
























































































































































































For example, if you run the host application from a networked directory with slow
network disk accesses, the GUI can display the resulting delays between kernel
launches while the runtime stores profile output data to disk.

Attention: To avoid potential delays between kernel executions and increases in the overall
execution time of the host application, run your host application from a local disk.

Figure 66. The Kernel Execution Tab in the Intel FPGA Dynamic Profiler for OpenCL GUI

The horizontal bar graph represents kernel execution through time. The combination
of the two bars shown in the first entry (fft1d) represents the total time. The second
and last entries show kernel executions that occupy the time span. These bars
represent the concurrent execution of output_kernel and input_kernel, and
indicate that the kernels share common resources such as memory bandwidth.

Tip: You can examine profile data for specific execution times. In the example above, when
you double-click the bar on the left for fft1d, another window opens to display profile
data for that specific kernel execution event.

The Kernel Execution tab also displays information on memory transfers between
the host and your devices, shown below:

Figure 67. Kernel Execution Tab: Host-Device Memory Transfer Information

Attention: Adjusting the magnification by zooming in or out might cause subtle changes to the
granularity of the time scale.

To enable the display of memory transfer information, set the environment variable
ACL_PROFILE_TIMER to a value of 1 and then run your host application. Setting the
ACL_PROFILE_TIMER environment variable enables the recording of memory
transfers. The information is stored in the profile.mon file and is then parsed by the
Intel FPGA Dynamic Profiler for OpenCL GUI.
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4.2.3 Autorun Captures Tab

To view the autorun statistical data, use the Intel FPGA Dynamic Profiler for OpenCL
similar to how you view an enqueued kernel's data. Both autorun and enqueued kernel
statistical data are stored in a single profile.mon file.

The autorun profile data is displayed similar to the enqueued profile data. However,
autorun kernels does not have a runtime representation in the Execution Tab since
autorun kernels run continuously.

Attention: If you profile autorun kernels multiple times, data displayed in the Intel FPGA Dynamic
Profiler for OpenCL is an average total of all the profile instances.

If you profile autorun kernels at least once, the Autorun Captures tab appears in the
Intel FPGA Dynamic Profiler for OpenCL GUI. This tab displays a table of all autorun
profile captures organized by device and kernel. To view the profile data of an autorun
kernel for a specific capture, select the associated button and a new profiler window
opens to display data only from that autorun capture (instead of the overall average).

In the following figure, there are four autorun capture instances. If you want to view
the autorun profile data from the capture done at 0.03ms for the streamer autorun
kernel on device 0, then select the 0.03ms button in the Device 0 streamer row.

Figure 68. Autorun Captures Tab

The Profiler Captures buttons are labelled with time during which the capture was
started. This time is relative to the start of the host program.

Attention: Capture time does not correlate with the timeline found in the Kernel Execution tab, as
this timeline is relative to the start of the first enqueued kernel and not the host
program.

4.3 Interpreting the Profiling Information

Profiling information helps you identify poor memory or channel behaviors that lead to
unsatisfactory kernel performance.

Following are explanations on Intel FPGA Dynamic Profiler for OpenCL metrics that are
recorded in the Profiler reports.

Important: Profiling information that relates to the Intel FPGA SDK for OpenCL channels also
applies to OpenCL pipes.

Stall, Occupancy, Bandwidth on page 95
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Activity on page 97

Cache Hit on page 98

Profiler Analyses of Example OpenCL Design Scenarios on page 98

Autorun Profiler Data on page 102

4.3.1 Stall, Occupancy, Bandwidth

For specific lines of kernel code, the Source Code tab in the Intel FPGA Dynamic
Profiler for OpenCL GUI shows stall percentage, occupancy percentage, and average
memory bandwidth.

For definitions of stall, occupancy, and bandwidth, refer to Table 9 on page 91.

The Intel FPGA SDK for OpenCL generates a pipeline architecture where work-items
traverse through the pipeline stages sequentially (that is, in a pipeline-parallel
manner). As soon as a pipeline stage becomes empty, a work-item enters and
occupies the stage. Pipeline parallelism also applies to iterations of pipelined loops,
where iterations enter a pipelined loop sequentially.

Figure 69. Simplified Representation of a Kernel Pipeline Instrumented with
Performance Counters
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The following are simplified equations that describe the Profiler calculates stall,
occupancy, and bandwidth:

Stall =
ostall_count
total_count

x 100%

ivalid_count
total_count x 100%Occupancy = 

Bandwidth = 
data_width  x  ivalid_count

kernel_time
x 100%

Note: ivalid_count in the bandwidth equation also includes the predicate=true input
to the load-store unit.

Ideal kernel pipeline conditions:

• Stall percentage equals 0%

• Occupancy percentage equals 100%

• Bandwidth equals the board's bandwidth

For a given location in the kernel pipeline if the sum of the stall percentage and the
occupancy percentage approximately equals 100%, the Profiler identifies the location
as the stall source. If the stall percentage is low, the Profiler identifies the location as
the victim of the stall.

The Profiler reports a high occupancy percentage if the offline compiler generates a
highly efficient pipeline from your kernel, where work-items or iterations are moving
through the pipeline stages without stalling.

If all LSUs are accessed the same number of times, they will have the same
occupancy value.

• If work-items cannot enter the pipeline consecutively, they insert bubbles into the
pipeline.

• In loop pipelining, loop-carried dependencies also form bubbles in the pipeline
because of bubbles that exist between iterations.

• If an LSU is accessed less frequently than other LSUs, such as the case when an
LSU is outside a loop that contains other LSUs, this LSU will have a lower
occupancy value than the other LSUs.

The same rule regarding occupancy value applies to channels.

Related Links

Source Code Tab on page 90

4.3.1.1 Stalling Channels

Channels provide a point-to-point communication link between either two kernels, or
between a kernel and an I/O channel. If an I/O channel stalls, it implies that the I/O
channel cannot keep up with the kernel.

For example, if a kernel has a read channel call to an Ethernet I/O and the Profiler
identifies a stall, it implies that the write channel is not writing data to the Ethernet
I/O at the same rate as the read rate of the kernel.
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For kernel-to-kernel channels, stalls occur if there is an imbalance between the read
and write sides of the channel, or if the read and write kernels are not running
concurrently.

For example, if the kernel that reads is not launched concurrently with the kernel that
writes, or if the read operations occur much slower than the write operations, the
Profiler identifies a stall for the write_channel_intel call in the write kernel.

Related Links

Transferring Data Via Intel FPGA SDK for OpenCL Channels or OpenCL Pipes on page
73

4.3.2 Activity

Activity measures the percentage of time that a predicated instruction is enabled, that
is, the percentage of time an LSU receives data that it acts on.

In the Source Code tab of the Intel FPGA Dynamic Profiler for OpenCL GUI, the tool
tip on the Occupancy% column might specify an Activity percentage. Activity differs
from occupancy in that activity relates to predication, as explained below.

Each LSU has a predicate signal besides the ivalid signal. The ivalid signal indicates
that upstream logic is providing valid data to the LSU. The predicate signal indicates
that the LSU should act on the data that it receives. A work-item or loop iteration can
occupy a memory instruction even if it is predicated. If the branch statements do not
contain loops, the offline compiler converts the branches to minimize control flow,
which leads to more efficient hardware. As part of the conversion, memory and
channel instructions must be predicated and the output results much be selected
through multiplexer logic.

Consider the following code example:

int addr = compute_address();
int x = 0;
if (some_rare_condition)
    x = src[addr];

The offline compiler will modify the code as follows:

int addr = compute_address();
int x = 0;
x = src[addr] if some_rare_condition;

In this case, src[] receives a valid address every clock cycle. Assuming src[] itself
does not generate stalls into the pipeline, the ivalid signal for src[] will be high
most of the time. In actuality, src[] only performs loading if the predicate signal
some_rare_condition is true. Therefore, for this load operation, occupancy will be
high but activity will be low.

Because activity percentages available in the tool tips do not account for predicated
accesses, you can identify predicated instructions based on low activity percentages.
Despite having low activity percentages, these instructions might have high
occupancies.

Related Links

Tool Tip Options on page 92
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4.3.3 Cache Hit

Cache hit rate measures the effectiveness of a private cache.

In the Source Code tab of the Intel FPGA Dynamic Profiler for OpenCL GUI, the tool
tip on the Attributes column might specify a Cache Hit rate. For some global load
units, the Intel FPGA SDK for OpenCL Offline Compiler might instantiate a private
cache. In this case, the offline compiler creates an additional hardware counter to
measure the effectiveness of this cache. Note that details of this private cache is
available in the HTML area report.

4.3.4 Profiler Analyses of Example OpenCL Design Scenarios

Understanding the problems and solutions presented in example OpenCL design
scenarios might help you leverage the Profiler metrics of your design to optimize its
performance.

4.3.4.1 High Stall Percentage

A high stall percentage implies that the memory or channel instruction is unable to
fulfill the access request because of contention for memory bandwidth or channel
buffer space.

Memory instructions stall often whenever bandwidth usage is inefficient or if a large
amount of data transfer is necessary during the execution of your application.
Inefficient memory accesses lead to suboptimal bandwidth utilization. In such cases,
analyze your kernel memory accesses for possible improvements.

Channel instructions stall whenever there is a strong imbalance between read and
write accesses to the channel. Imbalances might be caused by channel reads or writes
operating at different rates.

For example, if you find that the stall percentage of a write channel call is high, check
to see if the occupancy and activity of the read channel call are low. If they are, the
performing speed of the kernel controlling the read channel call is too slow for the
kernel controlling the write channel call, leading to a performance bottleneck.

If a memory or channel access is causing high percentage pipeline stalls, the line in
the source code that instructs the memory or channel is highlighted in red. A stall
percentage of 20% or higher results in a high stall identification. The higher the stall
percentage, the darker the red highlight will be. To easily traverse through high stall
percentage values, right and left arrows can be found at the bottom right corner of the
Source Code tab.
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Figure 70. High Stall Percentage Identification

Related Links

• Transferring Data Via Intel FPGA SDK for OpenCL Channels or OpenCL Pipes on
page 73

• Source Code Tab on page 90

4.3.4.2 Low Occupancy Percentage

A low occupancy percentage implies that a work-item is accessing the load and store
operations or the channel infrequently. This behavior is expected for load and store
operations or channels that are in non-critical loops. However, if the memory or
channel instruction is in critical portions of the kernel code and the occupancy or
activity percentage is low, it implies that a performance bottleneck exists because
work-items or loop iterations are not being issued in the hardware.

Consider the following code example:

__kernel void proc (__global int * a, ...) {
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < 1000; j++) {
      write_channel_intel (c0, data0);
    }
    for (int k = 0; k < 3; k++) {
      write_channel_intel (c1, data1);
    }
  }
}    
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Assuming all the loops are pipelined, the first inner loop with a trip count of 1000 is
the critical loop. The second inner loop with a trip count of three will be executed
infrequently. As a result, you can expect that the occupancy and activity percentages
for channel c0 are high and for channel c1 are low.

Also, occupancy percentage might be low if you define a small work-group size, the
kernel might not receive sufficient work-items. This is problematic because the
pipeline is empty generally for the duration of kernel execution, which leads to poor
performance.

4.3.4.3 Low Bandwidth Efficiency

Low bandwidth efficiency occurs when excessive amount of bandwidth is necessary to
obtain useful data. Excessive bandwidth usage generally occurs when memory
accesses are poor (for example, random accesses), leading to unsatisfactory
coalescing opportunities.

Review your memory accesses to see if you can rewrite them such that accesses to
memory sites address consecutive memory regions.

Related Links

• Strategies for Improving Memory Access Efficiency on page 134

• Source Code Tab on page 90

4.3.4.4 High Stall and High Occupancy Percentages

A load and store operation or channel with a high stall percentage is the cause of the
kernel pipeline stall.

Remember: An ideal kernel pipeline condition has a stall percentage of 0% and an occupancy
percentage of 100%.

Usually, the sum of the stall and occupancy percentages approximately equals 100%.
If a load and store operation or channel has a high stall percentage, it means that the
load and store operation or channel has the ability to execute every cycle but is
generating stalls.

Solutions for stalling global load and store operations:

• Use local memory to cache data.

• Reduce the number of times you read the data.

• Improve global memory accesses.

— Change the access pattern for more global-memory-friendly addressing (for
example, change from stride accessing to sequential accessing).

— Compile your kernel with the -no-interleaving=default Intel FPGA SDK
for OpenCL Offline Compiler command option, and separate the read and write
buffers into different DDR banks.

— Have fewer but wider global memory accesses.

• Acquire an accelerator board that has more bandwidth (for example, a board with
three DDRs instead of 2 DDRs).
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Solution for stalling local load and store operations:

• Review the HTML area report to verify the local memory configuration and modify
the configuration to make it stall-free.

Solutions for stalling channels:

• Fix stalls on the other side of the channel. For example, if channel read stalls, it
means that the writer to the channel is not writing data into the channel fast
enough and needs to be adjusted.

• If there are channel loops in your design, specify the channel depth.

4.3.4.5 No Stalls, Low Occupancy Percentage, and Low Bandwidth Efficiency

Loop-carried dependencies might create a bottleneck in your design that causes an
LSU or channel to have a low occupancy percentage and a low bandwidth.

Remember: An ideal kernel pipeline condition has a stall percentage of 0%, an occupancy
percentage of 100%, and a bandwidth that equals the board's available bandwidth.

Figure 71. Example OpenCL Kernel and Profiler Analysis

In this example, dst[] is executed once every 20 iterations of the FACTOR2 loop and
once every four iterations of the FACTOR1 loop. Therefore, FACTOR2 loop is the source
of the bottleneck.

Solutions for resolving loop bottlenecks:

• Unroll the FACTOR1 and FACTOR2 loops evenly. Simply unrolling FACTOR1 loop
further will not resolve the bottleneck

• Vectorize your kernel to allow multiple work-items to execute during each loop
iteration

Related Links

Kernel Vectorization on page 124

4.3.4.6 No Stalls, High Occupancy Percentage, and Low Bandwidth Efficiency

The structure of a kernel design might prevent it from leveraging all the available
bandwidth that the accelerator board can offer.

Remember: An ideal kernel pipeline condition has a stall percentage of 0%, an occupancy
percentage of 100%, and a bandwidth that equals the board's available bandwidth.
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Figure 72. Example OpenCL Kernel and Profiler Analysis

In this example, the accelerator board can provide a bandwidth of 25600 megabytes
per second (MB/s). However, the vector_add kernel is requesting (2 reads + 1 write)
x 4 bytes x 294 MHz = 12 bytes/cycle x 294 MHz = 3528 MB/s, which is 14% of the
available bandwidth. To increase the bandwidth, increase the number of tasks
performed in each clock cycle.

Solutions for low bandwidth:

• Automatically or manually vectorize the kernel to make wider requests

• Unroll the innermost loop to make more requests per clock cycle

• Delegate some of the tasks to another kernel

4.3.4.7 High Stall and Low Occupancy Percentages

There might be situations where a global store operation might have a high stall
percentage (for example, 30%) and a very low occupancy percentage (for example,
0.01%). If such a store operation happens once every 10000 cycles of computation,
the efficiency of this store is not a cause for concern.

4.3.5 Autorun Profiler Data

Similar to enqueued kernels, you can view the autorun profiler statistical data by
launching the Intel FPGA Dynamic Profiler for OpenCL GUI using the following aocl
command:

aocl report <filename>.aocx profile.mon <filename>.source

Related Links

Autorun Captures Tab on page 94

4.4 Intel FPGA Dynamic Profiler for OpenCL Limitations

The Intel FPGA Dynamic Profiler for OpenCL has some limitations.
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• The Profiler can only extract one set of profile data from a kernel while it is
running.

If the Profiler collects the profile data after kernel execution completes, you can
call the host API to generate the profile.mon file multiple times.

For more information on how to collect profile data during kernel execution, refer
to the Collecting Profile Data During Kernel Execution section of the Intel FPGA
SDK for OpenCL Programming Guide.

• Profile data is not persistent across OpenCL programs or multiple devices.

You can request profile data from a single OpenCL program and on a single device
only. If your host swaps a new kernel program in and out of the FPGA, the Profiler
will not save the profile data.

• Instrumenting the Verilog code with performance counters increases hardware
resource utilization (that is, FPGA area usage) and typically decreases
performance.

For information on instrumenting the Verilog code with performance counters,
refer to the Instrumenting the Kernel Pipeline with Performance Counters section
of the Intel FPGA SDK for OpenCL Programming Guide.

Related Links

• Collecting Profile Data During Kernel Execution

• Instrumenting the Kernel Pipeline with Performance Counters (-profile)
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5 Strategies for Improving Single Work-Item Kernel
Performance

Addressing Single Work-Item Kernel Dependencies Based on Optimization Report
Feedback on page 104

Removing Loop-Carried Dependencies Caused by Accesses to Memory Arrays on page
116

Good Design Practices for Single Work-Item Kernel on page 119

5.1 Addressing Single Work-Item Kernel Dependencies Based on
Optimization Report Feedback

In many cases, designing your OpenCL application as a single work-item kernel is
sufficient to maximize performance without performing additional optimization steps.
To further improve the performance of your single work-item kernel, you can optimize
it by addressing dependencies that the optimization report identifies.

The following flowchart outlines the approach you can take to iterate on your design
and optimize your single work-item kernel. For usage information on the Intel FPGA
SDK for OpenCL Emulator and the Profiler, refer to the Emulating and Debugging Your
OpenCL Kernel and Profiling Your OpenCL Kernel sections of the Intel FPGA SDK for
OpenCL Programming Guide, respectively. For information on the Intel FPGA Dynamic
Profiler for OpenCL GUI and profiling information, refer to the Profile Your Kernel to
Identify Performance Bottlenecks section.

Intel recommends the following optimization options to address single work-item
kernel loop-carried dependencies, in order of applicability: removal, relaxation,
simplification, and transfer to local memory.
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Figure 73. Optimization Work Flow of a Single Work-Item Kernel
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1. Removing Loop-Carried Dependency on page 105

2. Relaxing Loop-Carried Dependency on page 108

3. Simplifying Loop-Carried Dependency on page 110

4. Transferring Loop-Carried Dependency to Local Memory on page 113

5. Removing Loop-Carried Dependency by Inferring Shift Registers on page 115

Related Links

• Emulating and Debugging Your OpenCL Kernel

• Profiling Your OpenCL Kernel

• Profiling Your Kernel to Identify Performance Bottlenecks on page 89

5.1.1 Removing Loop-Carried Dependency

Based on the feedback from the optimization report, you can remove a loop-carried
dependency by implementing a simpler memory access pattern.
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Consider the following kernel:

 1 #define N 128
 2 
 3 __kernel void unoptimized (__global int * restrict A,
 4                            __global int * restrict B,
 5                            __global int* restrict result)
 6 {
 7   int sum = 0;
 8 
 9   for (unsigned i = 0; i < N; i++) {
10     for (unsigned j = 0; j < N; j++) {
11       sum += A[i*N+j];
12     }
13     sum += B[i];
14   }
15 
16   * result = sum;
17 }

The optimization report for kernel unoptimized resembles the following:

==================================================================================
=
Kernel: unoptimized
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Loop "Block1" (file k.cl line 9)
 | Pipelined with successive iterations launched every 2 cycles due to:
 |
 |     Pipeline structure: every terminating loop with subloops has iterations
 |     launched at least 2 cycles apart.
 |     Having successive iterations launched every two cycles should still lead to
 |     good performance if the inner loop is pipelined well and has sufficiently
 |     high number of iterations.
 |
 | Iterations executed serially across the region listed below.
 | Only a single loop iteration will execute inside the listed region.
 | This will cause performance degradation unless the region is pipelined well
 | (can process an iteration every cycle).
 |
 |     Loop "Block2" (file k.cl line 10)
 |     due to:
 |     Data dependency on variable sum  (file k.cl line 7)
 |
 |
 |-+ Loop "Block2" (file k.cl line 10)
     Pipelined well. Successive iterations are launched every cycle.
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• The first row of the report indicates that the Intel FPGA SDK for OpenCL Offline
Compiler successfully infers pipelined execution for the outer loop, and a new loop
iteration will launch every other cycle.

• The message due to Pipeline structure indicates that the offline compiler
creates a pipeline structure that causes an outer loop iteration to launch every two
cycles. The behavior is not a result of how you structure your kernel code.

Note: For recommendations on how to structure your single work-item kernel,
refer to the Good Design Practices for Single Work-Item Kernel section.

• The remaining messages in the first row of report indicate that the loop executes a
single iteration at a time across the subloop because of data dependency on the
variable sum. This data dependency exists because each outer loop iteration
requires the value of sum from the previous iteration to return before the inner
loop can start executing.

• The second row of the report notifies you that the inner loop executes in a
pipelined fashion with no performance-limiting loop-carried dependencies.

To optimize the performance of this kernel, remove the data dependency on variable
sum so that the outer loop iterations do not execute serially across the subloop.
Perform the following tasks to decouple the computations involving sum in the two
loops:

1. Define a local variable (for example, sum2) for use in the inner loop only.

2. Use the local variable from Step 1 to store the cumulative values of A[i*N + j]
as the inner loop iterates.

3. In the outer loop, store the variable sum to store the cumulative values of B[i]
and the value stored in the local variable.

Below is the restructured kernel optimized:

 1 #define N 128
 2 
 3 __kernel void optimized (__global int * restrict A,
 4                          __global int * restrict B,
 5                          __global int * restrict result)
 6 {
 7   int sum = 0;
 8 
 9   for (unsigned i = 0; i < N; i++) {
10     // Step 1: Definition
11     int sum2 = 0;
12 
13     // Step 2: Accumulation of array A values for one outer loop iteration
14     for (unsigned j = 0; j < N; j++) {
15       sum2 += A[i*N+j];
16     }
17 
18     // Step 3: Addition of array B value for an outer loop iteration
19     sum += sum2;
20     sum += B[i];
21   }
22 
23   * result = sum;
24 }
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An optimization report similar to the one below indicates the successful removal of the
loop-carried dependency on the variable sum:

==================================================================================
=
Kernel: optimized
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Loop "Block1" (file optimized.cl line 9)
 | Pipelined with successive iterations launched every 2 cycles due to:
 |
 |     Pipeline structure: every terminating loop with subloops has iterations
 |     launched at least 2 cycles apart.
 |     Having successive iterations launched every two cycles should still lead to
 |     good performance if the inner loop is pipelined well and has sufficiently
 |     high number of iterations.
 |
 |
 |-+ Loop "Block2" (file optimized.cl line 14)
     Pipelined well. Successive iterations are launched every cycle.

==================================================================================
=

You have addressed all the loop-carried dependence issues successfully when you see
only the following messages in the optimization report:

• Pipelined execution inferred for innermost loops.

• Pipelined execution inferred. Successive iterations launched
every 2 cycles due to: Pipeline structure for all other loops.

Related Links

Good Design Practices for Single Work-Item Kernel on page 119

5.1.2 Relaxing Loop-Carried Dependency

Based on the feedback from the optimization report, you can relax a loop-carried
dependency by increasing the dependence distance.Increase the dependence distance
by increasing the number of loop iterations that occurs between the generation of a
loop-carried value and its usage.

Consider the following code example:

 1 #define N 128
 2 
 3 __kernel void unoptimized (__global float * restrict A,
 4                            __global float * restrict result)
 5 {
 6   float mul = 1.0f;
 7 
 8   for (unsigned i = 0; i < N; i++)
 9     mul *= A[i];
10 
11   * result = mul;
12 }
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==================================================================================
=
Kernel: unoptimized
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Loop "Block1" (file unoptimized.cl line 8)
   Pipelined with successive iterations launched every 6 cycles due to:

       Data dependency on variable mul  (file unoptimized.cl line 9)
       Largest Critical Path Contributor:
           100%: Fmul Operation  (file unoptimized.cl line 9)

==================================================================================
=

The optimization report above shows that the Intel FPGA SDK for OpenCL Offline
Compiler infers pipelined execution for the loop successfully. However, the loop-carried
dependency on the variable mul causes loop iterations to launch every six cycles. In
this case, the floating-point multiplication operation on line 9 (that is, mul *= A[i])
contributes the largest delay to the computation of the variable mul.

To relax the loop-carried data dependency, instead of using a single variable to store
the multiplication results, operate on M copies of the variable and use one copy every
M iterations:

1. Declare multiple copies of the variable mul (for example, in an array called
mul_copies).

2. Initialize all the copies of mul_copies.

3. Use the last copy in the array in the multiplication operation.

4. Perform a shift operation to pass the last value of the array back to the beginning
of the shift register.

5. Reduce all the copies to mul and write the final value to result.

Below is the restructured kernel:

 1 #define N 128
 2 #define M 8
 3 
 4 __kernel void optimized (__global float * restrict A,
 5                          __global float * restrict result)
 6 {
 7   float mul = 1.0f;
 8 
 9   // Step 1: Declare multiple copies of variable mul
10   float mul_copies[M];
11 
12   // Step 2: Initialize all copies
13   for (unsigned i = 0; i < M; i++)
14     mul_copies[i] = 1.0f;
15 
16   for (unsigned i = 0; i < N; i++) {
17     // Step 3: Perform multiplication on the last copy
18     float cur = mul_copies[M-1] * A[i];
19 
20     // Step 4a: Shift copies
21     #pragma unroll 
22     for (unsigned j = M-1; j > 0; j--)
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23       mul_copies[j] = mul_copies[j-1];
24 
25     // Step 4b: Insert updated copy at the beginning
26     mul_copies[0] = cur;
27   }
28 
29   // Step 5: Perform reduction on copies
30   #pragma unroll 
31   for (unsigned i = 0; i < M; i++)
32     mul *= mul_copies[i];
33 
34   * result = mul;
35 }

An optimization report similar to the one below indicates the successful relaxation of
the loop-carried dependency on the variable mul:

==================================================================================
=
Kernel: optimized
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Fully unrolled loop (file optimized2.cl line 13)
   Loop was automatically and fully unrolled.
   Add "#pragma unroll 1" to prevent automatic unrolling.

 + Loop "Block1" (file optimized2.cl line 16)
 | Pipelined well. Successive iterations are launched every cycle.
 |
 |
 |-+ Fully unrolled loop (file optimized2.cl line 22)
     Loop was fully unrolled due to "#pragma unroll" annotation.

 + Fully unrolled loop (file optimized2.cl line 31)
   Loop was fully unrolled due to "#pragma unroll" annotation.

5.1.3 Simplifying Loop-Carried Dependency

In cases where you cannot remove or relax the loop-carried dependency in your
kernel, you might be able to simplify the dependency to improve single work-item
kernel performance.

Consider the following kernel example:

 1 #define N 128
 2 #define NUM_CH 3
 3 
 4 channel uchar CH_DATA_IN[NUM_CH];
 5 channel uchar CH_DATA_OUT;
 6 
 7 __kernel void unoptimized()
 8 {
 9   unsigned storage = 0;
10   unsigned num_bytes = 0;
11 
12   for (unsigned i = 0; i < N; i++) {
13 
14     #pragma unroll
15     for (unsigned j = 0; j < NUM_CH; j++) {
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16       if (num_bytes < NUM_CH) {
17         bool valid = false;
18         uchar data_in = read_channel_nb_intel(CH_DATA_IN[j], &valid);
19         if (valid) {
20           storage <<= 8;
21           storage |= data_in;
22           num_bytes++;
23         }
24       }
25     }
26 
27     if (num_bytes >= 1) {
28       num_bytes -= 1;
29       uchar data_out = storage >> (num_bytes*8);
30       write_channel_intel(CH_DATA_OUT, data_out);
31     }
32   }
33 } 

This kernel reads one byte of data from three input channels in a nonblocking fashion.
It then writes the data one byte at a time to an output channel. It uses the variable
storage to store up to 4 bytes of data, and uses the variable num_bytes to keep track
of how many bytes are stored in storage. If storage has space available, then the
kernel reads a byte of data from one of the channels and stores it in the least
significant byte of storage.

The optimization report below indicates that there is a loop-carried dependency on the
variable num_bytes:

==================================================================================
=
Kernel: unoptimized
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Loop "Block1" (file unoptimized3.cl line 12)
 | Pipelined with successive iterations launched every 7 cycles due to:
 |
 |     Data dependency on variable num_bytes  (file unoptimized3.cl line 10)
 |     Largest Critical Path Contributors:
 |         16%: Integer Compare Operation  (file unoptimized3.cl line 16)
 |         16%: Integer Compare Operation  (file unoptimized3.cl line 16)
 |         16%: Integer Compare Operation  (file unoptimized3.cl line 16)
 |          7%: Integer Compare Operation  (file unoptimized3.cl line 27)
 |          6%: Add Operation  (file unoptimized3.cl line 10, line 22, line 28)
 |          6%: Add Operation  (file unoptimized3.cl line 10, line 22, line 28)
 |          6%: Add Operation  (file unoptimized3.cl line 10, line 22, line 28)
 |          3%: Non-Blocking Channel Read Operation  (file unoptimized3.cl line 
18)
 |          3%: Non-Blocking Channel Read Operation  (file unoptimized3.cl line 
18)
 |          3%: Non-Blocking Channel Read Operation  (file unoptimized3.cl line 
18)
 |
 |
 |-+ Fully unrolled loop (file unoptimized3.cl line 15)
     Loop was fully unrolled due to "#pragma unroll" annotation.  
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The computation path of num_bytes is as follows:

1. Comparison on line 16 (if (num_bytes < NUM_CH)).

2. Computation of variable valid by the nonblocking channel read operation on line
18 (uchar data_in = read_channel_nb_intel(CH_DATA_IN[j],
&valid)) for the comparison on line 19.

3. Addition on line 22 (num_bytes++).

4. Comparison on line 27 (if (num_bytes >= 1)).

5. Subtraction on line 28 (num_bytes -= 1).

Because of the unroll pragma on line 14, the Intel FPGA SDK for OpenCL Offline
Compiler unrolls the loop, causing the comparisons and additions in the loop body to
replicate three times. The optimization report shows that the comparisons are the
most expensive operations on the computation path of num_bytes, followed by the
additions on line 22.

To simplify the loop-carried dependency on num_bytes, consider restructuring the
application to perform the following tasks:

1. Ensure that the kernel reads from the channels only if there is enough space
available in storage, in the event that all channel read operations return data (that
is, there is at least 3 bytes of empty space in storage).
Setting this condition simplifies the computation path of the variable num_bytes
by reducing the number of comparisons.

2. Increase the size of storage from 4 bytes to 8 bytes to satisfy the 3-byte space
threshold more easily.

Below is the restructured kernel optimized:

 1 #define N 128
 2 #define NUM_CH 3
 3 
 4 channel uchar CH_DATA_IN[NUM_CH];
 5 channel uchar CH_DATA_OUT;
 6 
 7 __kernel void optimized()
 8 {
 9   // Change storage to 64 bits
10   ulong storage = 0;
11   unsigned num_bytes = 0;
12 
13   for (unsigned i = 0; i < N; i++) {
14 
15     // Ensure that we have enough space if we read from ALL channels
16     if (num_bytes <= (8-NUM_CH)) {
17       #pragma unroll
18       for (unsigned j = 0; j < NUM_CH; j++) {
19         bool valid = false;
20         uchar data_in = read_channel_nb_intel(CH_DATA_IN[j], &valid);
21         if (valid) {
22           storage <<= 8;
23           storage |= data_in;
24           num_bytes++;
25         }
26       }
27     }
28 
29     if (num_bytes >= 1) {
30       num_bytes -= 1;
31       uchar data_out = storage >> (num_bytes*8);
32       write_channel_intel(CH_DATA_OUT, data_out);
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33     }
34   }
35 }

An optimization report similar to the one below indicates the successful simplification
of the loop-carried dependency on the variable num_bytes:

==================================================================================
=
Kernel: optimized
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Loop "Block1" (file optimized3.cl line 13)
 | Pipelined well. Successive iterations are launched every cycle.
 |
 |
 |-+ Fully unrolled loop (file optimized3.cl line 18)
     Loop was fully unrolled due to "#pragma unroll" annotation.     

5.1.4 Transferring Loop-Carried Dependency to Local Memory

For a loop-carried dependency that you cannot remove, improve the II by moving the
array with the loop-carried dependency from global memory to local memory.

Consider the following kernel example:

1 #define N 128
2
3 __kernel void unoptimized( __global int* restrict A )
4 {
5     for (unsigned i = 0; i < N; i++)
6           A[N-i] = A[i];
7 }     

==================================================================================
=
Kernel: unoptimized
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Loop "Block1" (file unoptimized4.cl line 5)
   Pipelined with successive iterations launched every 324 cycles due to:

       Memory dependency on Load Operation from: (file unoptimized4.cl line 6)
         Store Operation (file unoptimized4.cl line 6)
       Largest Critical Path Contributors:
           49%: Load Operation  (file unoptimized4.cl line 6)
           49%: Store Operation  (file unoptimized4.cl line 6)
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Global memory accesses have long latencies. In this example, the loop-carried
dependency on the array A[i] causes the long latency. This latency is reflected by an
II of 324 in the optimization report. To reduce the II value by transferring the loop-
carried dependency from global memory to local memory, perform the following tasks:

1. Copy the array with the loop-carried dependency to local memory. In this
example, array A[i] becomes array B[i] in local memory.

2. Execute the loop with the loop-carried dependence on array B[i].

3. Copy the array back to global memory.

When you transfer array A[i] to local memory and it becomes array B[i], the loop-
carried dependency is now on B[i]. Because local memory has a much lower latency
than global memory, the II value improves.

Below is the restructured kernel optimized:

 1 #define N 128
 2
 3 __kernel void optimized( __global int* restrict A )
 4 {
 5     int B[N];
 6
 7     for (unsigned i = 0; i < N; i++)
 8         B[i] = A[i];
 9
10     for (unsigned i = 0; i < N; i++)
11         B[N-i] = B[i];
12
13     for (unsigned i = 0; i < N; i++)
14         A[i] = B[i];
15 }

An optimization report similar to the one below indicates the successful reduction of II
from 324 to 2:

==================================================================================
=
Kernel: optimized
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Loop "Block1" (file optimized4.cl line 7)
   Pipelined well. Successive iterations are launched every cycle.

 + Loop "Block2" (file optimized4.cl line 10)
   Pipelined with successive iterations launched every 2 cycles due to:

       Memory dependency on Load Operation from: (file optimized4.cl line 11)
         Store Operation (file optimized4.cl line 11)
       Largest Critical Path Contributors:
           65%: Load Operation  (file optimized4.cl line 11)
           34%: Store Operation  (file optimized4.cl line 11)

 + Loop "Block3" (file optimized4.cl line 13)
   Pipelined well. Successive iterations are launched every cycle.

5 Strategies for Improving Single Work-Item Kernel Performance

UG-OCL003 | 2017.12.08

Intel® FPGA SDK for OpenCL™ Best Practices Guide
114



5.1.5 Removing Loop-Carried Dependency by Inferring Shift Registers

To enable the Intel FPGA SDK for OpenCL Offline Compiler to handle single work-item
kernels that carry out double precision floating-point operations efficiently, remove
loop-carried dependencies by inferring a shift register.

Consider the following kernel:

 1 __kernel void double_add_1 (__global double *arr,
 2                             int N,
 3                             __global double *result)
 4 {
 5   double temp_sum = 0;
 6
 7   for (int i = 0; i < N; ++i)
 8   {
 9       temp_sum += arr[i];
10   }
11 
12   *result = temp_sum;
13 }

The optimization report for kernel unoptimized resembles the following:

==================================================================================
=
Kernel: double_add_1
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Loop "Block1" (file unoptimized5.cl line 7)
   Pipelined with successive iterations launched every 11 cycles due to:

       Data dependency on variable temp_sum  (file unoptimized5.cl line 9)
       Largest Critical Path Contributor:
           97%: Fadd Operation  (file unoptimized5.cl line 9)   

The kernel unoptimized is an accumulator that sums the elements of a double
precision floating-point array arr[i]. For each loop iteration, the offline compiler
takes 11 cycles to compute the result of the addition and then stores it in the variable
temp_sum. Each loop iteration requires the value of temp_sum from the previous loop
iteration, which creates a data dependency on temp_sum.

• To remove the data dependency, infer the array arr[i] as a shift register.

Below is the restructured kernel optimized:

 1 //Shift register size must be statically determinable
 2 #define II_CYCLES 12
 3
 4 __kernel void double_add_2 (__global double *arr,
 5                             int N,
 6                             __global double *result)
 7 {
 8     //Create shift register with II_CYCLE+1 elements
 9     double shift_reg[II_CYCLES+1];
10    
11     //Initialize all elements of the register to 0
12     for (int i = 0; i < II_CYCLES + 1; i++)
13     {
14         shift_reg[i] = 0;
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15     }
16    
17     //Iterate through every element of input array
18     for(int i = 0; i < N; ++i)
19     {
20         //Load ith element into end of shift register
21         //if N > II_CYCLE, add to shift_reg[0] to preserve values
22         shift_reg[II_CYCLES] = shift_reg[0] + arr[i];
23 
24         #pragma unroll
25         //Shift every element of shift register
26         for(int j = 0; j < II_CYCLES; ++j)
27         {
28             shift_reg[j] = shift_reg[j + 1];
29         }
30     }
31 
32     //Sum every element of shift register
33     double temp_sum = 0;
34     
35     #pragma unroll 
36     for(int i = 0; i < II_CYCLES; ++i)
37     {
38         temp_sum += shift_reg[i];
39     }
40
41     *result = temp_sum;
42 }

The following optimization report indicates that the inference of the shift register
shift_reg[II_CYCLES] successfully removes the data dependency on the variable
temp_sum:

==================================================================================
=
Kernel: double_add_2
==================================================================================
=
The kernel is compiled for single work-item execution.

Loop Report:

 + Fully unrolled loop (file optimized5.cl line 12)
   Loop was automatically and fully unrolled.
   Add "#pragma unroll 1" to prevent automatic unrolling.

 + Loop "Block1" (file optimized5.cl line 18)
 | Pipelined well. Successive iterations are launched every cycle.
 |
 |
 |-+ Fully unrolled loop (file optimized5.cl line 26)
     Loop was fully unrolled due to "#pragma unroll" annotation.

 + Fully unrolled loop (file optimized5.cl line 36)
   Loop was fully unrolled due to "#pragma unroll" annotation.    

5.2 Removing Loop-Carried Dependencies Caused by Accesses to
Memory Arrays

Include the ivdep pragma in your single work-item kernel to assert that accesses to
memory arrays will not cause loop-carried dependencies.
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During compilation, the Intel FPGA SDK for OpenCL Offline Compiler creates hardware
that ensures load and store instructions operate within dependency constraints. An
example of a dependency constraint is that dependent load and store instructions
must execute in order. The presence of the ivdep pragma instructs the offline
compiler to remove this extra hardware between load and store instructions in the
loop that immediately follows the pragma declaration in the kernel code. Removing
the extra hardware might reduce logic utilization and lower the II value in single work-
item kernels.
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• If all accesses to memory arrays that are inside a loop will not cause loop-carried
dependencies, add the line #pragma ivdep before the loop in your kernel code.

Example kernel code:

// no loop-carried dependencies for A and B array accesses
#pragma ivdep
for (int i = 0; i < N; i++) {
    A[i] = A[i - X[i]];
    B[i] = B[i - Y[i]];
}

• To specify that accesses to a particular memory array inside a loop will not cause
loop-carried dependencies, add the line #pragma ivdep array (array_name)
before the loop in your kernel code.

The array specified by the ivdep pragma must be a local or private memory
array, or a pointer variable that points to a global, local, or private memory
storage. If the specified array is a pointer, the ivdep pragma also applies to all
arrays that may alias with specified pointer.

The array specified by the ivdep pragma can also be an array or a pointer
member of a struct.

Example kernel code:

// No loop-carried dependencies for A array accesses
// The offline compiler will insert hardware that reinforces dependency 
constraints for B
#pragma ivdep array(A)
for (int i = 0; i < N; i++) {
    A[i] = A[i - X[i]];
    B[i] = B[i - Y[i]];
}

// No loop-carried dependencies for array A inside struct
#pragma ivdep array(S.A)
for (int i = 0; i < N; i++) {
    S.A[i] = S.A[i - X[i]];
}

// No loop-carried dependencies for array A inside the struct pointed by S
#pragma ivdep array(S->X[2][3].A)
for (int i = 0; i < N; i++) {
    S->X[2][3].A[i] = S.A[i - X[i]];
}

// No loop-carried dependencies for A and B because ptr aliases
// with both arrays
int *ptr = select ? A : B;
#pragma ivdep array(ptr)
for (int i = 0; i < N; i++) {
    A[i] = A[i - X[i]];
    B[i] = B[i - Y[i]];
}

// No loop-carried dependencies for A because ptr only aliases with A
int *ptr = &A[10];
#pragma ivdep array(ptr)
for (int i = 0; i < N; i++) {
    A[i] = A[i - X[i]];
    B[i] = B[i - Y[i]];
}
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5.3 Good Design Practices for Single Work-Item Kernel

If your OpenCL kernels contain loop structures, follow the Intel-recommended
guidelines to construct the kernels in a way that allows the Intel FPGA SDK for OpenCL
Offline Compiler to analyze them effectively. Well-structured loops are particularly
important when you direct the offline compiler to perform pipeline parallelism
execution in loops.

Avoid Pointer Aliasing

Insert the restrict keyword in pointer arguments whenever possible. Including the
restrict keyword in pointer arguments prevents the offline compiler from creating
unnecessary memory dependencies between non-conflicting read and write
operations. Consider a loop where each iteration reads data from one array, and then
it writes data to another array in the same physical memory. Without including the
restrict keyword in these pointer arguments, the offline compiler might assume
dependence between the two arrays, and extracts less pipeline parallelism as a result.

Construct "Well-Formed" Loops

A "well-formed" loop has an exit condition that compares against an integer bound,
and has a simple induction increment of one per iteration. Including "well-formed"
loops in your kernel improves performance because the offline compiler can analyze
these loops efficiently.

The following example is a "well-formed" loop:

for (i = 0; i < N; i++) {
   //statements
}

Important: "Well-formed" nested loops also contribute to maximizing kernel performance.

The following example is a "well-formed" nested loop structure:

for (i = 0; i < N; i++) {
   //statements
   for(j = 0; j < M; j++) {
      //statements
   }
}

Minimize Loop-Carried Dependencies

The loop structure below creates a loop-carried dependence because each loop
iteration reads data written by the previous iteration. As a result, each read operation
cannot proceed until the write operation from the previous iteration completes. The
presence of loop-carried dependencies decreases the extent of pipeline parallelism
that the offline compiler can achieve, which reduces kernel performance.

for (int i = 0; i < N; i++) {
    A[i] = A[i - 1] + i;
}

The offline compiler performs a static memory dependence analysis on loops to
determine the extent of parallelism that it can achieve. In some cases, the offline
compiler might assume dependence between two array accesses, and extracts less
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pipeline parallelism as a result. The offline compiler assumes loop-carried dependence
if it cannot resolve the dependencies at compilation time because of unknown
variables, or if the array accesses involve complex addressing.

To minimize loop-carried dependencies, following the guidelines below whenever
possible:

• Avoid pointer arithmetic.

Compiler output is suboptimal when the kernel accesses arrays by dereferencing
pointer values derived from arithmetic operations. For example, avoid accessing
an array in the following manner:

for (int i = 0; i < N; i++) {
    int t = *(A++);
    *A = t;
}

• Introduce simple array indexes.

Avoid the following types of complex array indexes because the offline compiler
cannot analyze them effectively, which might lead to suboptimal compiler output:

— Nonconstants in array indexes.

For example, A[K + i], where i is the loop index variable and K is an
unknown variable.

— Multiple index variables in the same subscript location.

For example, A[i + 2 × j], where i and j are loop index variables for a
double nested loop.

Note: The offline compiler can analyze the array index A[i][j] effectively
because the index variables are in different subscripts.

— Nonlinear indexing.

For example, A[i & C], where i is a loop index variable and C is a constant
or a nonconstant variable.

• Use loops with constant bounds in your kernel whenever possible.

Loops with constant bounds allow the offline compiler to perform range analysis
effectively.

Avoid Complex Loop Exit Conditions

The offline compiler evaluates exit conditions to determine if subsequent loop
iterations can enter the loop pipeline. There are times when the offline compiler
requires memory accesses or complex operations to evaluate the exit condition. In
these cases, subsequent iterations cannot launch until the evaluation completes,
decreasing overall loop performance.

Convert Nested Loops into a Single Loop

To maximize performance, combine nested loops into a single form whenever possible.
Restructuring nested loops into a single loop reduces hardware footprint and
computational overhead between loop iterations.
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The following code examples illustrate the conversion of a nested loop into a single
loop:

Nested Loop Converted Single Loop

for (i = 0; i < N; i++) {
    //statements
    for (j = 0; j < M; j++) {
        //statements          
    }
    //statements
} 

for (i = 0; i < N*M; i++) {
    //statements
}

Declare Variables in the Deepest Scope Possible

To reduce the hardware resources necessary for implementing a variable, declare the
variable prior to its use in a loop. Declaring variables in the deepest scope possible
minimizes data dependencies and hardware usage because the offline compiler does
not need to preserve the variable data across loops that do not use the variables.

Consider the following example:

int a[N];
for (int i = 0; i < m; ++i) {
    int b[N];
    for (int j = 0; j < n; ++j) {
        // statements
    }
}

The array a requires more resources to implement than the array b. To reduce
hardware usage, declare array a outside the inner loop unless it is necessary to
maintain the data through iterations of the outer loop.

Tip: Overwriting all values of a variable in the deepest scope possible also reduces the
resources necessary to present the variable.
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6 Strategies for Improving NDRange Kernel Data
Processing Efficiency

Consider the following kernel code:

__kernel void sum (__global const float * restrict a,
                   __global const float * restrict b,
                   __global float * restrict answer)
{
    size_t gid = get_global_id(0);

    answer[gid] = a[gid] + b[gid];
}

This kernel adds arrays a and b, one element at a time. Each work-item is responsible
for adding two elements, one from each array, and storing the sum into the array
answer. Without optimization, the kernel performs one addition per work-item.
To maximize the performance of your OpenCL kernel, consider implementing the
applicable optimization techniques to improve data processing efficiency.

1. Specifying a Maximum Work-Group Size or a Required Work-Group Size on page
122

2. Kernel Vectorization on page 124

3. Multiple Compute Units on page 127

4. Combination of Compute Unit Replication and Kernel SIMD Vectorization on page
130

5. Resource-Driven Optimization on page 131

6. Reviewing Kernel Properties and Loop Unroll Status in the HTML Report on page
132

6.1 Specifying a Maximum Work-Group Size or a Required Work-
Group Size

Specify the max_work_group_size or reqd_work_group_size attribute for your
kernels whenever possible. These attributes allow the Intel FPGA SDK for OpenCL
Offline Compiler to perform aggressive optimizations to match the kernel to hardware
resources without any excess logic.

The offline compiler assumes a default work-group size for your kernel depending on
certain constraints imposed during compilation time and runtime .
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The offline compiler imposes the following constraints at compilation time:

• If you specify a value for the reqd_work_group_size attribute, the work-group
size must match this value.

• If you specify a value for the max_work_group_size attribute, the work-group
size must not exceed this value.

• If you do not specify values for reqd_work_group_size and
max_work_group_size, and the kernel contains a barrier, the offline compiler
defaults to a maximum work-group size of 256 work-items.

• If you do not specify values for both attributes and the kernel does not contain
any barrier, the offline compiler does not impose any constraint on the work-group
size at compilation time.

Tip: Use the CL_KERNEL_WORK_GROUP_SIZE and
CL_KERNEL_COMPILE_WORK_GROUP_SIZE queries to the
clGetKernelWorkGroupInfo API call to determine the work-group size constraints
that the offline compiler imposes on a particular kernel at compilation time.

The OpenCL standard imposes the following constraints at runtime:

• The work-group size in each dimension must divide evenly into the requested
NDRange size in each dimension.

• The work-group size must not exceed the device constraints specified by the
CL_DEVICE_MAX_WORK_GROUP_SIZE and CL_DEVICE_MAX_WORK_ITEM_SIZES
queries to the clGetDeviceInfo API call.

Caution: If the work-group size you specify for a requested NDRange kernel execution does not
satisfy all of the constraints listed above, the clEnqueueNDRangeKernel API call
fails with the error CL_INVALID_WORK_GROUP_SIZE.

If you do not specify values for both the reqd_work_group_size and
max_work_group_size attributes, the runtime determines a default work-group size
as follows:

• If the kernel contains a barrier or refers to the local work-item ID, or if you use
the clGetKernelWorkGroupInfo and clGetDeviceInfo API calls in your host
code to query the work-group size, the runtime defaults the work-group size to
one work-item.

• If the kernel does not contain a barrier or refer to the local work-item ID, or if
your host code does not query the work-group size, the default work-group size is
the global NDRange size.

When queuing an NDRange kernel (that is, not a single work-item kernel), specify an
explicit work-group size under the following conditions:

• If your kernel uses memory barriers, local memory, or local work-item IDs.

• If your host program queries the work-group size.

If your kernel uses memory barriers, perform one of the following tasks to minimize
hardware resources:

• Specify a value for the reqd_work_group_size attribute.

• Assign to the max_work_group_size attribute the smallest work-group size that
accommodates all your runtime work-group size requests.
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Caution: Including a memory barrier at the end of your NDRange kernel causes compilation to
fail.

Specifying a smaller work-group size than the default at runtime might lead to
excessive hardware consumption. Therefore, if you require a work-group size other
than the default, specify the max_work_group_size attribute to set a maximum
work-group size. If the work-group size remains constant through all kernel
invocations, specify a required work-group size by including the
reqd_work_group_size attribute. The reqd_work_group_size attribute instructs
the offline compiler to allocate exactly the correct amount of hardware to manage the
number of work-items per work-group you specify. This allocation results in hardware
resource savings and improved efficiency in the implementation of kernel compute
units. By specifying the reqd_work_group_size attribute, you also prevent the
offline compiler from implementing additional hardware to support work-groups of
unknown sizes.

For example, the code fragment below assigns a fixed work-group size of 64 work-
items to a kernel:

__attribute__((reqd_work_group_size(64,1,1)))
__kernel void sum (__global const float * restrict a,
                   __global const float * restrict b,
                   __global float * restrict answer)
{
  size_t gid = get_global_id(0);

  answer[gid] = a[gid] + b[gid];
}

6.2 Kernel Vectorization

To achieve higher throughput, you can vectorize your kernel. Kernel vectorization
allows multiple work-items to execute in a single instruction multiple data (SIMD)
fashion. You can direct the Intel FPGA SDK for OpenCL Offline Compiler to translate
each scalar operation in the kernel, such as addition or multiplication, to an SIMD
operation.

Include the num_simd_work_items attribute in your kernel code to direct the offline
compiler to perform more additions per work-item without modifying the body of the
kernel. The following code fragment applies a vectorization factor of four to the
original kernel code:

__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void sum (__global const float * restrict a,
                   __global const float * restrict b,
                   __global float * restrict answer)
{
   size_t gid = get_global_id(0);

   answer[gid] = a[gid] + b[gid];
}

To use the num_simd_work_items attribute, you must also specify a required work-
group size of the kernel using the reqd_work_group_size attribute. The work-
group size you specify for reqd_work_group_size must be divisible by the value
you assign to num_simd_work_items. In the code example above, the kernel has a
fixed work-group size of 64 work-items. Within each work-group, the work-items are
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distributed evenly among the four SIMD vector lanes. After the offline compiler
implements the four SIMD vector lanes, each work-item now performs four times
more work.

The offline compiler vectorizes the code and might coalesce memory accesses. You do
not need to change any kernel code or host code because the offline compiler applies
these optimizations automatically.

You can vectorize your kernel code manually, but you must adjust the NDRange in
your host application to reflect the amount of vectorization you implement. The
following example shows the changes in the code when you duplicate operations in the
kernel manually:

__kernel void sum (__global const float * restrict a,
                   __global const float * restrict b,
                   __global float * restrict answer)
{
   size_t gid = get_global_id(0);

   answer[gid * 4 + 0] = a[gid * 4 + 0] + b[gid * 4 + 0];
   answer[gid * 4 + 1] = a[gid * 4 + 1] + b[gid * 4 + 1];
   answer[gid * 4 + 2] = a[gid * 4 + 2] + b[gid * 4 + 2];
   answer[gid * 4 + 3] = a[gid * 4 + 3] + b[gid * 4 + 3];
}

In this form, the kernel loads four elements from arrays a and b, calculates the sums,
and stores the results into the array answer. Because the FPGA pipeline loads and
stores data to neighboring locations in memory, you can manually direct the offline
compiler to coalesce each group of four load and store operations.

Attention: Each work-item handles four times as much work after you implement the manual
optimizations. As a result, the host application must use an NDRange that is four
times smaller than in the original example. On the contrary, you do not need to adjust
the NDRange size when you exploit the automatic vectorization capabilities of the
offline compiler. You can adjust the vector width with minimal code changes by using
the num_simd_work_items attribute.

6.2.1 Static Memory Coalescing

Static memory coalescing is an Intel FPGA SDK for OpenCL Offline Compiler
optimization step that attempts to reduce the number of times a kernel accesses non-
private memory.
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The figure below shows a common case where kernel performance might benefit from
static memory coalescing:

Figure 74. Static Memory Coalescing

__kernel void summation(__global const float * restrict a,
                        __global const float * restrict b, 
           __global float * restrict answer)
{
    size_t gid = get_global_id(0);

    answer[gid * 4 + 0] = a[gid * 4 + 0] + b[gid * 4 + 0];
    answer[gid * 4 + 1] = a[gid * 4 + 1] + b[gid * 4 + 1];
    answer[gid * 4 + 2] = a[gid * 4 + 2] + b[gid * 4 + 2];
    answer[gid * 4 + 3] = a[gid * 4 + 3] + b[gid * 4 + 3];
}

__kernel void summation(__global const float4 * restrict a,
                        __global const float4 * restrict b, 
           __global float4 * restrict answer)
{
    size_t gid = get_global_id(0);

    answer[gid] = a[gid] + b[gid];
}

Original Kernel

With Coalescing
Memory

Consider the following vectorized kernel:

__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void sum (__global const float * restrict a,
                   __global const float * restrict b,
                   __global float * restrict answer)
{
   size_t gid = get_global_id(0);

   answer[gid] = a[gid] + b[gid];
}

The OpenCL kernel performs four load operations that access consecutive locations in
memory. Instead of performing four memory accesses to competing locations, the
offline compiler coalesces the four loads into a single wider vector load. This
optimization reduces the number of accesses to a memory system and potentially
leads to better memory access patterns.

Although the offline compiler performs static memory coalescing automatically when it
vectorizes the kernel, you should use wide vector loads and stores in your OpenCL
code whenever possible to ensure efficient memory accesses. To implement static
memory coalescing manually, you must write your code in such a way that a
sequential access pattern can be identified at compilation time. The original kernel
code shown in the figure above can benefit from static memory coalescing because all
the indexes into buffers a and b increment with offsets that are known at compilation
time. In contrast, the following code does not allow static memory coalescing to occur:

__kernel void test (__global float * restrict a,
                  __global float * restrict b,
                    __global float * restrict answer;
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                  __global int * restrict offsets)
{
 size_t gid = get_global_id(0);

 answer[gid*4 + 0] = a[gid*4 + 0 + offsets[gid]] + b[gid*4 + 0];
 answer[gid*4 + 1] = a[gid*4 + 1 + offsets[gid]] + b[gid*4 + 1];
 answer[gid*4 + 2] = a[gid*4 + 2 + offsets[gid]] + b[gid*4 + 2];
 answer[gid*4 + 3] = a[gid*4 + 3 + offsets[gid]] + b[gid*4 + 3];
}

The value offsets[gid] is unknown at compilation time. As a result, the offline
compiler cannot statically coalesce the read accesses to buffer a.

6.3 Multiple Compute Units

To achieve higher throughput, the Intel FPGA SDK for OpenCL Offline Compiler can
generate multiple compute units for each kernel. The offline compiler implements each
compute unit as a unique pipeline. Generally, each kernel compute unit can execute
multiple work-groups simultaneously.

To increase overall kernel throughput, the hardware scheduler in the FPGA dispatches
work-groups to additional available compute units. A compute unit is available for
work-group assignments as long as it has not reached its full capacity.

Assume each work-group takes the same amount of time to complete its execution. If
the offline compiler implements two compute units, each compute unit executes half
of the work-groups. Because the hardware scheduler dispatches the work-groups, you
do not need to manage this process in your own code.

The offline compiler does not automatically determine the optimal number of compute
units for a kernel. To increase the number of compute units for your kernel
implementation, you must specify the number of compute units that the offline
compiler should create using the num_compute_units attribute, as shown in the
code sample below.

__attribute__((num_compute_units(2)))
__kernel void sum (__global const float * restrict a,
                   __global const float * restrict b,
                   __global float * restrict answer)
{
    size_t gid = get_global_id(0);

    answer[gid] = a[gid] + b[gid];
}

Increasing the number of compute units achieves higher throughput. However, as
shown in the figure below, you do so at the expense of increasing global memory
bandwidth among the compute units. You also increase hardware resource utilization.
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Figure 75. Data Flow with Multiple Compute Units
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6.3.1 Compute Unit Replication versus Kernel SIMD Vectorization

In most cases, you should implement the num_simd_work_items attribute to
increase data processing efficiency before using the num_compute_units attribute.

Both the num_compute_units and num_simd_work_items attributes increase
throughput by increasing the amount of hardware that the Intel FPGA SDK for OpenCL
Offline Compiler uses to implement your kernel. The num_compute_units attribute
modifies the number of compute units to which work-groups can be scheduled, which
also modifies the number of times a kernel accesses global memory. In contrast, the
num_simd_work_items attribute modifies the amount of work a compute unit can
perform in parallel on a single work-group. The num_simd_work_items attribute
duplicates only the datapath of the compute unit by sharing the control logic across
each SIMD vector lane.

Generally, using the num_simd_work_items attribute leads to more efficient
hardware than using the num_compute_units attribute to achieve the same goal.
The num_simd_work_items attribute also allows the offline compiler to coalesce
your memory accesses.
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Figure 76. Compute Unit Replication versus Kernel SIMD Vectorization
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Multiple compute units competing for global memory might lead to undesired memory
access patterns. You can alter the undesired memory access pattern by introducing
the num_simd_work_items attribute instead of the num_compute_units attribute.
In addition, the num_simd_work_items attribute potentially offers the same
computational throughput as the equivalent kernel compute unit duplication that the
num_compute_units attribute offers.

You cannot implement the num_simd_work_items attribute in your kernel under the
following circumstances:

• The value you specify for num_simd_work_items is not 2, 4, 8 or 16.

• The value of reqd_work_group_size is not divisible by
num_simd_work_items.

For example, the following declaration is incorrect because 50 is not divisible by 4:

__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(50,0,0)))

• Kernels with complex control flows. You cannot vectorize kernels in which different
work-items follow different control paths (for example, the control paths depend
on get_global_ID or get_local_ID).

During kernel compilation, the offline compiler issues messages informing you whether
the implementation of vectorization optimizations is successful. Kernel vectorization is
successful if the reported vectorization factor matches the value you specify for the
num_simd_work_items attribute.
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6.4 Combination of Compute Unit Replication and Kernel SIMD
Vectorization

If your replicated or vectorized OpenCL kernel does not fit in the FPGA, you can
modify the kernel by both replicating the compute unit and vectorizing the kernel.
Include the num_compute_units attribute to modify the number of compute units
for the kernel, and include the num_simd_work_items attribute to take advantage of
kernel vectorization.

Consider a case where a kernel with a num_simd_work_items attribute set to 16
does not fit in the FPGA. The kernel might fit if you modify it by duplicating a narrower
SIMD kernel compute unit. Determining the optimal balance between the number of
compute units and the SIMD width might require some experimentation. For example,
duplicating a four lane-wide SIMD kernel compute unit three times might achieve
better throughput than duplicating an eight lane-wide SIMD kernel compute unit
twice.

The following example code shows how you can combine the num_compute_units
and num_simd_work_items attributes in your OpenCL code:

__attribute__((num_simd_work_items(4)))
__attribute__((num_compute_units(3)))
__attribute__((reqd_work_group_size(8,8,1)))
__kernel void matrixMult(__global float * restrict C,
                         __global float * restrict A,
. . .

The figure below illustrates the data flow of the kernel described above. The
num_compute_units implements three replicated compute units. The
num_simd_work_items implements four SIMD vector lanes.

Figure 77. Optimizing Throughput by Combining Compute Unit Replication and Kernel
SIMD Vectorization
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Attention: You can also enable the resource-driven optimizer to determine automatically the best
combination of num_compute_units and num_simd_work_items.

Important: It is more time-consuming to compile a hardware design that fills the entire FPGA than
smaller designs. When you adjust your kernel optimizations, remove the increased
number of SIMD vector lanes and compute units prior to recompiling the kernel.

6.5 Resource-Driven Optimization

The Intel FPGA SDK for OpenCL Offline Compiler analyzes automatically the effects of
combining various values of kernel attributes and performs resource-driven
optimizations.

During compilation, the offline compiler examines multiple values of the
num_compute_units and num_simd_work_items kernel attributes in various
combinations, and applies a set of heuristics to improve a base design incrementally.
The offline compiler implements this set of values to maximize kernel performance in
terms of work-items executed per second.

Based on the result of its analysis, the offline compiler optimizes code blocks that
work-items execute frequently. For these code blocks, the compiler uses additional
hardware resources to achieve an implementation with higher throughput. For code
blocks that work-items execute infrequently, the compiler attempts to reuse the same
hardware to implement multiple operations.

The amount of hardware sharing that occurs is called the sharing degree. It is the
number of times an operation is shared by work-items executing within the same
compute unit. Code blocks that work-items execute infrequently might lead to a higher
sharing degree.

The offline compiler does not modify values of kernel attributes or pragmas that you
specify in kernel declarations. The offline compiler modifies only unspecified attributes
and pragmas.
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Optimization Behavior

The following are examples of resource-driven optimization:

• Attempts resource sharing of infrequently-executed code blocks only if the kernel
does not fit the FPGA.

After the offline compiler identifies an optimized kernel that fits within the FPGA, it
applies optimizations that increase performance.

• In a multi-kernel design, improves the kernel(s) with minimum performance first.

The order in which kernel optimization occurs is based on the work-items per
second metric. When these kernels cannot be optimized any further, subsequent
kernels are improved in order of their throughput estimates. During resource-
driven optimization, the offline compiler maintains a set of high-performance
candidates and attempts to apply incremental optimizations to each of them. Loop
unrolling and SIMD vectorization are the preferred optimization strategies over
compute unit replication because these optimizations generally result in more
efficient hardware implementations.

• During resource-driven optimization, the offline compiler iterates on a
predetermined set of optimization steps.

In many cases, the offline compiler infers optimization ranges ahead of time. For
example, it determines the maximum number of compute units based on the
available memory bandwidth. Anytime the offline compiler fails to perform an
optimization, it skips that step and attempts other optimizations.

Limitations

Static optimizations are subjected to some inherent limitations. The control flow
analyses assume values of kernel arguments, passed from the host, that are unknown
at compilation time. For example, the offline compiler assumes that loops with
unknown bounds iterate 1024 times. Based on these assumptions, the offline compiler
might guide the optimizations towards code blocks that work-items execute less often
than estimated. In the case of loops with unknown bounds, you can override the
amount of unrolling by specifying an unroll factor in the code using the unroll
pragma. If you do not want to unroll a loop, you can specify an unroll factor of 1 to
indicate no loop unrolling.

Another limiting factor is that all optimizations take place before hardware compilation
occurs. The performance estimation might not accurately capture the maximum
operating frequency that the hardware compiler achieves. Similarly, the estimated
resource usage used in resource-driven optimization might not reflect the actual
hardware resource usage.

There are also range limitations on the amount of sharing and vectorization. Currently,
the maximum sharing degree is 8, and the maximum number of SIMD vector lanes is
16.

6.6 Reviewing Kernel Properties and Loop Unroll Status in the HTML
Report

When you compile an NDRange kernel, the Intel FPGA SDK for OpenCL Offline
Compiler generates a <your_kernel_filename>/reports/report.html file that
provides information on select kernel properties and loop unroll status.
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Related Links

Reviewing Your Kernel's report.html File on page 17
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7 Strategies for Improving Memory Access Efficiency
Memory access efficiency often dictates the overall performance of your OpenCL
kernel. When developing your OpenCL code, it is advantageous to minimize the
number of global memory accesses. The OpenCL Specification version 1.0 describes
four memory types: global, constant, local, and private memories.

An interconnect topology connects shared global, constant, and local memory systems
to their underlying memory. Interconnect includes access arbitration to memory ports.

Memory accesses compete for shared memory resources (that is, global, local, and
constant memories). If your OpenCL kernel performs a large number of memory
accesses, the Intel FPGA SDK for OpenCL Offline Compiler must generate complex
arbitration logic to handle the memory access requests. The complex arbitration logic
might cause a drop in the maximum operating frequency (fmax), which degrades
kernel performance.

The following sections discuss memory access optimizations in detail. In summary,
minimizing global memory accesses is beneficial for the following reasons:

• Typically, increases in OpenCL kernel performance lead to increases in global
memory bandwidth requirements.

• The maximum global memory bandwidth is much smaller than the maximum local
memory bandwidth.

• The maximum computational bandwidth of the FPGA is much larger than the
global memory bandwidth.

Attention: Use local, private or constant memory whenever possible to increase
the memory bandwidth of the kernel.

1. General Guidelines on Optimizing Memory Accesses on page 134

2. Optimize Global Memory Accesses on page 135

3. Performing Kernel Computations Using Constant, Local or Private Memory on page
138

4. Improving Kernel Performance by Banking the Local Memory on page 141

5. Optimizing Accesses to Local Memory by Controlling the Memory Replication
Factor on page 146

6. Minimizing the Memory Dependencies for Loop Pipelining on page 147

7.1 General Guidelines on Optimizing Memory Accesses

Optimizing the memory accesses in your OpenCL kernels can improve overall kernel
performance.

UG-OCL003 | 2017.12.08

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Consider implementing the following techniques for optimizing memory accesses,
whenever possible:

• If your OpenCL program has a pair of kernels—one produces data and the other
one consumes that data—convert them into a single kernel that performs both
functions. Also, implement helper functions to logically separate the functions of
the two original kernels.

FPGA implementations favor one large kernel over separate smaller kernels.
Kernel unification removes the need to write the results from one kernel into
global memory temporarily before fetching the same data in the other kernel.

• The Intel FPGA SDK for OpenCL Offline Compiler implements local memory in
FPGAs very differently than in GPUs. If your OpenCL kernel contains code to avoid
GPU-specific local memory bank conflicts, remove that code because the offline
compiler generates hardware that avoids local memory bank conflicts
automatically whenever possible.

7.2 Optimize Global Memory Accesses

The Intel FPGA SDK for OpenCL Offline Compiler uses SDRAM as global memory. By
default, the offline compiler configures global memory in a burst-interleaved
configuration. The offline compiler interleaves global memory across each of the
external memory banks.

In most circumstances, the default burst-interleaved configuration leads to the best
load balancing between the memory banks. However, in some cases, you might want
to partition the banks manually as two non-interleaved (and contiguous) memory
regions to achieve better load balancing.

The figure below illustrates the differences in memory mapping patterns between
burst-interleaved and non-interleaved memory partitions.
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Figure 78. Global Memory Partitions
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7.2.1 Contiguous Memory Accesses

Contiguous memory access optimizations analyze statically the access patterns of
global load and store operations in a kernel. For sequential load or store operations
that occur for the entire kernel invocation, the Intel FPGA SDK for OpenCL Offline
Compiler directs the kernel to access consecutive locations in global memory.

Consider the following code example:

__kernel void sum ( __global const float * restrict a,
                    __global const float * restrict b,
                    __global float * restrict c )
{
    size_t gid = get_global_id(0);

    c[gid] = a[gid] + b[gid];
}

The load operation from array a uses an index that is a direct function of the work-
item global ID. By basing the array index on the work-item global ID, the offline
compiler can direct contiguous load operations. These load operations retrieve the
data sequentially from the input array, and sends the read data to the pipeline as
required. Contiguous store operations then store elements of the result that exits the
computation pipeline in sequential locations within global memory.
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Tip: Use the const qualifier for any read-only global buffer so that the offline compiler can
perform more aggressive optimizations on the load operation.

The following figure illustrates an example of the contiguous memory access
optimization:

Figure 79. Contiguous Memory Access
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Contiguous load and store operations improve memory access efficiency because they
lead to increased access speeds and reduced hardware resource needs. The data
travels in and out of the computational portion of the pipeline concurrently, allowing
overlaps between computation and memory accesses. If possible, use work-item IDs
that index consecutive memory locations for load and store operations that access
global memory. Sequential accesses to global memory increase memory efficiency
because they provide an ideal access pattern.

7.2.2 Manual Partitioning of Global Memory

You can partition the memory manually so that each buffer occupies a different
memory bank.

The default burst-interleaved configuration of the global memory prevents load
imbalance by ensuring that memory accesses do not favor one external memory bank
over another. However, you have the option to control the memory bandwidth across a
group of buffers by partitioning your data manually.
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• The Intel FPGA SDK for OpenCL Offline Compiler cannot burst-interleave across
different memory types. To manually partition a specific type of global memory ,
compile your OpenCL kernels with the -no-
interleaving=<global_memory_type> flag to configure each bank of a
certain memory type as non-interleaved banks.

If your kernel accesses two buffers of equal size in memory, you can distribute
your data to both memory banks simultaneously regardless of dynamic scheduling
between the loads. This optimization step might increase your apparent memory
bandwidth.

If your kernel accesses heterogeneous global memory types, include the -no-
interleaving=<global_memory_type> option in the aoc command for each
memory type that you want to partition manually.

For more information on the usage of the -no-
interleaving=<global_memory_type> option, refer to the Disabling Burst-
Interleaving of Global Memory (-no-interleaving=<global_memory_type>) section of
the Intel FPGA SDK for OpenCL Programming Guide.

Related Links

Disabling Burst-Interleaving of Global Memory (-no-
interleaving=<global_memory_type>)

7.2.2.1 Heterogeneous Memory Buffers

You can execute your kernel on an FPGA board that includes multiple global memory
types, such as DDR, QDR, and on-chip RAMs.

If your FPGA board offers heterogeneous global memory types, keep in mind that they
handle different memory accesses with varying efficiencies.

For example:

• Use DDR SDRAM for long sequential accesses.

• Use QDR SDRAM for random accesses.

• Use on-chip RAM for random low latency accesses.

For more information on how to allocate buffers in global memory and how to modify
your host application to leverage heterogeneous buffers, refer to the Specifying Buffer
Location in Global Memory and Allocating OpenCL Buffer for Manual Partitioning of
Global Memory sections of the Intel FPGA SDK for OpenCL Programming Guide.

Related Links

• Partitioning Buffers Across Different Memory Types (Heterogeneous Memory)

• Allocating OpenCL Buffer for Manual Partitioning of Global Memory

7.3 Performing Kernel Computations Using Constant, Local or
Private Memory

To optimize memory access efficiency, minimize the number for global memory
accesses by performing your OpenCL kernel computations in constant, local, or private
memory.
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To minimize global memory accesses, you must first preload data from a group of
computations from global memory to constant, local, or private memory. You perform
the kernel computations on the preloaded data, and then write the results back to
global memory.

7.3.1 Constant Cache Memory

Constant memory resides in global memory, but the kernel loads it into an on-chip
cache shared by all work-groups at runtime. For example, if you have read-only data
that all work-groups use, and the data size of the constant buffer fits into the constant
cache, allocate the data to the constant memory. The constant cache is most
appropriate for high-bandwidth table lookups that are constant across several
invocations of a kernel. The constant cache is optimized for high cache hit
performance.

By default, the constant cache size is 16 kB. You can specify the constant cache size
by including the -const-cache-bytes=<N> option in your aoc command, where
<N> is the constant cache size in bytes.

Unlike global memory accesses that have extra hardware for tolerating long memory
latencies, the constant cache suffers large performance penalties for cache misses. If
the __constant arguments in your OpenCL kernel code cannot fit in the cache, you
might achieve better performance with __global const arguments instead. If the
host application writes to constant memory that is already loaded into the constant
cache, the cached data is discarded (that is, invalidated) from the constant cache.

For more information on the -const-cache-bytes=<N> option, refer to the
Configuring Constant Memory Cache Size (-const-cache-bytes=<N>) section of the
Intel FPGA SDK for OpenCL Programming Guide.

Related Links

Configuring Constant Memory Cache Size (-const-cache-bytes=<N>)

7.3.2 Preloading Data to Local Memory

Local memory is considerably smaller than global memory, but it has significantly
higher throughput and much lower latency. Unlike global memory accesses, the kernel
can access local memory randomly without any performance penalty. When you
structure your kernel code, attempt to access the global memory sequentially, and
buffer that data in on-chip local memory before your kernel uses the data for
calculation purposes.

The Intel FPGA SDK for OpenCL Offline Compiler implements OpenCL local memory in
on-chip memory blocks in the FPGA. On-chip memory blocks have two read and write
ports, and they can be clocked at an operating frequency that is double the operating
frequency of the OpenCL kernels. This doubling of the clock frequency allows the
memory to be “double pumped,” resulting in twice the bandwidth from the same
memory. As a result, each on-chip memory block supports up to four simultaneous
accesses.

Ideally, the accesses to each bank are distributed uniformly across the on-chip
memory blocks of the bank. Because only four simultaneous accesses to an on-chip
memory block are possible in a single clock cycle, distributing the accesses helps avoid
bank contention.
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This banking configuration is usually effective; however, the offline compiler must
create a complex memory system to accommodate a large number of banks. A large
number of banks might complicate the arbitration network and can reduce the overall
system performance.

Because the offline compiler implements local memory that resides in on-chip memory
blocks in the FPGA, the offline compiler must choose the size of local memory systems
at compilation time. The method the offline compiler uses to determine the size of a
local memory system depends on the local data types used in your OpenCL code.

Optimizing Local Memory Accesses

To optimize local memory access efficiency, consider the following guidelines:

• Implementing certain optimizations techniques, such as loop unrolling, might lead
to more concurrent memory accesses.

Caution: Increasing the number of memory accesses can complicate the memory
systems and degrade performance.

• Simplify the local memory subsystem by limiting the number of unique local
memory accesses in your kernel to four or less, whenever possible.

You achieve maximum local memory performance when there are four or less
memory accesses to a local memory system. If the number of accesses to a
particular memory system is greater than four, the offline compiler arranges the
on-chip memory blocks of the memory system into a banked configuration.

• If you have function scope local data, the offline compiler statically sizes the local
data that you define within a function body at compilation time. You should define
local memories by directing the offline compiler to set the memory to the required
size, rounded up to the closest value that is a power of two.

• For pointers to __local kernel arguments, the host assigns their memory sizes
dynamically at runtime through clSetKernelArg calls. However, the offline
compiler must set these physical memory sizes at compilation time.

By default, pointers to __local kernel arguments are 16 kB in size. You can
specify an allocation size by including the local_mem_size attribute in your
pointer declaration.

Note: clSetKernelArg calls can request a smaller data size than has been
physically allocated at compilation time, but never a larger size.

• When accessing local memory, use the simplest address calculations possible and
avoid pointer math operations that are not mandatory.

Intel recommends this coding style to reduce FPGA resource utilization and
increase local memory efficiency by allowing the offline compiler to make better
guarantees about access patterns through static code analysis. Complex address
calculations and pointer math operations can prevent the offline compiler from
creating independent memory systems representing different portions of your
data, leading to increased area usage and decreased runtime performance.

• Avoid storing pointers to memory whenever possible. Stored pointers often
prevent static compiler analysis from determining the data sets accessed, when
the pointers are subsequently retrieved from memory. Storing pointers to memory
almost always leads to suboptimal area and performance results
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For usage information on the local_mem_size attribute, refer to the Specifying
Pointer Size in Local Memory section of the Intel FPGA SDK for OpenCL Programming
Guide.

Related Links

Programming Strategies for Optimizing Local Memory Efficiency

7.3.3 Storing Variables and Arrays in Private Memory

The Intel FPGA SDK for OpenCL Offline Compiler implements private memory using
FPGA registers or block RAMs. The offline compiler analyzes the private memory
accesses and promotes them to register accesses. Scalar variables, for example float,
int and char, will mostly be promoted. Aggregate data types will be promoted, if
accesses are compile-time constants. Typically, private memory is useful for storing
single variables or small arrays. Registers are plentiful hardware resources in FPGAs,
and it is almost always better to use private memory instead of other memory types
whenever possible. The kernel can access private memories in parallel, allowing them
to provide more bandwidth than any other memory type (that is, global, local, and
constant memories).

For more information on the implementation of private memory using registers, refer
to the Inferring a Register section of the Intel FPGA SDK for OpenCL Programming
Guide.

Related Links

Inferring a Register

7.4 Improving Kernel Performance by Banking the Local Memory

Specifying the numbanks(N) and bankwidth(M) advanced kernel attributes allows
you to configure the local memory banks for parallel memory accesses.The banking
geometry described by these advanced kernel attributes determines which elements of
the local memory system your kernel can access in parallel.

The following code example depicts an 8 x 4 local memory system that is
implemented in a single bank. As a result, no two elements in the system can be
accessed in parallel.

local int lmem[8][4];

#pragma unroll
for(int i = 0; i<4; i+=2) {
    lmem[i][x] = …; 
}
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Figure 80. Serial Accesses to an 8 x 4 Local Memory System
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To improve performance, you can add numbanks(N) and bankwidth(M) in your
code to define the number of memory banks and the bank widths in bytes. The
following code implements eight memory banks, each 16-bytes wide. This memory
bank configuration enables parallel memory accesses down the 8 x 4 array.

local int __attribute__((numbanks(8), 
                        bankwidth(16)))
                        lmem[8][4]; 
#pragma unroll
for (int i = 0; i < 4; i+=2) {
    lmem[i][x & 0x3] = …; 
}

Attention: To enable parallel access, you must mask the dynamic access on the lower array
index. Masking the dynamic access on the lower array index informs the Intel FPGA
SDK for OpenCL Offline Compiler that x will not exceed the lower index bounds.
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Figure 81. Parallel Access to an 8 x 4 Local Memory System with Eight 16-Byte-Wide
Memory Banks
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By specifying different values for the numbanks(N) and bankwidth(M) kernel
attributes, you can change the parallel access pattern. The following code implements
four memory banks, each 4-bytes wide. This memory bank configuration enables
parallel memory accesses across the 8 x 4 array.

local int __attribute__((numbanks(4), 
                        bankwidth(4)))
                        lmem[8][4]; 

#pragma unroll
for (int i = 0; i < 4; i+=2) {
    lmem[x][i] = …; 
}
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Figure 82. Parallel Access to an 8 x 4 Local Memory System with Four 4-Byte-Wide
Memory Banks
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7.4.1 Optimizing the Geometric Configuration of Local Memory Banks
Based on Array Index

By default, the Intel FPGA SDK for OpenCL Offline Compiler might attempt to improve
performance by automatically banking a local memory system. The Intel FPGA SDK for
OpenCL includes advanced features that allow you to customize the banking geometry
of your local memory system. To configure the geometry of local memory banks,
include the numbanks(N) and bankwidth(M) kernel attributes in your OpenCL
kernel .

The following code examples illustrate how the bank geometry changes based on the
values you assign to numbanks and bankwidth.
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Table 11. Effects of numbanks and bankwidth on the Bank Geometry of 2 x 4 Local
Memory System
The first and last rows of this table illustrate how to bank memory on the upper and lower indexes of a 2D
array, respectively.

Code Example Bank Geometry

local int
__attribute__((numbanks(2),
               bankwidth(16)))
               lmem[2][4]; 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

local int 
__attribute__((numbanks(2), 
               bankwidth(8))) 
               lmem[2][4]; 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

local int 
__attribute__((numbanks(2), 
               bankwidth(4))) 
               lmem[2][4]; 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

local int 
__attribute__((numbanks(4), 
               bankwidth(8))) 
               lmem[2][4]; 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

Bank 2

Bank 3

local int
__attribute__((numbanks(4),
               bankwidth(4)))
               lmem[2][4]; 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

lmem

Bank 0

Bank 1

Bank 2

Bank 3

Related Links

Kernel Attributes for Configuring Local Memory System
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7.5 Optimizing Accesses to Local Memory by Controlling the
Memory Replication Factor

The memory replication factor is the number of M20K memory blocks that your design
uses to implement the local memory system. To control the memory replication factor,
include the singlepump or doublepump kernel attribute in your OpenCL kernel. The
singlepump and doublepump kernel attributes are part Intel FPGA SDK for OpenCL's
advanced features.

Intel's M20K memory blocks have two physical ports. The number of logical ports that
are available in each M20K block depends on the degree of pumping. Pumping is a
measure of the clock frequency of the M20K blocks relative to the rest of the design.

Consider an example design where the kernel specifies three read ports and one write
port for the local memory system, lmem. As shown in the code example below,
including the singlepump kernel attribute in the local variable declaration indicates
that the M20K blocks will run at the same frequency as the rest of the design.

int __attribute__((memory,
                   numbanks(1),
                   bankwidth(64),
                   singlepump,
                   numreadports(3), 
                   numwriteports(1))) 
                   lmem[16];

Figure 83. Accesses to Single-Pumped M20K Memory Blocks
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write
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Each single-pumped M20K block will have two logical ports available. Each write port
in the local memory system must be connected to all the M20K blocks that your
design uses to implement the memory system. Each read port in the local memory
system must be connected to one M20K block. Because of these connection
constraints, there needs to be three M20K blocks to implement the specified number
of ports in lmem.
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If you include the doublepump kernel attribute in your local variable declaration, you
specify that the M20K memory blocks will run at double the frequency as the rest of
the design.

int __attribute__((memory,
                   numbanks(1),
                   bankwidth(64),
                   doublepump,
                   numreadports(3), 
                   numwriteports(1))) 
                   lmem[16];

Figure 84. Accesses to Double-Pumped M20K Memory Blocks
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Each double-pumped M20K block will have four logical ports available. As such, there
only needs to be one M20K block to implement all three read ports and one write port
in lmem.

Attention: • Double pumping the memory increases resource overhead. Use the doublepump
kernel attribute only if it results in actual M20K savings or improves performance,
or both.

• Stores must be connected to every replicate and must not suffer contention.
Hence, if there are more than three stores, the memory is not replicated. Local
memory replication works well with single store.

• Because the entire memory system is replicated, you might observe potentially
large M20K memory blocks.

Related Links

Kernel Attributes for Configuring Local Memory System

7.6 Minimizing the Memory Dependencies for Loop Pipelining

Intel FPGA SDK for OpenCL Offline Compiler ensures that the memory accesses from
the same thread respects the program order. When you compile an NDRange kernel,
use barriers to synchronize memory accesses across threads in the same work-group.

Loop dependencies might introduce bottlenecks for single work-item kernels due to
latency associated with the memory accesses. The offline compiler defers a memory
operation until a dependent memory operation completes. This could impact the loop
initiation interval (II). The offline compiler indicates the memory dependencies in the
optimization report.

To minimize the impact of memory dependencies for loop pipelining:
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• Ensure that the offline compiler does not assume false dependencies.

When the static memory dependence analysis fails to prove that dependency does
not exist, the offline compiler assumes that a dependency exists and modifies the
kernel execution to enforce the dependency. Impact of the dependency
enforcement is lower if the memory system is stall-free.

— Write after read operations with data dependency on a load-store unit can
take just two clock cycles (II=2). Other stall-free scenarios can take up to
seven clock cycles.

— Read after write (control dependency) operation can be fully resolved by the
offline compiler.

• Override the static memory dependence analysis by adding the line #pragma
ivdep before the loop in your kernel code if you are sure that it carries no
dependences.
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8 Strategies for Optimizing FPGA Area Usage
Area usage is an important design consideration if your OpenCL kernels are executable
on FPGAs of different sizes. When you design your OpenCL application, Intel
recommends that you follow certain design strategies for optimizing hardware area
usage.

Optimizing kernel performance generally requires additional FPGA resources. In
contrast, area optimization often results in performance decreases. During kernel
optimization, Intel recommends that you run multiple versions of the kernel on the
FPGA board to determine the kernel programming strategy that generates the best
size versus performance trade-off.

8.1 Compilation Considerations

You can direct the Intel FPGA SDK for OpenCL Offline Compiler to perform area usage
analysis during kernel compilation.

1. To review the estimated resource usage summary on-screen, compile your kernel
by including the -report flag in your aoc command. To review kernel-specific
area usage information, refer to the <your_kernel_filename>/reports/
report.html file.

2. If possible, perform floating-point computations by compiling your OpenCL kernel
with the -fpc or -fp-relaxed option of the aoc command.

For more usage information on the -report, -fp-relaxed and -fpc options, refer
to the Displaying Estimated Resource Usage Summary (-report), Relaxing Order of
Floating-Point Operations (-fp-relaxed), and Reducing Floating-Point Operations (-fpc)
sections of the Intel FPGA SDK for OpenCL Programming Guide.

For more information on floating-point operations, refer to Optimize Floating-Point
Operations.

Related Links

• HTML Report: Area Report Messages on page 42

• Displaying the Estimated Resource Usage Summary On-Screen (-report)

• Relaxing the Order of Floating-Point Operations (-fp-relaxed)

• Reducing Floating-Point Rounding Operations (-fpc)

• Optimizing Floating-Point Operations on page 80

8.2 Board Variant Selection Considerations

Target a board variant in your Custom Platform that provides only the external
connectivity resources you require.
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For example, if your kernel requires one external memory bank, target a board variant
that only supports a single external memory bank. Targeting a board with multiple
external memory banks increases the area usage of your kernel unnecessarily.

If your Custom Platform does not provide a board variant that meets your needs,
consider creating a board variant. Consult the Intel FPGA SDK for OpenCL Custom
Platform Toolkit User Guide for more information.

Related Links

Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide

8.3 Memory Access Considerations

Intel recommends kernel programming strategies that can improve memory access
efficiency and reduce area usage of your OpenCL kernel.

1. Minimize the number of access points to external memory.

If possible, structure your kernel such that it reads its input from one location,
processes the data internally, and then writes the output to another location.

2. Instead of relying on local or global memory accesses, structure your kernel as a
single work-item with shift register inference whenever possible.

3. Instead of creating a kernel that writes data to external memory and a kernel that
reads data from external memory, implement the Intel FPGA SDK for OpenCL
channels extension between the kernels for direct data transfer.

4. If your OpenCL application includes many separate constant data accesses,
declare the corresponding pointers using __constant instead of __global
const. Declaration using __global const creates a private cache for each load
or store operation. On the other hand, declaration using __constant creates a
single constant cache on the chip only.

Caution: If your kernel targets a Cyclone® V device (for example, Cyclone V
SoC), declaring __constant pointer kernel arguments might degrade
FPGA performance.

5. If your kernel passes a small number of constant arguments, pass them as values
instead of pointers to global memory.

For example, instead of passing __constant int * coef and then
dereferencing coef with index 0 to 10, pass coef as a value (int16 coef). If
coef was the only __constant pointer argument, passing it as a value
eliminates the constant cache and the corresponding load and store operations
completely.

6. Conditionally shifting large shift registers inside pipelined loops leads to the
creation of inefficient hardware. For example, the following kernel consumes more
resources when the if (K > 5) condition is present:

#define SHIFT_REG_LEN 1024
__kernel void bad_shift_reg (__global int * restrict src,
                             __global int * restrict dst,
                             int K)
{
    float shift_reg[SHIFT_REG_LEN];
    int sum = 0;
 
    for (unsigned i = 0; i < K; i++)
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    {
        sum += shift_reg[0];
        shift_reg[SHIFT_REG_LEN-1] = src[i];

        // This condition will cause sever area bloat.
        if (K > 5)
        {
          #pragma unroll
          for (int m = 0; m < SHIFT_REG_LEN-1 ; m++)
          {
              shift_reg[m] = shift_reg[m + 1];
          }
        }
        dst[i] = sum;
    }
}

Attention: Conditionally accessing a shift register does not degrade hardware
efficiency. If it is necessary to implement conditional shifting of a large
shift register in your kernel, consider modifying your code so that it
uses local memory.

8.4 Arithmetic Operation Considerations

Select the appropriate arithmetic operation for your OpenCL application to avoid
excessive FPGA area usage.

1. Introduce floating-point arithmetic operations only when necessary.

2. The Intel FPGA SDK for OpenCL Offline Compiler defaults floating-point constants
to double data type. Add an f designation to the constant to make it a single
precision floating-point operation.

For example, the arithmetic operation sin(1.0) represents a double precision
floating-point sine function. The arithmetic operation sin(1.0f) represents a
single precision floating-point sine function.

3. If you do not require full precision result for a complex function, compute simpler
arithmetic operations to approximate the result. Consider the following example
scenarios:

a. Instead of computing the function pow(x,n) where n is a small value,
approximate the result by performing repeated squaring operations because
they require much less hardware resources and area.

b. Ensure you are aware of the original and approximated area usages because
in some cases, computing a result via approximation might result in excess
area usage. For example, the sqrt function is not resource-intensive. Other
than a rough approximation, replacing the sqrt function with arithmetic
operations that the host has to compute at runtime might result in larger area
usage.

c. If you work with a small set of input values, consider using a LUT instead.

4. If your kernel performs a complex arithmetic operation with a constant that the
offline compiler computes at compilation time (for example, log(PI/2.0)),
perform the arithmetic operation on the host instead and pass the result as an
argument to the kernel at runtime.
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8.5 Data Type Selection Considerations

Select the appropriate data type to optimize the FPGA area usage by your OpenCL
application.

1. Select the most appropriate data type for your application.

For example, do not define your variable as float if the data type short is
sufficient.

2. Ensure that both sides of an arithmetic expression belong to the same data type.

Consider an example where one side of an arithmetic expression is a floating-point
value and the other side is an integer. The mismatched data types cause the Intel
FPGA SDK for OpenCL Offline Compiler to create implicit conversion operators,
which can become expensive if they are present in large numbers.

3. Take advantage of padding if it exists in your data structures.

For example, if you only need float3 data type, which has the same size as
float4, you may change the data type to float4 to make use of the extra
dimension to carry an unrelated value.
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A Additional Information
For additional information, demonstrations and training options, visit the Intel FPGA
SDK for OpenCL product page.

Related Links

Intel FPGA SDK for OpenCL product page

A.1 Document Revision History

Table 12. Intel FPGA SDK for OpenCL Best Practices Guide Document Revision History

Date Version Changes

December 2017 2017.12.08 • Added the following new topics:
— Autorun Captures Tab on page 94
— Autorun Profiler Data on page 102

November 2017 2017.11.06 • Moved all topics into individual chapters.
• Changed some of the topic titles to task-based titles.
• Changed all occurrences of Fmax to fmax.
• Rebranded Dynamic Profiler to Intel FPGA Dynamic Profiler for OpenCL
• Added a new short description to Stall, Occupancy, Bandwidth on page 95.
• Added a new image to show comparison between parallel threads and loop

pipelining, along with explanation to Figure 12 on page 15.
• Added an FPGA architecture along with some explanation in FPGA Overview on

page 5.
• Added OpenCL Design Components image to Figure 34 on page 45.
• Added an important note to Aligning a Struct with or without Padding on page

83 about 4-byte alignment and remove information related to a struct that is
aligned and not padded.

• Added two bullet points to the last Attention section in Optimizing Accesses to
Local Memory by Controlling the Memory Replication Factor on page 146.

• Added Minimizing the Memory Dependencies for Loop Pipelining on page 147.
• Added area report hierarchy details to Reviewing Area Information on page 28.
• Added Best Practices for Channels and Pipes on page 78.
• Updated Allocating Aligned Memory on page 83.
• Added Reducing the Area Consumed by Nested Loops Using loop_coalesce on

page 27.
• Added Changing the Memory Access Pattern Example on page 23.
• Updated the image Figure 73 on page 105.
• In the following topics, implemented single dash and -option=<value>

conventions for aoc command.
— Figure 73 on page 105
— Optimizing Floating-Point Operations on page 80
— Manual Partitioning of Global Memory on page 137
— Constant Cache Memory on page 139
— Compilation Considerations on page 149
— High Stall and High Occupancy Percentages on page 100
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Date Version Changes

• In Source Code Tab on page 90 and Tool Tip Options on page 92, updated the
images to reflect Intel.

• In High Stall Percentage on page 98, added a screenshot for high stall
percentage identification along with relevant explanation.

• In Local Memory on page 47, added a sentence about the overall state of the
local memory as observed in the HTML report.

• In Load-Store Units on page 68, updated the description of semi-streaming LSU
to describe how data travels throughout the block.

• New example codes and relevant explanation added to Nested Loops on page
54.

• Updated the code fragment in Intel FPGA SDK for OpenCL Pipeline Approach on
page 8 section by removing the index keyword updated Figure 4.

• In Single Work-Item Kernel versus NDRange Kernel on page 9,
— Removed the criteria for creating single work item kernels for your design.
— Added new example codes and relevant explanation
— Removed the subtopic on Single Work-Item Execution and merged its

content with this topic.

May 2017 2017.05.08 • Rebranded some functions in code examples as follows:
— Rebranded read_channel_altera to read_channel_intel.
— Rebranded write_channel_altera to write_channel_intel.
— Rebranded read_channel_nb_altera to read_channel_nb_intel.
— Rebranded write_channel_nb_altera to write_channel_nb_intel.

• Added Load-Store Units on page 68.
• Added Reviewing the Report Summary on page 19.
• Added Features of the Kernel Memory Viewer on page 33.
• Revised the Local Memory Banks section of Local Memory on page 47 to include

information about the bank_bits attribute.
• Revised Figure 73 on page 105 in Addressing Single Work-Item Kernel

Dependencies Based on Optimization Report Feedback on page 104 to reflect
changes to the profiling commands.

December 2016 2016.12.02 Minor editorial modification.

October 2016 2016.10.31 • Rebranded the Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.
• Rebranded the Altera Offline Compiler to Intel FPGA SDK for OpenCL Offline

Compiler.
• In Align a Struct with or without Padding, modified code snippets to correct the

placement of attributes with respect to the struct declaration.
• Added the topic Review Your Kernel's report.html File, with subtopics describing

the HTML GUI, the various reports the GUI provides, and a walkthrough on how
to leverage the information in the HTML report to optimize an OpenCL design
example.

• Changed Review Your Kernel's Area Report to Identify Inefficiencies in Resource
Usage to HTML Report: Area Report Messages, and removed the following
subsections:
— Area Report Messages for Global Memory and Global Memory Interconnect
— Area Report Messages for Local Memory
— Area Report Messages for Channels

• Added the topic HTML Report: Kernel Design Concepts, which includes
subtopics on kernels, global memory interconnect, local memory, nested loops,
loops in single work-item kernels, and channels.

• In Interpreting the Profiling Information, reorganized the content and added
the following:
— Additional explanations on stall, occupancy, bandwidth, activity, and cache

hit.
— Suggestions on addressing unsatisfactory Profiler metrics.
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Date Version Changes

• In Addressing Single Work-Item Kernel Dependencies Based On Optimization
Report Feedback, modified the figure Optimization Work Flow of a Single Work-
Item Kernel to replace area report with HTML report.

• Removed the Optimization Report section along with the associated subsections
because the information is now part of the HTML report.

• Changed Review Kernel Properties and Loop Unroll Status in the Optimization
Report to Review Kernel Properties and Loop Unroll Status in the HTML Report
because the optimization report is now part of the report.html file.

May 2016 2016.05.02 • Added the topic Removing Loop-Carried Dependencies Caused by Accesses to
Memory Arrays to introduce the ivdep pragma.

• Under Strategies for Improving Memory Access Efficiency, added the following
topics to explain how to use the numbanks and bankwidth kernel attributes to
configure the geometry of local memory system:
— Improve Kernel Performance by Banking the Local Memory
— Optimize the Geometric Configuration of Local Memory Banks Based on

Array Index
• Under Strategies for Improving Memory Access Efficiency, added the topic

Optimize Accesses to Local Memory by Controlling the Memory Replication
Factor to explain the usage of the singlepump and doublepump kernel
attributes.

• Added information on the area report messages. Refer to the Review Your
Kernel's Area Report to Identify Inefficiencies in Resource Usage section for
more information.

• Removed the Kernel-Specific Area Report section because it is replaced by the
enhanced area report. Refer to the Review Your Kernel's Area Report to Identify
Inefficiencies in Resource Usage section for more information.

• Updated the subsections under Optimization Report to include the enhanced
optimization report messages.
— Added the Optimization Report Message for Speed-Limiting Constructs

• Updated the subsections under Addressing Single Work-Item Kernel
Dependencies Based on Optimization Report Feedback to include the enhanced
optimization report messages.

• Updated the figure Optimization Work Flow for a Single Work-Item Kernel to
include steps on accessing the enhanced area report to review resource usage.

• Under Strategies for Improving NDRange Kernel Data Processing Efficiency,
added the Review Kernel Properties and Loop Unroll Status in the Optimization
Report section.

November 2015 2015.11.02 • Added the topic Multi-Threaded Host Application.
• Added Caution note regarding memory barrier in Specify a Maximum Work-

Group Size or a Required Work-Group Size.

May 2015 15.0.0 • In Memory Access Considerations, added Caution note regarding performance
degradation that might occur when declaring __constant pointer arguments in
kernels targeting Cyclone V devices.

• In Good Design Practices for Single Work-Item Kernel, removed the Initialize
Data Prior to Usage in a Loop section and added a Declare Variables in the
Deepest Scope Possible section.

• Added Removing Loop-Carried Dependency by Inferring Shift Registers. The
topic discusses how, in single work-item kernels, inferring double precision
floating-point array as a shift register can remove loop-carried dependencies.

• Added Kernel-Specific Area Reports to show examples of kernel-specific .area
files that the Altera Offline Compiler generates during compilation.

• Renamed Transfer Data Via offline compilerL Channels to Transfer Data Via
offline compilerL Channels or OpenCL Pipes and added the following:
— More information on how channels can help improve kernel performance.
— Information on OpenCL pipes.

• Renamed Data Type Considerations to Data Type Selection Considerations.

continued...   

A Additional Information

UG-OCL003 | 2017.12.08

Intel® FPGA SDK for OpenCL™ Best Practices Guide
155



Date Version Changes

December 2014 14.1.0 • Reorganized the information flow in the Optimization Report Messages section
to update report messages and the layout of the optimization report.

• Included new optimization report messages detailing the reasons for
unsuccessful and suboptimal pipelined executions.

• Added the Optimization Report Messages for Simplified Analysis of a Complex
Design subsection under Optimization Report Messages to describe new report
message for simplified kernel analysis.

• Renamed Using Feedback from the Optimization Report to Address Single
Work-Item Kernels Dependencies to Addressing Single Work-Item Kernel
Dependencies Based on Optimization Report Feedback.

• Added the Transferring Loop-Carried Dependency to Local Memory subsection
under Addressing Single Work-Item Kernel Dependencies Based on
Optimization Report Feedback to describe new strategy for resolving loop-
carried dependency.

• Updated the Resource-Driven Optimization and Compilation Considerations
sections to reflect the deprecation of the -O3 and --util <N> Altera® Offline
Compiler (offline compiler) command options.

• Consolidated and simplified the Heterogeneous Memory Buffers and Host
Application Modifications for Heterogeneous Memory Accesses sections.

• Added the section Align a Struct and Remove Padding between Struct Fields.
• Removed the section Ensure 4-Byte Alignment to All Data Structures.
• Modified the figure Single Work-Item Optimization Work Flow to include

emulation and profiling.

June 2014 14.0.0 • Renamed document as the Intel FPGA SDK for OpenCL Best Practices Guide.
• Reorganized information flow.
• Renamed Good Design Practices to Good OpenCL Kernel Design Practices.
• Added channels information in Transfer data via offline compilerL Channels.
• Added profiler information in Profile Your Kernel to Identify Performance

Bottlenecks.
• Added the section Single Work-Item Kernel Versus NDRange Kernel.
• Updated Single Work-Item Execution section.
• Removed Performance Warning Messages section.
• Renamed Single Work-Item Kernel Programming Considerations to Good

Design Practices for Single Work-Item Kernel.
• Added the section Strategies for Improving Single Work-Item Kernel

Performance.
• Renamed Optimization of Data Processing Efficiency to Strategies for Improving

NDRange Kernel Data Processing Efficiency.
• Removed Resource Sharing section.
• Renamed Floating-Point Operations to Optimize Floating-Point Operations.
• Renamed Optimization of Memory Access Efficiency to Strategies for Improving

Memory Access Efficiency.
• Updated Manual Partitioning of Global Memory section.
• Added the section Strategies for Optimizing FPGA Area Usage.

December 2013 13.1.1 • Updated the section Specify a Maximum Work-Group Size or a Required Work-
Group Size.

• Added the section Heterogeneous Memory Buffers.
• Updated the section Single Work-Item Execution.
• Added the section Performance Warning Messages.
• Updated the section Single Work-Item Kernel Programming Considerations.
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Date Version Changes

November 2013 13.1.0 • Reorganized information flow.
• Updated the section Intel FPGA SDK for OpenCL Compilation Flow.
• Updated the section Pipelines; inserted the figure Example Multistage Pipeline

Diagram.
• Removed the following figures:

— Instruction Flow through a Five-Stage Pipeline Processor.
— Vector Addition Kernel Compiled to an FPGA.
— Effect of Kernel Vectorization on Array Summation.
— Data Flow Implementation of a Four-Element Accumulation Kernel.
— Data Flow Implementation of a Four-Element Accumulation Kernel with Loop

Unrolled.
— Complete Loop Unrolling.
— Unrolling Two Loop Iterations.
— Memory Master Interconnect.
— Local Memory Read and Write Ports.
— Local Memory Configuration.

• Updated the section Good Design Practices.
• Removed the following sections:

— Predicated Execution.
— Throughput Analysis.
— Case Studies.

• Updated and renamed Optimizing Data Processing Efficiency to Optimization of
Data Processing Efficiency.

• Renamed Replicating Compute Units versus Kernel SIMD Vectorization to
Compute Unit Replication versus Kernel SIMD Vectorization.

• Renamed Using num_compute_units and num_simd_work_items Together to
Combination of Compute Unit Replication and Kernel SIMD Vectorization.

• Updated and renamed Memory Streaming to Contiguous Memory Accesses.
• Updated and renamed Optimizing Memory Access to General Guidelines on

Optimizing Memory Accesses.
• Updated and renamed Optimizing Memory Efficiency to Optimization of Memory

Access Efficiency.
• Inserted the subsection Single Work-Item Execution under Optimization of

Memory Access Efficiency.

June 2013 13.0 SP1.0 • Updated support status of OpenCL kernel source code containing complex exit
paths.

• Updated the figure Effect of Kernel Vectorization on Array Summation to correct
the data flow between Store and Global Memory.

• Updated content for the unroll pragma directive in the section Loop Unrolling.
• Updated content of the Local Memory section.
• Updated the figure Local Memories Transferring Data Blocks within Matrices A

and B to correct the data transfer pattern in Matrix B.
• Removed the figure Loop Unrolling with Vectorization.
• Removed the section Optimizing Local Memory Bandwidth.

May 2013 13.0.1 • Updated terminology. For example, pipeline is replaced with compute unit;
vector lane is replaced with SIMD vector lane.

• Added the following sections under Good Design Practices:
— Preprocessor Macros.
— Floating-Point versus Fixed-Point Representations.
— Recommended Optimization Methodology.
— Sequence of Optimization Techniques.

• Updated code fragments.
• Updated the figure Data Flow with Multiple Compute Units.
• Updated the figure Compute Unit Replication versus Kernel SIMD Vectorization.
• Updated the figure Optimizing Throughput Using Compute Unit Replication and

SIMD Vectorization.
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Date Version Changes

• Updated the figure Memory Streaming.
• Inserted the figure Local Memories Transferring Data Blocks within Matrices A

and B.
• Reorganized the flow of information. Number of figures, tables, and examples

have been updated.
• Included information on new kernel attributes: max_share_resources and

num_share_resources.

May 2013 13.0.0 • Updated pipeline discussion.
• Updated case study code examples and results tables.
• Updated figures.

November 2012 12.1.0 Initial release.
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