beginning of a base revision compilation using the
MD5 message-digest algorithm. The MD5 algorithm generates a hash of a text file that
contains the current working directory and a high-resolution timer value. The MD5
algorithm then truncates the hash to a 32-bit value. The INTELFPGAOCLSDKROOT/
board/a10_ref/hardware/a10gx/scripts/pre_flow_pr.tcl script stores this
32-bit value in the pr_base_id register IP within the board.qsys Platform Designer
system by overwriting the default value of 0xdeadbeef.

The unique ID for the base revision compilation is added to the pr_base.id file. The
ID becomes part of the import revision compilation directory after the pr_base.id
file is copied from the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx
directory. During the fpga.bin generation step of the import revision compilation,
the unique ID is added as the .acl.hash section of the fpga.bin file.

When the Intel FPGA SDK for OpenCL user invokes the aocl program utility to
reconfigure the FPGA, the software first checks that the pr_base id value in the
currently programmed static region matches the hash value in the fpga.bin section

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
50



within the .aocx file. If the two 32-bit values match, it is safe to execute partial
reconfiguration. If the 32-bit values do not match, the aocl program utility
performs full-chip JTAG programming via Intel FPGA Download Cable.

3.8 Addition of Timing Constraints

A Custom Platform must apply the correct timing constraints to the Intel Quartus
Prime project. In the Intel Arria 10 FPGA Development Kit Reference Platform, the
top.sdc file contains all timing constraints applicable before IP instantiation in
Platform Designer. The top_post.sdc file contains timing constraints applicable after
Platform Designer.

The order of the application of time constraints is based on the order of appearance of
the top.sdc and top_post.sdc in the top.qsf file.

One noteworthy constraint in the a10_ref Reference Platform is the multicycle
constraint for the kernel reset in the top_post.sdc file. Using global routing saves
routing resources and provides more balanced skew. However, the delay across the
global route might cause recovery timing issues that limit kernel clock speed.
Therefore, it is necessary to include a multicycle path on the global reset signal.

Related Links

• Intel Quartus Prime Timing Analyzer Cookbook

• Timing Analysis Overview

• Passing Timing Analyzer SDC Timing Constraints to the Intel Quartus Prime
Software

3.9 Connection of the Intel Arria 10 GX FPGA Development Kit
Reference Platform to the Intel FPGA SDK for OpenCL

A Custom Platform must include a board_env.xml file to describe its general
contents to the Intel FPGA SDK for OpenCL Offline Compiler. For each hardware
design, your Custom Platform also requires a board_spec.xml file for each hardware
design that describes the hardware.

The following sections describe the implementation of these files for the Intel Arria 10
GX FPGA Development Kit Reference Platform.

3.9.1 Describe the Intel Arria 10 GX FPGA Development Kit Reference
Platform to the Intel FPGA SDK for OpenCL

The INTELFPGAOCLSDKROOT/board/a10_ref/board_env.xml file describes the
Intel Arria 10 GX FPGA Development Kit Reference Platform to the Intel FPGA SDK for
OpenCL. Details of each field in the board_env.xml file are available in the Creating
the board_env.xml File section of the Intel FPGA SDK for OpenCL Custom Platform
Toolkit User Guide.

In the a10_ref Reference Platform, Intel uses the bin folder for Windows dynamic link
libraries (DLLs), the lib directory for delivering libraries, and the libexec directory
for delivering the SDK utility executables. This directory structure allows the PATH
environment variable to point to the location of the DLLs (that is, bin) in isolation of
the SDK utility executables.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
51

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_timequest_cookbook.pdf
https://www.altera.com/documentation/mwh1410385117325.html#mwh1410383515225
https://www.altera.com/documentation/jbr1437426657605.html#mwh1409959963415
https://www.altera.com/documentation/jbr1437426657605.html#mwh1409959963415


Related Links

Creating the board_env.xml File

3.9.2 Describe the Intel Arria 10 GX FPGA Development Kit Reference
Platform Hardware to the Intel FPGA SDK for OpenCL

The Intel Arria 10 GX FPGA Development Kit Reference Platform includes an
INTELFPGAOCLSDKROOT/board/a10_ref/hardware/a10gx/board_spec.xml file
that describes the hardware to the Intel FPGA SDK for OpenCL.

Device

The device section contains the name of the device model file available in the
INTELFPGAOCLSDKROOT/share/models/dm directory of the SDK and in the board
spec.xml file. The used_resources element accounts for all logic outside of the
kernel partition. The value of used_resources for alms equals the difference
between the total number of adaptive logic modules (ALMs) used in final placement
and the total number of ALMs available to the kernel partition. You can derive this
value from the Partition Statistic section of the Fitter report after a compilation.
Consider the following ALM categories within an example Fitter report:

+---------------------------------------------------------------------------------
-+
; Fitter Partition 
Statistics                                                      ;
+----------------------+-----------------
+-----------------------------------------+
; Statistic            ; l               ; freeze_wrapper_inst|
kernel_system_inst  ;
+----------------------+-----------------
+-----------------------------------------+
; ALMs needed [=A-B+C] ; 0 / 427200 (0%) ; 0 / 385220 
(0%)                         ;

The value of used_resources equals the total number of ALMs in l minus the total
number of ALMs in freeze wrapper inst|kernel_system_inst. In the example
above, used_resources = 427200 - 385220 = 41980 ALMs.

You can derive used_resources for rams and dsps in the same way using M20Ks
and DSP blocks, respectively. The used_resources value for ffs is four times the
used_resources value for alms because there are two primary and two secondary
logic registers per ALM.

Global Memory

In the board_spec.xml file, there is one global_mem section for DDR memory.
Assign the string DDR to the name attribute of the global_mem element. The board
instance in Platform Designer provides all of these interfaces. Therefore, the string
board is specified in the name attribute of all the interface elements within
global_mem.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
52

https://www.altera.com/documentation/ewa1402666946838.html#ewa1408565154386


• DDR

Because DDR memory serves as the default memory for the board that the
a10_ref Reference Platform targets, its address attribute begins at zero. Its
config_addr is 0x018 to match the memorg conduit used to connect to the
corresponding OpenCL Memory Bank Divider for DDR.

Attention: The width and burst sizes must match the parameters in the OpenCL
Memory Bank Divider for DDR (memory_bank_divider).

Interfaces

The interfaces section describes kernel clocks, reset, CRA, and snoop interfaces.
The OpenCL Memory Bank Divider for the default memory (in this case,
memory_bank_divider) exports the snoop interface described in the interfaces
section. The width of the snoop interface should match the width of the corresponding
streaming interface.

3.10 Intel Arria 10 FPGA Programming Flow

There are three ways to program the Intel Arria 10 FPGA for the Intel Arria 10 GX
FPGA Development Kit Reference Platform: Flash, quartus_pgm, and partial
reconfiguration (PR).

In the order from the longest to the shortest configuration time, the three FPGA
programming methods are as follows:

• To replace both the FPGA periphery and the core while maintaining the
programmed state after power cycling, use Flash programming.

• To replace both the FPGA periphery and the core, use the Intel Quartus Prime
Programmer command-line executable (quartus_pgm) to program the device via
cables such as the Intel FPGA Download Cable (formerly USB-Blaster).

• To replace only the kernel portion of the device, use PR.

The default FPGA programming flow is to use PR over PCIe. The Partial
Reconfiguration Controller IP instantiates PR over PCIe using the following IP
parameter settings:

Table 12. Parameter Settings for the Partial Reconfiguration Controller IP

Parameter Setting

Settings

Use as PR Internal Host Enabled

Enable Avalon-MM slave interface Enabled

Input data width 32 bits

Clock-to-Data ratio 1

Divide error detection frequency by 1

Advanced Settings

Auto-instantiate PR block Enabled

Auto-instantiate CRC block Enabled

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
53



The 50 MHz config_clk clocks the Partial Reconfiguration Controller IP. The Avalon-
MM interface connects to the host control bus on PCIe BAR4. Using PCIe Gen3x8
under these configuration settings, the duration of partial reconfiguration of the PR
region is about 1.6 seconds.

You cannot use PR if there is a mismatch between the hash within the .aocx file and
the hash in the static region of the current image on the FPGA. In this case, program
the FPGA via Intel FPGA Download Cable by invoking quartus_pgm instead. If
the .aocx file is not PR compatible with the current image on the FPGA, the Intel
Quartus Prime Programmer displays the following message:

aocl program acl0 boardtest.aocx
aocl program: Running program from <path_to_a10_ref>/linux64/libexec
Reprogramming device with handle 1
MMD INFO : [acla10_ref0] PR base and import compile IDs do not match
MMD INFO : [acla10_ref0] PR base ID currently configured is 0x7d056bf2
MMD INFO : [acla10_ref0] PR import compile expects ID to be 0x30242eb9
mmd program_device: Board reprogram failed

Only use quartus_pgm via Intel FPGA Download Cable if you use a cable to connect
the board and the host computer. Cabling is a point of potential failure, and it does not
scale well to large deployments. If possible, reserve the quartus_pgm programming
approach for development and testing purposes only.

If PR fails, an attempt is automatically made to detect the Intel FPGA Download Cable
and do a full JTAG programming.

3.10.1 Define the Contents of the fpga.bin File for the Intel Arria 10 GX
FPGA Development Kit Reference Platform

You may arbitrarily define the contents of the fpga.bin file in a Custom Platform
because it passes from the Intel FPGA SDK for OpenCL to the Custom Platform as a
black box. Intel defines the contents of the fpga.bin file in the Intel Arria 10 GX
FPGA Development Kit Reference Platform as an Executable and Linkable Format (ELF)
binary the organizes the various fields into sections.

Table 13. Contents of the Intel Arria 10 GX FPGA Development Reference Platform's
fpga.bin File

Field Description

.acl.sof The full programming bitstream for the compiled design. This section appears in
the fpga.bin files generated from both the base revision and the import revision
compilations.

.acl.core.rbf The PR programming bitstream for the kernel region. This section only appears in
the fpga.bin file generated from import revision compilation.

.acl.hash The unique ID for the base revision compilation. This section only appears in the
fpga.bin file generated from import revision compilation.

3.11 Host-to-Device MMD Software Implementation

The Intel Arria 10 GX FPGA Development Kit Reference Platform's MMD layer is a thin
software layer that is essential for communication between the host and the board. A
full implementation of the MMD library is necessary for every Custom Platform for the
proper functioning of the OpenCL host applications and board utilities. Details of the

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
54



API functions, their arguments, and return values for MMD layer are specified in the
<your_custom_platform>/source/include/aocl_mmd.h file, where
<your_custom_platform> points to the top-level directory of your Custom Platform.

The source codes of an MMD library that demonstrates good performance are available
in the INTELFPGAOCLSDKROOT/board/a10_ref/source/host/mmd directory.
Refer to the Host-to-Device MMD Software Implementation section in the Stratix V
Network Reference Platform Porting Guide for more information.

For more information on the MMD API functions, refer to the MMD API Descriptions
section of the Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide.

Related Links

• Host-to-Device MMD Software Implementation

• MMD API Descriptions

3.12 Implementation of Intel FPGA SDK for OpenCL Utilities

The Intel Arria 10 GX FPGA Development Kit Reference Platform includes a set of Intel
FPGA SDK for OpenCL utilities for managing the FPGA board.

For more information on the implementation requirements of the AOCL utilities, refer
to the Providing Intel FPGA SDK for OpenCL Utilities Support section of the Intel FPGA
SDK for OpenCL Custom Platform Toolkit User Guide.

Related Links

Providing Intel FPGA SDK for OpenCL Utilities Support

3.12.1 aocl install

The install <path_to_customplatform> utility in the Intel Arria 10 GX FPGA
Development Kit Reference Platform installs the kernel driver on the host computer.
Users of the Intel FPGA SDK for OpenCL only need to install the driver once, after
which the driver should be automatically loaded each time the machine reboots.

Attention: You must have write privileges to the SDK directory to install the kernel directory.

Windows

The install.bat script is located in the <your_custom_platform>
\windows64\libexec directory, where <your_custom_platform> points to the top-
level directory of your Custom Platform. This install.bat script triggers the
install executable from Jungo Connectivity Ltd. to install the WinDriver on the host
machine.

Linux

The install script is located in the <your_custom_platform>/linux64/
libexec directory. This install script first compiles the kernel module in a
temporary location and then performs the necessary setup to enable automatic driver
loading after reboot.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
55

https://www.altera.com/documentation/ewa1404851957878.html#ewa1405355910709
https://www.altera.com/documentation/ewa1402666946838.html#ewa1402934770992
https://www.altera.com/documentation/ewa1402666946838.html#ewa1409837700738


3.12.2 aocl uninstall

The uninstall <path_to_customplatform> utility in the Intel Arria 10 GX FPGA
Development Kit Reference Platform removes the current host computer drivers used
for communicating with the board.

Windows

The uninstall.bat script is located in the <your_custom_platform>
\windows64\libexec directory, where <your_custom_platform> points to the top-
level directory of your Custom Platform. This uninstall.bat script triggers the
uninstall executable from Jungo Connectivity Ltd. to uninstall the WinDriver on the
host machine.

Linux

The uninstall script is located in the <your_custom_platform>/linux64/
libexec directory. This uninstall script removes the driver module from the
kernel.

3.12.3 aocl program

The program utility in the Intel Arria 10 GX FPGA Development Kit Reference Platform
programs the board with the specified .aocx file. Calling the
aocl_mmd_reprogram() MMD API function implements the program utility.

3.12.4 aocl flash

The flash utility in the Intel Arria 10 GX FPGA Development Kit Reference Platform
configures the power-on image for the FPGA using the specified .aocx file. Calling
into the MMD library implements the flash utility.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
56



Figure 5. JTAG Chain with Intel Arria 10 FPGA, MAX V CPLD, and CFI Flash Memory
This figure illustrates the JTAG chain and the location of the common flash interface (CFI) relative to the MAX V
CPLD on the Intel Arria 10 GX FPGA Development Kit.

2*CFI_1Gb

10AX115S2E2 5M2210Z

TDI

TDO

3.12.5 aocl diagnose

The diagnose utility in the Intel Arria 10 GX FPGA Development Kit Reference
Platform reports device information and identifies issues. The diagnose utility first
verifies the installation of the kernel driver. Depending on whether an additional
argument is specified in the command, the utility then performs different tasks.

Without an argument, the utility returns the overall information of all the devices
installed in a host machine. If a specific device name is provided as an argument (that
is, aocl diagnose <device_name>), the diagnose utility runs a memory
transfer test and then reports the host-device transfer performance.

You can run the diagnose utility for multiple devices (that is, aocl diagnose
<device_name1> <device_name2> <device_name3>). If you want to run the
diagnose utility for all devices, use the all option (that is aocl diagnose all).

3.12.5.1 Possible Errors After Running the diagnose Utility

This section provides debugging steps to some of the errors you might encounter after
implementing the diagnose utility.

Memory Module Not Plugged-in or a Loose Connection on the Board

If the memory module is not plugged in or if there is a loose connection on the board,
you might see errors similar to the following example:

aocl diagnose: Running diagnose from 
aocl diagnose: failed 32 times. First error below:
Vendor: Intel Corporation
MMD INFO: [acla10_ref0] uniphy(s) did not calibrate. Expected 0 but read 2
MMD INFO: If there are more failures than Uniphy controllers connected, 
MMD INFO: ensure the uniphy_status core is correctly parameterized.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
57



Solution

Confirm that you have connected the memory board, power cable, and USB cable
correctly as shown in Configuring and installing the Intel Arria 10 GX FPGA
Development Kit board. If you have confirmed your connections and continue to get
this error, the memory board might not be seated correctly in the HiLo connector.

Error While Loading Shared Libraries

When you execute diagnose all utility, you might see errors as shown in the
following example:

$ aocl diagnose all
hld/board/a10_ref/linux64/libexec/diagnose: error while loading shared 
libraries: 
libaltera_a10_ref_mmd.so: cannot open shared object file: No such file or 
directory

Solution

Ensure that you have set the PATH environment variable correctly.

export PATH=$PATH:$INTELFPGAOCLSDKROOT/bin:$QUARTUS_DIR/bin

3.12.6 aocl list-devices

The list-devices utility lists all the devices installed in a host machine, grouped by
board packages.

The list-devices utility is similar to the diagnose utility. It first verifies the
installation of the kernel driver and then lists all the devices.

3.13 Intel Arria 10 FPGA Development Kit Reference Platform
Scripts

The Intel Arria 10 FPGA Development Kit Reference Platform includes a number of Tcl
scripts in its hardware/<board_name>/scripts directory.

Table 14. Tcl Scripts within the INTELFPGAOCLSDKROOT/board/a10_ref/hardware/
a10gx/scripts Directory

Script Description

base_write_sdc.tcl The post_flow_pr.tcl script runs this script during the base revision
compilation. The base_write_sdc.tcl script then exports all the SDC
constraints to the base.sdc file, which is part of the board directory.

create_fpga_bin_pr.tcl Creates the ELF binary file, fpga.bin, from the .sof file, the .rbf file,
and the pr_base.id file.

post_flow_pr.tcl This script runs after every Intel Quartus Prime Pro Edition software
compilation. It facilitates the guaranteed timing flow by setting the kernel
clock PLL, generating a small report in the acl_quartus_report.txt
file, and rerunning STA with the modified kernel clock settings.

pre_flow_pr.tcl This script generates the RTL of the top-level board.qsys Platform
Designer system for the static region and the kernel_system.qsys
Platform Designer system for the kernel PR region.

continued...   

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
58

https://www.altera.com/documentation/tgy1490191698959.html#pbl1490212978961
https://www.altera.com/documentation/tgy1490191698959.html#pbl1490212978961


Script Description

qar_ip_files.tcl Tcl script that packages up all IP files in the base revision compile to create
base.qar.

create_acds_ver_hex.tcl Tcl script that creates quartus_version.id and
acds_version_rom.mif files. PR can be done only if the programmed
AOCX was compiled from the same Quartus version as AOCX being
programmed.
quartus_version.id is stored in AOCX so that at runtime, BSP can
determine Quartus version of AOCX being programmed.
acds_version_rom.mif is used during compilation, to update the
contents of on-chip memory in the SOF file.

regenerate_cache.tcl Tcl script that regenerates the BAK cache file in your temporary directory.

3.14 Considerations in Intel Arria 10 GX FPGA Development Kit
Reference Platform Implementation

The implementation of the Intel Arria 10 GX FPGA Development Kit Reference Platform
includes some workarounds that address certain Intel Quartus Prime Pro Edition
software known issues.

• The quartus_syn executable reads the SDC files. However, it does not support
the Tcl command get_current_revision. Therefore, in the top_post.sdc
file, a check is in place to determine whether quartus_syn has read the file
before checking the current version.

In addition to these workarounds, take into account the following considerations:

• Intel Quartus Prime compilation is only ever performed after the Intel FPGA SDK
for OpenCL Offline Compiler embeds an OpenCL kernel inside the system.

• Perform Intel Quartus Prime compilation after you install the Intel FPGA SDK for
OpenCL and set the INTELFPGAOCLSDKROOT environment variable to point to the
SDK installation.

• The name of the directory where the Intel Quartus Prime project resides must
match the name field in the board_spec.xml file within the Custom Platform.
The name must be case sensitive.

• The PATH or LD_LIBRARY_PATH environment variable must point to the MMD
library in the Custom Platform.

3 Intel Arria 10 GX FPGA Development Kit Reference Platform Design Architecture

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
59



4 Document Revision History
Table 15. Document Revision History of the Intel Arria 10 GX FPGA Development Kit

Reference Platform Porting Guide

Date Version Changes

November 2017 2017.11.03 • Rebranded the following:
— Environment variable ALTERAOCLSDKROOT to

INTELFPGAOCLSDKROOT.
— Arria 10 to Intel Arria 10.
— USB download cable to Intel FPGA download cable.
— USB Blaster to Intel FPGA Download Cable.
— SignalTap II Logic Analyzer to Signal Tap logic analyzer.
— CL_CONTEXT_COMPILER_MODE_ALTERA to

CL_CONTEXT_COMPILER_MODE_INTELFPGA

— Qsys Pro as Platform Designer
— Quartus Prime Pro Edition as Intel Quartus Prime Pro Edition
— Quartus Prime as Intel Quartus Prime
— LogicLock as Logic Lock

• In 6 on page 12, added an example code.
• In Connecting the Memory in the Intel Arria 10 Custom Platform on

page 17, added cross references to University program page and Signal
Tap II logic analyzer tutorial.

• In Partial Reconfiguration on page 31, added a related link to Partial
Reconfiguration IP Core.

• In Floorplan on page 38, added a related link to Creating Logic Lock
Plus Regions.

• In Features of the Intel Arria 10 GX FPGA Development Kit Reference
Platform on page 5, added OpenCL Host Pipe feature.

• In Intel Arria 10 GX FPGA Development Kit Reference Platform Board
Variants on page 6, added the a10gx_hostch variant.

• In Instantiation of Intel Arria 10 PCIe Hard IP with Direct Memory
Access on page 22, updated Instantiate Internal Descriptor Controller
Enabled parameter for the disabled setting for a10gx_hostch board
variant.

• In Instantiation of the version_id Component on page 26, updated the
version ID for the a10_ref Reference Platform.

• In Definitions of Intel Arria 10 FPGA Development Kit Reference
Platform Hardware Constraints in Software Headers Files on page 26,
added hw_host_channel.h header file that defines the host channel
IP control register address and names of the channels.

continued...   

UG-OCL010 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Date Version Changes

• Renamed the references of the following:
— acl_ddr4_a10_core.qsys to ddr4.qsys
— acl_ddr4_a10.qsys to mem.qsys
— ip/acl_ddr4_a10/ to ip/mem/
— ip/acl_ddr4_a10_core/ to ip/ddr4/

• In Intel Quartus Prime Compilation Flow for Custom Platform Users on
page 49, removed the bullet point about running quartus_cpf to
generate the PR programming files since it is done automatically in the
flow now.

• In PCIe Kernel Driver for the Intel Arria 10 GX FPGA Development Kit
Reference Platform on page 27, updated the description of aclpci
dma.c file to include host channel.

• In Contents of the Intel Arria 10 GX FPGA Development Kit Reference
Platform on page 6:
— Added ip/host_channel and scripts/

create_acds_ver_hex.tcl to the table.
— Removed scripts/bak_flow.tcl and scripts/helpers.tcl

since both scripts are now moved to Intel FPGA SDK for OpenCL.
— Corrected board.Qsys Pro, acl_ddr4_a10.Qsys Pro and

acl_ddr4_a10_core.Qsys Pro as board.qsys,
acl_ddr4_a10.qsys and acl_ddr4_a10_core.qsys.

• Implemented single dash and -option=<value> conventions in the
following topics:
— Intel Arria 10 GX FPGA Development Kit Reference Platform Board

Variants on page 6
— Integrating Your Intel Arria 10 Custom Platform with the Intel FPGA

SDK for OpenCL on page 13
— Guaranteeing Timing Closure in the Intel Arria 10 Custom Platform

on page 19
— Initializing Your Intel Arria 10 Custom Platform on page 11

• Updated the topic aocl diagnose on page 57 to include options to
diagnose multiple devices and all devices.

• Added the following new topics:
— Changes in Intel Arria 10 Development Kit Reference Platform from

17.0 to 17.1 on page 9
— aocl list-devices on page 58
— Possible Errors After Running the diagnose Utility on page 57
— Host Channel on page 33
— Host Channel IP Instantiation on page 33
— Host Channel Top Connection to PCIe DMA on page 33
— Host Channel Top Connection to OpenCL Kernel on page 34

• Updated the topics aocl install on page 55 and aocl uninstall on page 56
to include the path to custom platform during installation and
uninstallation. Added a Attention note in the aocl install on page 55
about the need for write privileges for the SDK directory.

• In Initializing Your Intel Arria 10 Custom Platform on page 11 and 
Establishing Intel Arria 10 Custom Platform Host Communication on
page 15, removed reference to the environment variable
AOCL_BOARD_PACKAGE_ROOT since it is deprecated and and updated
instances of aocl install updated as aocl install
<path_to_customplatform>.

• In Integrating Your Intel Arria 10 Custom Platform with the Intel FPGA
SDK for OpenCL on page 13, added a new step 2 about setting the
environment variable ACL_DEFAULT_FLOW to flat.

continued...   

4 Document Revision History

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
61



Date Version Changes

• In Intel Arria 10 FPGA Development Kit Reference Platform Scripts on
page 58, added the following three tcl scripts:
— qar_ip_files.tcl

— create_acds_ver_hex.tcl

— regenerate_cache.tcl

• In Addition of Timing Constraints on page 51, added Related links to
SDC and Time Quest topics in Quartus handbook and cookbook.

• In Generating the base.qar Post-Fit Netlist for Your Intel Arria 10
Custom Platform on page 20, updated step 2 about adding the -bsp-
flow=base argument to the aoc command to generate a base.qar
file.

May 2017 2017.05.08 Replaced references to ACL_QSH_COMPILE_CMD with
ACL_DEFAULT_FLOW.

October 2016 2016.10.31 • Rebranded Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.
• Rebranded Altera Offline Compiler to Intel FPGA SDK for OpenCL Offline

Compiler.
• Changed the short-form name of the Reference Platform from

altera_a10pciedk to a10_ref, to match the directory name in the SDK.
• Added notice that you must contact your field applications engineer or

regional support center representative to configure the Arria 10 GX
FPGA Development Kit before using it with the SDK.

• Removed the a10gx_es2 and the a10gx_es3 board variants from the
Reference Platform. The a10_ref Reference Platform only supports the
a10gx board variant.

• In Contents of the Arria 10 GX FPGA Development Kit Reference
Platform:
— For Windows, changed the source_windows64 directory to

source.
— Updated the list of files available in the a10gx subdirectory.
— Removed information for the max5_133.pof file.

• Removed statement regarding PR being an early-access feature.
• Updated the location of the acl_ddr4_a10.qsys and

acl_ddr4_a10_core.qsys files from the a10gx/ip directory to the
top-level a10gx directory. The board.qsys, acl_ddr4_a10.qsys,
and acl_ddr4_a10_core.qsys systems were migrated to Qsys Pro.

• In the ip subdirectory, added .ip files that contain parameters of
instantiated external OpenCL IP. Refer to Contents of the Arria 10 GX
FPGA Development Kit Reference Platform for more information.

• Added an opencl_bsp_ip.qsf file so that qsys_archive in Qsys
Pro can insert .qsys and .ip files into this revision. All Verilog and
Qsys source files from top.sdc and top_post.sdc are now in
opencl_bsp_ip.qsf.

• In Modifying the Arria 10 GX FPGA Development Kit Reference Platform
Design, added a step to update the device.tcl file with the correct
settings.

continued...   

4 Document Revision History

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
62



Date Version Changes

• In Changing the Device Part Number:
— Noted that the QSF setting for the device part number is now in

device.tcl instead of flat.qsf The following device-specific
assignments are now in device.tcl:
• FAMILY, MIN_CORE_JUNCTION_TEMP,

MAX_CORE_JUNCTION_TEMP, DEVICE_FILTER_PACKAGE,
DEVICE_FILTER_PIN_COUNT,
ERROR_CHECK_FREQUENCY_DIVISOR,
STRATIX_DEVICE_IO_STANDARD,
RESERVE_ALL_UNUSED_PINS_WEAK_PULLUP,
RESERVE_DATA0_AFTER_CONFIGURATION

— Noted that the device part number must be updated in
acl_ddr4_a10.qsys and acl_ddr4_a10_core.qsys, in addition
to board.qsys.

• In Guaranteeing Timing Closure in the Arria 10 Custom Platform and
Generating the base.qdb Post-Fit Netlist for Your Arria 10 Custom
Platform, noted that base.sdc must be copied along with base.qdb
and pr_base_id.txt into the Custom Platform.

• In Floorplan, updated the floorplan of the a10_ref Reference Platform.
• In Provide a Timing-Closed Post-Fit Netlist, removed the QSF

assignments that enabled the Spectra-Q engine compilation flow for
base and top revision compilations. The base.qsf file no longer needs
to be updated in order to enable the flow.

• In Enabling the Quartus Prime Spectra-Q Forward_Compatibility Flow:
— Modified the Quartus Prime software command to be added to the

post_flow_pr.tcl script to generate the forward-compatible
base.qdb file.

— Removed the step of modifying the quartus.ini file because it is
no longer needed.

• In Quartus Prime Compilation Flow for Board Developers, modified the
list of tasks that are performed when the quartus_sh --flow
compile top -c base command was invoked because the process
would no longer run the pre_flow_pr.tcl script.

• In the top.qpf file, reorganized the order of the revisions to
opencl_bsp_ip, flat, base, top_synth, and then top. In addition ,
removed old references to Intel Quartus Prime software version 15.1

continued...   

4 Document Revision History

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
63



Date Version Changes

• Modified top_post.sdc file to reflect Qsys Pro RTL hierarchy changes
• To facilitate Partial Reconfiguration:

— Added set_global_assignment -name REVISION_TYPE
PR_BASE to the base.qsf file

— Added set_global_assignment -name REVISION_TYPE
PR_BASE to the top_synth.qsf file

— Added set_global_assignment -name REVISION_TYPE
PR_IMPL to the top.qsf file

— In the quartus.ini file, removed the following lines:
• qhd_enable_pr_bak_export=on

• pr_allow_lims_on_globals_user_guarantee_frozen_hi
gh=on

• apl_use_advanced_pcl=off

• qhd_force_bak_export=on and

• hd_force_bak_import=on

• In the flat.qsf file:
— Removed the wildcarded LREGION assignments for

pipe_stage_dma* and pipe_stage_pcie_* and the commented
GLOBAL_SIGNAL assignments.

— Added the line PR_ALLOW_GLOBAL_LIMS ON -to
freeze_wrapper_inst|
kernel_system_clock_reset_reset_reset_n

— Changed the GLOBAL_SIGNAL assignment to kernel clocks

July 2016 2016.07.29 • Maintenance release.
• In Arria 10 GX FPGA Development Kit Reference Platform Board

Variants and Initializing Your Arria 10 Custom Platform, added reminder
to match the board variant with the status of the Arria 10 device on
your board.

May 2016 2016.05.09 • Modified content to reflect the creation of the base.qdb file in lieu of
the base_qhd.qar file.

• Modified content to reflect the implementation of the flat.qsf file,
which contains all the common QSF assignments shared among the
base.qsf, top.qsf, and top_synth.qsf files. Use the flat revision
for compilation flows that cannot use PR and do not require guaranteed
timing. Because the flat revision is included in both the base and top
revisions, use the flat revision to expand your design (for example, to
attach extra DDR memory banks on your board).

• Modified content to reflect the updated functionality of the
pre_flow_pr.tcl and post_flow_pr.tcl scripts.

• Updated the command you run to execute the base revision
compilation
from quartus_sh -t base_compile.tcl
to quartus_sh --flow compile top -c base.
This update enables you to compile the design from the Quartus Prime
Pro Edition software GUI.

• Removed the ip/acl_kernel_clk_a10/
acl_kernel_clk_a10.qsys and ip/acl_temperature_a10/
<file_name> files from the Reference Platform because the
acl_kernel_clk_a10 and acl_temperature_sensor_a10 IP are now part
of the Altera SDK for OpenCL.
Use the IPs from AOCL instead of duplicating them in your Custom
Platform. A check is in place to verify that these IPs are not duplicated
in your Custom Platform.

continued...   

4 Document Revision History

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
64



Date Version Changes

• The guaranteed timing flow is now part of AOCL. To avoid duplication,
removed the following files from the Reference Platform:
— adjust_plls.tcl, which creates the PLL configuration file and

modifies the PLL atoms
— pr_checks.tcl, which checks for initialized MLABs

• Removed information on the following legacy files; they are no longer
part of the Reference Platform:
— hardware/<board_name>/base_compile.tcl

— hardware/<board_name>/base_qhd.qar

— hardware/<board_name>/system.qsys

— scripts/call_script_as_function.tcl

— scripts/create_pr_base_id.tcl

• Added memory hierarchy in board.qsys:
— The DDR4 subsystem is now in a separate IP located in the ip/

acl_ddr4_a10 directory
— The DDR4 core and pipeline stages are not in separate Qsys

systems
• In Describe the Arria 10 GX FPGA Development Kit Reference Platform

Hardware to the AOCL, updated the example Fitter Partition Statistics
report and the explanation on how to calculate used_resources for
alms.

• Under Quartus Prime Compilation Flow and Scripts, added the section
Enabling the Quartus Prime Spectra-Q Forward-Compatibility Flow.
Modified the import_compile.tcl file and added INI settings to
quartus.ini and base.qsf to enable the Forward Compatibility flow.
Support for the Forward Compatibility flow is preliminary. Refer to the
Altera SDK for OpenCL version 16.0 Release Notes for more details.

December 2015 2015.12.21 Initial release.

4 Document Revision History

UG-OCL010 | 2017.11.06

Intel® FPGA SDK for OpenCL™ Intel® Arria® 10 GX FPGA Development Kit Reference Platform Porting Guide
65


