

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 7. Compiling Your OpenCL Kernel

UG-OCL002 | 2018.09.27

7.19.2. Additional Command Options for Incremental Compilation

Note:

Caution:

The Intel FPGA SDK for OpenCL incremental compilation feature includes optional
functions that you can enable to customize the compilation of your OpenCL design.

Grouping Multiple Kernels into Partitions (-incremental-
grouping=<filename>)

By default, the Intel FPGA SDK for OpenCL Offline Compiler places each kernel in your
design into a separate partition during incremental compilation. You have the option to
group multiple kernels into a single partition by including the —incremental -
grouping=<partition_fil ename> command option in your aoc command. In
general, compilation speed is faster if your design contains fewer partitions.

Example: aoc -incremental-grouping=<partition_fil enane>
<your kernel filenanme>.cl

The offline compiler will recompile all kernels in a group even if you modify only one of
the kernels. Intel recommends that you group kernels that you will typically modify at
the same time.

If your grouped kernels perform many load and store operations, you can speed up
compilation further by also including the -incremental=aggressive option in your
aoc command.

The partition file that you pass to the —incremental-grouping option is a plain text
file. Each line in the file specifies a new partition containing a semi-colon (;)-delimited
list of kernel names. For example, the following lines in a partition file specify three
partitions, each containing four kernels:

readerO;readerl;reader2;reader3
accumO;accuml;accum2;accum3
writerO;writerl;writer2;writer3

Compiling a Design in Aggressive Mode (-incremental=aggressive)

To increase the speed of an incremental compilation at the expense of area usage and
throughput, include the -incremental=aggressive command option in your aoc
command.

This feature is especially effective when the kernels in your design perform load and
store operations to many buffers, or when you have grouped multiple kernels together
using the —-incremental-grouping command option.

Example: aoc —-incremental=aggressive -incremental-
grouping=<partition_fil enane> <your_kernel filename>._cl

e Enabling the aggressive mode might result in throughput degradations that are
larger than what the Fmax degradation indicates.

e For each OpenCL design, avoid changing the compilation mode between
incremental compilations. If you compile your design in aggressive mode, enable
aggressive mode for all subsequent incremental compilations that you perform on
this design. Each time you switch the incremental compilation mode, compilation
takes longer to complete.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

118

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
7. Compiling Your OpenCL Kernel l n tel)

UG-OCL002 | 2018.09.27

Specifying a Custom Input Directory (-incremental-input-
dir=<path_to_directory>)

During incremental compilation, the offline compiler creates a default

<your _ker nel _fil ename> project directory in the current working directory to
store intermediate compilation files. To base your incremental compilation on a
nondefault project directory, specify the directory by including the —incremental -

input-dir=<pat h_t o_di rect or y> command option in your aoc command.

You must include the -incremental-input-dir option if you compile your design
in one or both of the following scenarios:

¢ Run the aoc command from a different working directory than the previous
compilation.

®* Included the —0=<fi | enane> command option in the previous compilation.

Consider the following example where there is a mykernel .cl file in the initial
working directory and another revision of the same mykernel .cl file in the new_rev
subdirectory:

aoc -incremental mykernel.cl
cd new_rev
aoc -incremental -fast-compile mykernel.cl -incremental-input-dir=../mykernel

In this scenario, the offline compiler will reuse the files in mykernel project directory
from the first compilation as the basis for the second compilation. The offline compiler
will create a new_rev/mykernel project directory for the second compilation without
modifying any file in the original mykernel directory.

The —-incremental-input-dir command option is useful if multiple developers
share the same incremental setup compilation. Each developer can run subsequent
incremental compilations in their own workspace without overwriting other developers'
compilation results.

Disabling Automatic Retry (-incremental-flow=no-retry)

By default, the offline compiler automatically retries a failed incremental compilation
by performing a second compilation without preserving any partitions. This second
compilation takes longer to complete because it recompiles the entire design.

To disable the offline compiler's automatic retry mechanism, include the -
incremental-flow=no-retry command option in your aoc command. If you
enable this feature, the offline compiler will not perform another incremental
compilation after the first attempt fails. In addition, the offline compiler will not
generate a .aocx file.

Enabling this feature allows you to implement your own failure mitigation strategies
such as:

e Compiling multiple seeds in parallel to increase the probability of at least one
compilation succeeding without retrying.

e Executing a non-incremental fast compilation instead of an incremental fast
compilation (that is, aoc -fast-compile <your_kernel _fil ename>.cl).

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

119

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel) 7. Compiling Your OpenCL Kernel

UG-OCL002 | 2018.09.27

7.19.3. Limitations of the Incremental Compilation Feature

The Intel FPGA SDK for OpenCL incremental compilation feature is only available to
OpenCL designs targeting the Intel Arria 10 FPGAs.

In addition to device support, the incremental compilation has the following
limitations:

* You will experience area, Fmax, and power degradations when you enable the
incremental compilation feature (-incremental) or the fast compilation feature
(-Fast-compile), or both.

e In congested designs, incremental compilations can experience severe (that is,
25% or more) Fmax reductions compared to the initial setup compilation. If the
Fmax reduction is unacceptable, perform a non-incremental fast compilation
instead to reduce the amount of Fmax degradation while preserving some of the
savings in compilation time.

e The offline compiler does not detect changes in RTL libraries that you have
included by invoking the —1 <l i brary_name>.aoclib offline compiler
command option. After you modify an RTL library, you must perform a setup
compilation again.

The offline compiler will print a warning message as a reminder to rerun the setup
compilation.

7.20. Compiling Your Kernel with Memory Error Correction Coding
(-ecc)

Attention: Error correction coding (ECC) is an early Intel FPGA SDK for OpenCL feature that is at
the preview stage. Full use of this feature, including the reporting of corrected errors
and detected but uncorrected errors, requires an ECC-ready Custom Platform from
your board vendor.

Include the —ecc option in your aoc command to direct the Intel FPGA SDK for
OpenCL Offline Compiler to enable error correction coding on the kernel memories
(that is, M20ks and MLABSs).

The ECC implementation has single error correction and double error detection
capabilities for each 32-bit word.

Caution: Enabling the ECC feature will cost an area overhead both in the number of RAMs and
ALMs, as well as causing degradation in the Fmax of the system.

e To direct the offline compiler to enable error correction coding hardware
implementation, invoke the aoc -ecc <your_kernel _fil ename>_cl
command.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

120

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
UG-OCL002 | 2018.09.27 ln tel)

D Send Feedback

8. Emulating and Debugging Your OpenCL Kernel

The Intel FPGA SDK for OpenCL Emulator assesses the functionality of your kernel.

The Intel FPGA SDK for OpenCL Emulator generates a .aocx file that executes on
x86-64 Windows or Linux host. This feature allows you to emulate the functionality of
your kernel and iterate on your design without executing it on the actual FPGA each
time. For Linux platform, you can also use the Emulator to perform functional debug.

Caution: Emulation does not support cross-compilation to ARM processor. To run emulation on a
design that targets an SoC, emulate on a non-SoC board (for example,
INTELFPGAOCLSDKROOT/board/s5_ref). When you are satisfied with the emulation
results, you may target your design on an SoC board for subsequent optimization
steps.

Modifying Channels Kernel Code for Emulation on page 121

Compiling a Kernel for Emulation (-march=emulator) on page 123

Emulating Your OpenCL Kernel on page 124

Debugging Your OpenCL Kernel on Linux on page 125

Limitations of the Intel FPGA SDK for OpenCL Emulator on page 126

Discrepancies in Hardware and Emulator Results on page 127

Nou kDN

Using the Fast Emulator (Preview) on page 129

8.1. Modifying Channels Kernel Code for Emulation

The Emulator emulates kernel-to-kernel channels. It does not support the emulation
of I/0 channels that interface with input or output features of your FPGA board. To
emulate applications with a channel that reads or writes to an I/O channel, modify
your kernel to add a read or write channel that replaces the I/O channel, and make
the source code that uses it is conditional.

The Intel FPGA SDK for OpenCL does not set the EMULATOR macro definition. You
must set it manually either from the command line or in the source code.

Consider the following kernel example:
channel unlong4 inchannel __attribute__ ((io('eth0_in™)));

__kernel void send (int size) {
for (unsigned i1 = 0; 1 < size; i++) {
ulong4 data = read_channel_intel (inchannel);
//statements

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2015
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Inte

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

[} ®
l n tel 8. Emulating and Debugging Your OpenCL Kernel
UG-OCL002 | 2018.09.27

To enable the Emulator to emulate a kernel with a channel that interfaces with an I/O
channel, perform the following tasks:

1. Modify the kernel code in one of the following manner:
— Add a matching write_channel _intel call such as the one shown below.
#ifdef EMULATOR
__kernel void io_in (__global char * restrict arr, int size) {
for (unsigned 1 = 0; 1 < size; i++) {

ulong4 data = arr[i]; //arr[i] being an alternate data source
write_channel_intel(inchannel, data);

}
-
#endif
— Replace the I/0 channel access with a memory access, as shown below:

__kernel void send (int size) {

for (unsigned 1 = 0; 1 < size; i++) {
#ifndef EMULATOR

ulong4 data = read_channel_intel(inchannel);

#else
ulong4 data = arr[i]; //arr[i] being an alternate data
source
#endif
//statements
3
3
2. Modify the host application to create and start this conditional kernel during
emulation.

Related Information

Implementing I/O Channels Using the io Channels Attribute on page 41

8.1.1. Emulating a Kernel that Passes Pipes or Channels by Value

The Intel FPGA SDK for OpenCL Emulator supports a kernel that passes pipes or
channels by value.

You may emulate a kernel that passes a channel or pipe by value, as shown in the
following example:

channel uint my_ch;

void my_function (channel uint ch,
__global uint * dst, int i)

dst[i] = read_channel_intel(ch);
__kernel void
consumer (__global uint * restrict dst)

for (int i=0;i<5;i++)

{
my_function(my_ch, dst, i);
3
3
Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

122

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-OCL002 | 2018.09.27

™ ®
8. Emulating and Debugging Your OpenCL Kernel < l n tel)

8.1.2. Emulating Channel Depth

When you compile your OpenCL kernel for emulation, the default channel depth is
different from the default channel depth generated when your kernel is compiled for
hardware. You can change this behavior when you compile your kernel for emulation
with the —emulator-channel-depth-model option.

The -emulator-channel-depth-model compiler option can take the following

values:

def aul t Channels with an explicit depth attribute have their specified depth.
Channels without a specified depth are given a default channel depth
that is chosen to provide the fastest execution time for your kernel
emulation.

strict All channel depths in the emulation are given a depth that matches
the depth given for the FPGA compilation.

i gnor e- All channels are given a channel depth chosen to provide the fastest

dept h execution time for your kernel emulation. Any explicitly set channel

depth attribute is ignored.

8.2. Compiling a Kernel for Emulation (-march=emulator)

To compile an OpenCL kernel for emulation, include the -march=emulator option in
your aoc command.

D Send Feedback

Before you perform kernel emulation, perform the following tasks:

— Install a Custom Platform from your board vendor for your FPGA accelerator
boards.

— Verify that the environment variable QUARTUS_ROOTDIR OVERRIDE points to
Intel Quartus Prime Pro Edition software installation folder.

To emulate your kernels on Windows systems, you need the Microsoft linker and
additional compilation time libraries. Verify that the PATH environment variable
setting includes all the paths described in the Setting the Intel FPGA SDK for
OpenCL Pro Edition User Environment Variables section of the Intel FPGA SDK for
OpenCL Pro Edition Getting Started Guide.

The PATH environment variable setting must include the path to the LINK_EXE file
in Microsoft Visual Studio.

Ensure that your LIB environment variable setting includes the path to the
Microsoft compilation time libraries.

The compilation time libraries are available with Microsoft Visual Studio.

Verify that the LD_LIBRARY _PATH environment variable setting includes all the
paths described in the Setting the Intel FPGA SDK for OpenCL Pro Edition User
Environment Variables section in the Intel FPGA SDK for OpenCL Pro Edition
Getting Started Guide.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

123

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Emulating and Debugging Your OpenCL Kernel
UG-OCL002 | 2018.09.27

To create kernel programs that are executable on x86-64 host systems, invoke the
aoc -march=emulator <your_kernel filename>.cl command.

To compile a kernel for emulation that targets a specific board, invoke the aoC
-march=emulator -board=<board_nane>
<your kernel filename>.cl command.

For Linux systems, the Intel FPGA SDK for OpenCL Offline Compiler offers
symbolic debug support for the debugger.

The offline compiler's debug support allows you to pinpoint the origins of
functional errors in your kernel source code.

Related Information

Compiling a Kernel for a Specific FPGA Board (-board=<board_name>) on page
107

Setting the Intel FPGA SDK for OpenCL Pro Edition User Environment Variables
(Windows)

Setting the Intel FPGA SDK for OpenCL Pro Edition User Environment Variables
(Linux)

8.3. Emulating Your OpenCL Kernel

To emulate your OpenCL kernel, run the emulation .aocx file on the platform on
which you build your kernel.

To emulate your kernel, perform the following steps:

1. Run the utility command aocl linkflags to find out which libraries are
necessary for building a host application. The software lists the libraries for both
emulation and regular kernel compilation flows.

2. Build a host application and link it to the libraries from Step 1.

Attention: To emulate multiple devices alongside other OpenCL SDKs, link your
host application to the Khronos ICD Loader Library before linking it to
the host runtime libraries. Link the host application to the ICD Loader
Library by modifying the Makefi le for the host application. Refer to
Linking Your Host Application to the Khronos ICD Loader Library for
more information.

3. If necessary, move the <your _kernel fil enane>.aocx file to a location where
the host can find easily, preferably the current working directory.

4. To run the host application for emulation:

— For Windows, first define the number of emulated devices by invoking the set
CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA=<nunber of devi ces>
command and then run the host application.

After you run the host application, invoke set
CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA= to unset the variable.

— For Linux, invoke the env
CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA=<nunmber _of _devi ces>
<host _application_fil ename> command.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

124

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807309901.html#ewa1416586552764
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807309901.html#ewa1416586552764
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807309901.html#ewa1416591141201
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807309901.html#ewa1416591141201
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-OCL002 | 2018.09.27

] ®
8. Emulating and Debugging Your OpenCL Kernel < l n tel)

This command specifies the number of identical emulation devices that the
Emulator needs to provide.

Remember: When the environment variable
CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA is set, only the
emulated devices are available, i.e., access to all physical boards is
disabled.

5. If you change your host or kernel program and you want to test it, only recompile
the modified host or kernel program and then rerun emulation.

Each invocation of the emulated kernel creates a shared library copy called
<process_| D>-libkernel .so in a default temporary directory, where
<process_ID> is a unique numerical value assigned to each emulation run. You may
override the default directory by setting the TMP or TEMP environment variable on
Windows, or setting TMPDIR on Linux.

Related Information

e Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or
linkflags) on page 93

e Linking Your Host Application to the Khronos ICD Loader Library on page 94

8.4. Debugging Your OpenCL Kernel on Linux

For Linux systems, you can direct the Intel FPGA SDK for OpenCL Emulator to run
your OpenCL kernel in the debugger and debug it functionally as part of the host
application. The debugging feature allows you to debug the host and the kernel
seamlessly. You can step through your code, set breakpoints, and examine and set
variables.

Prior to debugging your kernel, you must perform the following tasks:

1. During program execution, the debugger cannot step from the host code to the
kernel code. You must set a breakpoint before the actual kernel invocation by
adding these lines:

a. break <your_kernel >
This line sets a breakpoint before the kernel.
b. continue
If you have not begun debugging your host, then type start instead.

2. The kernel is loaded as a shared library immediately before the host loads the
kernels. The debugger does not recognize the kernel names until the host actually
loads the kernel functions. As a result, the debugger will generate the following
warning for the breakpoint you set before the execution of the first kernel:

Function "<your_kernel>" not defined.

Make breakpoint pending on future shared library load? (y or
D

Answer y. After initial program execution, the debugger will recognize the function
and variable names, and line humber references for the duration of the session.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

125

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

(intel”)

Caution:

Note:

8. Emulating and Debugging Your OpenCL Kernel
UG-OCL002 | 2018.09.27

The Emulator uses the OpenCL runtime to report some error details. For emulation,
the runtime uses a default print out callback when you initialize a context via the
clICreateContext function.

Kernel debugging is independent of host debugging. Debug your host code in existing
tools such as Microsoft Visual Studio Debugger for Windows and GDB for Linux.

To compile your OpenCL kernel for debugging, perform the following steps:

1.

To generate a .aocx file for debugging that targets a specific accelerator board,
invoke the aoc -march=emulator <your kernel _fil enanme>_cl
-board=<boar d_nanme> command.

Attention: Specify the name of your FPGA board when you run your host
application. To verify the name of the target board for which you
compile your kernel, invoke the aoc -march=emulator -v
<your kernel filename>.cl command. The Intel FPGA SDK for
OpenCL Offline Compiler will display the name of the target FPGA
board.

Run the utility command aocl Binkflags to find out the additional libraries
necessary to build a host application that supports kernel debugging.

Build a host application and link it to the libraries from Step 2.

Ensure that the <your _kernel _fil enanme>_aocx file is in a location where the
host can find it, preferably the current working directory.

To run the application, invoke the command env
CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA=<nunber _of _devi ces> gdb
—--args <your _host _program nane>, where <number_of_devices> is the
number of identical emulation devices that the Emulator needs to provide.

If you change your host or kernel program and you want to test it, only recompile
the modified host or kernel program and then rerun the debugger.

Related Information

Compiling a Kernel for a Specific FPGA Board (-board=<board_name>) on page
107

Generating Compilation Progress Report (-v) on page 110

Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or
linkflags) on page 93

8.5. Limitations of the Intel FPGA SDK for OpenCL Emulator

The Intel FPGA SDK for OpenCL Emulator feature has some limitations.

1. Execution model
The Emulator supports the same compilation modes as the FPGA variant. As a
result, you must call the clCreateProgramBinary function to create
cl_program objects for emulation.
2. Concurrent execution
Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D Send Feedback

126

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
8. Emulating and Debugging Your OpenCL Kernel l n tel)

UG-OCL002 | 2018.09.27

Modeling of concurrent kernel executions has limitations. During execution, the
Emulator does not actually run interacting work-items in parallel. Therefore, some
concurrent execution behaviors, such as different kernels accessing global
memory without a barrier for synchronization, might generate inconsistent
emulation results between executions.

Kernel performance

The .aocx file that you generate for emulation does not include any
optimizations. Therefore, it might execute at a significantly slower speed than
what an optimized kernel might achieve. In addition, because the Emulator does
not implement actual parallel execution, the execution time multiplies with the
number of work-items that the kernel executes.

The Emulator executes the host runtime and the kernels in the same address
space. Certain pointer or array usages in your host application might cause the
kernel program to fail, and vice versa. Example usages include indexing external
allocated memory and writing to random pointers. You may use memory leak
detection tools such as Valgrind to analyze your program. However, the host might
encounter a fatal error caused by out-of-bounds write operations in your kernel,
and vice versa.

Emulation of channel behavior has limitations, especially for conditional channel
operations where the kernel does not call the channel operation in every loop
iteration. In these cases, the Emulator might execute channel operations in a
different order than on the hardware.

8.6. Discrepancies in Hardware and Emulator Results

When you emulate a kernel, your OpenCL system might produce results different from
that of the kernel compiled for hardware. You can further debug your kernel before
you compile for hardware by running your kernel through simulation.

Warning: These discrepancies usually occur when the Intel FPGA SDK for OpenCL Emulator is
unable to model some aspects of the hardware computation accurately, or when your
program relies on an undefined behavior.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

127

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Emulating and Debugging Your OpenCL Kernel
UG-OCL002 | 2018.09.27

The most common reasons for differences in emulator and hardware results are as
follows:

Your OpenCL kernel code is using the #pragma ivdep directive. The Emulator will
not model your OpenCL system when a true dependence is broken by a pragma
ivdep directive. During a full hardware compilation, you will observe this as an
incorrect result.

Your OpenCL kernel code is relying on uninitialized data. Examples of uninitialized
data include uninitialized variables and uninitialized or partially initialized global
buffers, local arrays, and private arrays.

Your OpenCL kernel code behavior depends on the precise results of floating point
operations. The Emulator uses floating point computation hardware of the CPU
whereas the hardware run uses floating point cores implemented as FPGA cores.
The use of —Fp-relaxed aoc option in your OpenCL kernel code might change
the order of operations leading to further divergence in the floating point results.

Note: The OpenCL standard allows one or more least significant bits of floating
point computations to differ between platforms, while still being considered
correct on both such platforms.

Your OpenCL kernel code behavior depends on the order of channel accesses in
different kernels. The emulation of channel behavior has limitations, especially for
conditional channel operations where the kernel does not call the channel
operation in every loop iteration. In such cases, the Emulator might execute
channel operations in an order different from that on the hardware.

Your OpenCL kernel or host code is accessing global memory buffers out-of-
bounds.

Attention: — Uninitialized memory read and write behaviors are platform-
dependent. Verify sizes of your global memory buffers when using
all addresses within kernels, allocating clCreateBuffer function
call, and transferring clEnqueueReadBuffer and
clEnqueueWriteBuffer function calls.

— You may use software memory leak detection tools, such as
Valgrind, on emulated version of your OpenCL system to analyze
memory related problems. Absence of warnings from such tools
does not mean the absence of problems. It only means that the
tool could not detect any problem. In such a scenario, Intel
recommends manual verification of your OpenCL kernel or host
code.

Your OpenCL kernel code is accessing local or private variables out-of-bounds. For
example, accessing a local or private array out-of-bounds or accessing a private
variable after it has gone out of scope.

Attention: In software terms, these issues are referred to as stack corruption
issues because accessing variables out-of-bounds usually affects
unrelated variables located close to the variable being accessed on a
software stack. Emulated OpenCL kernels are implemented as regular
CPU functions, and have an actual stack that can be corrupted. When
targeting hardware, no stack exists and hence, the stack corruption
issues are guaranteed to manifest differently. You may use memory
leak analyzer tools, such as Valgrind, when a stack corruption is
suspected. However, stack related issues are usually difficult to
identify. Intel recommends manual verification of your OpenCL kernel
code to debug a stack related issue.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

128

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-OCL002 | 2018.09.27

™ ®
8. Emulating and Debugging Your OpenCL Kernel < l n tel)

e Your OpenCL kernel code is using shifts that are larger than the type being shifted.
For example, shifting a 64-bit integer by 65 bits. According to the OpenCL
specification version 1.0, the behavior of such shifts is undefined.

Warning: If the shift amount is known during compilation, the offline compiler
issues a warning message. You must heed to the warning message.

e When you compile your OpenCL kernel for emulation, the default channel depth is
different from the default channel depth generated when your kernel is compiled
for hardware. This difference in channel depths might lead to scenarios where
execution on the hardware hangs while kernel emulation works without any issue.
Refer to Emulating Channel Depth on page 123 for information on how to fix the
channel depth difference.

e In terms of ordering the printed lines, the output of the printf function might be
ordered differently on the Emulator and hardware. This is because, in the
hardware, printf data is stored in a global memory buffer and flushed from the
buffer only when the kernel execution is complete, or when the buffer is full. In
the Emulator, the printf function uses the x86 stdout.

e If you perform an unaligned load/store through upcasting of types, the FPGA and
emulator might produce different results. An load/store of this type is undefined in
the C99 specification.

For example, the following operation might produce unexpected results:

int tmp = *((int *) (my_ptr + 5));

Related Information
Debugging Your OpenCL Library Through Simulation (Preview) on page 161

8.7. Using the Fast Emulator (Preview)

A preview version of a fast OpenCL emulator is available with the Pro edition of the
Intel FPGA SDK for OpenCL. This feature enables faster emulation of OpenCL kernels,
and supports most of the same features as the default emulator. Review this section to
see whether your kernel code is compatible with this preview release of the fast
emulator.

Fast Emulator Requirements

The fast emulator supports 64-bit Windows and Linux operating systems. On Linux
systems, the GNU C Library (glibc) version 2.15 or greater is required. Some older
Linux systems might not meet this requirement.

Fast Emulator Setup

If you installed the Intel FPGA SDK for OpenCL Pro edition with administrator
privileges, no additional setup is needed.

If you did not install the Intel FPGA SDK for OpenCL with administrator privileges, you
must perform some additional steps to enable the fast emulator:

1. Manually set up the fast emulator installable client driver (ICD) entry:

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

129

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 8. Emulating and Debugging Your OpenCL Kernel

UG-OCL002 | 2018.09.27

e Linux: Ensure that the file /etc/OpenCL/vendors/
Intel FPGA SSG_Emulator.icd matches the file found in the directory
that the environment variable INTELFPGAOCLSDKROOT specifies The
INTELFPGAOCLSDKROOT environment variable points to the location of the
SDK installation.

If the files do not match, or if it is missing from Zetc/OpenCL/vendors,
copy the Intel _FPGA_SSG_Emulator. icd file from the location specified by
the INTELFPGAOCLSDKROOT environment variable to /etc/OpenCL/
vendors directory.

e Windows: Ensure that the registry key HKEY_LOCAL_MACHINE\SOFTWARE
\Khronos\OpenCL\Vendors contains the following value:
[HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\OpenCL\Vendors]
"intelocl64 _emu.dll'"=dword:00000000

2. Manually install (or reinstall) the Intel FPGA SDK for OpenCL with Intel FPGA
Support Preview.

This step ensures that the 64-bit Intel SDK for OpenCL - Offline Compiler
command line interface (10c64) is installed on your system.

Using the Fast Emulator

When you target the fast emulator, the commands for compiling your kernel and host
code are different compared to the default emulator.

Kernel To compile a kernel to use with the fast emulator, specify the --
Compilation fast-emulator flag to the compiler invocation command. For
example:

aoc -march=emulator -fast-emulator <kernel filenanme>.cl -o
<kernel _fil ename>_aocx

This command generates an .aocx file that can be used with the fast
emulator. This .aocx file is not compatible with the default emulator.

Host To use the fast emulator, your host code must select the fast emulator
Compilation OpenCL platform. Your code can select this platform by using the
following fast emulator platform name:

Intel (R) FPGA Emulation Platform for OpenCL(TM) (preview)
When you compile the host code, ensure you link against the Khronos

ICD Loader Library, as described in Linking Your Host Application to
the Khronos ICD Loader Library on page 94.

See the OpenCL Vector Addition Design Example on the Intel FPGA website for an
example application that makes use of the fast emulator.

Related Information

e Linking Your Host Application to the Khronos ICD Loader Library on page 94
e OpenCL Installable Client Driver (ICD) Loader

e OpenCL Vector Addition Design Example

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

130

https://www.khronos.org/news/permalink/opencl-installable-client-driver-icd-loader
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/vector-addition.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-OCL002 | 2018.09.27

] ®
8. Emulating and Debugging Your OpenCL Kernel < l n tel)

8.7.1. Fast Emulator Environment Variables

Several environment variables are available to modify the behavior of the fast

emulator.

OCL_TBB_NUM_WORKERS

Indicates a maximum number of threads that can be used by the emulator. The
default value is 32, and the maximum value is 255. Each thread can run a single

kernel.

If the application requires several kernels to be executing simultaneously, the
OCL_TBB_NUM_WORKERS should be set appropriately (to the number of kernels used
or a higher value).

CL_CONFIG_CPU_FORCE_LOCAL_MEM_SIZE

Set the amount of available OpenCL local memory, with units, for example: 8MB,
256KB, or 1024B.

CL_CONFIG_CPU_FORCE_PRIVATE_MEM_SIZE

Set the amount of available OpenCL private memory, with units, for example: 8MB,
256KB, or 1024B.

CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE

When you compile your OpenCL kernel for emulation, the channel depth is different
from the channel depth generated when your kernel is compiled for hardware. You can
change this behavior with the CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE
environment variable.

This CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE environment variable can take
the following values:

ighore-
depth

default

strict

All channels are given a channel depth chosen to provide the fastest
execution time for your kernel emulation. Any explicitly set channel depth
attribute is ignored.

This value is used by default if
CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE environment variable
is not set.

Channels with an explicit depth attribute have their specified depth.
Channels without a specified depth are given a default channel depth that
is chosen to provide the fastest execution time for your kernel emulation.

All channel depths in the emulation are given a depth that matches the
depth given for the FPGA compilation.

For channels, the CL_CONFIG_CHANNEL_DEPTH_EMULATION_MODE environment
variable should be set for a kernel compilation. For pipes, it should be set for a host
program execution.

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

131

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-OCL002 | 2018.09.27

] ®
< l n tel) 8. Emulating and Debugging Your OpenCL Kernel

Related Information
Emulating Channel Depth on page 123

8.7.2. Extensions Supported by the Fast Emulator
The fast emulator offers varying levels of support for different OpenCL extensions.

The following OpenCL extensions are fully supported by the fast emulator:
e cl_intel_fpga_host_pipe

e cl_khr_3d_image_writes

e cl_khr_byte_addressable_store

e cl_khr_icd

e cles_khr_int64

The fast emulator also supports the following OpenCL extensions to a similar degree
as the default emulator:

e cl_intel_channels

e cl_khr_local_int32_base_atomics

e cl_khr_local_int32_extended_atomics
e cl_khr_global_int32_base_atomics

e cl_khr_global_int32_extended_atomics
e cl_khr_fp64

e cl_khr_3d_image_writes

e cl_khr_fpl6

8.7.3. Fast Emulator Known Issues

A few known issues might affect your use of the fast emulator. Review these issues to
avoid possible problems when using the fast emulator.

AutoRun Kernels

AutoRun kernels shut down only after a host program exits, not after a
clReleaseProgram() call.

Compiler Diagnostics

Some compiler diagnostics are not yet implemented for the fast emulator.
CL_OUT_OF_RESOURCES Error Returned From clEnqueueNDRangeKernel ()

This can occur when the kernel used more __ private or ___local memory than the
fast emulator supports by default.

Try setting the CL_CONFIG_CPU_FORCE_PRIVATE_MEM_SIZE or the
CL_CONFIG_CPU_FORCE_LOCAL_MEM_SIZE environment variables, as described in
Fast Emulator Environment Variables on page 131.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

132

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
8. Emulating and Debugging Your OpenCL Kernel l n tel)

UG-OCL002 | 2018.09.27

CL_INVALID_VALUE Error Returned From clICreateKernel ()
It is possible a call to the cl1BuildProgram() was missed.

This call is required by the OpenCL specification, even if a program is created from a
binary. See section 5.4.2 of the OpenCL Specification version 1.0 for details.

Related Information
e Fast Emulator Environment Variables on page 131
e The OpenCL Specification, Version 1.0

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

133

https://www.khronos.org/registry/OpenCL/specs/opencl-1.0.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

h
UG-OCL002 | 2018.09.27 l n tel
D Send Feedback

9. Reviewing Your Kernel's report.html File

Attention:

The analyze-area Intel FPGA SDK for OpenCL utility option has been deprecated. To

view your kernel's estimated area usage, refer to the report._html file.

For reference information on the deprecated area report, refer to the Review Your
Kernel's Area Report to Identify Inefficiencies in Resource Usage section in version

16.0 of the Altera SDK for OpenCL Best Practices Guide.

After compiling your OpenCL kernel, the Intel FPGA SDK for OpenCL Offline Compiler
automatically generates an HTML report that analyzes various aspects of your kernel,

such as area, loop structure, memory usage, and kernel pipeline.
To launch the HTML report, open the report.html file in the
<your _kernel _fil ename>/reports directory.

For more information on the HTML report, refer to the Review Your Kernel's

report.html File section in the Intel FPGA SDK for OpenCL Best Practices Guide.

Related Information
e Review Your Kernel's report.html File
e Altera SDK for OpenCL Best Practices Guide version 16.0

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html#yyl1476199406907
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/archives/ug-aocl-best-practices-guide-16.0.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

UG-OCL002 | 2018.09.27

D Send Feedback

10. Profiling Your OpenCL Kernel

Attention:

The Intel FPGA Dynamic Profiler for OpenCL measures and reports performance data
collected during OpenCL kernel execution on the FPGA. The Intel FPGA Dynamic
Profiler for OpenCL relies on performance counters to gather kernel performance data.

You can then review performance data in the Profiler GUI.

1. Instrumenting the Kernel Pipeline with Performance Counters (-profile) on page

135

Launching the Intel FPGA Dynamic Profiler for OpenCL GUI (report) on page 136

Profiling Autorun Kernels on page 137

10.1. Instrumenting the Kernel Pipeline with Performance Counters

(-profile)

To instrument the OpenCL kernel pipeline with performance counters, include the
-profile=(all]autorun]enqueued) option of the aoc command when you

compile your kernel.

Instrumenting the Verilog code with performance counters increases hardware

resource utilization (that is, increases FPGA area usage) and typically decreases

performance.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

10. Profiling Your OpenCL Kernel
UG-OCL002 | 2018.09.27

To instrument the Verilog code in the <your _kernel _fil enane>.aocx file with
performance counters, invoke the aoc —-profile=(all]autorun]
enqueued) <your_kernel _fil ename>.cl command, where:

— all argument instruments all kernels in the <your _kernel _fil ename>_cl
file with performance counters. This is the default option if no argument is
provided.

— autorun argument instruments only the autorun kernels with performance
counters.

— enqueued argument instruments only the non-autorun kernels with
performance counters.

Attention: — When profiling multiple, different kernels, do not use the same
kernel names across different .aocx files. If the kernel names are
the same, the profile data will be wrong for these kernels.

— Regardless of the input to the
clGetProfileDataDevicelntelFPGA host library call , the
Intel FPGA Dynamic Profiler for OpenCL only profiles kernel types
that you indicate during compilation.

Caution: Profiling autorun kernels results in some hardware overhead for the
counters. For large designs, the overhead can cause f,2x and design
frequency degradation. It can also lead to designs that cannot fit on the
chip if the Intel FPGA Dynamic Profiler for OpenCL profiles every kernel.

Run your host application from a local disk to execute the

<your _kernel _fil ename>_aocx file on your FPGA. During kernel execution,
the performance counters throughout the kernel pipeline collects profile
information. The host saves the information in a profile._mon monitor
description file in your current working directory.

Caution: Because of slow network disk accesses, running the host application
from a networked directory might introduce delays between kernel
executions. These delays might increase the overall execution time of
the host application. In addition, they might introduce delays between
kernel launches while the runtime stores profile output data to disk.

10.2. Launching the Intel FPGA Dynamic Profiler for OpenCL GUI

(report)

You can use the Intel FPGA Dynamic Profiler for OpenCL report utility command to
launch the Profiler GUI. The Profiler GUI allows you to view kernel performance data
statistics that the Intel FPGA Dynamic Profiler for OpenCL collects during kernel
execution.

The Intel FPGA Dynamic Profiler for OpenCL stores performance data in a
profile.mon file in your current working directory.

To launch the Intel FPGA Dynamic Profiler for OpenCL GUI, invoke the aocl
report <your_kernel _fil enanme>_aocx profile.mon
[<your kernel filenane>.source] utility command.

Important: If you do not specify the .source file in the command, the Intel FPGA
Dynamic Profiler for OpenCL GUI will not have a source code tab.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

136

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
10. Profiling Your OpenCL Kernel l n tel)

UG-OCL002 | 2018.09.27

10.3. Profiling Autorun Kernels

Attention:

Autorun kernel profiling feature allows you to profile autorun kernels.

Kernels that are marked with the autorun attribute are referred to as autorun
kernels. Hence, an autorun kernel starts executing automatically before other kernels
are launched explicitly by the host, and restarts automatically on completion. For
more information about the autorun attribute, refer to Omit Communication
Hardware between the Host and the Kernel topic.

Since autorun kernels never complete, you must call the host library call
clGetProfileDataDevicelntel FPGA to capture the autorun profiler data. You can
instruct the host application to make this call at any point during execution.

Autorun kernel profiling feature does not support autorun kernels that use global
memory or allow profiling individual kernels.

Related Information

e Omit Communication Hardware between the Host and the Kernel on page 171
e Profiling Enqueued and Autorun Kernels on page 86

e Profile Data Acquisition on page 87

e Multiple Autorun Profiling Calls on page 87

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

137

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
UG-OCL002 | 2018.09.27 ln tel)

D Send Feedback

11. Developing OpenCL Applications Using Intel Code
Builder for OpenCL

The Intel Code Builder for OpenCL is a software development tool available as part of
the Intel FPGA SDK for OpenCL. It enables development of OpenCL applications via
well-known integrated development environments targeting the Intel FPGAs.

The Intel Code Builder for OpenCL provides a set of Microsoft Visual Studio and Eclipse
plug-ins that enable capabilities for creating, building, debugging, and analyzing
Windows and Linux applications accelerated with OpenCL.

11.1. Configuring the Intel Code Builder for OpenCL Offline
Compiler Plug-in for Microsoft Visual Studio

To enable the Intel Code Builder for OpenCL offline compiler plug-in for Microsoft
Visual Studio, perform the following steps:

1. In the Visual Studio software, select Project O Properties.

2. 1In the Project O Properties 0 Code Builder page, change the Device to your
desired FPGA device.

3. Inthe C/C++ O General property page, under Additional Include Directories,
enter the full path to the directory where the OpenCL code header files are located
($(I NTELFPGAOCLSDKROOT)\include).

4. In the Linker O General property page, under Additional Library Directories,
enter the full path to the directory where the OpenCL code run-time import library
file is located. For example, for 64-bit application, add $
(I NTELFPGAOCLSDKROOT)\ 1 1b\x64:

5. 1In the Linker O Input property page, under Additional Dependencies, enter
the name of the OpenCL ICD import library file as OpenCL . lib.

11.2. Configuring the Intel Code Builder for OpenCL Offline
Compiler Plug-in for Eclipse
To enable the Intel Code Builder for OpenCL offline compiler plug-in for Eclipse IDE,
perform the following steps:

1. Copy the CodeBuilder_<ver si on>_jar plug-in file from
$| NTELFPGACCL SDKROOT /ecl ipse-plug-in to <ECLI PSE_ROOT_FOLDER>/
dropins.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2015
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

UG-OCL002 | 2018.09.27

| | ®
11. Developing OpenCL Applications Using Intel Code Builder for OpenCL < l n tel)

Attention: In Linux, you must add $I NTELFPGAOCLSDKROOT\bin to the
LD_LIBRARY_PATH environment variable.

Run the Eclipse IDE.

Select Windows [Preferences.

Switch to the Intel OpenCL dialog.

Set the OpenCL binary directory to $I NTELFPGACCL SDKROOT/bin.

Once the offline compiler is configured, you can use the Code-Builder menu to
perform the following basic operations:

i & WN

e Create a new session

e Open an existing session
e Save a session

e Build a session

e Compile a session

e Configure a session

For more information about the Intel Code Builder for OpenCL, refer to Developer
Guide for Intel SDK for OpenCL Applications. For information about how to
configure the Intel Code Builder for OpenCL for Microsoft Visual Studio, refer to
Intel Code Builder for OpenCL API for Microsoft Visual Studio. For information
about how to configure the Intel Code Builder for OpenCL for Eclipse, refer to Intel
Code Builder for OpenCL API for Eclipse.

Related Information

e Developer Guide for Intel SDK for OpenCL Applications

e Intel Code Builder for OpenCL API for Microsoft Visual Studio

e Intel Code Builder for OpenCL API for Eclipse

11.3. Creating a Session in the Intel Code Builder for OpenCL

Perform the following steps to create a session in the Intel Code Builder for OpenCL:
1. Select Code-Builder O OpenCL Kernel Development 0 New Session.

2. Specify the session name, path to the folder to store the session file and the
content of the session (can be either an empty session or with a predefined
OpenCL code).

3. Click Done.

Once the session is created, the new session appears in the Code Builder Sessions
Explorer view.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

139

https://software.intel.com/en-us/code-builder-user-manual
https://software.intel.com/en-us/node/539284
https://software.intel.com/en-us/code-builder-user-manual-intel-code-builder-for-opencl-api-for-eclipse
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-OCL002 | 2018.09.27

] ®
< l n tel) 11. Developing OpenCL Applications Using Intel Code Builder for OpenCL

Figure 16. Code Builder Sessions Explorer

Code Builder Sessions Explorer &3

4 ¥ Session session_42
4 [Input File(s)
SobelFilter.cl
4 5 Build Artifacts
B sobelFilter.ir
=] SobelFilter_SobelFilter.gen
Bl sobelFilter.ll
Bl sobelFilter_x4.l
B SobelFilter_x64.spir
B sobelFilter xs6.l
EI SobelFilter_x86.5pir
EI SobelFilter_x86.5pirv
B SobelFilter_x64.spirv
B SobelFilter_x86.taspirv
EI SobelFilter_xt4d bdspirv
4 [Kernel(s)
- |4p SobelFiler
4 [Reports
SobelFilter_20160717052512 . html
= SobelFilter 21}1&}?1?{}52541htm||
LastRunReport.html

Note: If you do not see the Code Builder Session Explorer view, select Code-builder 0
OpenCL Kernel Development 0 Windows [0 Code Builder Session Explorer.

11.4. Configuring a Session

A configuration is a set of analysis inputs such as assigned variables, number of
iterations, global sizes and local sizes of a specific kernel, and so on. You can create a
separate configuration for each set of inputs that you want to analyze.

You can configure a session by right-clicking the session in the Code Builder Session
Explorer and selecting Session Options. Alternatively, you can also open the
Session Settings dialog box by selecting Code-Builder 0 OpenCL Kernel
Development 00 Session Options.

The Session Settings dialog box allows you to configure:

¢ Device options such as target machine, OpenCL platform, and OpenCL device.

e Build options such as offline compiler flags and build architecture.

* Build artifacts such as .aocx and .aoco files, and static reports.

e General options such as job architecture and network settings.

In the Device Options tab, ensure to select Intel FPGA SDK for OpenCL in the
OpenCL platform drop-down list.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

140

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
11. Developing OpenCL Applications Using Intel Code Builder for OpenCL l n tel)

UG-OCL002 | 2018.09.27

Under the Build Options tab, in the OpenCL Build Options section, enter the Intel
FPGA SDK for OpenCL Offline Compiler flags manually.

Attention: If your kernel has channels, you must configure workflows. A workflow is a set of
kernels, which can be executed sequentially. Workflow can be used to execute a
workload with channels where you connect the input of one kernel with the output of
the previous kernel (by assigning the same variable for both kernels).

For more information about configuring a session and variable management, refer to
the Developer Guide for Intel SDK for OpenCL Applications.

Related Information

D Send Feedback

Configuring a Session in Microsoft Visual Studio
Configurations and Settings in Eclipse
Variable Management in Microsoft Visual Studio

Variable Management in Eclipse

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

141

https://software.intel.com/en-us/code-builder-user-manual-configuring-a-session
https://software.intel.com/en-us/code-builder-user-manual-configurations-and-settings
https://software.intel.com/en-us/node/539326
https://software.intel.com/en-us/code-builder-user-manual-variable-management-in-eclipse
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-OCL002 | 2018.09.27 l

D Send Feedback

12. Intel FPGA SDK for OpenCL Advanced Features

The Intel FPGA SDK for OpenCL provides advanced features you can use to control the
following aspects of the design architecture and the Intel FPGA SDK for OpenCL Offline

Compiler's behavior:

12.1. OpenCL Library

An OpenCL library is a single file that contains multiple functions. Each function is
comprised of data processing logic that works at any clock frequency. You can create
an OpenCL library in OpenCL or register transfer level (RTL). You can then include this

library file and use the functions inside your OpenCL kernels.

Figure 17. Overview of Intel FPGA SDK for OpenCL's Library Support

Intel FPGA SDK for OpenCL
Offline Compiler

You may use a previously-created library or create your own library. To use an OpenCL

library, you do not require in-depth knowledge in hardware design or in the

implementation of library components. To create an OpenCL library, you need to

create the following files and components:

Table 4. Necessary Files and Components for Creating an OpenCL Library

File or Component Description

RTL Components

component.

(-tcl) are not allowed.

RTL source files Verilog, System Verilog, or VHDL files that define the RTL

Additional files such as Intel Quartus Prime IP File (.qip),
Synopsys Design Constraints File (.sdc), and Tcl Script File

continued...

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

™1 ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I)

UG-OCL002 | 2018.09.27

File or Component Description

eXtensible Markup Language File (.xml) Describes the properties of the RTL component. The Intel

FPGA SDK for OpenCL Offline Compiler uses these
properties to integrate the RTL component into the OpenCL

pipeline.

Header file (-h) A C-style header file that declares the signatures of
function(s) that are implement by the RTL component.

OpenCL emulation model file (.cl) Provides C model for the RTL component that is used only
for emulation. Full hardware compilations use the RTL
source files.

OpenCL Functions

OpenCL source files (.cl) Contains definitions of the OpenCL functions. These

functions are used during emulation and full hardware
compilations.

Header file (-.h) A C-style header file that declares the signatures of

function(s) that are defined in the OpenCL source files.

Remember:

There is no difference in the header file used for RTL and OpenCL library functions. A
single header file can have both types of functions declared. A single library can
contain both RTL and OpenCL library functions.

Understanding RTL Modules and the OpenCL Pipeline on page 143

Packaging an OpenCL Helper Function File for an OpenCL Library on page 156
Packaging an RTL Component for an OpenCL Library on page 157

Verifying the RTL Modules on page 159

Packaging Multiple Object Files into a Library File on page 160

Specifying an OpenCL Library when Compiling an OpenCL Kernel on page 160
Debugging Your OpenCL Library Through Simulation (Preview) on page 161

Using an OpenCL Library that Works with Simple Functions (Example 1) on page 164
Using an OpenCL Library that Works with External Memory (Example 2) on page 165
OpenCL Library Command-Line Options on page 166

Related Information
OpenCL Library Command-Line Options on page 166

12.1.1. Understanding RTL Modules and the OpenCL Pipeline

The OpenCL library feature allows you to use RTL modules, written in Verilog,
SystemVerilog, or VHDL, inside OpenCL kernels. This section provides an overview of
how the Intel FPGA SDK for OpenCL Offline Compiler integrates RTL modules into the
Intel FPGA SDK for OpenCL pipeline architecture.

Use RTL modules under the following circumstances:

¢ You want to use optimized and verified RTL modules in OpenCL kernels without
rewriting the modules as OpenCL functions.

¢ You want to implement OpenCL kernel functionality that you cannot express
effectively in OpenCL.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

143

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 12. Intel FPGA SDK for OpenCL Advanced Features

UG-OCL002 | 2018.09.27

12.1.1.1. Overview: Intel FPGA SDK for OpenCL Pipeline Approach

Figure 18.

The following figure depicts the architecture of an Intel FPGA SDK for OpenCL
pipeline:

Parallel Execution Model of Intel FPGA SDK for OpenCL Pipeline Stages

The operations on the right represent the SDK's pipeline implementation of the OpenCL kernel code on the left.
Each yellow box is an operation or data value found in the pipeline. The number associated with each operation
represents the number of threads in the pipeline.

void kernel pe (global int* A,
global int* B,
global int* C) {

R - - 3
int gid = get_global_id(0); . global D (gid)

! Load B D

int a
int b

ALgid];
B[gid];

C[gid] = a + b;

Store C

Assume each level of operation is one stage in the pipeline. At each stage, the Intel
FPGA SDK for OpenCL Offline Compiler executes all operations in parallel by the
thread existing at that stage. For example, thread 2 executes Load A, Load B, and
copies the current global ID (via gid) to the next pipeline stage. Similar to the
pipelined execution on instructions in reduced instruction set computing (RISC)
processors, the SDK's pipeline stages also execute in parallel. The threads will
advance to the next pipeline stage only after all the stages have completed execution.

oready ivalid
Add

iready ovalid

Some operations are capable of stalling the Intel FPGA SDK for OpenCL pipeline.
Examples of such operations include variable latency operations like memory load and
store operations. To support stalls, ready and valid signals need to propagate
throughout the pipeline so that the offline compiler can schedule the pipeline stages.
However, ready signals are not necessary if all operations have fixed latency. In these
cases, the offline compiler optimizes the pipeline to statically schedule the operations,
which significantly reduces the logic necessary for pipeline implementation.

12.1.1.2. Integration of an RTL Module into the Intel FPGA SDK for OpenCL

144

Pipeline
When you specify an OpenCL library during kernel compilation, the offline compiler
integrates the RTL module within the library into the overall pipeline.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

intel.

Figure 19. Integration of an RTL Module into an Intel FPGA SDK for OpenCL Pipeline
This figure depicts the integration of the RTL module myMod into the pipeline depicted in Figure 18 on page

144,

! gid

a N l
extern int myMod(int, int);
void kernel pe(global int* A, ! Load B) ! gid)
global int* B,
global int* C){
int gid = get_global_id(0); m
int a = A[gid];
int b = B[gid];
x C[gid] = myMod(a, b); 3 cycles
o /

oready ivalid

iready ovalid

Store C

The depicted RTL module has a balanced latency where the threads of the RTL module
match the number of pipeline stages. A balanced latency allows the threads of the RTL
module to execute without stalling the SDK's pipeline.

Setting the latency of the RTL module

in the RTL specification file allows the offline

compiler to balance the pipeline latency. RTL supports Avalon™ Streaming (Avalon-ST)
interfaces; therefore, the latency of the RTL module can be variable (that is, not
fixed). However, the variability in the latency should be small in order to maximize
performance. In addition, specify the latency in the <RTL nodul e descri ption
file nanme>.xml specification file so that the RTL module experiences a good

approximation of the actual latency in

Related Information
e Avalon Interface Specifications

steady state.

e Pipelined Read Transfer with Variable Latency

e Pipelined Read Transfers with Fixed Latency

e Avalon Streaming (Avalon-ST) Interface on page 147
e XML Syntax of an RTL Module on page 149

12.1.1.3. Stall-Free RTL

The Intel FPGA SDK for OpenCL Offline Compiler can optimize hardware resource
usage and performance by removing stall logic around an RTL module with fixed

latency.

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

145

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467963376
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467942812
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467944915
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n ®
l n tel) 12. Intel FPGA SDK for OpenCL Advanced Features

UG-OCL002 | 2018.09.27

An RTL module that has a variable latency and uses Avalon-ST input and output
signals can wait until input data is ready. Conversely, the Intel FPGA SDK for OpenCL
pipeline can stall until it receives valid output data from the RTL module. For an RTL
module with a fixed latency, you can remove an RTL stall by modifying the <RTL
nodul e description file nane>.xml specification file, as described below.

1. To instruct the offline compiler to remove stall logic around the RTL module, if
appropriate, set the IS_STALL_FREE attribute under the FUNCTION element to
"yes".

This modification informs the offline compiler that the RTL module produces valid
data every EXPECTED_LATENCY cycle(s).

Note: EXPECTED_LATENCY is an attribute you specify in the .xml file under the
FUNCTION element.

2. Specify a value for EXPECTED_LATENCY such that the latency equals the number
of pipeline stages in the module.

Caution: An inaccurate EXPECTED_LATENCY value will cause the RTL module to
be out of sync with the rest of the pipeline.

A stall-free RTL module might receive an invalid input signal (that is, ivalid is low).
In this case, the module ignores the input and produces invalid data on the output.
For a stall-free RTL module without an internal state, it might be easier to propagate
the invalid input through the module. However, for an RTL module with an internal
state, you must handle an ival id=0 input carefully.

12.1.1.4. RTL Module Interfaces

For an RTL module to properly interact with other compiler-generated operations, you
must support a simplified Avalon Streaming Interface at both input and output of an
RTL module.

The following diagram shows the complete interface of the myMod RTL module shown
in Figure 19 on page 145.

C Upstream module

oready] ivalid A B
\
myMod
(v J
iready ovalid C

\
Downstream module
C)

In this diagram, myMod interacts with the upstream module through data signals, A
and B, and control signals, ivalid (input) and oready (output). The ivalid control
signal equals 1 (ivalid = 1) if and only if data signal A and data signal B contain
valid data. When the control signal oready equals 1 (oready = 1), it indicates that
the myMod RTL module can process the data signals A and B if they are valid (that is,
ivalid = 1). When ivalid = 1 and oready = 0, the upstream module is
expected to hold the values of Ivalid, A, and B in the next clock cycle.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

146

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I)

UG-OCL002 | 2018.09.27

myMod interacts with the downstream module through data signal C and control
signals, oval id (output) and iready (input). The oval id control signal equals 1
(ovalid = 1) if and only if data signal C contains valid data. The 1ready control
signal equals 1 (ivalid = 1) indicates that the downstream module is able to
process data signal C if it is valid. When ovalid = 1 and iready = 0, the myMod
RLT module is expected to hold the valid of the ovalid and C signals in the next clock
cycle.

myMod module will assert oready for a single clock cycle to indicate it is ready for an
active cycle. Cycles during which myMod module is ready for data are called ready
cycles. During ready cycles, the module above myMod module can assert ivalid to
send data to myMod.

For a detailed explanation of data transfer under backpressure, refer to Data Transfer
with Backpressure in Avalon Interface Specification. Ignore the information pertaining
to readyLatency option.

Related Information
Data Transfer with Backpressure
12.1.1.5. Avalon Streaming (Avalon-ST) Interface

The offline compiler expects the RTL module to support Avalon-ST interface with
readyLatency = O, at both input and output.

As shown in Figure 19 on page 145, the RTL module must have 4 ports:

e ivalid and iready, as the input Avalon-ST interface

e ovalid and oready, as the output Avalon-ST interface

The following figure shows the timing diagram for input data transfer with back

pressure. For more information about Avalon-ST interfaces, see the “Avalon Streaming
Interfaces” section in Avalon Interface Specifications.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

147

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467975241
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467975241
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467975241
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467963376
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467963376
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 12. Intel FPGA SDK for OpenCL Advanced Features

UG-OCL002 | 2018.09.27

valid 1 LJ L
S0 I VR OER

For an RTL module with a fixed latency, the output signals (ovalid and oready) can
have constant high values, and the input ready signal (iready) can be ignored.

A stall-free RTL module might receive an invalid input signal (ivalid is low). In this
case, the module ignores the input and produces invalid data on the output. For a
stall-free RTL module without an internal state, it might be easier to propagate the
invalid input through the module. However, for an RTL module with an internal state,
you must handle an ivalid = O input carefully.

12.1.1.6. RTL Reset and Clock Signals

Resets and clocks of RTL modules are connected to the same clock and reset drivers
as the rest of the OpenCL pipeline.

Because of the common clock and reset drivers, an RTL module runs in the same clock
domain as the OpenCL kernel. The module is reset only when the OpenCL kernel is
first loaded onto the FPGA, either via Intel FPGA SDK for OpenCL program utility or
the clCreateProgramwithBinary host function. In particular, if the host restarts a
kernel via successive clEnqueueNDRangeKernel or clEnqueueTask invocations,
the associated RTL modules will not reset in between these restarts.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

148

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I)

UG-OCL002 | 2018.09.27

The following steps outline the process of setting the kernel clock frequency:

1. The Intel Quartus Prime software's Fitter applies an aggressive constraint on the
kernel clock.

2. The Intel Quartus Prime software's Timing Analyzer performs static timing analysis
to determine the frequency that the Fitter actually achieves.

3. The phase-locked loop (PLL) that drives the kernel clock sets the frequency
determined in Step 2 to be the kernel clock frequency.

12.1.1.6.1. Intel Stratix® 10 Design-Specific Reset Requirements for Stall-Free and
Stallable RTL Modules

When creating an RTL module for Intel Stratix® 10 OpenCL designs, ensure that the
module satisfies specific logic reset requirements.

Reset Requirements for Stall-Free RTL Modules
A stall-free RTL module is a fixed-latency module for which the Intel FPGA SDK for
OpenCL Offline Compiler can optimize away stall logic.

e When creating a stall-free RTL module for a Intel Stratix 10 design, use
synchronous clear signals only.

e After deassertion of the reset signal to the stall-free RTL module, the module
must be operational within 15 clock cycles. If the reset signal is pipelined within
the module, this requirement limits the reset pipelining to no more than 15
stages.

Reset Requirements for Stallable RTL Modules
A stallable RTL module has a variable latency, and it relies on backpressured input and
output interfaces to function correctly.

e When creating a stallable RTL module for a Intel Stratix 10 design, use
synchronous clear signals only.

e After assertion of the reset signal to the stallable RTL module, the module must
deassert its oready and oval id interface signals within 40 clock cycles.

o After deassertion of the reset signal to the stallable RTL module, the module
must be fully operational within 40 clock cycles. The module signals its readiness
by asserting the oready interface signal.

Related Information
Stall-Free RTL on page 145

12.1.1.7. XML Syntax of an RTL Module

This section provides the syntax of a simple XML specification file for an RTL module
that implements double-precision square root function. The RTL module is
implemented in VHDL with a Verilog wrapper.

The following XML specification file is for an RTL module named my_fp_sqrt_double
(line 2) that implements an OpenCL helper function named my_sqrtfd (line 2).
1: <RTL_SPEC>
<FUNCTION name="my_sqrtfd" module="my_ fp_sqrt_double'">

2
3: <ATTRIBUTES>
4: <IS_STALL_FREE value="yes'"/>

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

149

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

G <IS_FIXED_LATENCY value="yes"/>
6: <EXPECTED_LATENCY value="31"/>
7: <CAPACITY value="1"/>
8: <HAS_SIDE_EFFECTS value="no"/>
9: <ALLOW_MERGING value="yes'"/>
10: </ATTRIBUTES>
11: <INTERFACE>
12: <AVALON port="clock" type="clock"/>
13: <AVALON port="resetn" type='"‘resetn'/>
14: <AVALON port="ivalid" type="ivalid'"/>
15: <AVALON port="iready" type="iready'/>
16: <AVALON port="ovalid" type="ovalid'"/>
17: <AVALON port="oready'" type='"oready'/>
18: <INPUT port="datain' width="64"/>
19: <OUTPUT port="dataout' width="64"/>
20: </ INTERFACE>
21: <C_MODEL>
22: <FILE name="c_model.cl" />
23: </C_MODEL>
24: <REQUIREMENTS>
25: <FILE name="my_fp_sqrt_double_s5.v" />
26: <FILE name="fp_sqrt_double_s5.vhd" />
27: </REQUIREMENTS>
28: <RESOURCES>
29: <ALUTS value="2057"/>
30: <FFS value='"3098"/>
31: <RAMS value="15"/>
32: <MLABS value="43"/>
33: <DSPS value="1.5"/>
34: </RESOURCES>
35: </FUNCTION>
36: </RTL_SPEC>
Table 5. Elements and Attributes in the XML Specification File
XML Element Description

RTL_SPEC Top-level element in the XML specification file. There can only be one such top-
level element in the file. In this example, the name RTL_SPEC is historic and
carries no file-specific meaning.

FUNCTION Element that defines the OpenCL function that the RTL module implements. The
name attribute within the FUNCTION element specifies the function's name.
You may have multiple FUNCTION elements, each declaring a different function
that you can call from the OpenCL kernel. The same RTL module can implement
multiple functions by specifying different parameters.

ATTRIBUTES Element containing other XML elements that describe various characteristics
(for example, latency) of the RTL module. The example RTL module takes one
PARAMETER setting named WIDTH, which has a value of 32. Refer to Table 6 on
page 151 for more details other ATTRIBUTES-specific elements.

Note: If you create multiple OpenCL helper functions for different modules, or
use the same RTL module with different PARAMETER settings, you must
create a separate FUNCTION element for each function.

INTERFACE Element containing other XML elements that describe the RTL module's
interface. The example XML specification file shows the Avalon-ST interface
signals that every RTL module must provide (that is, clock, resetn, ivalid,
iready, ovalid, and oready). The signal names must match the ones
specified in the .xml file. An error will occur during library creation if a signal
name is inconsistent.

continued...
Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

150

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I
UG-OCL002 | 2018.09.27

XML Element Description

C_MODEL Element specifying one or more files that implement OpenCL C model for the
function. The model is used only during emulation. However, the C_MODEL
element and the associated file(s) must be present when you create the library
file.

REQUIREMENTS Element specifying one or more RTL resource files (that

is, .v, .sv, .vhd, .hex, and .mif). The specified paths to these files are
relative to the location of the XML specification file. Each RTL resource file
becomes part of the associated Platform Designer component that corresponds
to the entire OpenCL system.

Note: The Intel FPGA SDK for OpenCL library feature does not support .qip
files. An Intel FPGA SDK for OpenCL Offline Compiler error will occur if
you compile an OpenCL kernel while using a library that includes an
unsupported resource file type.

RESOURCES Optional element specifying the FPGA resources that the RTL module uses. If
you do not specify this element, the FPGA resources that the RTL module uses
will default to zero.

12.1.1.7.1. XML Elements for ATTRIBUTES

In the XML specification file of the RTL module within an Intel FPGA SDK for OpenCL
library, there are XML elements under ATTRIBUTES that you can specify to set the
module's characteristics.

Table 6. XML Elements Associated with the ATTRIBUTES Element in the XML
Specification File of an RTL Module

Attention: Except for 1S_STALL_FREE and EXPECTED_LATENCY, all elements have safe values. If you
are unsure which value you should specify for an attribute, set it to the safe value. Compiling
your kernel with a library that uses safe values will result in functional hardware. However,
the hardware might be larger than the actual size.

XML Element Description

IS_STALL_FREE Instructs the Intel FPGA SDK for OpenCL Offline Compiler to remove all stall
logic around the RTL module.

Set IS_STALL_FREE to "'yes™ to indicate that the module neither generates
stalls internally nor can it properly handle incoming stalls. The module simply
ignores its stall input. If you set 1S_STALL_FREE to ""no"*, the module must
properly handle all stall and valid signals.

Note: If you set 1S_STALL_FREE to "yes", you must also set
IS_FIXED_LATENCY to "yes". Also, if the RTL module has an internal
state, it must properly handle ival id=0 inputs.

An incorrect 1S_STALL_FREE setting will lead to incorrect results in hardware.

I1S_FIXED_LATENCY Indicates whether the RTL module has a fixed latency.

Set IS_FIXED_LATENCY to ""yes" if the RTL module always takes known a
number of clock cycles to compute its output. The value you assign to the
EXPECTED_LATENCY element specifies the number of clock cycles.

The safe value for 1S_FIXED_LATENCY is ""no™.

Note: For a given module, you may set 1S_FIXED_LATENCY to "yes" and
IS_STALL_FREE to ""no"". Such a module produces its output in a fixed
number of clock cycles and handles stall signals properly.

EXPECTED_LATENCY Specifies the expected latency of the RTL module.

If you set I1S_FIXED_LATENCY to "yes", the EXPECTED_LATENCY value
indicates the number of pipeline stages inside the module. In this case, you
must set this value to be the exact latency of the module. Otherwise, the offline
compiler will generate incorrect hardware.

continued...

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

151

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

XML Element

Description

For a module with variable latency, the offline compiler balances the pipeline
around this module to the EXPECTED_LATENCY value that you specify. The
specified value and the actual latency might differ, which might affect the
number of stalls inside the pipeline. However, the resulting hardware will be
correct.

CAPACITY

Specifies the number of multiple inputs that this module can process
simultaneously. You must specify a value for CAPACITY if you also set
IS_STALL_FREE="no" and IS_FIXED_LATENCY="no". Otherwise, you do not
need to specify a value for CAPACITY.

If CAPACITY is strictly less than EXPECTED_LATENCY, the offline compiler will
automatically insert capacity-balancing FIFO buffers after this module when
necessary.

The safe value for CAPACITY is 1.

HAS_SIDE_EFFECTS

Indicates whether the RTL module has side effects. Modules that have internal
states or communicate with external memories are examples of modules with
side effects.

Set HAS_SIDE_EFFECTS to "yes™ to indicate that the module has side effects.
Specifying HAS_SIDE_EFFECTS to "yes' ensures that optimization efforts do
not remove calls to modules with side effects.

Stall-free modules with side effects (that is, 1S_STALL_FREE="yes" and
HAS_SIDE_EFFECTS="yes") must properly handle ivalid=0 input cases
because the module might receive invalid data occasionally.

The safe value for HAS_SIDE_EFFECTS is ""yes"".

ALLOW_MERGING

Instructs the offline compiler to merge multiple instances of the RTL module.
Set ALLOW_MERGING to "yes' to allow merging of multiple instances of the
module. Intel recommends setting ALLOW_MERGING to "'yes".

The safe value for ALLOW_MERGING is "'no"".

Note: Marking the module with HAS_SIDE_EFFECTS=""yes" does not prevent
merging.

12.1.1.7.2. XML Elements for INTERFACE

In the XML specification file of the RTL module within an Intel FPGA SDK for OpenCL
library, there are XML elements under INTERFACE that you can define to specify
aspects of the RTL module's interface (for example, Avalon-ST interface).

Table 7. Mandatory XML Elements Associated with the INTERFACE Element in the XML
Specification File of an RTL Module

XML Element

Description

INPUT

Specifies the input parameter of the RTL module.

INPUT attributes:

* port—Specifies the port name of the RTL module.

e width—Specifies the width of the port in bits.
AOCL only supports widths that correspond to OpenCL data types (that is, 8
(uchar), 16, 32, 64, 128, 256, 512, and 1024 bits (Iong16)).

Note: Size of a type3 vector is 4 x sizeof(type), giving the impression that
valid sizes of 24, 48, 96, and 192 bits are unsupported.
The input parameters are concatenated to form the input stream.

Aggregate data structures such as structs and arrays are not supported as
input parameters.

OUTPUT

Specifies the output parameter of the RTL module.

continued...

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

152

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

.
12. Intel FPGA SDK for OpenCL Advanced Features l n te I
UG-OCL002 | 2018.09.27

XML Element Description

OUTPUT attributes:
* port—Specifies the port name of the RTL module.
e width—Specifies the width of the port in bits.
The SDK only supports widths that correspond to OpenCL data types (that
is, 8 (uchar), 16, 32, 64, 128, 256, 512, and 1024 bits (Iong16)).
Note: Size of type3 vector is 4 x sizeof(type), giving the impression that
valid sizes of 24, 48, 96, and 192 bits are unsupported.
The return value from the input stream is sent out via the output parameter on
the output stream.
Aggregate data structures such as structs and arrays are not supported as
input parameters.

If your RTL module communicates with external memory, you need to include
additional XML elements:

<MEM_INPUT port="m_input_A" access="readonly"/>

<MEM_INPUT port="m_input_sum' access ='readwrite'/>

<AVALON_MEM port="avm_port0"” width="512" burstwidth="5" optype="read"
buffer_location="""/>

Table 8. Additional XML Elements to Support External Memory Access
XML Element Description
MEM_INPUT Describes a pointer input to the RTL module.

MEM_INPUT attributes:

e port—Specifies the name of the pointer input.

* access—Specifies to the Intel FPGA SDK for OpenCL Offline Compiler how
the RTL module will use this pointer. Valid access values are readonly and
readwrite. If the RTL module only writes with this pointer, assign
readwrite to access.

Because all pointers to external memory must be 64 bits, there is no width

attribute associated with MEM_INPUT.

AVALON_MEM Declares the Avalon-MM interface for your RTL module.

AVALON_MEM attributes:

* port—Specifies the root of the corresponding port names in the RTL
module. For example, if port has a value of avm_portO_, the names of all
Avalon-MM interface ports for the RTL module will start with avm_portO_.

e width—Specifies the data width, which must match the corresponding
width value in the accelerator board's board_spec.xml file. Within the
board_spec.xml file, the width value is specified in the interface
element under global_mem.

For more information, refer to the global_mem section under XML Elements,
Attributes, and Parameters in the board_spec.xml File in the Intel FPGA SDK
for OpenCL Custom Platform Toolkit User Guide

¢ burstwidth—Specifies the number of bits required to represent burst size.
Use burstwidth = log(maxburst) +1 to calculate the burst size, where
maxburst is the corresponding maximum burst size specified in the
board_spec.xml file. For example, if maxburst=16, burstwidth=5.

e optype—Specifies either the Avalon-MM port is reading (read) or writing
(write) from external memory. You can only assign either read or write
to optype.

e buffer_location—Supports heterogeneous memory. Leave this attribute
blank because the heterogeneous memory compilation flow is currently
untested.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

153

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

For the AVALON_MEM element defined in the code example above, the corresponding
RTL module ports are as follows:

output avm_portO_enable,

input [511:0] avm_portO_readdata,
input avm_portO_readdatavalid,
input avm_portO_waitrequest,
output [31:0] avm_portO_address,
output avm_portO_read,

output avm_port0_write,

input avm_portO_writeack,

output [511:0] avm_portO_writedata,
output [63:0] avm_portO_byteenable,
output [4:0] avm_port0_burstcount,

There is no assumed correspondence between pointers that you specify with
MEM_INPUT and the Avalon-MM interfaces that you specify with AVALON_MEM. An RTL
module can use a single pointer to address zero to multiple Avalon-MM interfaces.
Related Information

XML Elements, Attributes, and Parameters in the board_spec.xml File: global_mem

12.1.1.7.3. XML Elements for RESOURCES

In the XML specification file of the RTL module within an Intel FPGA SDK for OpenCL
library, there are optional elements under RESOURCES that you can define to specify
the FPGA resource utilization of the module. If you do not specify a particular element,
it will have a default value of zero.

Table 9. XML Elements Associated with the RESOURCES Element in the XML
Specification File of an RTL Module
XML Element Description
ALUTS Specifies the number of combinational adaptive look-up tables (ALUTs) that the
module uses.
FFS Specifies the number of dedicated logic registers that the module uses.
RAMS Specifies the number of block RAMs that the module uses.
DSPS Specifies the number of digital signal processing (DSP) blocks that the module
uses.
MLABS Specifies the number of memory logic arrays (MLABs) that the module uses.
This value is equal to the number of adaptive logic modules (ALMs) that is used
for memory divided by 10 because each MLAB consumes 10 ALMs.

12.1.1.8. Interaction between RTL Module and External Memory

Important:

Allow your RTL module to interact with external memory only if the interaction is
necessary and unavoidable.

The preferred method for having your RTL module interact with external memory is to
have the OpenCL kernel access global memory and then feed that memory content to
the RTL module. For operations like reading from and writing to external memory on
every kernel invocation, instruct the OpenCL kernel to perform the operation. To do
so, you can create an OpenCL helper function for the OpenCL kernel in the same Intel
FPGA SDK for OpenCL library as the RTL module.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

154

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1402666946838.html#ewa1402971199180
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I)

UG-OCL002 | 2018.09.27

The following examples demonstrate how to structure code in an RTL module for easy
integration into an OpenCL library:

Table 10. Example Code in an RTL Module that Interacts with External Memory
Complex RTL Module Simplified RTL Module
// my_rtl_fn does: int in_value = in_ptr[idx];
// out_ptr[idx] = fn(in_ptr[idx]) // my_rtl_fn now does: out = fn(in)
my_rtl_fn (in_ptr, out_ptr,idx); int out_value = my_rtl_fn (in_value);
out_ptr[idx] = out_value;

The complex RTL module on the left reads a value from external memory, performs a
scalar function on the value, and then writes the value back to global memory. Such
an RTL module is difficult to describe when you integrate it into an OpenCL library. In
addition, this RTL module is harder to verify and causes very conservative pointer
analysis in the Intel FPGA SDK for OpenCL Offline Compiler.

The simplified RTL module on the right provides the same overall functionality as the
complex RTL module. However, the simplified RTL module only performs a scalar-to-
scalar calculation without connecting to global memory. Integrating this simplified RTL
module into the OpenCL library makes it much easier for the offline compiler to
analyze the resulting OpenCL kernel.

There are times when an RTL module requires an Avalon-MM port to communicate
with external memory. This Avalon-MM port connects to the same arbitration network
to which all other global load and store units in the OpenCL kernels connect.

If an RTL module receives a memory pointer as an argument, the offline compiler
enforces the following memory model:

e If an RTL module writes to a pointer, nothing else in the OpenCL kernel can read
from or write to this pointer.

e If an RTL module reads from a pointer, the rest of the OpenCL kernel and other
RTL modules may also read from this pointer.

* You may set the access field of the MEM_INPUT attribute to specify how the RTL
module uses the memory pointer. Ensure that you set the value for access
correctly because there is no way to verify the value.

12.1.1.9. Order of Threads Entering an RTL Module

Do not assume that threads entering an RTL module follow a defined order. In
addition, an RTL module can reorder threads. As a result, thread 0 does not
necessarily enter the module before thread 1.

12.1.1.10. OpenCL C Model of an RTL Module

Each RTL module within an OpenCL library must have an OpenCL C model. The
OpenCL C model verifies the overall OpenCL system during emulation.

Example OpenCL C model file for a square root function:
double my_sqrtfd (double a)
{

return sqrt(a);

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

155

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 12. Intel FPGA SDK for OpenCL Advanced Features

UG-OCL002 | 2018.09.27

Intel recommends that you emulate your OpenCL system. If you decide not to
emulate your OpenCL system, create an empty function with a name that matches the
function name you specified in the XML specification file.

Related Information

XML Syntax of an RTL Module on page 149

12.1.1.11. Potential Incompatibility between RTL Modules and Partial
Reconfiguration

When creating an OpenCL library using RTL modules, you might encounter Partial
Reconfiguration-related issues.

Consider a situation where you create and verify your library on a device that does not
support Partial Reconfiguration (PR). If a library user then uses the library's RTL
module inside a PR region, the module might not function correctly after PR.

To ensure that the RTL modules function correctly on a device that uses PR:

e The RTL modules do not use memory logic array blocks (MLABs) with initialized
content.

e The RTL modules do not make any assumptions regarding the power-up values of
any logic.

For complete PR coding guidelines, refer to Creating a Partial Reconfiguration Design
in the Partial Reconfiguration User Guide.

12.1.2. Packaging an OpenCL Helper Function File for an OpenCL Library

Before creating an OpenCL library file, package each OpenCL source file with helper
functions into a .aoco file. Unlike RTL modules, you do not need to create an XML
specification file.

In general, you do not need to create a library to share helper functions written in
OpenCL. You can distribute a helper function in source form (for example,
<shared_fil e>.cl) and then insert the line #include "‘<shared file>.cl" in
the OpenCL kernel source code.
Consider creating a library under the following circumstances:
e The helper functions are in multiple files and you want to simplify distribution.
e You do not want to expose the helper functions' source code.
The helper functions are stored as LLVM IR, an assembly-like language, without
comments inside the associated library.

Hardware generation is not necessary for the creation of a .aoco file. Compile the
OpenCL source file using the -c offline compiler command option.

Note: A library can only include OpenCL helper functions. The Intel FPGA SDK for OpenCL
Offline Compiler will issue an error message if the library contains OpenCL kernels.
Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

156

https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html#kjl1519923189923
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-OCL002 | 2018.09.27

™ ®
12. Intel FPGA SDK for OpenCL Advanced Features < l n te l)

* To package an OpenCL source file into a .aoco file, invoke the following
command: aoCc -C -shared <OpenCL_source file_nane>.cl -0
<OpenCL_obj ect _file_nane>.aoco

where the -shared offline compiler command option instructs the compiler to
create a .aoco file that is suitable for inclusion into an OpenCL library.
Related Information
e Packaging Multiple Object Files into a Library File on page 160
e Specifying an OpenCL Library when Compiling an OpenCL Kernel on page 160

12.1.3. Packaging an RTL Component for an OpenCL Library
Before creating an OpenCL library file, package each RTL component into a .aoco file.

Hardware generation is not necessary for the creation of a .aoco file. Compile the
OpenCL source file using the —c Intel FPGA SDK for OpenCL Offline Compiler
command option.

e To package an RTL component into a .aoco file, invoke the following command:
aoc -c <RTL conmponent description file nane>.xml -0 <RTL
object file nanme>.aoco

Related Information

e Packaging Multiple Object Files into a Library File on page 160

e \Verifying the RTL Modules on page 159

e Specifying an OpenCL Library when Compiling an OpenCL Kernel on page 160

12.1.3.1. Restrictions and Limitations in RTL Support for the Intel FPGA SDK for
OpenCL Library Feature

The Intel FPGA SDK for OpenCL supports the use of RTL modules in an OpenCL library
with some restrictions and limitations.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

157

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel)

12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

When creating your RTL module, ensure that it operates within the following
restrictions:

An RTL module must use a single input Avalon-ST interface. That is, a single pair
of ready and val id logic must control all the inputs.

You have the option to provide the necessary Avalon-ST ports but declare the RTL
module as stall-free. In this case, you do not have to implement proper stall
behavior because the Intel FPGA SDK for OpenCL Offline Compiler creates a
wrapper for your module. Refer to XML Syntax of an RTL Module and Using an
OpenCL Library that Works with Simple Functions (Example 1) for more syntax
and usage information, respectively.

Note: You must handle ival id signals properly if your RTL module has an
internal state. Refer to Stall-Free RTL for more information.

The RTL module must work correctly with exactly one clock, regardless of clock
frequency.

Data input and output sizes must match valid OpenCL data types, from 8 bits for
char to 1024 bits for long16.

For example, if you work with 24-bit values inside an RTL module, declare inputs
to be 32 bits and declare function signature in the SDK's library header file to
accept the uint data type. Then, inside the RTL module, accept the 32-bit input
but discard the top 8 bits.

RTL modules cannot connect to external I/0 signals. All input and output signals
must come from an OpenCL kernel.

An RTL module must have a clock port, a resetn port, and Avalon-ST input and
output ports (that is, ivalid, ovalid, iready, oready). Name the ports as
specified here.

RTL modules that communicate with external memory must have Avalon Memory-
Mapped (Avalon-MM) port parameters that match the corresponding Custom
Platform parameters. The offline compiler does not perform any width or burst
adaptation.

RTL modules that communicate with external memory must behave as follows:
— They cannot burst across the burst boundary.

— They cannot make requests every clock cycle and stall the hardware by
monopolizing the arbitration logic. An RTL module must pause its requests
regularly to allow other load or store units to execute their operations.

RTL modules cannot act as stand-alone OpenCL kernels. RTL modules can only be
helper functions and be integrated into an OpenCL kernel during kernel
compilation.

Every function call that corresponds to RTL module instantiation is completely
independent of other instantiations. There is no hardware sharing.

Do not incorporate kernel code (that is, functions marked as kernel) into

a .aoclib library file. Incorporating kernel code into the library file causes the
offline compiler to issue an error message. You may incorporate helper functions
into the library file.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

158

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n ®
12. Intel FPGA SDK for OpenCL Advanced Features l n tel)

UG-OCL002 | 2018.09.27

An RTL component must receive all its inputs at the same time. A single ivalid
input signifies that all inputs contain valid data.

The SDK does not support I/O RTL modules.

You can only set RTL module parameters in the <RTL nodul e descri ption
file nanme>.xml specification file, not the OpenCL kernel source file. To use the
same RTL module with multiple parameters, create a separate FUNCTION tag for
each parameter combination.

Currently, the SDK's RTL module support for the library feature has the following
limitations:

You can only pass data inputs to an RTL module by value via the OpenCL kernel
code. Do not pass data inputs to an RTL module via pass-by reference, structs, or
channels. In the case of channel data, extract the data from the channel first and
then pass the extracted the scalar data to the RTL module.

Note: Passing data inputs to an RTL module via pass-by reference or structs will
cause a fatal error to occur in the offline compiler.

The debugger (for example, GDB for Linux) cannot step into a library function
during emulation. In addition, optimization and area reports will not include code
line numbers beside the library functions.

Names of RTL module source files cannot conflict with the file names of Intel FPGA
SDK for OpenCL Offline Compiler IP. Both the RTL module source files and the
offline compiler IP files are stored in the <ker nel file nane>/system/
synthesis/submodules directory. Naming conflicts will cause existing offline
compiler IP files in the directory to be overwritten by the RTL module source files.

The SDK does not support .qgip files. You must manually parse nested .qip files
to create a flat list of RTL files.

It is very difficult to debug an RTL module that works correctly on its own but
works incorrectly as part of an OpenCL kernel. Double check all parameters under
the ATTRIBUTES element in the <RTL nodul e description file
name>.xml file.

All offline compiler area estimation tools assume that RTL module area is 0. The
SDK does not currently support the capability of specifying an area model for RTL
modules.

RTL modules cannot access a 2x clock that is in-phase with the kernel clock and at
twice the kernel clock frequency.

Related Information

XML Syntax of an RTL Module on page 149

Using an OpenCL Library that Works with Simple Functions (Example 1) on page
164

Stall-Free RTL on page 145

12.1.4. Verifying the RTL Modules

The creator of an OpenCL library is responsible for verifying the RTL modules within
the library, both as stand-alone entities and as part of an OpenCL system.

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

159

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

Verify each RTL module using standard hardware verification methods.

Modify one of Intel FPGA SDK for OpenCL library design examples to test your RTL
modules inside the overall OpenCL system.

This testing step is critical to prevent library users from encountering hardware
problems.

It is crucial that you set the values for the ATTRIBUTES elements in the XML
specification file correctly. Because you cannot simulate the entire OpenCL system,
you will likely not discover problems caused by interface-level errors until
hardware runs.

Note: The Intel FPGA SDK for OpenCL library utility performs consistency
checks on the XML specification file and source files, with some limitations.

Invoke the aocl library [<command opti on>] command.

* For a list of supported <command options>, invoke the aocl library
command.

e The library utility does not detect errors in values assigned to elements
within the ATTRIBUTES, MEM_INPUT, and AVALON_MEM elements in the XML
specification file.

e The library utility does not detect RTL syntax errors. You must check the
<your kernel filename>/quartus_sh_compile.log file for RTL syntax
errors. However, parsing the errors might be time consuming.

12.1.5. Packaging Multiple Object Files into a Library File

After creating the .aoco files that you want to include into an OpenCL library,
package them into a library file by invoking the Intel FPGA SDK for OpenCL library
utility command option.

To package multiple object files into a single library file, invoke the following
command: aocl library create -0 <library file name>.aoclib
<object file 1>.aoco [<object file 2>.aoco ... <object file
N>.aoco]

The aocl library utility command createsa <l i brary file nanme>.aoclib
library file, which includes the .aoco object files you specify in the command. A
library file may contain both RTL-based object files and OpenCL-based object files.

12.1.6. Specifying an OpenCL Library when Compiling an OpenCL Kernel

Important:

To use an OpenCL library in an OpenCL kernel, specify the library file name and
directory when you compile the kernel.

Using a library does not reduce kernel compilation time.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

160

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n ®
12. Intel FPGA SDK for OpenCL Advanced Features l n tel)

UG-OCL002 | 2018.09.27

e To specify an OpenCL library to the Intel FPGA SDK for OpenCL Offline Compiler,
invoke the following command: aoc -l <library file_ name>.aoclib [-L
<library directory>] <kernel file name>.cl

where the -1 <library_file_name>_aoclib command option specifies the
library file name, and the -L <l i brary directory> command option specifies
the directory containing the library files.

You may include multiple instances of -1 <library file nanme>and -L
<library directory>in the offline compiler command.

For example, if you create a library that includes the functions my_div_fd(),
my_sqrtfd(), and myrsqgrtfd(), the OpenCL kernel code might resemble the
following:

#include “lib_header.h”

kernel void test_lib (
global double * restrict in,
global double * restrict out,
int N) {
int i = get_global_id(0);
for (int k =0; k < N; k++) {
double x = in[i*N + K];
out[i*N + k] = my_divfd
(my_rsqgrtfd(x),
my_sqrtfd(my_rsqrtfd (x)));

}

Note: Library-related lines are highlighted in bold.

The corresponding lib_header .h file might resemble the following:

double my_sqrtfd (double x);
double my_rsqrtfd(double Xx);
double my_divfd(double a, double b);

12.1.7. Debugging Your OpenCL Library Through Simulation (Preview)

The Intel FPGA SDK for OpenCL simulator assesses the functionality of your OpenCL
library.

The Intel FPGA SDK for OpenCL simulator generates a .aocx file that runs on an
x86-64 Windows or a Linux host. This feature allows you to simulate the functionality
of your kernel and iterate on your design without needing to compile your library to
hardware and running on the FPGA each time.

Use the simulator when you want insight into the dynamic performance of your
OpenCL library and more information about the functional correctness of your OpenCL
library than emulation or the OpenCL reporting tools provide.

The simulator is cycle accurate, has a netlist identical to generate hardware, and can
provide full waveforms for debugging. View the waveforms with Mentor Graphics*
ModelSim* software.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

161

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel)

12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

12.1.7.1. Compiling a Library for Simulation (-march=simulator)

To compile an OpenCL library for simulation, include the -march=simulator option
in your aoc command. To enable collecting the waveform during the simulation,
include the -ghdl option in your aoc command.

Before you perform library simulation, perform the following tasks:

— Install a Custom Platform from your board vendor for your FPGA accelerator
boards.

— Verify that the environment variable QUARTUS_ROOTDIR _OVERRIDE points to
Intel Quartus Prime Pro Edition software installation folder.

To simulate library on Windows systems, you need the Microsoft linker and
additional compilation time libraries. Verify that the PATH environment variable
setting includes all the paths described in the Setting the Intel FPGA SDK for
OpenCL Pro Edition User Environment Variables section of the Intel FPGA SDK for
OpenCL Pro Edition Getting Started Guide.

The PATH environment variable setting must include the path to the LINK.EXE file
in Microsoft Visual Studio.

Ensure that your LIB environment variable setting includes the path to the
Microsoft compilation time libraries.

The compilation time libraries are available with Microsoft Visual Studio.

Verify that the LD_LIBRARY _PATH environment variable setting includes all the
paths described in the Setting the Intel FPGA SDK for OpenCL Pro Edition User
Environment Variables section in the Intel FPGA SDK for OpenCL Pro Edition
Getting Started Guide.

To compile a simulation that targets a specific board, invoke the a0C
-march=simulator -ghdl -board=<board_name>
<your kernel _fil ename>_cl command.

For Linux systems, the Intel FPGA SDK for OpenCL Offline Compiler offers
symbolic debug support for the debugger.

The offline compiler debug support allows you to pinpoint the origins of functional
errors in your kernel source code.

12.1.7.2. Simulating Your OpenCL Library

Important:

If you want to view the waveforms generated during simulation, you must install and
configure Mentor Graphics ModelSim software.

If you want to run the emulator and the simulator from the same terminal or
command prompt session, unset the emulator environment variable
(CL_CONTEXT_EMULATOR_DEVICE_INTELFPGA) before trying to run the simulator. If
you do not unset the emulator environment variable, your simulation fails with errors.

You can also run the emulator and simulator from separate terminal or command
prompt sessions.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

162

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

UG-OCL002 | 2018.09.27

n ®
12. Intel FPGA SDK for OpenCL Advanced Features < l n tel)

To run your OpenCL library through the simulator:

1. Run the utility command aocl linkflags to find out which libraries are
necessary for building a host application. The software lists the libraries for both
emulation and regular kernel compilation flows.

2. Build a host application and link it to the libraries from Step 1.

Tip: To emulate multiple devices alongside other OpenCL SDKs, link your host
application to the Khronos ICD Loader Library before you link it to the host
runtime libraries. Link the host application to the ICD Loader Library by
modifying the Makefi le for the host application. For more information, see
Linking Your Host Application to the Khronos ICD Loader Library.

3. If necessary, move the .aocx file to a location where the host can find easily,
preferably the current working directory.

4. Set the CL_CONTEXT_MPSIM_DEVICE_INTELFPGA environment variable to
enable the simulation device:

— Windows:

set CL_CONTEXT_MPSIM_DEVICE_INTELFPGA=1
— Linux:

env CL_CONTEXT_MPSIM_DEVICE_INTELFPGA=1

Remember: When the environment variable
CL_CONTEXT_MPSIM_DEVICE_INTELFPGA is set, only the simulation
devices are available. That is, access to physical boards and the
emulation device is disabled.

You might need to set CL_CONTEXT_COMPILER_MODE_INTELFPGA=3 if the host
program cannot find the simulator device.

5. Run your host program.
To debug your host code and device, you can run your host code in gdb or Eclipse.

Running the host program gives you a a waveform file, vsim.wif, that you can
view in ModelSim software as your host code executes. The vsim._wif file is
written to the same directory that you run your host program from.

6. If you change your host or kernel program and you want to test it, only recompile
the modified host or kernel program and then rerun simulation.

12.1.7.3. Limitations of the Simulator

Review the limitations of the simulator to troubleshoot problems you might have when
attempting to run a simulation.

Windows Compilation Fails - Host Program Reports Corrupt .aocx file

During the compilation of the device.cl file, your directory path is likely too long.
Use the -0 compiler option to output your compilation results to a shorter path.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

163

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n ®
l n tel) 12. Intel FPGA SDK for OpenCL Advanced Features

UG-OCL002 | 2018.09.27

A socket=-11 Error Is Logged to transcript.log

If you receive the following error message, you are mixing resources from ModelSim -
Intel FPGA Edition and ModelSim SE:

Message: '"'src/hls_cosim_ipc_socket.cpp:202: void IPCSocketMaster::connect():
Assertion “sockfd != -1 && "IPCSocketMaster::connect() call to accept()
failed"" failed."

An example of mixing ModelSim resources is compiling a device with ModelSim SE and
then running the host program in ModelSim - Intel FPGA Edition.

Running the Host Program Generates a Segmentation Fault

If you receive a segmentation fault when you run your host program, you might be
running the emulator and the simulator from the same terminal or command prompt
sessions. Remember to unset emulator environment variables before trying to run the
simulator.

Try to avoid compiling your device and your host program in the same terminal or
command prompt sessions. By using separate sessions, you can avoid possible
environment variable conflicts.

12.1.8. Using an OpenCL Library that Works with Simple Functions
(Example 1)

Intel provides an OpenCL library design example of a simple kernel that uses a library
containing RTL implementations of three double-precision functions: sqrt, rsqrt,
and divide.

The examplel.tgz tar ball includes a library, a kernel, and a host system. The
examplel.cl kernel source file includes two kernels. The kernel test_l1ib uses
library functions; the kernel test _bui ltin uses built-in functions. The host runs
both kernels and then compares their outputs and runtimes. Intel recommends that
you use the same strategy to verify your own library functions.

To compile this design example, perform the following tasks:
1. Obtain examplel.tgz from the OpenCL Design Examples web page.
2. Unpack it into a local directory.

3. Follow the instructions in the README . html file, which is located in the top-level
of the unpacked example.
When you run the compiled host program, it should produce the following output:

Loading examplel.aocx ...

Create buffers

Generate random data for conversion...

Enqueuing both library and builtin in kernels 4 times with global size 65536
Kernel computation using library function took 5.35333 seconds

Kernel computation using built-in function took 5.39949 seconds

Reading results to buffers...

Checking results...

Library function throughput is within 5% of builtin throughput.

PASSED

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

164

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I)

UG-OCL002 | 2018.09.27

Related Information

OpenCL Design Examples page

12.1.9. Using an OpenCL Library that Works with External Memory
(Example 2)

Note:

[;:J Send Feedback

Intel provides an OpenCL library design example of a simple kernel that uses a library
containing two RTL modules that communicate with global memory.

The example2.tgz tar ball includes a library, a kernel, and a host system. In this
example, the RTL code that communicates with global memory is Custom Platform- or
Reference Platform-dependent. Ensure that the compilation targets the board that
corresponds to the Stratix V Network Reference Platform.

Intel generated the RTL modules copyElement() and sumOfElements() using the
Intel FPGA SDK for OpenCL Offline Compiler, which explains the extra inputs in the
code.

The example2.cl kernel source file includes two kernels. The kernel test6 is an
NDRange kernel that calls the copyElement() RTL function, which copies data from
B[] to A[] and then stores global_id+100 in C[]. The kernel testl1l is a single
work-item kernel that uses an RTL function . The sumOfElements() RTL function
determines the sum of the elements of A[] in range [i, N] and then adds the rest
to C[i].

First invocations of sumOfElements(i=0) will take more time to execute than later
invocations.

To compile this design example, perform the following tasks:

1. Obtain the example2.tgz from the OpenCL Design Examples web page.

2. Unpack it into a local directory.

3. Follow the instructions in the README . html file, which is located in the top-level
of the unpacked example.
When you run the compiled host program, it should produce the following output:

Loading example2.aocx ...

Running test6

Launching the kernel test6 with globalsize=128 localSize=16
Loading example2.aocx ...

Running testll

Launching the kernel testll with globalsize=1 localSize=1
PASSED

Related Information
e OpenCL Design Examples page

e Compiling a Kernel for a Specific FPGA Board (-board=<board_name>) on page
107

e Intel FPGA SDK for OpenCL Stratix V Network Reference Platform Porting Guide

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

165

https://www.altera.com/support/support-resources/design-examples/design-software/opencl.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1404851957878.html#ewa1404852921684
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

12.1.10. OpenCL Library Command-Line Options

Both the Intel FPGA SDK for OpenCL Offline Compiler's set of commands and the SDK
utility include options you can invoke to perform OpenCL library-related tasks.

Table 11. Library-Related Intel FPGA SDK for OpenCL Offline Compiler Command

Options

Command Option

Description

-shared

In conjunction with the -rtl command option, compiles an OpenCL
source file into an object file (.aoco) that you can then include into
a library.

aoc -rtl -shared <QpenCL source file name>.cl -0
<OpenCL object file nane>.aoco

—I=<library_directory>

Adds <library directory> to the header file search path.

aocl -1 <library_header file directory> -1
<library_file_name>.aoclib <kernel file_nanme>.cl

-L=<library directory>

Adds <library directory> to the OpenCL library search path.
Space after "-L" is optional.

aoc -lI=<library file_nane>.aoclib [-L=<library
directory>] <kernel file nane>.cl

-I=<library_file_nane>.aoclib

Specifies the OpenCL library file
(<l'ibrary_file_name>_aoclib).

Space after — 1 is optional.

aoc -lI=<library file nane>.aoclib [-L=<library
directory>] <kernel file nane>.cl

-library-debug

Generates debug output that relates to libraries. Part of the
additional output appears in stdout, the other part appears in the
<kernel _fil e_nanme>/<kernel _fil e_name>.log file.

aoc -lI=<library_file_name>.aoclib -library-debug
<kernel _file_nanme>.cl

Table 12. Intel FPGA SDK for OpenCL Library Utility (aocl library) Command Options

Command Option

Description

hdl-comp-pkg <XM__speci fication_
file>.xml

Packages a single HDL component into a -aoco file that you then
include into a library. Invoking this command option is similar to
invoking aoc -rtl <XM__specification file>.xml.
However, the processing time is faster because the aocl utility will
not perform any environment checks.

aocl library hdl-comp-pkg <XM__specification_
file>.xml -0 <output_fil e>.aoco

-rtl <XM__specification_ file>.xml

Same function as hdl-comp-pkg <XM__speci fication_
file>.xml.

aocl library -rtl <XM__specification_ file>.xml

create

Creates a library file from the .aoco files that you created by
invoking the hdl-comp-pkg utility option or the aoc -shared
command, and any other .aoclib libraries.

aocl library create [-name <library_nanme>] [-
vendor <library_vendor>] [-version
<library_version>] [-0 <output_file>_aoclib]
[-aoco...] [-aoclib...]

continued...

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

166

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

intel.

Command Option

Description

where -name, -vendor, and -version are optional information
strings you can specify and add to the library.

list <library_name>

Lists all the RTL components in the library. Currently, this option is
not available for use to list OpenCL functions.

aocl library list <library_nane>

help

Prints the list of Intel FPGA SDK for OpenCL library utility options
and their descriptions on screen.

aocl library help

12.2. Kernel Attributes for Configuring Local and Private Memory

Systems

The Intel FPGA SDK for OpenCL includes kernel attributes that you can include in a
kernel to customize the geometry of the local and private memory systems.

Attention: Only apply these local memory kernel attributes to local or private variables.

Table 13. OpenCL Kernel Attributes for Configuring Local Memory

N is an integer value.

Attribute Description
register Specifies that the local variable must be implemented in a register.
memory Specifies that the local variable must be implemented in a memory
system. Including the memory kernel attribute is equivalent to
declaring the local variable with the __local qualifier.
numbanks (N) Specifies that the memory system implementing the local variable

must have N banks, where N is a power-of-2 integer value greater
than zero.

bankwidth(N)
N is an integer value.

Specifies that the memory system implementing the local variable
must have banks that are N bytes wide, where N is a power-of-2
integer value greater than zero.

N is an integer value.

singlepump Specifies that the memory system implementing the local variable
must be single pumped.

doublepump Specifies that the memory system implementing the local variable
must be double pumped.

numreadports(N) Specifies that the memory system implementing the local variable

must have N read ports, where N is an integer value greater than
zero.

numwriteports(N)
N is an integer value.

Specifies that the memory system implementing the local variable
must have N write ports, where N is an integer value greater than
zero.

merge(*'l abel **, "direction™)

Forces two or more variables to be implemented in the same
memory system.

label is an arbitrary string. Assign the same label to all variables
that you want to merge.

Specify direction as either width or depth to identify whether the
memories should be merged width-wise or depth-wise, respectively.

bank_bits(by, b1, --.. bp)

Forces the memory system to split into 2" banks, with {by, by, ...,
bn} forming the bank-select bits.

Important: by, by, ..., b, must be consecutive, positive integers.

continued...

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

167

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 14. Code Examples for Memory Attributes

®
n te l 12. Intel FPGA SDK for OpenCL Advanced Features
UG-OCL002 | 2018.09.27

Attribute Description

If you specify the numbanks(n) attribute without the bank_bits
attribute, the bank-select bits default to the least significant bits
(thatis, 0, 1, ..., log2(numbanks)-1).

Example Use Case Syntax

Implements a variable in a register int _ attribute_ ((register)) a[12];

Implements a memory system with eight banks, each with int _ attribute_ ((memory
a width of 8 bytes - " “humbanks(8),
bankwidth(8)) b[16];

Implements a double-pumped memory system with one int _ attribute_ ((memory

128-byte wide bank, one write port, and four read ports - " humbanks(l),
bankwidth(128),
doublepump,
numwriteports(l),
numreadports(4)) c[32];

Related Information
¢ Improve Kernel Performance by Banking the Local Memory

e Optimize Accesses to Local Memory by Controlling the Memory Replication Factor

12.2.1. Restrictions on the Usage of Variable-Specific Attributes

The Intel FPGA SDK for OpenCL Offline Compiler will error out or issue warnings if it
detects unsupported usages of the variable-specific attributes or incorrect memory
configurations.

Unsupported usages of variable-specific attributes that cause compilation errors:

e You use the kernel attributes in declarations other than local or private variable
declarations (for example, declarations for function parameters, global variable
declarations, or function declarations).

* You use the register attribute in conjunction with any of the other variable-
specific attributes.

* You specify the numbanks attribute but not the bankwidth attribute in the same
variable declaration, or vice versa.

* You include both the singlepump and doublepump attributes in the same
variable declaration.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

168

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html#ewa1458581983424
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html#ewa1457384630094
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I)

UG-OCL002 | 2018.09.27

* You specify the numreadports and numwriteports attributes without also
including the singlepump or doublepump attribute in the same variable
declaration.

* You specify the numreadports attribute but not the numwriteports attribute in
the same variable declaration, or vice versa.

* You specify any of the following attributes without also specifying the numbanks
and bankwidth attributes in the same variable declaration:

— numreadports
— numwriteports
— singlepump

— doublepump

Incorrect memory configurations that cause the offline compiler to issue warnings

during compilation:

e The memory configuration that is defined by the variable-specific attributes
exceeds the available storage size (for example, specifying eight banks of local
memory for an integer variable).

Incorrect memory configurations that cause compilation errors:

e The bank width is smaller than the data storage size (for example, bank width is 2
bytes for an array of 4-byte integers).

¢ You specify memory configurations for the variables. However, because of compiler
restrictions or coding style, the offline compiler implements the variables in the
same memory instead of splitting the memory.

* You specify the register attribute for a variable. However, because of compiler
restrictions or coding style, the offline compiler cannot implement the variable in a
register.

12.3. Kernel Attributes for Reducing the Overhead on Hardware
Usage

The Intel FPGA SDK for OpenCL includes kernel attributes that you can include in a
single work-item kernel to reduce logic utilization and improve kernel
performance.These kernel attributes enables the Intel FPGA SDK for OpenCL Offline
Compiler to omit the generation of unnecessary hardware to increase efficiency.

12.3.1. Hardware for Kernel Interface

The Intel FPGA SDK for OpenCL Offline Compiler generates hardware around the
kernel pipeline. For some OpenCL applications, these interface hardware components
are not necessary.

Hardware around the kernel pipeline is necessary for functions such as the following:
e Dispatching IDs for work-items and work-groups

e Communicating with the host regarding kernel arguments and work-group sizes

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

169

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 12. Intel FPGA SDK for OpenCL Advanced Features

UG-OCL002 | 2018.09.27

Figure 20 on page 170 illustrates the hardware that the offline compiler generates
when it compiles the following kernel:

__kernel void my_kernel(global int* arg)

{
int sum = 0;
for(unsigned 1 = 0; 1 < n; i++)
if(sum < m) sum += val;
*arg = sum;
. "

Figure 20. Intel FPGA SDK for OpenCL Offline Compiler-Generated Interface Hardware
around a Kernel Pipeline

Host Link Hardware

Yy

Kernel ID Generators

Yy

Kernel

12.3.1.1. Omit Hardware that Generates and Dispatches Kernel IDs

The max_global _work _dim(0) kernel attribute instructs the Intel FPGA SDK for
OpenCL Offline Compiler to omit logic that generates and dispatches global, local, and
group IDs into the compiled kernel.

Semantically, the max_global_work_dim(0) kernel attribute specifies that the
global work dimension of the kernel is zero. Setting this kernel attribute means that
the kernel does not use any global, local, or group IDs. The presence of this attribute
in the kernel code serves as a guarantee to the offline compiler that the kernel is a
single work-item kernel.

When compiling the following kernel, the offline compiler will generate interface
hardware as illustrated in Figure 21 on page 171.

channel int chan_in;
channel int chan_out;

__attribute__((max_global_work_dim(0)))
__kernel void plusK (int N, int k) {
for (int 1 = 0; 1 < N; ++i) {
int data_in = read_channel_intel(chan_in);
write_channel_intel(chan_out, data_in + k);
}
¥

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

170

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I)

UG-OCL002 | 2018.09.27

Figure 21. Intel FPGA SDK for OpenCL Offline Compiler-Generated Interface Hardware
for a Kernel with the max_global_work_dim(0) Attribute

Host Link Hardware

v

Kernel

If your current kernel implementation has multiple work-items but does not use
global, local, or group IDs, you can use the max_global_work_dim(0) kernel
attribute if you modify the kernel code accordingly:

1. Wrap the kernel body in a for loop that iterates as many times as the number of
work-items.

2. Launch the modified kernel with only one work-item.

12.3.1.2. Omit Communication Hardware between the Host and the Kernel

The autorun kernel attribute instructs the Intel FPGA SDK for OpenCL Offline
Compiler to omit logic that is used for communication between the host and the
kernel. A kernel that uses the autorun attribute starts executing automatically before
any kernel that the host launches explicitly. In addition, this kernel restarts
automatically as soon as it finishes its execution.

The autorun kernel attribute notifies the offline compiler that the kernel runs on its
own and will not be enqueued by any host.
To leverage the autorun attribute, a kernel must meet all of the following criteria:
1. Does not use I/O channels

Note: Kernel-to-kernel channels are supported.

Does not have any arguments

Has either the max_global _work_dim(0) attribute or the
reqd_work _group_size(X,Y,Z2) attribute

Note: The parameters of the reqd_work_group_size(X,Y,Z) attribute must be
divisors of 232,

As mentioned above, kernels with the autorun attribute cannot have any arguments
and start executing without the host launching them explicitly. As a result, the offline
compiler does not need to generate the logic for communication between the host and
the kernel. Omitting this logic reduces logic utilization and allows the offline compiler
to apply additional performance optimizations.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

171

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
l n tel) 12. Intel FPGA SDK for OpenCL Advanced Features

UG-OCL002 | 2018.09.27

A typical use case for the autorun attribute is a kernel that reads data from one or
more kernel-to-kernel channels, processes the data, and then writes the results to one
or more channels. When compiling the kernel, the offline compiler will generate
hardware as illustrated in Figure 22 on page 172.

channel int chan_in;
channel int chan_out;

__attribute__ ((max_global_work_dim(0)))
__attribute__ ((autorun))
__kernel void plusOne O {
while(1) {
int data_in = read_channel_intel(chan_in);
write_channel_intel(chan_out, data_in + 1);
3
¥

Figure 22, Single Work-Item Kernel with No Interface Hardware

Kernel

12.4. Kernel Replication Using the num_compute_units(X,Y,Z)
Attribute

You can replicate your single work-item OpenCL kernel by including the
num_compute_units(X,Y,2Z) kernel attribute.

As mentioned in Specifying Number of Compute Units, including the
num_compute_units(N) kernel attribute in your kernel instructs the Intel FPGA SDK
for OpenCL Offline Compiler to generate multiple compute units to process data. The
num_compute_unit(N) attribute instructs the offline compiler to generate N identical
copies of the kernel in hardware.

Remember: To identify the specific compute unit controlling the data-dependent kernel processing,
call the get_compute_id() intrinsic function.

Related Information

e Customization of Replicated Kernels Using the get_compute_id() Function on page
173

e Specifying Number of Compute Units on page 30

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

172

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I)

UG-OCL002 | 2018.09.27

12.4.1. Customization of Replicated Kernels Using the get_compute_id()
Function

To create compute units that are slightly different from one another but share a lot of
common code, call the get_compute_id() intrinsic function in a kernel that also
uses the num_compute_units (X,Y,Z2) attribute.

Attention: You can only use the get_compute_id() function in a kernel that also uses the
autorun and max_global_work_dim(0) kernel attributes.

Retrieving compute IDs is a convenient alternative to replicating your kernel in source
code and then adding specialized code to each kernel copy. When a kernel uses the
num_compute_units(X,Y,Z) attribute and calls the get_compute_id() function,
the Intel FPGA SDK for OpenCL Offline Compiler assigns a unique compute ID to each
compute unit. The get_compute_id() function then retrieves these unique compute
IDs. You can use the compute ID to specify how the associated compute unit should
behave differently from the other compute units that are derived from the same kernel
source code. For example, you can use the return value of get_compute_id() to
index into an array of channels to specify which channel each compute unit should
read from or write to.

The num_compute_units attribute accepts up to three arguments (that is,
num_compute_units(X,Y,2)). In conjunction with the get_compute_id()
function, this attribute allows you to create one-dimensional, two-dimensional, and
three-dimensional logical arrays of compute units. An example use case of a 1D array
of compute units is a linear pipeline of kernels (also called a daisy chain of kernels).
An example use case of a 2D array of compute units is a systolic array of kernels.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

173

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n ®
l n tel) 12. Intel FPGA SDK for OpenCL Advanced Features

UG-OCL002 | 2018.09.27

Figure 23. Schematic Diagram of a 4x4 Array of Compute Units

The following example code specifies num_compute_units(4,4) in a single work-item kernel results in a 4x4
array that consists of 4 x 4 = 16 compute units.

__attribute__((max_global_work_dim(0)))
__attribute__((autorun))
__attribute__((num_compute_units(4,4)))
__kernel void PEQ {

row = get_compute_id(0);
col = get_compute_id(1);

(o]

col

o

—_
m

E
=
o
g

2 E

3 E

For a 3D array of compute units, you can retrieve the X, Y, and Z coordinates of a
compute unit in the logical compute unit array using get_compute_id(0),
get_compute_i1d(1), and get_compute_id(2), respectively. In this case, the API
is very similar to the API of the work-item's intrinsic functions (that is,
get_global_id(), get_local_id(), and get_group_id(Q)).

Global IDs, local IDs, and group IDs can vary at runtime based on how the host
invokes the kernel. However, compute IDs are known at compilation time, allowing the
offline compiler to generate optimized hardware for each compute unit.

12.4.2. Using Channels with Kernel Copies

To implement channels within compute units (that is, replicated kernel copies), create
an array of channels and then index into that array using the return value of
get_compute_id().

The example code below implements channels within multiple compute units.

#define N 4
channel int chain_channels[N+1];

__attribute__((max_global_work_dim(0)))

__kernel void reader(global int *data_in, int size) {
for (int i = 0; i < size; ++i) {

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

174

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

™ ®
12. Intel FPGA SDK for OpenCL Advanced Features l n te I)

UG-OCL002 | 2018.09.27

write_channel_intel(chain_channels[0], data_in[i]);

}

(o)

__attribute__ ((max_global_work_dim(0)))

__attribute__((autorun))

__attribute__ ((num_compute_units(N)))

__kernel void plusOne() {
int compute_id = get_compute_id(0);
int input = read_channel_intel(chain_channels[compute_id]);
write_channel_intel (chain_channels[compute_id+1], input + 1);

__attribute__ ((max_global_work_dim(0)))
__kernel void writer(global int *data_out, int size) {
for (int 1 = 0; 1 < size; ++i) {
data_out[i] = read_channel_intel(chain_channels[N]);;

}

Figure 24. Example Topology of Kernel Copies that Implement Channels

This figure illustrates the topology of the group of kernels that the OpenCL application code above generates.

DDR4 kernel copies created using num_compute_units(N) DDR4

Note: The implementation of kernel copies is functionally equivalent to defining four
separate kernels in your source code and then hard-coding unique indexes for the
accesses to chain_channels[N].

12.5. Intra-Kernel Registered Assignment Built-In Function

The Intel FPGA SDK for OpenCL Pro Edition provides the built-in function
__Tfpga_reg() that you can include in your OpenCL kernel code. The __ fpga reg()
function directs the Intel FPGA SDK for OpenCL Offline Compiler to insert at least one
register between the operand and the return value of the function call.

In general, it is not necessary to include the _ fpga_ reg() function in your kernel
code to achieve desired performance.

Attention: Intel strongly recommends that you use the _ fpga_ reg() function only if you are
an experienced user of the Intel Quartus Prime Pro Edition software performing
advanced optimization for a specific target device. You must have sufficient knowledge
about the placement of portions of the data path on the FPGA.

Prototype of the __ fpga_ reg() built-in function:
T _ fpga_reg(T op)

where T may be any sized type, such as standard OpenCL device data types, or a
user-defined struct containing OpenCL types.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

175

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

n ®
l n tel) 12. Intel FPGA SDK for OpenCL Advanced Features

Note:

UG-OCL002 | 2018.09.27

Use the _ fpga reg() function for the following purposes:

e Break the the critical paths between spatially distant portions of a data path, such
as between processing elements of a large systolic array.

e Reduce the pressure on placement and routing efforts caused by spatially distinct
portions of the kernel implementation.

The _ fpga_reg() function directs thelntel FPGA SDK for OpenCL Offline Compiler to
insert at least one hardware pipelining register on the signal path that assigns the
operand to the return value. This built-in function operates as an assignment in the
OpenCL programming language, where the operand is assigned to the return value.
The assignment has no implicit semantic or functional meaning beyond a standard C
assignment. Functionally, you can think of the __ fpga_reg() function being always
optimized away by the offline compiler.

The offline compiler does not provide feedback on where you should insert the
__Tpga_reg() function calls in your code. Use the Intel Quartus Prime Pro Edition
software to determine where you should insert the calls to address specific aspects of
performance.

You may introduce nested __fpga_reg() function calls in your kernel code to
increase the minimum number of registers that the offline compiler inserts on the
assignment path. Because each function call guarantees the insertion of at least one
register stage, the number of calls provides a lower limit on the number of registers.

Consider the following example:

int out=__ fpga_reg(__fpga_reg(in));

This line of code directs the offline compiler to insert at least two registers on the
assignment path. The offline compiler may insert more than two registers on the path.

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

176

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
UG-OCL002 | 2018.09.27 l n tel
D Send Feedback

A. Support Statuses of OpenCL Features

The Intel FPGA SDK for OpenCL host runtime conforms with the OpenCL platform layer
and application programming interface (API), with clarifications and exceptions.
Support Statuses of OpenCL 1.0 Features on page 177

Support Statuses of OpenCL 1.2 Features on page 183

Support Statuses of OpenCL 2.0 Features on page 184

Intel FPGA SDK for OpenCL Allocation Limits on page 186

A.1. Support Statuses of OpenCL 1.0 Features

The following sections outline the support statuses of the OpenCL features described
in the OpenCL Specification version 1.0.

A.1.1. OpenCL1.0 C Programming Language Implementation

OpenCL is based on C99 with some limitations. Section 6 of the OpenCL Specification
version 1.0 describes the OpenCL C programming language. The Intel FPGA SDK for
OpenCL conforms with the OpenCL C programming language with clarifications and
exceptions. The table below summarizes the support statuses of the features in the
OpenCL programming language implementation. OpenCL programming language
implementations that are supported with no additional clarifications are not shown.

Support Status column legend:

Symbol Description
. The feature is supported, and there might be a clarification for the supported feature in the Notes column
O The feature is supported with exceptions identified in the Notes column.
The feature is not supported.
Section Feature Support Notes
Status
6.1.1 Built-in Scalar Data Types
double precision float O Preliminary support for all double precision float built-in scalar
data type. This feature might not conform with the OpenCL
Specification version 1.0.
continued...

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2015
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

intel.

A. Support Statuses of OpenCL Features
UG-OCL002 | 2018.09.27

Section

Feature

Support
Status

Notes

Currently, the following double precision floating-point functions
are expected to conform with the OpenCL Specification version
1.0:

add / subtract / multiply / divide / ceil / floor / rint / trunc /
fabs / fmax / fmin / sqrt / rsqrt / exp / exp2 / exp10 / log /
log2 / log10 / sin / cos / asin / acos / sinh / cosh / tanh /

asinh / acosh / atanh / pow / pown / powr / tanh / atan /
atan2 / Idexp / loglp / sincos

half precision float

Support for scalar addition, subtraction and multiplication.
Support for conversions to and from single-precision floating
point. This feature might not conform with the OpenCL
Specification version 1.0.

This feature is supported in the Emulator.

6.1.2

Built-in Vector Data Types

Preliminary support for vectors with three elements. Three-
element vector support is a supplement to the OpenCL
Specification version 1.0.

6.1.3

Built-in Data Types

6.1.4

Reserved Data Types

6.1.5

Alignment of Types

All scalar and vector types are aligned as required (vectors with
three elements are aligned as if they had four elements).

6.2.1

Implicit Conversions

Refer to Section 6.2.6: Usual Arithmetic Conversions in the
OpenCL Specification version 1.2 for an important clarification
of implicit conversions between scalar and vector types.

6.2.2

Explicit Casts

The SDK allows scalar data casts to a vector with a different
element type.

6.5

Address Space Qualifiers

Function scope__constant variables are not supported.

6.6

Image Access Qualifiers

6.7

Function Qualifiers

6.7.2

Optional Attribute Qualifiers

Refer to the Intel FPGA SDK for OpenCL Best Practices Guide
for tips on using reqd_work_group_size to improve kernel
performance.

The SDK parses but ignores the vec_type_hint and
work_group_size_hint attribute qualifiers.

6.9

Preprocessor Directives and Macros

#pragma directive: #pragma
unroll

The Intel FPGA SDK for OpenCL Offline Compiler supports only
#pragma unroll. You may assign an integer argument to the
unroll directive to control the extent of loop unrolling.

For example, #pragma unroll 4 unrolls four iterations of a
loop.

By default, an unroll directive with no unroll factor causes the
offline compiler to attempt to unroll the loop fully.

Refer to the Intel FPGA SDK for OpenCL Best Practices Guide
for tips on using #pragma unroll to improve kernel
performance.

__ _ENDIAN_LITTLE__ defined to
be value 1

The target FPGA is little-endian.

_ IMAGE_SUPPORT___

_ IMAGE_SUPPORT___ is undefined; the SDK does not support
images.

Attribute Qualifiers—The offline compiler parses attribute qualifiers as follows:

continued...

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

178

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

m ®
A. Support Statuses of OpenCL Features l n tel
UG-OCL002 | 2018.09.27

Section Feature Support Notes
Status
6.10.2 | Specifying Attributes of Functions X Convert structure arguments to a pointer to a structure in
—Structure-type kernel global memory.
arguments
6.10.3 | Specifying Attributes of Variables X
—endian
6.10.4 | Specifying Attributes of Blocks X
and Control-Flow-Statements
6.10.5 | Extending Attribute Qualifiers . The offline compiler can parse attributes on various syntactic
structures. It reserves some attribute names for its own
internal use.

Refer to the Intel FPGA SDK for OpenCL Best Practices Guide
for tips on how to optimize kernel performance using these
kernel attributes.

6.11.2 | Math Functions

built-in math functions O Preliminary support for built-in math functions for double
precision float. These functions might not conform with the
OpenCL Specification version 1.0.

built-in half_ and native_ O Preliminary support for built-in half_ and native_ math
math functions functions for double precision float. These functions might not
conform with the OpenCL Specification version 1.0.

6.11.5 | Geometric Functions O Preliminary support for built-in geometric functions for double
precision float. These functions might not conform with the
OpenCL Specification version 1.0.

Refer to Argument Types for Built-in Geometric Functions for a
list of built-in geometric functions supported by the SDK.

6.11.8 | Image Read and Write Functions

6.11.9 | Synchronization Functions—the O Clarifications and exceptions:

barrier synchronization function If a kernel specifies the reqd_work_group_size or
max_work_group_size attribute, barrier supports the
corresponding number of work-items.

If neither attribute is specified, a barrier is instantiated with a
default limit of 256 work-items.

The work-item limit is the maximum supported work-group size
for the kernel; this limit is enforced by the runtime.

6.11.1 | Async Copies from Global to O The implementation is naive:
1 Local Memory, Local to Global Work-item (0,0,0) performs the copy and the
Memory, and Prefetch wait_group_events is implemented as a barrier.

If a kernel specifies the reqd_work_group_size or
max_work_group_size attribute, wait_group_events
supports the corresponding number of work-items.

If neither attribute is specified, wait_group_events is
instantiated with a default limit of 256 work-items.

Related Information
e Intel FPGA SDK for OpenCL Pro Edition Best Practices Guide

e Argument Types for Built-in Geometric Functions on page 180
A.1.2. OpenCL C Programming Language Restrictions
The Intel FPGA SDK for OpenCL conforms with the OpenCL Specification restrictions

on specific programming language features, as described in section 6.8 of the OpenCL
Specification version 1.0.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

179

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html#mwh1391807494883
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Important:

intel.

A. Support Statuses of OpenCL Features
UG-OCL002 | 2018.09.27

The Intel FPGA SDK for OpenCL Offline Compiler does not enforce restrictions on

certain disallowed programming language features. Ensure that your kernel code does
not contain features that the OpenCL Specification version 1.0 does not support.

belonging to different address spaces

Feature Support Notes
Status

pointer assignments between address . Arguments to __kernel functions declared in a program that are

spaces pointers must be declared with the __global, _ constant, or
__local qualifier.
The offline compiler enforces the OpenCL restriction against
pointer assignments between address spaces.

pointers to functions X The offline compiler does not enforce this restriction.

structure-type kernel arguments X Convert structure arguments to a pointer to a structure in global
memory.

images X The SDK does not support images.

bit fields X The offline compiler does not enforce this restriction.

variable length arrays and structures X

variable macros and functions X

C99 headers X

extern, static, auto, and register X The offline compiler does not enforce this restriction.

storage-class specifiers

predefined identifiers . Use the -D option of the aoc command to provide preprocessor
symbol definitions in your kernel code.

recursion X The offline compiler does not return an error for this restriction,
but this feature is not supported.

irreducible control flow X The offline compiler does not return an error for this restriction,
but this feature is not supported.

writes to memory of built-in types less O Store operations less than 32 bits in size might result in lower

than 32 bits in size memory performance.

declaration of arguments to __kernel X The offline compiler does not enforce this restriction.

functions of type event_t

elements of a struct or a union X The offline compiler does not enforce this restriction.

Warning: Assigning elements of a struct or a union to
different address spaces might cause a fatal error.

Support Status column legend:

Symbol Description
° The feature is supported, and there might be a clarification for the supported feature in the Notes column
O The feature is supported with exceptions identified in the Notes column.

The feature is not supported.

A.1.3. Argument Types for Built-in Geometric Functions

The Intel FPGA SDK for OpenCL supports scalar and vector argument built-in
geometric functions with certain limitations.

180

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
A. Support Statuses of OpenCL Features l n tel
UG-OCL002 | 2018.09.27

Function Argument Type
float double
cross . .
dot .
distance .
length .
normalize .
fast_distance -
fast_length -
fast_normalize -

A.1.4. Numerical Compliance Implementation

Section 7 of the OpenCL Specification version 1.0 describes features of the C99 and
IEEE 754 standards that OpenCL-compliant devices must support. The Intel FPGA SDK
for OpenCL operates on 32-bit and 64-bit floating-point values in IEEE Standard
754-2008 format, but not all floating-point operators have been implemented.

The table below summarizes the implementation statuses of the floating-point
operators:

Section Feature Support Notes
Status

7.1 Rounding Modes O Conversion between integer and single and half precision
floating-point types support all rounding modes.

Conversions between integer and double precision floating-
point types support all rounding modes on a preliminary
basis. This feature might not conform with the OpenCL
Specification version 1.0.

7.2 INF, NaN and Denormalized O Infinity (INF) and Not a Number (NaN) results for single
Numbers precision operations are generated in a manner that
conforms with the OpenCL Specification version 1.0. Most
operations that handle denormalized numbers are flushed
prior to and after a floating-point operation.

Preliminary support for double precision floating-point
operation. This feature might not conform with the OpenCL
Specification version 1.0.

7.3 Floating-Point Exceptions

7.4 Relative Error as ULPs O Single precision floating-point operations conform with the
numerical accuracy requirements for an embedded profile of
the OpenCL Specification version 1.0.

Preliminary support for double precision floating-point
operation. This feature might not conform with the OpenCL
Specification version 1.0.

7.5 Edge Case Behavior .

A.1.5. Image Addressing and Filtering Implementation

The Intel FPGA SDK for OpenCL does not support image addressing and filtering. The
SDK does not support images.

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

181

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel)

A. Support Statuses of OpenCL Features
UG-OCL002 | 2018.09.27

A.1.6. Atomic Functions

Attention:

Section 9 of the OpenCL Specification version 1.0 describes a list of optional features
that some OpenCL implementations might support. The Intel FPGA SDK for OpenCL
supports atomic functions conditionally. The implementation of the supported
functions might not conform with the OpenCL Specification Verison 1.0.

e Section 9.5: Atomic Functions for 32-bit Integers—The SDK supports all 32-bit
global and local memory atomic functions. The SDK also supports 32-bit atomic
functions described in Section 6.11.11 of the OpenCL Specification version 1.1 and
Section 6.12.11 of the OpenCL Specification version 1.2.

— The SDK does not support 64-bit atomic functions described in Section 9.7 of
the OpenCL Specification version 1.0.

The use of atomic functions might lower the performance of your design. The
operating frequency of the hardware might decrease further if you implement more
than one type of atomic functions (for example, atomic_add and atomic_sub) in
the kernel.

A.1.7. Embedded Profile Implementation

Section 10 of the OpenCL Specification version 1.0 describes the OpenCL embedded
profile. The Intel FPGA SDK for OpenCL conforms with the OpenCL embedded profile
with clarifications and exceptions.

The table below summarizes the clarifications and exceptions to the OpenCL

embedded profile:

Clause Feature Support Notes
Status
1 64-bit integers . 64-bit integers are supported as a supplement to the OpenCL
Specification version 1.0 for the Embedded Profile.
2 3D images X The SDK does not support images.
3 Create 2D and 3D images with X The SDK does not support images.
image_channel_data_type
values
4 Samplers X
5 Rounding modes . The default rounding mode for
CL_DEVICE_SINGLE_FP_CONFIG is
CL_FP_ROUND_TO_NEAREST.
6 Restrictions listed for single X
precision basic floating-point
operations
7 half type X This clause of the OpenCL Specification version 1.0 does not
apply to the SDK.
8 Error bounds listed for .
conversions from
CL_UNORM_INTS,
CL_SNORM_INTS,
CL_UNORM_INT16 and
CL_SNORM_INT16 to float

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

182

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
A. Support Statuses of OpenCL Features l n tel)

UG-OCL002 | 2018.09.27

A.2. Support Statuses of OpenCL 1.2 Features

The following sections outline the support statuses of the OpenCL features described
in the OpenCL Specification version 1.2.

A.2.1. OpenCL 1.2 Runtime Implementation

The Intel FPGA SDK for OpenCL supports the implementation of sub-buffer objects
and image objects. For more information on sub-buffer objects and image objects,
refer to sections 5.2 and 5.3 of the OpenCL Specification version 1.2, respectively.

The SDK also supports the implementation of the following APIs:
¢ clSetMemObjectDestructorCallback

e clGetKernelArglnfo

e clSetEventCallback

For more information on these APIs, refer to sections 5.4.1, 5.7.3, and 5.9 of the
OpenCL Specification 1.2, respectively.

Related Information

OpenCL Specification version 1.2

A.2.2. OpenCL 1.2 C Programming Language Implementation

The Intel FPGA SDK for OpenCL supports a number of OpenCL C programming
language features that are specified section 6 of the OpenCL Specification version 1.2.
The SDK conforms with the OpenCL C programming language with clarifications and
exceptions.

Attention: The support status "e" means that the feature is supported, and there might be a
clarification for the supported feature in the Notes column. The support status "O0"
means that the feature is supported with exceptions identified in the Notes column.

Table 15. Support Statuses of OpenCL 1.2 C Programming Language Features

Section Feature Support Notes
Status

6.1.3 Other Built-in Data Types . Preliminary support. This feature might not conform with the
OpenCL Specification version 1.0.

6.12.12 Miscellaneous Vector . The SDK supports implementations of the following additional

Functions built-in vector functions:

e vec_step
e shuffle
e shuffle2

6.12.13 printf O Preliminary support. This feature might not conform with the

OpenCL Specification version 1.0. See below for details.

The printf function in OpenCL has syntax and features similar to the printf function in C99, with a few exceptions. For
details, refer to the OpenCL Specification version 1.2.

To use a printf function, there are no requirements for special compilation steps, buffers, or flags. You can compile
kernels that include printf instructions with the usual aoc command.

continued...

D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

183

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

m ®
l n tel A. Support Statuses of OpenCL Features
UG-OCL002 | 2018.09.27

Section Feature Support Notes
Status

During kernel execution, printf data is stored in a global printf buffer that the Intel FPGA SDK for OpenCL Offline
Compiler allocates automatically. The size of this buffer is 64 kB; the total size of data arguments to a printf call should
not exceed this size. When kernel execution completes, the contents of the printf buffer are printed to standard output.

The format string for a printf statement cannot exceed 256 characters.

Buffer overflows are handled seamlessly; printf instructions can be executed an unlimited number of times. However, if
the printf buffer overflows, kernel pipeline execution stalls until the host reads the buffer and prints the buffer contents.
Because printf functions store their data into a global memory buffer, the performance of your kernel will drop if it
includes such functions.

There are no usage limitations on printf functions. You can use printf instructions inside 1f-then-else statements,
loops, etc. A kernel can contain multiple printf instructions executed by multiple work-items.

Format string arguments and literal string arguments of printf calls are transferred to the host system from the FPGA
using a special memory region. This memory region can overflow if the total size of the printf string arguments is large
(3000 characters or less is usually safe in a typical OpenCL application). If there is an overflow, the error message cannot
parse auto-discovery string at byte offset 4096 is printed during host program execution.

Output from printf is never intermixed, even though work-items may execute printf functions concurrently. However,
the order of concurrent printf execution is not guaranteed. In other words, printf outputs might not appear in program
order if the printf instructions are in concurrent datapaths.

Related Information

OpenCL Specification version 1.2

A.3. Support Statuses of OpenCL 2.0 Features

The following sections outline the support statuses of the OpenCL features described
in the OpenCL Specification version 2.0.

A.3.1. OpenCL 2.0 Headers

The Intel FPGA SDK for OpenCL provides both the OpenCL 1.0 and OpenCL 2.0
headers by the Khronos Group.

Attention: The SDK currently does not support all OpenCL 2.0 APIs. If you use the OpenCL 2.0
headers and make a call to an unsupported API, the call will return with an error code
to indicate that the API is not fully supported.

A.3.2. OpenCL 2.0 Runtime Implementation

The Intel FPGA SDK for OpenCL offers preliminary support for shared virtual memory
implementation, as described in section 5.6 of the OpenCL Specification version 2.0.
For more information on shared virtual memory, refer to section 5.6 of the OpenCL
Specification version 2.0.

Important: Refer to your board's specifications to verify that your board supports shared virtual
memory.

Related Information
OpenCL Specification version 2.0 (API)

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

184

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

m ®
A. Support Statuses of OpenCL Features l n tel
UG-OCL002 | 2018.09.27

A.3.3. OpenCL 2.0 C Programming Language Restrictions for Pipes

The Intel FPGA SDK for OpenCL offers preliminary support of OpenCL pipes.The
following table lists the support statuses of pipe-specific OpenCL C programming
language implementations, as described in the OpenCL Specification version 2.0

Attention: The support status "e" means that the feature is supported. There might be a
clarification for the supported feature in the Notes column. A feature that is not
supported by the SDK is identified with an "X".
Table 16. Support Statuses of Built-in Pipe Read and Write Functions
Details of the built-in pipe read and write functions are available in section 6.13.16.2 of the OpenCL
Specification version 2.0.
Function Support Status
int read_pipe (pipe gentype p, gentype *ptr) .
int write_pipe (pipe gentype p, const gentype *ptr) o
int read_pipe (pipe gentype p, reserve_id_t reserve_id, uint index, gentype X
*ptr)
int write_pipe (pipe gentype p, reserve_id_t reserve_id, uint index, const X
gentype *ptr)
reserve_id_t reserve_read_pipe (pipe gentype p, uint num_packets) X
reserve_id_t reserve_write_pipe (pipe gentype p, uint num_packets)
void commit_read_pipe (pipe gentype p, reserve_id_t reserve_id) X
void commit_write_pipe (pipe gentype p, reserve_id_t reserve_id)
bool is_valid_reserve_id (reserve_id_t reserve_id) X
Table 17. Support Statuses of Built-in Work-Group Pipe Read and Write Functions

Details of the built-in pipe read and write functions are available in section 6.13.16.3 of the OpenCL
Specification version 2.0.

Function Support Status
reserve_id_t work_group_reserve_read_pipe (pipe gentype p, uint num_packets) X
reserve_id_t work_group_reserve_write_pipe (pipe gentype p, uint num_packets)
void work_group_commit_read_pipe (pipe gentype p, reserve_id_t reserve_id) X

void work_group_commit_write_pipe (pipe gentype p, reserve_id_t reserve_id)

Table 18. Support Statuses of Built-in Pipe Query Functions
Details of the built-in pipe query functions are available in section 6.13.16.4 of the OpenCL Specification
version 2.0.
Function Support Status
uint get_pipe_num_packets (pipe gentype p) X
uint get_pipe_max_packets (pipe gentype p) X
Related Information
OpenCL Specification version 2.0 (C Language)
D Send Feedback Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

185

https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

intel.

A. Support Statuses of OpenCL Features
UG-OCL002 | 2018.09.27

A.4. Intel FPGA SDK for OpenCL Allocation Limits

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

186

Item

Limit

Maximum number of contexts

Limited only by host memory size

Maximum number of devices

128

Minimum global memory allocation by
runtime

The runtime allocates 64 kB of device memory when the context is
created. This memory is reserved for program variables in global address
space and for static variables inside functions.

If the OpenCL kernel uses the printf function, the runtime allocates an
additional 64 kB of device memory.

Maximum number of queues

1024
Attention: Each context uses two queues for system purposes.

Maximum number of program objects per
context

20

Maximum number of even objects per
context

Limited only by host memory size

Maximum number of dependencies between 1000
events within a context
Maximum number of event dependencies per | 20

command

Maximum number of concurrently running
kernels

The total number of queues

Maximum number of enqueued kernels

1000

Maximum number of kernels per FPGA device

Hardware: no static limit
Emulator: 256

Maximum number of arguments per kernel

128

Maximum total size of kernel arguments

256 bytes per kernel

Maximum number of declared variables in
the local memory per kernel

128

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

®
UG-OCL002 | 2018.09.27 l n tel
D Send Feedback

B. Document Revision History of the Intel FPGA SDK for
OpenCL Pro Edition Programming Guide

Document Version Intel Quartus Changes
Prime Version

2018.09.27 18.1 e Removed duplicate content in RTL Module Interfaces on page 146.

2018.09.24 18.1 e In Intel FPGA SDK for OpenCL Pro Edition, the Intel FPGA SDK for
OpenCL Offline Compiler has a new front end. For a summary of
changes introduced by this new front end, see Improved Intel FPGA
SDK for OpenCL Compiler Front End in the Intel FPGA SDK for OpenCL
Pro Edition Release Notes.

e Added information about new OpenCL simulator preview in Debugging
Your OpenCL Library Through Simulation (Preview) on page 161 and
the following subtopics:

— Compiling a Library for Simulation (-march=simulator) on page 162
— Simulating Your OpenCL Library on page 162
— Limitations of the Simulator on page 163

e Added information about the new OpenCL fast emulator preview in
Using the Fast Emulator (Preview) on page 129 and the following
subtopics:

— Fast Emulator Environment Variables on page 131
— Extensions Supported by the Fast Emulator on page 132
— Fast Emulator Known Issues on page 132

e Revised Including Structure Data Types as Arguments in OpenCL
Kernels on page 71 to indicate that struct kernel parameters must be
passed either by value or as a pointer to struct.

e Removed references to passing channels by reference because passing
channels by reference is no longer supported.

2018.08.03 18.0 e Corrected a typo in Partitioning Buffers Across Different Memory Types
(Heterogeneous Memory) on page 82. The correct flag
CL_MEM_HETEROGENEOUS__INTELFPGA. Previously, the flag was
incorrectly called CL_MEM_HETEROGENEOUS INTEL.

continued...

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 9005":2015
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1412772636144.html#ewa1412772948964#new_front_end
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1412772636144.html#ewa1412772948964#new_front_end
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

] ®
l n tel B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide

UG-OCL002 | 2018.09.27

Document Version

Intel Quartus
Prime Version

Changes

2018.06.14

18.0

Corrected the description of the behavior of the aoc -c command in
Compiling Your Kernel without Building Hardware (-c) on page 105.
With the -c command option, no folder or subdirectory is created.

2018.05.23

18.0

Corrected code example in Using Channels with Kernel Copies on page
174 so that example compiles successfully.

2018.05.04

18.0

Removed Intel Quartus Prime Standard Edition software-related
information.

Updated aoc commands for intermediate compilation, and all relevant
information, from -c to -rtl. Intel FPGA SDK for OpenCL Pro Edition
provides the -rtl flag for intermediate compilation.

Increased the maximum number of devices to 128, as documented in
the following topics:

— Installing an FPGA Board (install) on page 18

— Querying the Device Name of Your FPGA Board (diagnose) on page
21

— Running a Board Diagnostic Test (diagnose <device_name>) on
page 21

— Programming the FPGA Offline or without a Host (program
<device_name>) on page 22

— Programming the Flash Memory (flash <device_name>) on page 22

— Programming Multiple FPGA Devices on page 97

In One-Step Compilation for Simple Kernels on page 10, updated the

figure One-Step OpenCL Kernel Compilation Flow and content of the

topic.

In Multistep Intel FPGA SDK for OpenCL Pro Edition Design Flow on

page 11, updated the figure Multistep Intel FPGA SDK for OpenCL Pro

Edition Design Flow and inserted information on -rtl, fast compilation

and incremental compilation.

Under Programming Strategies for Optimizing Data Processing

Efficiency on page 24, added the topic Loop Concurrency

(max_concurrency Pragma) on page 28.

Modified topic title Programming Strategies for Optimizing Local

Memory Efficiency to Programming Strategies for Optimizing Pointer-to-

Local Memory Size on page 31.

In Emulating I/O Channels on page 42, removed the section Emulating

Communication Between a Kernel and a Host or Other Process (Linux

only).

Updated Emulating a Kernel that Passes Pipes or Channels by Value on

page 122 to add information on passing pipes or channels by value,

and that support for passing channels by reference is deprecated.

Modified the topic title Requirement for Multiple Command Queues in

Channels or Pipes Implementation to Requirement for Multiple

Command Queues to Execute Kernels Concurrently on page 80, and

updated its content.

Added a Compiling Your Kernel Incrementally (-incremental) on page

115 topic with the following subtopics:

— The Incremental Compile Report on page 116

— Additional Command Options for Incremental Compilation on page
118

— Limitations of the Incremental Compilation Feature on page 120

Added a Compiling Your Kernel with Memory Error Correction Coding (-

ecc) on page 120 topic for the ECC early feature.

In Direct Communication with Kernels via Host Pipes on page 64:

— Retitled New Optional Kernel Argument Attribute to Optional
intel_host_accessible Kernel Argument Attribute on page 65

— Retitled New API Functions to API Functions for Interacting with
cl_mem Pipe Objects Bound to Host-Accessible Pipe Kernel
Arguments on page 65

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

188

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide l n tel

UG-OCL002 | 2018.09.27

Document Version

Intel Quartus
Prime Version

Changes

In Intel FPGA SDK for OpenCL Allocation Limits on page 186:

— Removed reference to the environment variable
CL_CONTEXT_PROGRAM_VARIABLES_TOTAL_SIZE INTELFPGA
because the runtime no longer supports it.

— Updated the maximum number of queues

In XML Syntax of an RTL Module on page 149, added information on

the RESOURCES element.

— Added the topic XML Elements for RESOURCES on page 154.

In Intel FPGA SDK for OpenCL Advanced Features on page 142, added

the topic Intel Stratix® 10 Design-Specific Reset Requirements for

Stall-Free and Stallable RTL Modules on page 149.

In Intel FPGA SDK for OpenCL Advanced Features on page 142, added

the topic Intra-Kernel Registered Assignment Built-In Function on page

175

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

189

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide

UG-OCL002 | 2018.09.27

Date

Version

Changes

December 2017

2017.12.08

Added the following new topics:

— Profiling Autorun Kernels on page 137

— Profiling Enqueued and Autorun Kernels on page 86
— Profile Data Acquisition on page 87

— Multiple Autorun Profiling Calls on page 87

— Developing OpenCL Applications Using Intel Code Builder for
OpenCL on page 138

— Configuring the Intel Code Builder for OpenCL Offline Compiler Plug-
in for Microsoft Visual Studio on page 138

— Configuring the Intel Code Builder for OpenCL Offline Compiler Plug-
in for Eclipse on page 138

— Creating a Session in the Intel Code Builder for OpenCL on page
139

— Configuring a Session on page 140

In XML Syntax of an RTL Module on page 149, removed <PARAMETER
name="WIDTH" value="'32"/> from the XML specification file.

November 2017

2017.11.06

Moved topics into separate chapters.

Rebranded references to the following:

— The macro ALTERA_CL to INTELFPGA_CL.

— The environment variable ALTERAOCLSDKROOT to
INTELFPGAOCLSDKROOT.

— The environment variable
CL_CONTEXT_PROGRAM VARI ABLES TOTAL_SI ZE_ALTERAto
CL_CONTEXT_PROGRAM _VARI ABLES _TOTAL_SI ZE_| NTELFPGA

— clGetExtensionFunctionAddress to
clGetExtensionFunctionAddressintel FPGA

— The environment variable
CL_CONTEXT_EMJULATOR_DEVI CE_ALTERAto
CL_CONTEXT_EMJULATOR _DEVI CE_| NTELFPGA

— write_channel_alterato write_channel_intel

— write_channel_nb_alterato write_channel_nb_intel

— CL_MEM_BANK to CL_CHANNEL

— CL_MEM_BANK_1_INTEL to CL_CHANNEL_1_INTELFPGA

— CL_MEM_BANK_2_INTEL to CL_CHANNEL_2_INTELFPGA

— Arria 10 to Intel Arria 10

— Quartus Prime to Intel Quartus Prime

— Intel FPGA SDK for OpenCL Profiler to Intel FPGA Dynamic Profiler
for OpenCL

— TimeQuest Timing Analyzer to Timing Analyzer

— Qsys Pro to Platform Designer

In Intel FPGA SDK for OpenCL FPGA Programming Flow on page 7,

added FPGA data flow architecture diagram and related text.

In Intel FPGA SDK for OpenCL Advanced Features section, added RTL

Module Interfaces on page 146 to provide example of how RTL module

interfaces operate.

Updated the timing diagram in Avalon Streaming (Avalon-ST) Interface

on page 147.

In Implementing Blocking Channel Writes on page 38 and

Implementing Blocking Channel Reads on page 39, removed "which

cannot be a constant” in the definition of <type>.

Added the topic Debugging Your OpenCL System That is Gradually

Slowing Down on page 103.

continued...

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

190

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide l n tel

UG-OCL002 | 2018.09.27

Date

Version

Changes

Added a link to PLDA website in Compiling Your OpenCL Kernel on page
104.

Updated the last bullet point of Guidelines for Naming the Kernel on
page 23 to include the keywords VHDL and Verilog.

In Intel FPGA SDK for OpenCL Advanced Features on page 142, listed
the aspects of the design that can be controlled.

In OpenCL Library on page 142, added the expansion of RTL.

Split the sections of Understanding RTL Modules and the OpenCL
Pipeline on page 143 into individual topics Overview: Intel FPGA SDK
for OpenCL Pipeline Approach on page 144 and Integration of an RTL
Module into the Intel FPGA SDK for OpenCL Pipeline on page 144.

In Overview: Intel FPGA SDK for OpenCL Pipeline Approach on page
144, aligned the left-hand example code with image on the right-hand.
Moved the bottom portion of the image above the paragraph, which
explains the image.

In Integration of an RTL Module into the Intel FPGA SDK for OpenCL
Pipeline on page 144, added related links about Avalon-ST.

In Stall-Free RTL on page 145, split the paragraph into steps and added
related links.

In Requirements for Deterministic Multiple Work-Item Ordering on page
34, added a third requirement for work-item ordering.

Updated Implementing Nonblocking Channel Reads on page 40.

Added new topic Speeding Up Your OpenCL Compilation (-fast-compile)
on page 115 and implemented the convention -option=<value>.

In One-Step Compilation for Simple Kernels on page 10 and Multistep
Intel FPGA SDK for OpenCL Pro Edition Design Flow on page 11,
replaced references to .log file with HTML report and double dash
command option with single dash.

In Compiling a Kernel for Emulation (-march=emulator) on page 123,
added support for Stratix 10

In Obtaining General Information on Software, Compiler, and Custom
Platform on page 15, added a Notice to highlight that double dash and
-option <value> conventions of aoc command are deprecated.

continued...

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

191

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tEI B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

192

UG-OCL002 | 2018.09.27

Date

Version

Changes

Implemented the conventions single dash and —option=<value> in

the following topics:

— Displaying the Compiler Version (-version) on page 15

— Listing the Intel FPGA SDK for OpenCL Offline Compiler Command
Options (no argument, -help, or -h) on page 16

— Listing the Available FPGA Boards in Your Custom Platform (-list-
boards) on page 17

— Partitioning Buffers Across Multiple Interfaces of the Same Memory
Type on page 80

— Specifying the Location of Header Files (-I=<directory>) on page
106

— Specifying the Name of an Intel FPGA SDK for OpenCL Offline
Compiler Output File (-o=<filename>) on page 107

— Compiling a Kernel for a Specific FPGA Board (-
board=<board_name>) on page 107

— Resolving Hardware Generation Fitting Errors during Kernel
Compilation (-high-effort) on page 109

— Defining Preprocessor Macros to Specify Kernel Parameters (-
D<macro_name>) on page 109

— Displaying the Estimated Resource Usage Summary On-Screen (-
report) on page 112

— Disabling Burst-Interleaving of Global Memory (-no-
interleaving=<global_memory_type>) on page 113

— Configuring Constant Memory Cache Size (-const-cache-
bytes=<N>) on page 114

— Relaxing the Order of Floating-Point Operations (-fp-relaxed) on
page 114

— Reducing Floating-Point Rounding Operations (-fpc) on page 114

— Emulating Channel Depth on page 123

— Compiling a Kernel for Emulation (-march=emulator) on page 123

— Packaging an OpenCL Helper Function File for an OpenCL Library on
page 156

— OpenCL Library Command-Line Options on page 166

— Instrumenting the Kernel Pipeline with Performance Counters (-
profile) on page 135

In Accessing Custom Platform-Specific Functions on page 88, added

related links to ICD loader.

In Specifying Number of Compute Units on page 30, Kernel Replication

Using the num_compute_units(X,Y,Z) Attribute on page 172, and

Emulating Your OpenCL Kernel on page 124, added a note on compute

unit.

In Compiling a Kernel for Emulation (-march=emulator) on page 123,

added support for Intel Stratix 10.

Added a new topic Discrepancies in Hardware and Emulator Results on

page 127.

Added support status column legend OpenCL C Programming Language

Restrictions on page 179

Simplified the flowcharts in One-Step Compilation for Simple Kernels on

page 10 and Multistep Intel FPGA SDK for OpenCL Pro Edition Design

Flow on page 11 and updated the texts relevantly.

Removed references to AOCL_BOARD_PACKAGE_ROOT throughout the

guide since it is deprecated.

Updated instances of aocl install to aocl install

<path_to_customplatform>.

Updated instances of aocl uninstall to aocl uninstall
<path_to_customplatform>

continued...

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide l n tel

UG-OCL002 | 2018.09.27

Date

Version

Changes

Added the following new topics for host pipes:

— Direct Communication with Kernels via Host Pipes on page 64

— Optional intel_host_accessible Kernel Argument Attribute on page
65

— API Functions for Interacting with cl_mem Pipe Objects Bound to
Host-Accessible Pipe Kernel Arguments on page 65

— Creating a Host Accessible Pipe on page 66

— Example Use of the cl_intel_fpga_host_pipe Extension on page 67

In Enabling the Intel FPGA SDK for OpenCL Channels for OpenCL Kernel

on page 37, added the pragma to enable the channel extension.

Updated the design example compilation procedures in Using an
OpenCL Library that Works with Simple Functions (Example 1) on page
164 and Using an OpenCL Library that Works with External Memory
(Example 2) on page 165.

In Restrictions in the Implementation of Intel FPGA SDK for OpenCL
Channels Extension on page 35, replaced the Single Site call sub-
section with Multiple Channel Call Site.

May 2017

2017.05.08

Rebranded some functions in code examples as follows:

— Rebranded read_channel_altera to read_channel_intel.

— Rebranded write_channel_altera to write_channel_intel.

— Rebranded read_channel_nb_altera to
read_channel_nb_intel.

— Rebranded write_channel_nb_altera to
write_channel_nb_intel.

— Rebranded clGetBoardExtensionFunctionAddressAltera to
clGetBoardExtensionFunctionAddressintel FPGA.

Added Emulating I/O Channels on page 42.

Added Implementing Arbitrary Precision Integers on page 68.

Added Coalescing Nested Loops on page 25.

Added Specifying a Loop Initiation interval (II) on page 27.

Added Emulating Channel Depth on page 123.

Added Avalon Streaming (Avalon-ST) Interface on page 147.

Removed all references to #pragma OPENCL EXTENSION

cl_altera_channels : enable because this pragma is not
required to implement channels.
Reorganized information related to heterogeneous memory as follows:
— Merged Specifying Pointer Size in Memory content into
Programming Strategies for Optimizing Pointer-to-Local Memory
Size on page 31.
— Restructured into three topics:
e Allocating OpenCL Buffers for Manual Partitioning of Global
Memory on page 80
e Partitioning Buffers Across Multiple Interfaces of the Same
Memory Type on page 80
e Partitioning Buffers Across Different Memory Types
(Heterogeneous Memory) on page 82
— Moved Specifying Buffer Location in Global Memory (previously
under Programming Strategies for Optimizing Access Efficiency)
content into Partitioning Buffers Across Different Memory Types
(Heterogeneous Memory) on page 82.
Updated Collecting Profile Data During Kernel Execution on page 84
with a warning about the affect of collecting profile data on kernel
launch times.
Updated Compiling Your OpenCL Kernel on page 104 with restrictions
on compiling an encrypted .cl file.
Updated Restrictions and Limitations in RTL Support for the Intel FPGA
SDK for OpenCL Library Feature on page 157 to indicate that an RTL
module must use a single-input Avalon-ST interface to control inputs.

continued...

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

193

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide

UG-OCL002 | 2018.09.27

Date

Version

Changes

Updated topics affected by changes to the OpenCL profiler as follows:

— Updated Launching the Intel FPGA Dynamic Profiler for OpenCL GUI
(report) on page 136 with new command options.

— Updated Figure 5 on page 12 in Multistep Intel FPGA SDK for
OpenCL Pro Edition Design Flow on page 11 to reflect the new
command options.

Corrected code example in Implementing Nonblocking Channel Reads

on page 40.

Corrected code example in Channel Execution in Loop with Multiple

Work-Items section of Work-Item Serial Execution of Channels on page

35.

In Intel FPGA SDK for OpenCL Advanced Features section, made the

following updates:

— Updated Interaction between RTL Module and External Memory on
page 154 to indicate preferred method for RTL module and external
memory interactions.

— Updated Potential Incompatibility between RTL Modules and Partial
Reconfiguration on page 156 to include link to the partial
reconfiguration guidelines in the Quartus Prime Pro Edition
Handbook.

— Added information about bankbits and mergeAllocating OpenCL
Buffer for Manual Partitioning of kernel attributes to Kernel
Attributes for Configuring Local and Private Memory Systems on
page 167.

— Rebranded some functions in code examples as follows:

e Rebranded read_channel_altera to read_channel_intel.

e Rebranded write_channel_altera to
write_channel_intel.

October 2016

2016.10.31

Rebranded the Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.
Rebranded the Altera Offline Compiler to Intel FPGA SDK for OpenCL
Offline Compiler.

Deprecated and removed support for big-endian system, resulting in

the following documentation changes:

— Removed the topic Compiling a Kernel for a Big-Endian System (--
big-endian).

— Removed big-endian (64-bit) from the list of architectures that the
host application can target.

Added the topic Displaying the Compilation Environment of an OpenCL

Binary to introduce the aoc env command.

Removed Adding Source References to Optimization Reports (-g)

because the offline compiler automatically includes source information

in the compiler reports and enables symbolic debug during emulation
on an x86 Linux machine.

Added the topic Removing Debug Data from Compiler Reports and

Source Code from the .aocx File (-g0) to introduce the -g0 aoc

command option.

In Limitations of the Intel FPGA SDK for OpenCL Emulator, removed the

limitation "The Emulator does not support half data type".

In Linking Your Host Application to the Khronos ICD Loader Library,

provided an update that the Intel-supplied ICD Loader Library supports

OpenCL Specification version 1.0 as well as implemented APIs from the

OpenCL Specification versions 1.1, 1.2, and 2.0.

In Managing an FPGA Board, provided the following updates:

— Noted that the SDK supports installation of multiple Custom
Platforms. To use the SDK utilities on each board in a multi-board
installation, the AOCL_BOARD_PACKAGE_ROOT environment
variable setting must correspond to the Custom Platform
subdirectory of the associated board.

— Noted that in a system with multiple Custom Platforms, the host
program should use ACD to discover the boards instead of directly
linking to the MMD libraries.

continued...

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

194

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide l n tel

UG-OCL002 | 2018.09.27

Date

Version

Changes

Added the topic Reviewing Your Kernel's report.html File and included
deprecation notice for the analyze-area utility option. As a result of
introducing the HTML report, removed the following topics:

— Reviewing Your Kernel's Resource Usage Information in the Area
Report

— Accessing the Area Report

— Layout of the Area Report

In Multistep Design Flow, updated the design steps and the figure The

Multistep Intel FPGA SDK for OpenCL Design Flow to replace area

report with the HTML report, and remove information on enabling -g.

In Inferring a Register, corrected the text following the code snippet

that explained how the offline compiler decide on the implementation of

the array in hardware.

In Linking to the ICD Loader Library on Windows, updated the text to

improve clarity.

In Support Statuses of OpenCL Features section, made the following

updates:

— Rebranded the Altera SDK for OpenCL to Intel FPGA SDK for
OpenCL.

— Rebranded the Altera Offline Compiler to Intel FPGA SDK for OpenCL
Offline Compiler.

— Modified information in the Intel FPGA SDK for OpenCL Allocation
Limits section:

e Updated information regarding minimum global memory
allocation by runtime.

e Updated the maximum number of queues from 70 to 256.

e Updated the maximum number of kernels per FPGA device from
64 to no static limit when compiling to hardware and 256 when
compiling to emulator.

— In OpenCL 1.0 C Programming Language Implementation, under the
Description column for half-precision float, added a note that this
feature is supported in the Emulator. In addition, updated the
support status of half-precision float from X to .

— Under Support Statuses of OpenCL 2.0 Features, added the topic
OpenCL 2.0 Headers to explain that using the OpenCL 2.0 headers
to call unsupported APIs will result in an error.

May 2016

2016.05.02

Added a schematic diagram of the AOCL programming model in the
Altera SDK for OpenCL FPGA Programming Flow section.

Moved the figure The AOCL FPGA Programming Flow to the Altera
Offline Compiler Kernel Compilation Flows section.

Updated the figure The Multistep AOCL Design Flow and associated text
to include the Review Area Report step.

Added information on the single-cycle floating-point accumulator
feature for single work-item kernels. Refer to the Single-Cycle Floating-
Point Accumulator for Single Work-Item Kernels section for more
information.

Added information in the Emulating Your OpenCL Kernel section on
multi-device support for emulation alongside other OpenCL SDKs using
ICD.

continued...

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

195

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide

UG-OCL002 | 2018.09.27

Date

Version

Changes

Included information on the enhanced area report feature:

— Added the option to invoke the analyze-area AOCL utility
command to generate an HTML area report.

— Included a topic that describes the layout of the HTML area report.

In Linking to the ICD Loader Library on Windows, removed $

(AOCL_LDLIBS) from the code example for the modified Makefile.

In the Multiple Work-Item Ordering sections for channels and pipes,

modified the characteristics that the AOCL uses to check whether the

channel or pipe call is work-item invariant.

Added Intel FPGA SDK for OpenCL Advanced Feature section.

In OpenCL 1.2 Runtime Implementation under Support Statuses of

OpenCL Features sections, noted that AOCL supports the

clSetEventCallback, clGetKernelArglnfo, and

clSetMemObjectDestructorCallback APIs.

November 2015

2015.11.02

Added the option to invoke the aoc command with no argument to
access the Altera Offline Compiler help menu.

Updated the Multiple Host Threads section to specify that the OpenCL
host runtime is thread-safe.

Updated the following figure and sections to reflect multiple kernel
source file support:

— The figure The AOCL FPGA Programming Flow in the AOCL FPGA
Programming Flow section

— The Compiling Your Kernel to Create Hardware Configuration File
section

— The Compiling Your Kernel without Building Hardware (-c) section

n Multiple Work-Item Ordering for Channels, removed misleading text.

Updated the Overview of Channels Implementation figure.

Updated the following sections on OpenCL pipes:

— Overview of a Pipe Network Implementation figure in Overview of
the OpenCL Pipe Functions

— Emulation support in Restrictions in OpenCL Pipes Implementation
section

— Replaced erroneous code with the correct syntax

— Added link to Implementing I/O Pipes Using the io Attribute in
Declaring the Pipe Handle

Added a reminder in Programming an FPGA via the Host that you

should release an event object after use to prevent excessive memory

usage.

In Support Statuses of OpenCL Features section, made the following

updates:

— Categorized feature support statuses and limitations based on
OpenCL Specification versions.

— Added the following functions to the list of OpenCL-conformant
double precision floating-point functions:
sinh / cosh / tanh / asinh / acosh / atanh / pow / pown / powr /
tanh / atan / atan2 / Idexp / loglp / sincos

— In OpenCL 1.2 Runtime Implementation, added sub-buffer object
support.

— In OpenCL 2.0 Runtime Implementation, added preliminary shared
virtual memory support.

— In Altera SDK for OpenCL Allocation Limits, added a minimum global
memory allocation limit by the runtime.

—

continued...

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D send Feedback

196

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide l n tel

UG-OCL002 | 2018.09.27

Date

Version

Changes

May 2015

15.0.0

In Guidelines for Naming the Kernel, added entry that advised against

naming an OpenCL kernel kernel .cl.

In Instrumenting the Kernel Pipeline with Performance Counters (--

profile), specified that you should run the host application from a local

disk to avoid potential delays caused by slow network disk accesses.

In Emulating and Debugging Your OpenCL Kernel, modified Caution

note to indicate that you must emulate a design targeting an SoC on a

non-SoC board.

In Emulating Your OpenCL Kernel, updated command to run the host

application and added instruction for overriding default temporary

directory containing <pr ocess_| D>-libkernel .so.

Introduced the --high-effort aoc command flag in Resolving

Hardware Generation Fitting Errors during Kernel Compilation.

In Enabling Double Precision Floating-Point Operations, introduced the

OPENCL EXTENSION pragma for enabling double precision floating-

point operations.

Introduced OpenCL pipes support. Refer to Implementing OpenCL Pipes

(and subsequent subtopics) and Creating a Pipe Object in Your Host

Application for more information.

In AOCL Channels Extension: Restrictions, added code examples to

demonstrate how to statically index into arrays of channel IDs.

In Multiple Host Threads, added recommendation for synchronizing

OpenCL host function calls in a multi-threaded host application.

Introduced ICD and ACD support. Refer to Linking Your Host

Application to the Khronos ICD Loader Library for more information.

Introduced clGetBoardExtensionFunctionAddressAltera for

referencing user-accessible functions. Refer to Accessing Custom

Platform-Specific Functions for more information.

In Support Statuses of OpenCL Features section, made the following

updates:

— Listed the double precision floating-point functions that the Altera®
SDK for OpenCL supports preliminarily.

— Added OpenCL C Programming Language Restrictions for Pipes.

December 2014

14.1.0

Reorganized information flow. Information is now presented based on
the tasks you might perform using the Altera SDK for OpenCL (AOCL)
or the Altera RTE for OpenCL.

Removed information pertaining to the ——util <N> and -03 Altera

Offline Compiler (AOC) options.

Added the following information on PLDA QuickUDP IP core licensing in

Compiling Your OpenCL Kernel:

1. A PLDA QuickUDP IP core license is required for the Stratix V
Network Reference Platform or a Custom Platform that uses the
QuickUDP IP core.

2. Improper installation of the QuickUDP IP core license causes
compilation to fail with an error message that refers to the
QuickTCP IP core.

Added reminder that conditionally shifting a large shift register is not

recommended.

Removed the Emulating Systems with Multiple Devices section. A new

env

CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<nunber _of _devi ces>

command is now available for emulating multiple devices.

Removed language support limitation from the Limitations of the AOCL

Emulator section.

In AOCL Allocation Limits under Support Statuses of OpenCL Features

section, updated the maximum number of kernels per FPGA device

from 32 to 64.

continued...

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

197

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide

UG-OCL002 | 2018.09.27

Date

Version

Changes

June 2014

14.0.0

Removed the --estimate-throughput and —--sw-dimm-partition
AOC options

Added the -march=emulator, -g, --big-endian, and --profile
AOC options

--no-interleaving needs <global_memory_type> argument
-fp-relaxed=true is now --fp-relaxed

-fpc=true is now --fpc

For non-SoC devices, aocl diagnostic is now aocl diagnose
and aocl diagnose <devi ce_nane>

program and flash need <device_name> arguments

Added Identifying the Device Name of Your FPGA Board

Added AOCL Profiler Utility

Added AOCL Channels Extension and associated subsections

Added Attributes for Channels

Added Match Data Layouts of Host and Kernel Structure Data Types
Added Register Inference and Shift Register Inference

Added Channels and Multiple Command Queues

Added Shared Memory Accesses for OpenCL Kernels Running on SoCs
Added Collecting Profile Data During Kernel Execution

Added Emulate and Debug Your OpenCL Kernel and associated
subsections

Updated AOC Kernel Compilation Flows
Updated -v
Updated Host Binary Requirement

Combined Partitioning Global Memory Accesses and Partitioning
Heterogeneous Global Memory Accesses into the section Partitioning
Global Memory Accesses

Updated AOC Allocation Limits in Appendix A

Removed max_unroll_loops, max_share_resources,
num_share_resources, and task kernel attributes
Added packed, and aligned(<N>) kernel attributes

In Support Statuses of OpenCL Features section, updated the following
AOCL allocation limits:

— Maximum number of contexts
— Maximum number of queues
— Maximum number of even objects per context

December 2013

13.1.1

Removed the section -W and -Werror, and replaced it with two
sections: -W and -Werror.

Updated the following contents to reflect multiple devices support:

— The figure The AOCL FPGA Programming Flow.

— --list-boards section.

— -board <board_name> section.

— section.

— Added the subsection Programming Multiple FPGA Devices under
FPGA Programming.

continued...

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide D Send Feedback

198

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide l n tel

UG-OCL002 | 2018.09.27

Date

Version

Changes

The following contents were added to reflect heterogeneous global

memory support:

— --no-interleaving section.

— buffer_location kernel attribute under Kernel Pragmas and
Attributes.

— Partitioning Heterogeneous Global Memory Accesses section.

Modified support status designations in Appendix: Support Statuses of

OpenCL Features.

Removed information on OpenCL programming language restrictions

from the section OpenCL Programming Language Implementation, and

presented the information in a new section titled OpenCL Programming

Language Restrictions.

November 2013

13.1.0

Reorganized information flow.

Updated and renamed Intel FPGA SDK for OpenCL Compilation Flow to
AOCL FPGA Programming Flow.

Added figures One-Step AOC Compilation Flow and Two-Step AOC
Compilation Flow.

Updated the section Contents of the AOCL Version 13.1.
Removed the following sections:

— OpenCL Kernel Source File Compilation.

— Using the Altera Offline Kernel Compiler.

— Setting Up Your FPGA Board.

— Targeting a Specific FPGA Board.

— Running Your OpenCL Application.

— Consolidating Your Kernel Source Files.

— Aligned Memory Allocation.

— Programming the FPGA Hardware.

— Programming the Flash Memory of an FPGA.

Updated and renamed Compiling the OpenCL Kernel Source File to AOC
Compilation Flows.

Renamed Passing File Scope Structures to OpenCL Kernels to Use
Structure Arguments in OpenCL Kernels.

Updated and renamed Augmenting Your OpenCL Kernel by Specifying
Kernel Attributes and Pragmas to Kernel Pragmas and Attributes.

Renamed Loading Kernels onto an FPGA to FPGA Programming.

Consolidated Compiling and Linking Your Host Program, Host Program
Compilation Settings, and Library Paths and Links into a single section.

Inserted the section Preprocessor Macros.

Renamed Optimizing Global Memory Accesses to Partitioning Global
Memory Accesses.

June 2013

13.0 SP1.0

Added the section Setting Up Your FPGA Board.

Removed the subsection Specifying a Target FPGA Board under Kernel
Programming Considerations.

Inserted the subsections Targeting a Specific FPGA Board and
Generating Compilation Reports under Compiling the OpenCL Kernel
Source File.

Renamed File Scope ___constant Address Space Qualifier to __constant
Address Space Qualifiers, and inserted the following subsections:

— Function Scope __constant Variables.
— File Scope __constant Variables.
— Points to __constant Parameters from the Host.

continued...

D Send Feedback

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

199

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

] ®
l n tel B. Document Revision History of the Intel FPGA SDK for OpenCL Pro Edition Programming Guide

Intel FPGA SDK for OpenCL Pro Edition: Programming Guide

200

UG-OCL002 | 2018.09.27

Date

Version

Changes

Inserted the subsection Passing File Scope Structures to OpenCL
Kernels under Kernel Programming Considerations.

Renamed Modifying Your OpenCL Kernel by Specifying Kernel Attributes
and Pragmas to Augmenting Your OpenCL Kernel by Specifying Kernel
Attributes and Pragmas.

Updated content for the unrol I pragma directive in the section
Augmenting Your OpenCL Kernel by Specifying Kernel Attributes and
Pragmas.

Inserted the subsections Out-of-Order Command Queues and Modifying
Host Program for Structure Parameter Conversion under Host
Programming Considerations.

Updated the sections Loading Kernels onto an FPGA Using
clCreateProgramWithBinary and Aligned Memory Allocation.

Updated flash programming instructions.

Renamed Optional Extensions in Appendix B to Atomic Functions, and
updated its content.

Removed Platform Layer and Runtime Implementation from Appendix
B.

May 2013

13.0.1

Explicit memory fence functions are now supported; the entry is
removed from the table OpenCL Programming Language
Implementation.

Updated the section Programming the Flash Memory of an FPGA.

Added the section Modifying Your OpenCL Kernel by Specifying Kernel
Attributes and Pragmas to introduce kernel attributes and pragmas that
can be implemented to optimize kernel performance.

Added the section Optimizing Global Memory Accesses to discuss data
partitioning.

Removed the section Programming the FPGA with the aocl program
Command from Appendix A.

May 2013

13.0.0

Updated compilation flow.

Updated kernel compiler commands.

Included Altera SDK for OpenCL Utility commands.

Added the section OpenCL Programming Considerations.

Updated flash programming procedure and moved it to Appendix A.

Included a new cICreateProgramWithBinary FPGA hardware
programming flow.

Moved the hostless cICreateProgramWithBinary hardware
programming flow to Appendix A under the title Programming the FPGA
with the aocl program Command.

Moved updated information on allocation limits and OpenCL language
support to Appendix B.

November 2012

12.1.0

Initial release.

D Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Pro%20Edition%20Programming%20Guide%20(UG-OCL002%202018.09.27)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

