

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instantiating%20the%20Nios%20II%20Processor%20(NII5V1%20NII51004%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Core Implementation Details 5
2016.06.17

NII5V1 NII51015 Subscribe Send Feedback

This document describes all of the Nios® II processor core implementations available at the time of
publishing. This document describes only implementation-specific features of each processor core. All
cores support the Nios II instruction set architecture.

For more information regarding the Nios II instruction set architecture, refer to the Instruction Set
Reference chapter of the Nios II Processor Reference Handbook.

For common core information and details on a specific core, refer to the appropriate section:

Table 5-1: Nios II Processor Cores

Feature
Core

Nios II/e Nios II/s Nios II/f

Objective Minimal core size Small core size Fast execution speed

Performance

DMIPS/MHz(44) 0.15 0.74 1.16

Max. DMIPS 31 127 218

Max. fMAX 200 MHz 165 MHz 185 MHz

Area < 700 LEs;

< 350 ALMs

< 1400 LEs;

< 700 ALMs

Without MMU or MPU:

 < 1800 LEs;

 < 900 ALMs

With MMU:

 < 3000 LEs;

 < 1500 ALMs

With MPU:

 < 2400 LEs;

 < 1200 ALMs

Pipeline 1 stage 5 stages 6 stages

External Address Space 2 GB 2 GB 2 GB without MMU

4 GB with MMU

(44) DMIPS performance for the Nios II/s and Nios II/f cores depends on the hardware multiply option.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V1 NII51015
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V1%20NII51015%202016.06.17)%20Nios%20II%20Core%20Implementation%20Details&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Feature
Core

Nios II/e Nios II/s Nios II/f

Instruction Bus

Cache – 512 bytes to 64 KB 512 bytes to 64 KB

Pipelined Memory
Access

– Yes Yes

Branch Prediction – Static Dynamic

Tightly-Coupled
Memory

– Optional Optional

Data Bus

Cache – – 512 bytes to 64 KB

Pipelined Memory
Access

– – –

Cache Bypass Methods – – • I/O instructions
• Bit-31 cache bypass
• Optional MMU

Tightly-Coupled
Memory

– – Optional

Arithmetic Logic Unit

Hardware Multiply – 3-cycle(45) 1-cycle(45)

Hardware Divide – Optional Optional

Shifter 1 cycle-per-bit 3-cycle shift(45) 1-cycle barrel

shifter
(45)

JTAG Debug Module

JTAG interface, run
control, software
breakpoints

Optional Optional Optional

Hardware Breakpoints – Optional Optional

Off-Chip Trace Buffer – Optional Optional

Memory Management Unit – – Optional

Memory Protection Unit – – Optional

Exception Handling

Exception Types Software trap,
unimplemented
instruction, illegal
instruction, hardware
interrupt

Software trap,
unimplemented
instruction, illegal
instruction,
hardware interrupt

Software trap, unimplemented
instruction, illegal instruction,
supervisor-only instruction,
supervisor-only instruction
address, supervisor-only data
address, misaligned destination
address, misaligned data address,
division error, fast TLB miss,
double TLB miss, TLB permission
violation, MPU region violation,
internal hardware interrupt,
external hardware interrupt,
nonmaskable interrupt

Integrated Interrupt
Controller

Yes Yes Yes

External Interrupt
Controller Interface

No No Optional

Shadow Register Sets No No Optional, up to 63

User Mode Support No; Permanently in
supervisor mode

No; Permanently in
supervisor mode

Yes; When MMU or MPU present

Custom Instruction Support Yes Yes Yes

ECC support No No Yes

5-2 Nios II Core Implementation Details
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Instruction Set Reference on page 8-1
• Instruction Set Reference

Device Family Support
All Nios II cores provide the same support for target Altera® device families.

Table 5-2: Device Family Support

Device Family Support

Arria® GX Final
Arria II GX Final
Arria II GZ Final
Arria V Final
Arria V GZ Final
Cyclone III Final
Cyclone III LS Final
Cyclone IV GX Final
Cyclone IV E Final
Cyclone V Final
Stratix III Final
Stratix IV E Final
Stratix IV GT Final
Stratix IV GX Final
Stratix V Final
Other device families No support

Preliminary support—The core is verified with preliminary timing models for this device family. The core
meets all functional requirements, but might still be undergoing timing analysis for the device family. It
can be used in production designs with caution.

Final support—The core is verified with final timing models for this device family. The core meets all
functional and timing requirements for the device family and can be used in production designs.

(45) Multiply and shift performance depends on the hardware multiply option you use. If no hardware multiply
option is used, multiply operations are emulated in software, and shift operations require one cycle per bit.
For details, refer to the arithmetic logic unit description for each core.

NII5V1 NII51015
2016.06.17 Device Family Support 5-3

Nios II Core Implementation Details Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II/f Core

The Nios II/f fast core is designed for high execution performance. Performance is gained at the expense of
core size. The base Nios II/f core, without the memory management unit (MMU) or memory protection
unit (MPU), is approximately 25% larger than the Nios II/s core. Altera designed the Nios II/f core with
the following design goals in mind:

• Maximize the instructions-per-cycle execution efficiency
• Optimize interrupt latency
• Maximize fMAX performance of the processor core

The resulting core is optimal for performance-critical applications, as well as for applications with large
amounts of code and/or data, such as systems running a full-featured operating system.

Overview
The Nios II/f core:

• Has separate optional instruction and data caches
• Provides optional MMU to support operating systems that require an MMU
• Provides optional MPU to support operating systems and runtime environments that desire memory

protection but do not need virtual memory management
• Can access up to 2 GB of external address space when no MMU is present and 4 GB when the MMU is

present
• Supports optional external interrupt controller (EIC) interface to provide customizable interrupt

prioritization
• Supports optional shadow register sets to improve interrupt latency
• Supports optional tightly-coupled memory for instructions and data
• Employs a 6-stage pipeline to achieve maximum DMIPS/MHz
• Performs dynamic branch prediction
• Provides optional hardware multiply, divide, and shift options to improve arithmetic performance
• Supports the addition of custom instructions
• Optional ECC support for internal RAM blocks (instruction cache, MMU TLB, and register file)
• Supports the JTAG debug module
• Supports optional JTAG debug module enhancements, including hardware breakpoints and real-time

trace

The following sections discuss the noteworthy details of the Nios II/f core implementation. This document
does not discuss low-level design issues or implementation details that do not affect Nios II hardware or
software designers.

Arithmetic Logic Unit
The Nios II/f core provides several arithmetic logic unit (ALU) options to improve the performance of
multiply, divide, and shift operations.

5-4 Nios II/f Core
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Multiply and Divide Performance

The Nios II/f core provides the following hardware multiplier options:

• DSP Block—Includes DSP block multipliers available on the target device. This option is available only
on Altera FPGAs that have DSP Blocks.

• Embedded Multipliers—Includes dedicated embedded multipliers available on the target device. This
option is available only on Altera FPGAs that have embedded multipliers.

• Logic Elements—Includes hardware multipliers built from logic element (LE) resources.
• None—Does not include multiply hardware. In this case, multiply operations are emulated in software.

The Nios II/f core also provides a hardware divide option that includes LE-based divide circuitry in the
ALU.

Including an ALU option improves the performance of one or more arithmetic instructions.

Note: The performance of the embedded multipliers differ, depending on the target FPGA family.

Table 5-3: Hardware Multiply and Divide Details for the Nios II/f Core

ALU Option Hardware Details Cycles per
Instruction

Result Latency
Cycles

Supported Instructions

No hardware
multiply or divide

Multiply and divide
instructions generate
an exception

– – None

Logic elements ALU includes 32 x 4-bit
multiplier

11 +2 mul, muli

DSP block on
Stratix III families

ALU includes 32 x 32-
bit multiplier

1 +2 mul, muli, mulxss,
mulxsu, mulxuu

Embedded
multipliers on
Cyclone III
families

ALU includes 32 x 16-
bit multiplier

5 +2 mul, muli

Hardware divide ALU includes
multicycle divide
circuit

4 – 66 +2 div, divu

The cycles per instruction value determines the maximum rate at which the ALU can dispatch instructions
and produce each result. The latency value determines when the result becomes available. If there is no
data dependency between the results and operands for back-to-back instructions, then the latency does
not affect throughput. However, if an instruction depends on the result of an earlier instruction, then the
processor stalls through any result latency cycles until the result is ready.

In the following code example, a multiply operation (with 1 instruction cycle and 2 result latency cycles) is
followed immediately by an add operation that uses the result of the multiply. On the Nios II/f core, the
addi instruction, like most ALU instructions, executes in a single cycle. However, in this code example,
execution of the addi instruction is delayed by two additional cycles until the multiply operation
completes.

mul r1, r2, r3 ; r1 = r2 * r3
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

NII5V1 NII51015
2016.06.17 Multiply and Divide Performance 5-5

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In contrast, the following code does not stall the processor.

mul r1, r2, r3 ; r1 = r2 * r3
or r5, r5, r6 ; No dependency on previous results
or r7, r7, r8 ; No dependency on previous results
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

Shift and Rotate Performance
The performance of shift operations depends on the hardware multiply option. When a hardware
multiplier is present, the ALU achieves shift and rotate operations in three or four clock cycles. Otherwise,
the ALU includes dedicated shift circuitry that achieves one-bit-per-cycle shift and rotate performance.

Refer to the "Instruction Execution Performance for Nios II/f Core" table in the "Instruction Performance"
section for details.

Related Information
Instruction Performance on page 5-11

Memory Access
The Nios II/f core provides optional instruction and data caches. The cache size for each is user-definable,
between 512 bytes and 64 KB.

The memory address width in the Nios II/f core depends on whether the optional MMU is present.
Without an MMU, the Nios II/f core supports the bit-31 cache bypass method for accessing I/O on the
data master port. Therefore addresses are 31 bits wide, reserving bit 31 for the cache bypass function. With
an MMU, cache bypass is a function of the memory partition and the contents of the translation lookaside
buffer (TLB). Therefore bit-31 cache bypass is disabled, and 32 address bits are available to address
memory.

Instruction and Data Master Ports

The instruction master port is a pipelined Avalon® Memory-Mapped (Avalon-MM) master port. If the
core includes data cache with a line size greater than four bytes, then the data master port is a pipelined
Avalon-MM master port. Otherwise, the data master port is not pipelined.

The instruction and data master ports on the Nios II/f core are optional. A master port can be excluded, as
long as the core includes at least one tightly-coupled memory to take the place of the missing master port.

Note: Although the Nios II processor can operate entirely out of tightly-coupled memory without the
need for Avalon-MM instruction or data masters, software debug is not possible when either the
Avalon-MM instruction or data master is omitted.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous memory with pipeline
latency. The pipelined instruction and data master ports can issue successive read requests before prior
requests complete.

Instruction and Data Caches
This section first describes the similar characteristics of the instruction and data cache memories, and then
describes the differences.

Both the instruction and data cache addresses are divided into fields based on whether or not an MMU is
present in your system.

5-6 Shift and Rotate Performance
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 5-4: Cache Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

tag line

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

Table 5-5: Cache Virtual Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

line

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

Table 5-6: Cache Physical Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset

Instruction Cache
The instruction cache memory has the following characteristics:

• Direct-mapped cache implementation.
• 32 bytes (8 words) per cache line.
• The instruction master port reads an entire cache line at a time from memory, and issues one read per

clock cycle.
• Critical word first.
• Virtually-indexed, physically-tagged, when MMU present.

The size of the tag field depends on the size of the cache memory and the physical address size. The size of
the line field depends only on the size of the cache memory. The offset field is always five bits (i.e., a 32-
byte line). The maximum instruction byte address size is 31 bits in systems without an MMU present. In
systems with an MMU, the maximum instruction byte address size is 32 bits and the tag field always
includes all the bits of the physical frame number (PFN).

The instruction cache is optional. However, excluding instruction cache from the Nios II/f core requires
that the core include at least one tightly-coupled instruction memory.

NII5V1 NII51015
2016.06.17 Instruction Cache 5-7

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Data Cache

The data cache memory has the following characteristics:

• Direct-mapped cache implementation
• Configurable line size of 4, 16, or 32 bytes
• The data master port reads an entire cache line at a time from memory, and issues one read per clock

cycle.
• Write-back
• Write-allocate (i.e., on a store instruction, a cache miss allocates the line for that address)
• Virtually-indexed, physically-tagged, when MMU present

The size of the tag field depends on the size of the cache memory and the physical address size. The size of
the line field depends only on the size of the cache memory. The size of the offset field depends on the line
size. Line sizes of 4, 16, and 32 bytes have offset widths of 2, 4, and 5 bits respectively. The maximum data
byte address size is 31 bits in systems without an MMU present. In systems with an MMU, the maximum
data byte address size is 32 bits and the tag field always includes all the bits of the PFN.

The data cache is optional. If the data cache is excluded from the core, the data master port can also be
excluded.

The Nios II instruction set provides several different instructions to clear the data cache. There are two
important questions to answer when determining the instruction to use. Do you need to consider the tag
field when looking for a cache match? Do you need to write dirty cache lines back to memory before
clearing? Below the table lists the most appropriate instruction to use for each case.

Table 5-7: Data Cache Clearing Instructions

Instruction Ignore Tag Field Consider Tag Field

Write Dirty Lines flushd flushda

Do Not Write Dirty Lines initd initda

Note: The 4-byte line data cache implementation substitutes the flushd instruction for the flushda
instruction and triggers an unimplemented instruction exception for the initda instruction. The
16-byte and 32-byte line data cache implementations fully support the flushda and initda
instructions.

For more information regarding the Nios II instruction set, refer to the Instruction Set Reference chapter of
the Nios II Processor Reference Handbook.

The Nios II/f core implements all the data cache bypass methods.

For information regarding the data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook
Mixing cached and uncached accesses to the same cache line can result in invalid data reads. For example,
the following sequence of events causes cache incoherency.

1. The Nios II core writes data to cache, creating a dirty data cache line.
2. The Nios II core reads data from the same address, but bypasses the cache.

Note: Avoid mixing cached and uncached accesses to the same cache line, regardless whether you are
reading from or writing to the cache line. If it is necessary to mix cached and uncached data
accesses, flush the corresponding line of the data cache after completing the cached accesses and
before performing the uncached accesses.

5-8 Data Cache
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Instruction Set Reference on page 8-1
• Instruction Set Reference
• Processor Architecture on page 2-1
• Processor Architecture

Bursting
When the data cache is enabled, you can enable bursting on the data master port. Consult the
documentation for memory devices connected to the data master port to determine whether bursting can
improve performance.

Tightly-Coupled Memory
The Nios II/f core provides optional tightly-coupled memory interfaces for both instructions and data. A
Nios II/f core can use up to four each of instruction and data tightly-coupled memories. When a tightly-
coupled memory interface is enabled, the Nios II core includes an additional memory interface master
port. Each tightly-coupled memory interface must connect directly to exactly one memory slave port.

When tightly-coupled memory is present, the Nios II core decodes addresses internally to determine if
requested instructions or data reside in tightly-coupled memory. If the address resides in tightly-coupled
memory, the Nios II core fetches the instruction or data through the tightly-coupled memory interface.
Software accesses tightly-coupled memory with the usual load and store instructions, such as ldw or
ldwio.

Accessing tightly-coupled memory bypasses cache memory. The processor core functions as if cache were
not present for the address span of the tightly-coupled memory. Instructions for managing cache, such as
initd and flushd, do not affect the tightly-coupled memory, even if the instruction specifies an address
in tightly-coupled memory.

When the MMU is present, tightly-coupled memories are always mapped into the kernel partition and can
only be accessed in supervisor mode.

Memory Management Unit
The Nios II/f core provides options to improve the performance of the Nios II MMU.

For information about the MMU architecture, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Related Information

• Programming Model on page 3-1
• Programming Model

Micro Translation Lookaside Buffers

The translation lookaside buffer (TLB) consists of one main TLB stored in on-chip RAM and two separate
micro TLBs (μTLB) for instructions μITLB) and data (μDTLB) stored in LE-based registers.

The TLBs have a configurable number of entries and are fully associative. The default configuration has 6
μDTLB entries and 4 μITLB entries. The hardware chooses the least-recently used μTLB entry when
loading a new entry.

NII5V1 NII51015
2016.06.17 Bursting 5-9

Nios II Core Implementation Details Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The μTLBs are not visible to software. They act as an inclusive cache of the main TLB. The processor firsts
look for a hit in the μTLB. If it misses, it then looks for a hit in the main TLB. If the main TLB misses, the
processor takes an exception. If the main TLB hits, the TLB entry is copied into the μTLB for future
accesses.

The hardware automatically flushes the μTLB on each TLB write operation and on a wrctl to the tlbmisc
register in case the process identifier (PID) has changed.

Memory Protection Unit
The Nios II/f core provides options to improve the performance of the Nios II MPU.

For information about the MPU architecture, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Related Information

• Programming Model on page 3-1
• Programming Model

Execution Pipeline
This section provides an overview of the pipeline behavior for the benefit of performance-critical
applications. Designers can use this information to minimize unnecessary processor stalling. Most
application programmers never need to analyze the performance of individual instructions.

The Nios II/f core employs a 6-stage pipeline.

Table 5-8: Implementation Pipeline Stages for Nios II/f Core

Stage Letter Stage Name

F Fetch
D Decode
E Execute
M Memory
A Align
W Writeback

Up to one instruction is dispatched and/or retired per cycle. Instructions are dispatched and retired in
order. Dynamic branch prediction is implemented using a 2-bit branch history table. The pipeline stalls for
the following conditions:

• Multicycle instructions
• Avalon-MM instruction master port read accesses
• Avalon-MM data master port read/write accesses
• Data dependencies on long latency instructions (e.g., load, multiply, shift).

Pipeline Stalls
The pipeline is set up so that if a stage stalls, no new values enter that stage or any earlier stages. No
“catching up” of pipeline stages is allowed, even if a pipeline stage is empty.

Only the A-stage and D-stage are allowed to create stalls.

5-10 Memory Protection Unit
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The A-stage stall occurs if any of the following conditions occurs:

• An A-stage memory instruction is waiting for Avalon-MM data master requests to complete. Typically
this happens when a load or store misses in the data cache, or a flushd instruction needs to write back
a dirty line.

• An A-stage shift/rotate instruction is still performing its operation. This only occurs with the
multicycle shift circuitry (i.e., when the hardware multiplier is not available).

• An A-stage divide instruction is still performing its operation. This only occurs when the optional
divide circuitry is available.

• An A-stage multicycle custom instruction is asserting its stall signal. This only occurs if the design
includes multicycle custom instructions.

The D-stage stall occurs if an instruction is trying to use the result of a late result instruction too early and
no M-stage pipeline flush is active. The late result instructions are loads, shifts, rotates, rdctl, multiplies
(if hardware multiply is supported), divides (if hardware divide is supported), and multicycle custom
instructions (if present).

Branch Prediction

The Nios II/f core performs dynamic branch prediction to minimize the cycle penalty associated with
taken branches.

Instruction Performance
All instructions take one or more cycles to execute. Some instructions have other penalties associated with
their execution. Late result instructions have two cycles placed between them and an instruction that uses
their result. Instructions that flush the pipeline cause up to three instructions after them to be cancelled.
This creates a three-cycle penalty and an execution time of four cycles. Instructions that require Avalon-
MM transfers are stalled until any required Avalon-MM transfers (up to one write and one read) are
completed.

Table 5-9: Instruction Execution Performance for Nios II/f Core 4byte/line data cache

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1
Combinatorial custom instructions 1
Multicycle custom instructions > 1 Late result
Branch (correctly predicted, taken) 2
Branch (correctly predicted, not taken) 1
Branch (mispredicted) 4 Pipeline flush
trap, break, eret, bret, flushp, wrctl, wrprs; illegal and unimple‐
mented instructions

4 or 5 Pipeline flush

call, jmpi, rdprs 2
jmp, ret, callr 3
rdctl 1 Late result
load (without Avalon-MM transfer) 1 Late result
load (with Avalon-MM transfer) > 1 Late result

NII5V1 NII51015
2016.06.17 Branch Prediction 5-11

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Cycles Penalties

store (without Avalon-MM transfer) 1
store (with Avalon-MM transfer) > 1
flushd, flushda (without Avalon-MM transfer) 2
flushd, flushda (with Avalon-MM transfer) > 2
initd, initda 2
flushi, initi 4
Multiply Late result
Divide Late result
Shift/rotate (with hardware multiply using embedded multipliers) 1 Late result
Shift/rotate (with hardware multiply using LE-based multipliers) 2 Late result
Shift/rotate (without hardware multiply present) 1 to 32 Late result
All other instructions 1

For Multiply and Divide, the number of cycles depends on the hardware multiply or divide option. Refer
to "Arithmetic Logic Unit" and "Instruction and Data Caches" s for details.

In the default Nios II/f configuration, instructions trap, break, eret, bret, flushp, wrctl, wrprs
require four clock cycles. If any of the following options are present, they require five clock cycles:

• MMU
• MPU
• Division exception
• Misaligned load/store address exception
• Extra exception information
• EIC port
• Shadow register sets

Related Information

• Data Cache on page 5-8
• Instruction and Data Caches on page 5-6
• Arithmetic Logic Unit on page 5-4

Exception Handling
The Nios II/f core supports the following exception types:

• Hardware interrupts
• Software trap
• Illegal instruction
• Unimplemented instruction
• Supervisor-only instruction (MMU or MPU only)
• Supervisor-only instruction address (MMU or MPU only)
• Supervisor-only data address (MMU or MPU only)
• Misaligned data address
• Misaligned destination address

5-12 Exception Handling
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Division error
• Fast translation lookaside buffer (TLB) miss (MMU only)
• Double TLB miss (MMU only)
• TLB permission violation (MMU only)
• MPU region violation (MPU only)

External Interrupt Controller Interface

The EIC interface enables you to speed up interrupt handling in a complex system by adding a custom
interrupt controller.

The EIC interface is an Avalon-ST sink with the following input signals:

• eic_port_valid

• eic_port_data

Signals are rising-edge triggered, and synchronized with the Nios II clock input.

The EIC interface presents the following signals to the Nios II processor through the eic_port_data
signal:

• Requested handler address (RHA)—The 32-bit address of the interrupt handler associated with the
requested interrupt.

• Requested register set (RRS)—The six-bit number of the register set associated with the requested
interrupt.

• Requested interrupt level (RIL)—The six-bit interrupt level. If RIL is 0, no interrupt is requested.
• Requested nonmaskable interrupt (RNMI) flag—A one-bit flag indicating whether the interrupt is to

be treated as nonmaskable.

Table 5-10: eic_port_data Signal

Bit Fields

44 ...

RHA

... 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RHA RRS RNMI RIL

Following Avalon-ST protocol requirements, the EIC interface samples eic_port_data only when
eic_port_valid is asserted (high). When eic_port_valid is not asserted, the processor latches the
previous values of RHA, RRS, RIL and RNMI. To present new values on eic_port_data, the EIC must
transmit a new packet, asserting eic_port_valid. An EIC can transmit a new packet once per clock cycle.

For an example of an EIC implementation, refer to the Vectored Interrupt Controller chapter in the
Embedded Peripherals IP User Guide.

Related Information
Embedded Peripherals IP User Guide

ECC
The Nios II/f core has the option to add ECC support for the following Nios II internal RAM blocks.

NII5V1 NII51015
2016.06.17 External Interrupt Controller Interface 5-13

Nios II Core Implementation Details Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Instruction cache

• ECC errors (1, 2, or 3 bits) that occur in the instruction cache are recoverable; the Nios II processor
flushes the cache line and reads from external memory instead of correcting the ECC error.

• Register file

• 1 bit ECC errors are recoverable
• 2 bit ECC errors are not recoverable and generate ECC exceptions

• MMU TLB

• 1 bit ECC errors triggered by hardware reads are recoverable
• 2 bit ECC errors triggered by hardware reads are not recoverable and generate ECC exception.
• 1 or 2 bit ECC errors triggered by software reads to the TLBMISC register do not trigger an

exception, instead, TLBMISC.EE is set to 1. Software must read this field and invalidate/overwrite
the TLB entry.

The ECC interface is an Avalon-ST source with the output signal ecc_event_bus. This interface allows
external logic to monitor ECC errors in the Nios II processor.

The ecc_event_bus contains the ECC error signals that are driven to 1 even if ECC checking is disabled
in the Nios II processor (when CONFIG.ECCEN or CONFIG.ECCEXC is 0). The following table describes the
ECC error signals.

Table 5-11: ECC Error Signals

Bit Field Description Effect on
Software

Available

0 EEH ECC error exception while in exception handler mode (i.e.,
STATUS.EH = 1).

Likely fatal Always

1 RF_RE Recoverable (1 bit) ECC error in register file RAM None Always

2 RF_UE Unrecoverable (2 bit) ECC error in register file RAM Likely fatal Always

3 ICTAG_RE Recoverable (1, 2, or 3 bit) ECC error in instruction cache tag
RAM

None Instruction
cache
present

4 ICDAT_RE Recoverable (1, 2, or 3 bit) ECC error in instruction cache data
RAM.

None Instruction
cache
present

5 Reserved

6 Reserved

7 Reserved

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

5-14 ECC
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Field Description Effect on
Software

Available

15 Reserved

16 Reserved

17 Reserved

18 Reserved

19 TLB_RE Recoverable (1 bit) ECC error in TLB RAM (hardware read of
TLB)

None MMU
present

20 TLB_UE Unrecoverable (2 bit) ECC error in TLB RAM (hardware read of
TLB)

Possibly fatal MMU
present

21 TLB_SW Software-triggered (1, 2, or 3 bit) ECC error in software read of
TLB

Possibly fatal MMU
present

22 Reserved

23 Reserved

24 Reserved

25 Reserved

26 Reserved

27 Reserved

28 Reserved

29 Reserved

JTAG Debug Module
The Nios II/f core supports the JTAG debug module to provide a JTAG interface to software debugging
tools. The Nios II/f core supports an optional enhanced interface that allows real-time trace data to be
routed out of the processor and stored in an external debug probe.

Note: The Nios II MMU does not support the JTAG debug module trace.

Nios II/s Core
The Nios II/s standard core is designed for small core size. On-chip logic and memory resources are
conserved at the expense of execution performance. The Nios II/s core uses approximately 20% less logic
than the Nios II/f core, but execution performance also drops by roughly 40%. Altera designed the
Nios II/s core with the following design goals in mind:

• Do not cripple performance for the sake of size.
• Remove hardware features that have the highest ratio of resource usage to performance impact.

The resulting core is optimal for cost-sensitive, medium-performance applications. This includes applica‐
tions with large amounts of code and/or data, such as systems running an operating system in which
performance is not the highest priority.

NII5V1 NII51015
2016.06.17 JTAG Debug Module 5-15

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Overview
The Nios II/s core:

• Has an instruction cache, but no data cache
• Can access up to 2 GB of external address space
• Supports optional tightly-coupled memory for instructions
• Employs a 5-stage pipeline
• Performs static branch prediction
• Provides hardware multiply, divide, and shift options to improve arithmetic performance
• Supports the addition of custom instructions
• Supports the JTAG debug module
• Supports optional JTAG debug module enhancements, including hardware breakpoints and real-time

trace

The following sections discuss the noteworthy details of the Nios II/s core implementation. This document
does not discuss low-level design issues or implementation details that do not affect Nios II hardware or
software designers.

Arithmetic Logic Unit
The Nios II/s core provides several ALU options to improve the performance of multiply, divide, and shift
operations.

Multiply and Divide Performance

The Nios II/s core provides the following hardware multiplier options:

• DSP Block—Includes DSP block multipliers available on the target device. This option is available only
on Altera FPGAs that have DSP Blocks.

• Embedded Multipliers—Includes dedicated embedded multipliers available on the target device. This
option is available only on Altera FPGAs that have embedded multipliers.

• Logic Elements—Includes hardware multipliers built from logic element (LE) resources.
• None—Does not include multiply hardware. In this case, multiply operations are emulated in software.

The Nios II/s core also provides a hardware divide option that includes LE-based divide circuitry in the
ALU.

Including an ALU option improves the performance of one or more arithmetic instructions.

Note: The performance of the embedded multipliers differ, depending on the target FPGA family.

Table 5-12: Hardware Multiply and Divide Details for the Nios II/s Core

ALU Option Hardware Details Cycles per instruc‐
tion

Supported Instructions

No hardware multiply
or divide

Multiply and divide
instructions generate an
exception

– None

LE-based multiplier ALU includes 32 x 4-bit
multiplier

11 mul, muli

Embedded multiplier
on Stratix III families

ALU includes 32 x 32-bit
multiplier

3 mul, muli, mulxss, mulxsu,
mulxuu

5-16 Overview
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ALU Option Hardware Details Cycles per instruc‐
tion

Supported Instructions

Embedded multiplier
on Cyclone III families

ALU includes 32 x 16-bit
multiplier

5 mul, muli

Hardware divide ALU includes multicycle
divide circuit

4 – 66 div, divu

Shift and Rotate Performance
The performance of shift operations depends on the hardware multiply option. When a hardware
multiplier is present, the ALU achieves shift and rotate operations in three or four clock cycles. Otherwise,
the ALU includes dedicated shift circuitry that achieves one-bit-per-cycle shift and rotate performance.

Refer to the "Instruction Execution Performance for Nios II/s Core" table in the "Instruction Performance"
section for details.

Related Information
Instruction Performance on page 5-19

Memory Access
The Nios II/s core provides instruction cache, but no data cache. The instruction cache size is user-
definable, between 512 bytes and 64 KB. The Nios II/s core can address up to 2 GB of external memory.
The Nios II architecture reserves the most-significant bit of data addresses for the bit-31 cache bypass
method. In the Nios II/s core, bit 31 is always zero.

For information regarding data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook.

Related Information

• Processor Architecture on page 2-1
• Processor Architecture

Instruction and Data Master Ports

The instruction master port is a pipelined Avalon Memory-Mapped (Avalon-MM) master port. If the core
includes data cache with a line size greater than four bytes, then the data master port is a pipelined
Avalon-MM master port. Otherwise, the data master port is not pipelined.

The instruction and data master ports on the Nios II/f core are optional. A master port can be excluded, as
long as the core includes at least one tightly-coupled memory to take the place of the missing master port.

Note: Although the Nios II processor can operate entirely out of tightly-coupled memory without the
need for Avalon-MM instruction or data masters, software debug is not possible when either the
Avalon-MM instruction or data master is omitted.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous memory with pipeline
latency. The pipelined instruction and data master ports can issue successive read requests before prior
requests complete.

Instruction Cache
The instruction cache for the Nios II/s core is nearly identical to the instruction cache in the Nios II/f core.
The instruction cache memory has the following characteristics:

NII5V1 NII51015
2016.06.17 Shift and Rotate Performance 5-17

Nios II Core Implementation Details Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Direct-mapped cache implementation
• The instruction master port reads an entire cache line at a time from memory, and issues one read per

clock cycle.
• Critical word first

Table 5-13: Instruction Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

tag line

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

The size of the tag field depends on the size of the cache memory and the physical address size. The size of
the line field depends only on the size of the cache memory. The offset field is always five bits (i.e., a 32-
byte line). The maximum instruction byte address size is 31 bits.

The instruction cache is optional. However, excluding instruction cache from the Nios II/s core requires
that the core include at least one tightly-coupled instruction memory.

Tightly-Coupled Memory
The Nios II/s core provides optional tightly-coupled memory interfaces for instructions. A Nios II/s core
can use up to four tightly-coupled instruction memories. When a tightly-coupled memory interface is
enabled, the Nios II core includes an additional memory interface master port. Each tightly-coupled
memory interface must connect directly to exactly one memory slave port.

When tightly-coupled memory is present, the Nios II core decodes addresses internally to determine if
requested instructions reside in tightly-coupled memory. If the address resides in tightly-coupled memory,
the Nios II core fetches the instruction through the tightly-coupled memory interface. Software does not
require awareness of whether code resides in tightly-coupled memory or not.

Accessing tightly-coupled memory bypasses cache memory. The processor core functions as if cache were
not present for the address span of the tightly-coupled memory. Instructions for managing cache, such as
initi and flushi, do not affect the tightly-coupled memory, even if the instruction specifies an address
in tightly-coupled memory.

Execution Pipeline
This section provides an overview of the pipeline behavior for the benefit of performance-critical
applications. Designers can use this information to minimize unnecessary processor stalling. Most
application programmers never need to analyze the performance of individual instructions.

The Nios II/s core employs a 5-stage pipeline.

Table 5-14: Implementation Pipeline Stages for Nios II/s Core

Stage Letter Stage Name

F Fetch
D Decode
E Execute

5-18 Tightly-Coupled Memory
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Stage Letter Stage Name

M Memory
W Writeback

Up to one instruction is dispatched and/or retired per cycle. Instructions are dispatched and retired in-
order. Static branch prediction is implemented using the branch offset direction; a negative offset
(backward branch) is predicted as taken, and a positive offset (forward branch) is predicted as not taken.
The pipeline stalls for the following conditions:

• Multicycle instructions (e.g., shift/rotate without hardware multiply)
• Avalon-MM instruction master port read accesses
• Avalon-MM data master port read/write accesses
• Data dependencies on long latency instructions (e.g., load, multiply, shift operations)

Pipeline Stalls
The pipeline is set up so that if a stage stalls, no new values enter that stage or any earlier stages. No
“catching up” of pipeline stages is allowed, even if a pipeline stage is empty.

Only the M-stage is allowed to create stalls.

The M-stage stall occurs if any of the following conditions occurs:

• An M-stage load/store instruction is waiting for Avalon-MM data master transfer to complete.
• An M-stage shift/rotate instruction is still performing its operation when using the multicycle shift

circuitry (i.e., when the hardware multiplier is not available).
• An M-stage shift/rotate/multiply instruction is still performing its operation when using the hardware

multiplier (which takes three cycles).
• An M-stage multicycle custom instruction is asserting its stall signal. This only occurs if the design

includes multicycle custom instructions.

Branch Prediction
The Nios II/s core performs static branch prediction to minimize the cycle penalty associated with taken
branches.

Instruction Performance
All instructions take one or more cycles to execute. Some instructions have other penalties associated with
their execution. Instructions that flush the pipeline cause up to three instructions after them to be
cancelled. This creates a three-cycle penalty and an execution time of four cycles. Instructions that require
an Avalon-MM transfer are stalled until the transfer completes.

Table 5-15: Instruction Execution Performance for Nios II/s Core

Instruction Cycles Penalties

Normal ALU instructions
(e.g., add, cmplt)

1

Combinatorial custom
instructions

1

Multicycle custom instruc‐
tions

> 1

NII5V1 NII51015
2016.06.17 Pipeline Stalls 5-19

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Cycles Penalties

Branch (correctly predicted
taken)

2

Branch (correctly predicted
not taken)

1

Branch (mispredicted) 4 Pipeline flush
trap, break, eret, bret,
flushp, wrctl, unimple‐
mented

4 Pipeline flush

jmp, jmpi, ret, call, callr 4 Pipeline flush
rdctl 1
load, store > 1
flushi, initi 4
Multiply
Divide
Shift/rotate (with hardware
multiply using embedded
multipliers)

3

Shift/rotate (with hardware
multiply using LE-based
multipliers)

4

Shift/rotate (without
hardware multiply present)

1 to 32

All other instructions 1

Exception Handling
The Nios II/s core supports the following exception types:

• Internal hardware interrupt
• Software trap
• Illegal instruction
• Unimplemented instruction

JTAG Debug Module
The Nios II/s core supports the JTAG debug module to provide a JTAG interface to software debugging
tools. The Nios II/s core supports an optional enhanced interface that allows real-time trace data to be
routed out of the processor and stored in an external debug probe.

Nios II/e Core
The Nios II/e economy core is designed to achieve the smallest possible core size. Altera designed the
Nios II/e core with a singular design goal: reduce resource utilization any way possible, while still
maintaining compatibility with the Nios II instruction set architecture. Hardware resources are conserved

5-20 Exception Handling
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

at the expense of execution performance. The Nios II/e core is roughly half the size of the Nios II/s core,
but the execution performance is substantially lower.

The resulting core is optimal for cost-sensitive applications as well as applications that require simple
control logic.

Overview
The Nios II/e core:

• Executes at most one instruction per six clock cycles
• Can access up to 2 GB of external address space
• Supports the addition of custom instructions
• Supports the JTAG debug module
• Does not provide hardware support for potential unimplemented instructions
• Has no instruction cache or data cache
• Does not perform branch prediction

The following sections discuss the noteworthy details of the Nios II/e core implementation. This document
does not discuss low-level design issues, or implementation details that do not affect Nios II hardware or
software designers.

Arithmetic Logic Unit
The Nios II/e core does not provide hardware support for any of the potential unimplemented
instructions. All unimplemented instructions are emulated in software.

The Nios II/e core employs dedicated shift circuitry to perform shift and rotate operations. The dedicated
shift circuitry achieves one-bit-per-cycle shift and rotate operations.

Memory Access
The Nios II/e core does not provide instruction cache or data cache. All memory and peripheral accesses
generate an Avalon-MM transfer. The Nios II/e core can address up to 2 GB of external memory. The
Nios II architecture reserves the most-significant bit of data addresses for the bit-31 cache bypass method.
In the Nios II/e core, bit 31 is always zero.

For information regarding data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook.

The Nios II/e core does not provide instruction cache or data cache. All memory and peripheral accesses
generate an Avalon-MM transfer.

For information regarding data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook.

Related Information

• Processor Architecture on page 2-1
• Processor Architecture

Instruction Execution Stages
This section provides an overview of the pipeline behavior as a means of estimating assembly execution
time. Most application programmers never need to analyze the performance of individual instructions.

NII5V1 NII51015
2016.06.17 Overview 5-21

Nios II Core Implementation Details Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Performance
The Nios II/e core dispatches a single instruction at a time, and the processor waits for an instruction to
complete before fetching and dispatching the next instruction. Because each instruction completes before
the next instruction is dispatched, branch prediction is not necessary. This greatly simplifies the considera‐
tion of processor stalls. Maximum performance is one instruction per six clock cycles. To achieve six
cycles, the Avalon-MM instruction master port must fetch an instruction in one clock cycle. A stall on the
Avalon-MM instruction master port directly extends the execution time of the instruction.

Table 5-16: Instruction Execution Performance for Nios II/e Core

Instruction Cycles

Normal ALU instructions (e.g., add,
cmplt)

6

All branch, jmp, jmpi, ret, call, callr 6
trap, break, eret, bret,
flushp, wrctl, rdctl,
unimplemented

6

All load word 6 + Duration of Avalon-MM read transfer
All load halfword 9 + Duration of Avalon-MM read transfer
All load byte 10 + Duration of Avalon-MM read transfer
All store 6 + Duration of Avalon-MM write transfer
All shift, all rotate 7 to 38
All other instructions 6
Combinatorial custom instructions 6
Multicycle custom instructions 6

Exception Handling
The Nios II/e core supports the following exception types:

• Internal hardware interrupt
• Software trap
• Illegal instruction
• Unimplemented instruction

JTAG Debug Module
The Nios II/e core supports the JTAG debug module to provide a JTAG interface to software debugging
tools. The JTAG debug module on the Nios II/e core does not support hardware breakpoints or trace.

5-22 Instruction Performance
NII5V1 NII51015

2016.06.17

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Table 5-17: Document Revision History

Date Version Changes

April 2015 2015.04.02 Obsolete devices removed (Stratix II, Cyclone II).

February 2014 13.1.0 • Added information on ECC support
• Removed HardCopy support information
• Removed references to SOPC Builder

May 2011 11.0.0 Maintenance release.

December 2010 10.1.0 Maintenance release.

July 2010 10.0.0 • Updated device support nomenclature
• Corrected HardCopy support information

November 2009 9.1.0 • Added external interrupt controller interface information.
• Added shadow register set information.

March 2009 9.0.0 Maintenance release.

November 2008 8.1.0 Maintenance release.

May 2008 8.0.0 Added text for MMU and MPU.

October 2007 7.2.0 Added jmpi instruction to tables.

May 2007 7.1.0 • Added table of contents to Introduction section.
• Added Referenced Documents section.

March 2007 7.0.0 Add preliminary Cyclone III device family support

November 2006 6.1.0 Add preliminary Stratix III device family support

May 2006 6.0.0 Performance for flushi and initi instructions changes from 1 to 4
cycles for Nios II/s and Nios II/f cores.

October 2005 5.1.0 Maintenance release.

May 2005 5.0.0 Updates to Nios II/f and Nios II/s cores. Added tightly-coupled
memory and new data cache options. Corrected cycle counts for shift/
rotate operations.

December 2004 1.2 Updates to Multiply and Divide Performance section for Nios II/f and
Nios II/s cores.

September 2004 1.1 Updates for Nios II 1.01 release.

May 2004 1.0 Initial release.

NII5V1 NII51015
2016.06.17 Document Revision History 5-23

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII5V1%20NII51015%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II Processor Revision History 6
2016.06.17

NII5V1 NII51018 Subscribe Send Feedback

Each release of the Nios® II Embedded Design Suite (EDS) introduces improvements to the Nios II
processor, the software development tools, or both. This chapter catalogs the history of revisions to the
Nios II processor; it does not track revisions to development tools, such as the Nios II Software Build Tools
(SBT).

Improvements to the Nios II processor might affect:

• Features of the Nios II architecture—An example of an architecture revision is adding instructions to
support floating-point arithmetic.

• Implementation of a specific Nios II core—An example of a core revision is increasing the maximum
possible size of the data cache memory for the Nios II/f core.

• Features of the JTAG debug module—An example of a JTAG debug module revision is adding an
additional trigger input to the JTAG debug module, allowing it to halt processor execution on a new
type of trigger event.

Altera implements Nios II revisions such that code written for an existing Nios II core also works on future
revisions of the same core.

Nios II Versions
The number for any version of the Nios II processor is determined by the version of the Nios II EDS. For
example, in the Nios II EDS version 8.0, all Nios II cores are also version 8.0.

Table 6-1: Nios II Processor Revision History

Version Release Date Notes

13.1 November
2013

• Added ECC support for internal RAM blocks (instruction cache,
MMU TLB, and register file)

• Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.
10.1 December

2010
No changes.

10.0 July 2010 No changes.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V1 NII51018
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V1%20NII51018%202016.06.17)%20Nios%20II%20Processor%20Revision%20History&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Version Release Date Notes

9.1 November
2009

• Added optional external interrupt controller interface.
• Added optional shadow register sets.

9.0 March 2009 No changes.
8.1 November

2008
No changes.

8.0 May 2008 • Added an optional memory management unit (MMU).
• Added an optional memory protection unit (MPU).
• Added advanced exception checking.
• Added the initda instruction.

7.2 October 2007 Added the jmpi instruction.
7.1 May 2007 No changes.
7.0 March 2007 No changes.
6.1 November

2006
No changes.

6.0 May 2006 The name Nios II Development Kit describing the software develop‐
ment tools changed to Nios II Embedded Design Suite.

5.1 SP1 January 2006 Bug fix for Nios II/f core.
5.1 October 2005 No changes.
5.0 May 2005 • Changed version nomenclature. Altera now aligns the Nios II

processor version with Altera's Quartus® II software version.
• Memory structure enhancements:

(1) Added tightly-coupled memory.

(2) Made data cache line size configurable.

(3) Made cache optional in Nios II/f and Nios II/s cores.
• Support for HardCopy® devices.

1.1 December
2004

• Minor enhancements to the architecture: Added cpuid control
register, and updated the break instruction.

• Increased user control of multiply and shift hardware in the
arithmetic logic unit (ALU) for Nios II/s and Nios II/f cores.

• Minor bug fixes.

1.01 September
2004

• Minor bug fixes.

1.0 May2004 Initial release of the Nios II processor.

6-2 Nios II Versions
NII5V1 NII51018

2016.06.17

Altera Corporation Nios II Processor Revision History

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII5V1%20NII51018%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Architecture Revisions
Architecture revisions augment the fundamental capabilities of the Nios II architecture, and affect all
Nios II cores. A change in the architecture mandates a revision to all Nios II cores to accommodate the
new architectural enhancement. For example, when Altera adds a new instruction to the instruction set,
Altera consequently must update all Nios II cores to recognize the new instruction.

Table 6-2: Nios II Architecture Revisions

Version Release Date Notes

13.1 November
2013

• Added ECC support for internal RAM blocks (instruction cache,
MMU TLB, and register file)

• Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.
10.1 December

2010
No changes.

10.0 July 2010 No changes.
9.1 November

2009
• Added optional external interrupt controller interface.
• Added optional shadow register sets.

9.0 March 2009 No changes.
8.1 November

2008
No changes.

8.0 May 2008 • Added an optional MMU.
• Added an optional MPU.
• Added advanced exception checking to detect division errors, illegal

instructions, misaligned memory accesses, and provide extra
exception information.

• Added the initda instruction.

7.2 October 2007 Added the jmpi instruction.
7.1 May 2007 No changes.
7.0 March 2007 No changes.
6.1 November

2006
No changes.

6.0 May 2006 Added optional cpu_resetrequest and cpu_resettaken signals to all
processor cores.

5.1 October 2005 No changes.
5.0 May 2005 Added the flushda instruction.
1.1 December

2004
• Added cpuid control register.
• Updated break instruction specification to accept an immediate

argument for use by debugging tools.

NII5V1 NII51018
2016.06.17 Architecture Revisions 6-3

Nios II Processor Revision History Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII5V1%20NII51018%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Version Release Date Notes

1.01 September
2004

No changes.

1.0 May 2004 Initial release of the Nios II processor architecture.

Core Revisions
Core revisions introduce changes to an existing Nios II core. Core revisions most commonly fix identified
bugs, or add support for an architecture revision. Not every Nios II core is revised with every release of the
Nios II architecture.

Nios II/f Core

Table 6-3: Nios II/f Core Revisions

Version Release Date Notes

13.1 November
2013

• Added ECC support for internal RAM blocks (instruction cache,
MMU TLB, and register file)

• Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.
10.1 December

2010
No changes.

10.0 July 2010 No changes.
9.1 November

2009
• Added optional external interrupt controller interface.
• Added optional shadow register sets.

9.0 March 2009 No changes.
8.1 November

2008
No changes.

8.0 May 2008 • Implemented the optional MMU.
• Implemented the optional MPU.
• Implemented advanced exception checking.
• Implemented the initda instruction.

7.2 October 2007 Implemented the jmpi instruction.
7.1 May 2007 No changes.
7.0 March 2007 No changes.
6.1 November

2006
No changes.

6.0 May 2006 Cycle count for flushi and initi instructions changes from 1 to 4
cycles.

6-4 Core Revisions
NII5V1 NII51018

2016.06.17

Altera Corporation Nios II Processor Revision History

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII5V1%20NII51018%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Version Release Date Notes

5.1 SP1 January 2006 Bug Fix:

Back-to-back store instructions can cause memory corruption to the
stored data. If the first store is not to the last word of a cache line and
the second store is to the last word of the line, memory corruption
occurs.

5.1 October 2005 No changes.
5.0 May 2005 • Added optional tightly-coupled memory ports. Designers can add

zero to four tightly-coupled instruction master ports, and zero to
four tightly-coupled data master ports.

• Made the data cache line size configurable. Designers can configure
the data cache with the following line sizes: 4, 16, or 32 bytes.
Previously, the data cache line size was fixed at 4 bytes.

• Made instruction and data caches optional (previously, cache
memories were always present). If the instruction cache is not
present, the Nios II core does not have an instruction master port,
and must use a tightly-coupled instruction memory.

• Support for HardCopy devices (previous versions required a
workaround to support HardCopy devices).

1.1 December
2004

• Added user-configurable options affecting multiply and shift
operations. Now designers can choose one of three options:

(1) Use embedded multiplier resources available in the target device
family (previously available).

(2) Use logic elements to implement multiply and shift hardware
(new option).

(3) Omit multiply hardware. Shift operations take one cycle per bit
shifted; multiply operations are emulated in software (new option).

• Added cpuid control register.
• Bug Fix:

Interrupts that were disabled by wrctl ienable remained enabled
for one clock cycle following the wrctl instruction. Now the
instruction following such a wrctl cannot be interrupted.

1.01 September
2004

• Bug Fixes:

(1) When a store to memory is followed immediately in the pipeline
by a load from the same memory location, and the memory
location is held in the data cache, the load may return invalid data.
This situation can occur in C code compiled with optimization off
(-O0).

(2) The SOPC Builder top-level system module included an extra,
unnecessary output port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/f core.

NII5V1 NII51018
2016.06.17 Nios II/f Core 6-5

Nios II Processor Revision History Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII5V1%20NII51018%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Nios II/s Core

Table 6-4: Nios II/s Core Revisions

Version Release Date Notes

13.1 November
2013

• Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.

10.1 December
2010

No changes.

10.0 July 2010 No changes.

9.1 November
2009

No changes.

9.0 March 2009 No changes.

8.1 November
2008

No changes.

8.0 May 2008 Implemented the illegal instruction exception.

7.2 October 2007 Implemented the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November
2006

No changes.

6.0 May 2006 Cycle count for flushi and initi instructions changes from 1 to 4
cycles.

5.1 October 2005 No changes.

5.0 May 2005 • Added optional tightly-coupled memory ports. Designers can add
zero to four tightly-coupled instruction master ports.

• Made instruction cache optional (previously instruction cache was
always present). If the instruction cache is not present, the Nios II
core does not have an instruction master port, and must use a
tightly-coupled instruction memory.

• Support for HardCopy devices (previous versions required a
workaround to support HardCopy devices).

6-6 Nios II/s Core
NII5V1 NII51018

2016.06.17

Altera Corporation Nios II Processor Revision History

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII5V1%20NII51018%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Version Release Date Notes

1.1 December
2004

• Added user-configurable options affecting multiply and shift
operations. Now designers can choose one of three options:

(1) Use embedded multiplier resources available in the target device
family (previously available).

(2) Use logic elements to implement multiply and shift hardware
(new option).

(3) Omit multiply hardware. Shift operations take one cycle per bit
shifted; multiply operations are emulated in software (new option).

• Added user-configurable option to include divide hardware in the
ALU. Previously this option was available for only the Nios II/f core.

• Added cpuid control register.

1.01 September
2004

Bug fix:

The SOPC Builder top-level system module included an extra,
unnecessary output port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/s core.

Nios II/e Core

Table 6-5: Nios II/e Core Revisions

Version Release Date Notes

13.1 November
2013

• Added support for enhanced floating-point custom instructions

11.0 May 2011 No changes.
10.1 December

2010
No changes.

10.0 July 2010 No changes.
9.1 November

2009
No changes.

9.0 March 2009 No changes.
8.1 November

2008
No changes.

8.0 May 2008 Implemented the illegal instruction exception.
7.2 October 2007 Implemented the jmpi instruction.
7.1 May 2007 No changes.
7.0 March 2007 No changes.
6.1 November

2006
No changes.

NII5V1 NII51018
2016.06.17 Nios II/e Core 6-7

Nios II Processor Revision History Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII5V1%20NII51018%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Version Release Date Notes

6.0 May 2006 No changes.
5.1 October 2005 No changes.
5.0 May 2005 Support for HardCopy devices (previous versions required a

workaround to support HardCopy devices).
1.1 December

2004
Added cpuid control register.

1.01 September
2004

Bug fix:

The SOPC Builder top-level system module included an extra,
unnecessary output port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/e core.

JTAG Debug Module Revisions
JTAG debug module revisions augment the debug capabilities of the Nios II processor, or fix bugs isolated
within the JTAG debug module logic.

Table 6-6: JTAG Debug Module Revisions

Version Release Date Notes

11.0 May 2011 No changes.
10.1 December

2010
No changes.

10.0 July 2010 No changes.
9.1 November

2009
No changes.

9.0 March 2009 No changes.
8.1 November

2008
No changes.

8.0 May 2008 No changes.
7.2 October 2007 No changes.
7.1 May 2007 No changes.
7.0 March 2007 No changes.
6.1 November

2006
No changes.

6.0 May 2006 No changes.
5.1 October 2005 No changes.
5.0 May 2005 Support for HardCopy devices (previous versions of the JTAG debug

module did not support HardCopy devices).

6-8 JTAG Debug Module Revisions
NII5V1 NII51018

2016.06.17

Altera Corporation Nios II Processor Revision History

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII5V1%20NII51018%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Version Release Date Notes

1.1 December
2004

Bug fix:

When using the Nios II/s and Nios II/f cores, hardware breakpoints
may have falsely triggered when placed on the instruction sequentially
following a jmp, trap, or any branch instruction.

1.01 September
2004

• Feature enhancements:

(1) Added the ability to trigger based on the instruction address.
Uses include triggering trace control (trace on/off), sequential
triggers, and trigger in/out signal generation.

(2) Enhanced trace collection such that collection can be stopped
when the trace buffer is full without halting the Nios II processor.

(3) Armed triggers – Enhanced trigger logic to support two levels of
triggers, or "armed triggers"; enabling the use of "Event A then
event B" trigger definitions.

• Bug fixes:

(1) On the Nios II/s core, trace data sometimes recorded incorrect
addresses during interrupt processing.

(2) Under certain circumstances, captured trace data appeared to
start earlier or later than the desired trigger location.

(3) During debugging, the processor would hang if a hardware
breakpoint and an interrupt occurred simultaneously.

1.0 May 2004 Initial release of the JTAG debug module.

Document Revision History
Table 6-7: Document Revision History

Date Version Changes

April 2015 2015.04.02 Maintenance release.
February 2014 13.1.0 • Added information on ECC support.

• Removed HardCopy information.
• Removed references to SOPC Builder.

May 2011 11.0.0 Maintenance release.
December 2010 10.1.0 Maintenance release.
July 2010 10.0.0 Maintenance release.
November 2009 9.1.0 • Added external interrupt controller interface information.

• Added shadow register set information.

March 2009 9.0.0 Maintenance release.
November 2008 8.1.0 Maintenance release.

NII5V1 NII51018
2016.06.17 Document Revision History 6-9

Nios II Processor Revision History Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII5V1%20NII51018%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2008 8.0.0 • Added MMU information.
• Added MPU information.
• Added advanced exception checking information.
• Added initda instruction information.

October 2007 7.2.0 • Added jmpi instruction information.
• Added exception handling information.

May 2007 7.1.0 • Updated tables to reflect no changes to cores.
• Added table of contents to Introduction section.
• Added Referenced Documents section.

March 2007 7.0.0 Updated tables to reflect no changes to cores.
November 2006 6.1.0 Updated tables to reflect no changes to cores.
May 2006 6.0.0 Updates for Nios II cores version 6.0.
October 2005 5.1.0 Updates for Nios II cores version 5.1.
May 2005 5.0.0 Updates for Nios II cores version 5.0.
September 2004 1.1 Updates for Nios II cores version 1.1.
May 2004 1.0 Initial release.

6-10 Document Revision History
NII5V1 NII51018

2016.06.17

Altera Corporation Nios II Processor Revision History

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Processor%20Revision%20History%20(NII5V1%20NII51018%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Application Binary Interface 7
2016.06.17

NII5V1 NII51016 Subscribe Send Feedback

This chapter describes the Application Binary Interface (ABI) for the Nios® II processor. The ABI
describes:

• How data is arranged in memory
• Behavior and structure of the stack
• Function calling conventions

Data Types

Table 7-1: Representation of Data C/C++ Types

Type Size (Bytes) Representation

char, signed char 1 two’s complement (ASCII)

unsigned char 1 binary (ASCII)

short, signed short 2 two’s complement

unsigned short 2 binary

int, signed int 4 two’s complement

unsigned int 4 binary

long, signed long 4 two’s complement

unsigned long 4 binary

float 4 IEEE

double 8 IEEE

pointer 4 binary

long long 8 two’s complement

unsigned long long 8 binary

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V1 NII51016
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V1%20NII51016%202016.06.17)%20Application%20Binary%20Interface&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Memory Alignment
Contents in memory are aligned as follows:

• A function must be aligned to a minimum of 32-bit boundary.
• The minimum alignment of a data element is its natural size. A data element larger than 32 bits need

only be aligned to a 32-bit boundary.
• Structures, unions, and strings must be aligned to a minimum of 32 bits.
• Bit fields inside structures are always 32-bit aligned.

Register Usage
The ABI adds additional usage conventions to the Nios II register file defined in the Programming Model
chapter of the Nios II Processor Reference Handbook.

Table 7-2: Nios II ABI Register Usage

Register Name Used by
Compiler

Callee
Saved(46)

Normal Usage

r0 zero v 0x00000000
r1 at Assembler temporary
r2 v Return value (least-significant 32 bits)
r3 v Return value (most-significant 32 bits)
r4 v Register arguments (first 32 bits)
r5 v Register arguments (second 32 bits)
r6 v Register arguments (third 32 bits)
r7 v Register arguments (fourth 32 bits)
r8 v

Caller-saved general-purpose registers

r9 v
r10 v
r11 v
r12 v
r13 v
r14 v
r15 v

(46) A function can use one of these registers if it saves it first. The function must restore the register’s original
value before exiting.

7-2 Memory Alignment
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Name Used by
Compiler

Callee
Saved(46)

Normal Usage

r16 v v

Callee-saved general-purpose registers

r17 v v
r18 v v
r19 v v
r20 v v
r21 v v
r22 v (47)

r23 v (48)

r24 et Exception temporary
r25 bt Break temporary
r26 gp v Global pointer
r27 sp v Stack pointer
r28 fp v (49) Frame pointer
r29 ea Exception return address
r30 ba • Normal register set: Break return address

• Shadow register sets: SSTATUS register

r31 ra v Return address

The endianness of values greater than 8 bits is little endian. The upper 8 bits of a value are stored at the
higher byte address.

Related Information

• Frame Pointer Elimination on page 7-4
• Programming Model on page 3-1
• Programming Model

Stacks
The stack grows downward (i.e. towards lower addresses). The stack pointer points to the last used slot.
The frame pointer points to the saved frame pointer near the top of the stack frame.

(46) A function can use one of these registers if it saves it first. The function must restore the register’s original
value before exiting.

(47) In the GNU Linux operating system, r22 points to the global offset table (GOT). Otherwise, it is available
as a callee-saved general-purpose register.

(48) In the GNU Linux operating system, r23 is used as the thread pointer. Otherwise, it is available as a
callee-saved general-purpose register.

(49) If the frame pointer is not used, the register is available as a callee-saved temporary register. Refer to “Frame
Pointer Elimination” .

NII5V1 NII51016
2016.06.17 Stacks 7-3

Application Binary Interface Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The figure below shows an example of the structure of a current frame. In this case, function a() calls
function b(), and the stack is shown before the call and after the prologue in the called function has
completed.

Figure 7-1: Stack Pointer, Frame Pointer and the Current Frame

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Stack pointer

Outgoing
stack

arguments

Higher addresses

Stack pointer

Lower addresses

Space for
stack

temporaries

Return address

Saved frame
pointerFrame pointer

Each section of the current frame is aligned to a 32-bit boundary. The ABI requires the stack pointer be
32-bit aligned at all times.

Frame Pointer Elimination
The frame pointer is provided for debugger support. If you are not using a debugger, you can optimize
your code by eliminating the frame pointer, using the -fomit-frame-pointer compiler option. When the
frame pointer is eliminated, register fp is available as a temporary register.

Call Saved Registers
The compiler is responsible for generating code to save registers that need to be saved on entry to a
function, and to restore the registers on exit. If there are any such registers, they are saved on the stack,
from high to low addresses, in the following order: ra, fp, sp, gp, r25, r24, r23, r22, r21, r20, r19, r18,
r17, r16, r15, r14, r13, r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, and r2. Stack space is not allocated for
registers that are not saved.

Further Examples of Stacks
There are a number of special cases for stack layout, which are described in this section.

7-4 Frame Pointer Elimination
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Stack Frame for a Function With alloca()

The Nios II stack frame implementation provides support for the alloca() function, defined in the
Berkeley Software Distribution (BSD) extension to C, and implemented by the gcc compiler. The space
allocated by alloca() replaces the outgoing arguments and the outgoing arguments get new space
allocated at the bottom of the frame.

Note: The Nios II C/C++ compiler maintains a frame pointer for any function that calls alloca(), even if
-fomit-frame-pointer is spec if ed

Figure 7-2: Stack Frame after Calling alloca()

higher addresses

lower addresses

space for
outgoing

stack
 arguments

sp

sp

space for
outgoing

stack
 arguments

memory
allocated

by
alloca()

)(acolla gnillac retfAerofeB

Stack Frame for a Function with Variable Arguments
Functions that take variable arguments (varargs) still have their first 16 bytes of arguments arriving in
registers r4 through r7, just like other functions.

In order for varargs to work, functions that take variable arguments allocate 16 extra bytes of storage on
the stack. They copy to the stack the first 16 bytes of their arguments from registers r4 through r7 as
shown below.

NII5V1 NII51016
2016.06.17 Stack Frame for a Function With alloca() 7-5

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-3: Stack Frame Using Variable Arguments

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Outgoing
stack

arguments

Higher addresses

Lower addresses

Stack pointer
Copy of r7
Copy of r6
Copy of r5
Copy of r4

Space for
stack

temporaries

Stack pointer

Return address

Saved frame
pointerFrame pointer

Stack Frame for a Function with Structures Passed By Value

Functions that take struct value arguments still have their first 16 bytes of arguments arriving in registers
r4 through r7, just like other functions.

If part of a structure is passed using registers, the function might need to copy the register contents back to
the stack. This operation is similar to that required in the variable arguments case as shown in the figure
above, Stack Frame Using Variable Arguments.

Related Information
Stack Frame for a Function with Variable Arguments on page 7-5

Function Prologues
The Nios II C/C++ compiler generates function prologues that allocate the stack frame of a function for
storage of stack temporaries and outgoing arguments. In addition, each prologue is responsible for saving
the state of the calling function. This entails saving certain registers on the stack. These registers, the
callee-saved registers, are listed in Nios II ABI Register Usage Table in the Register Usage section. A
function prologue is required to save a callee-saved register only if the function uses the register.

Given the function prologue algorithm, when doing a back trace, a debugger can disassemble instructions
and reconstruct the processor state of the calling function.

7-6 Stack Frame for a Function with Structures Passed By Value
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: An even better way to find out what the prologue has done is to use information stored in the
DWARF-2 debugging fields of the executable and linkable format (.elf) file.

The instructions found in a Nios II function prologue perform the following tasks:

• Adjust the stack pointer (to allocate the frame)
• Store registers to the frame
• Set the frame pointer to the location of the saved frame pointer

Example 7-1: A function prologue

/* Adjust the stack pointer */
addi sp, sp, -16 /* make a 16-byte frame */

/* Store registers to the frame */
stw ra, 12(sp) /* store the return address */
stw fp, 8(sp) /* store the frame pointer*/
stw r16, 4(sp) /* store callee-saved register */
stw r17, 0(sp) /* store callee-saved register */

/* Set the new frame pointer */
addi fp, sp, 8

Related Information
Register Usage on page 7-2

Prologue Variations
The following variations can occur in a prologue:

• If the function’s frame size is greater than 32,767 bytes, extra temporary registers are used in the
calculation of the new stack pointer as well as for the offsets of where to store callee-saved registers. The
extra registers are needed because of the maximum size of immediate values allowed by the Nios II
processor.

• If the frame pointer is not in use, the final instruction, recalculating the frame pointer, is not generated.
• If variable arguments are used, extra instructions store the argument registers on the stack.
• If the compiler designates the function as a leaf function, the return address is not saved.
• If optimizations are on, especially instruction scheduling, the order of the instructions might change

and become interlaced with instructions located after the prologue.

Arguments and Return Values
This section discusses the details of passing arguments to functions and returning values from functions.

Arguments
The first 16 bytes to a function are passed in registers r4 through r7. The arguments are passed as if a
structure containing the types of the arguments were constructed, and the first 16 bytes of the structure are
located in r4 through r7.

A simple example:

int function (int a, int b);

NII5V1 NII51016
2016.06.17 Prologue Variations 7-7

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The equivalent structure representing the arguments is:

struct { int a; int b; };

The first 16 bytes of the struct are assigned to r4 through r7. Therefore r4 is assigned the value of a and
r5 the value of b.

The first 16 bytes to a function taking variable arguments are passed the same way as a function not taking
variable arguments. The called function must clean up the stack as necessary to support the variable
arguments.

Refer to Stack Frame for a Function with Variable Arguments

Related Information
Stack Frame for a Function with Variable Arguments on page 7-5

Return Values
Return values of types up to 8 bytes are returned in r2 and r3. For return values greater than 8 bytes, the
caller must allocate memory for the result and must pass the address of the result memory as a hidden
zero argument.

The hidden zero argument is best explained through an example.

Example 7-2: Returned struct

/* b() computes a structure-type result and returns it */
STRUCT b(int i, int j)
{
 ...
 return result;
}
void a(...)
{
 ...
 value = b(i, j);
}

In the example above, if the result type is no larger than 8 bytes, b() returns its result in r2 and r3.

If the return type is larger than 8 bytes, the Nios II C/C++ compiler treats this program as if a() had
passed a pointer to b(). The example below shows how the Nios II C/C++ compiler sees the code in the
Returned Struct example above.

Example 7-3: Returned struct is Larger than 8 Bytes

void b(STRUCT *p_result, int i, int j)
{
 ...
 *p_result = result;
}

void a(...)
{
 STRUCT value;
 ...

7-8 Return Values
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 b(&value, i, j);
}

DWARF-2 Definition
Registers r0 through r31 are assigned numbers 0 through 31 in all DWARF-2 debugging sections.

Object Files

Table 7-3: Nios II-Specific ELF Header Values

Member Value

e_ident[EI_CLASS] ELFCLASS32

e_ident[EI_DATA] ELFDATA2LSB

e_machine EM_ALTERA_NIOS2 == 113

Relocation
In a Nios II object file, each relocatable address reference possesses a relocation type. The relocation type
specifies how to calculate the relocated address. The bit mask specifies where the address is found in the
instruction.

Table 7-4: Nios II Relocation Calculation

Name Value Overflow

check
(50)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_NONE 0 n/a None n/a n/a
R_NIOS2_S16 1 Yes S + A 0x003FFFC0 6
R_NIOS2_U16 2 Yes S + A 0x003FFFC0 6
R_NIOS2_PCREL16 3 Yes ((S + A) – 4) – PC 0x003FFFC0 6
R_NIOS2_CALL26(51) 4 Yes (S + A) >> 2 0xFFFFFFC0 6
R_NIOS2_CALL26_NOAT 41 No (S + A) >> 2 0xFFFFFFC0 6
R_NIOS2_IMM5 5 Yes (S + A) & 0x1F 0x000007C0 6
R_NIOS2_CACHE_OPX 6 Yes (S + A) & 0x1F 0x07C00000 22
R_NIOS2_IMM6 7 Yes (S + A) & 0x3F 0x00000FC0 6

(50) For relocation types where no overflow check is performed, the relocated address is truncated to fit the
instruction.

(51) Linker is permitted to clobber register AT in the course of resolving overflows

NII5V1 NII51016
2016.06.17 DWARF-2 Definition 7-9

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Value Overflow

check
(50)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_IMM8 8 Yes (S + A) & 0xFF 0x00003FC0 6
R_NIOS2_HI16 9 No ((S + A) >> 16) &

0xFFFF
0x003FFFC0 6

R_NIOS2_LO16 10 No (S + A) & 0xFFFF 0x003FFFC0 6
R_NIOS2_HIADJ16 11 No Adj(S+A) 0x003FFFC0 6
R_NIOS2_BFD_RELOC_32 12 No S + A 0xFFFFFFFF 0
R_NIOS2_BFD_RELOC_16 13 Yes (S + A) & 0xFFFF 0x0000FFFF 0
R_NIOS2_BFD_RELOC_8 14 Yes (S + A) & 0xFF 0x000000FF 0
R_NIOS2_GPREL 15 No (S + A – GP) &

0xFFFF
0x003FFFC0 6

R_NIOS2_GNU_VTINHERIT 16 n/a None n/a n/a
R_NIOS2_GNU_VTENTRY 17 n/a None n/a n/a
R_NIOS2_UJMP 18 No ((S + A) >> 16) &

0xFFFF,

(S + A + 4) &
0xFFFF

0x003FFFC0 6

R_NIOS2_CJMP 19 No ((S + A) >> 16) &
0xFFFF,

(S + A + 4) &
0xFFFF

0x003FFFC0 6

R_NIOS2_CALLR 20 No ((S + A) >> 16) &
0xFFFF)

(S + A + 4) &
0xFFFF

0x003FFFC0 6

R_NIOS2_ALIGN 21 n/a None n/a n/a
R_NIOS2_GOT16 22(52) Yes G 0x003FFFC0 6
R_NIOS2_CALL16 23(52) Yes G 0x003FFFC0 6
R_NIOS2_GOTOFF_LO 24(52) No (S + A – GOT) &

0xFFFF
0x003FFFC0 6

R_NIOS2_GOTOFF_HA 25(52) No Adj (S + A – GOT) 0x003FFFC0 6
R_NIOS2_PCREL_LO 26(52) No (S + A – PC) &

0xFFFF
0x003FFFC0 6

(50) For relocation types where no overflow check is performed, the relocated address is truncated to fit the
instruction.

7-10 Relocation
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Value Overflow

check
(50)

Relocated Address

R

Bit Mask

M

Bit Shift

B

R_NIOS2_PCREL_HA 27(52) No Adj (S + A – PC) 0x003FFFC0 6
R_NIOS2_TLS_GD16 28(52) Yes Refer to Thread-

Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_LDM16 29(52) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_LDO16 30(52) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_IE16 31(52) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_LE16 32(52) Yes Refer to Thread-
Local Storage
section

0x003FFFC0 6

R_NIOS2_TLS_DTPMOD 33(52) No Refer to Thread-
Local Storage
section

0xFFFFFFFF 0

R_NIOS2_TLS_DTPREL 34(52) No Refer to Thread-
Local Storage
section

0xFFFFFFFF 0

R_NIOS2_TLS_TPREL 35(52) No Refer to Thread-
Local Storage
section

0xFFFFFFFF 0

R_NIOS2_COPY 36(52) No Refer to Copy
Relocation section.

n/a n/a

R_NIOS2_GLOB_DAT 37(52) No S 0xFFFFFFFF 0
R_NIOS2_JUMP_SLOT 38(52) No Refer to Jump Slot

Relocation section.
0xFFFFFFFF 0

R_NIOS2_RELATIVE 39(52) No BA+A 0xFFFFFFFF 0
R_NIOS2_GOTOFF 40(52) No S+A 0xFFFFFFFF 0
R_NIOS2_GOT_LO 42(52) No G & 0xFFFF 0x003FFFC0 6
R_NIOS2_GOT_HA 43(52) No Adj(G) 0x003FFFC0 6
R_NIOS2_CALL_LO 44(52) No G & 0xFFFF 0x003FFFC0 6
R_NIOS2_CALL_HA 45(52) No Adj(G) 0x003FFFC0 6

(50) For relocation types where no overflow check is performed, the relocated address is truncated to fit the
instruction.

NII5V1 NII51016
2016.06.17 Relocation 7-11

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Expressions in the table above use the following conventions:

• S: Symbol address
• A: Addend
• PC: Program counter
• GP: Global pointer
• Adj(X): (((X >> 16) & 0xFFFF) + ((X >> 15) & 0x1)) & 0xFFFF
• BA: The base address at which a shared library is loaded
• GOT: The value of the Global Offset Table (GOT) pointer (Linux only)
• G: The offset into the GOT for the GOT slot for symbol S (Linux only)

With the information in the table above, any Nios II instruction can be relocated by manipulating it as an
unsigned 32-bit integer, as follows:

Xr = ((R << B) & M | (X & ~M));

where:

• R is the relocated address, calculated in the above table
• B is the bit shift
• M is the bit mask
• X is the original instruction
• Xr is the relocated instruction

Related Information

• Jump Slot Relocation on page 7-14
• Copy Relocation on page 7-14
• Thread-Local Storage on page 7-14

ABI for Linux Systems
This section describes details specific to Linux systems beyond the Linux-specific information in Nios II
ABI Register Usage Table and the Nios II Relocation Calculation Table.

Related Information

• Relocation on page 7-9
• Register Usage on page 7-2

Linux Toolchain Relocation Information
Dynamic relocations can appear in the runtime relocation sections of executables and shared objects, but
never appear in object files (with the exception of R_NIOS2_TLS_DTPREL, which is used for debug
information). No other relocations are dynamic.

Table 7-5: Dynamic Relocations

R_NIOS2_TLS_DTPMOD

(52) Relocation support is provided for Linux systems.

7-12 ABI for Linux Systems
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

R_NIOS2_TLS_DTPREL
R_NIOS2_TLS_TPREL
R_NIOS2_COPY
R_NIOS2_GLOB_DAT
R_NIOS2_JUMP_SLOT
R_NIOS2_RELATIVE

A global offset table (GOT) entry referenced using R_NIOS2_GOT16, R_NIOS2_GOT_LO and/or
R_NIOS2_GOT_HA must be resolved at load time. A GOT entry referenced only using
R_NIOS2_CALL16, R_NIOS2_CALL_LO and/or R_NIOS2_CALL_HA can initially refer to a procedure
linkage table (PLT) entry and then be resolved lazily.

Because the TP-relative relocations are 16-bit relocations, no dynamic object using local dynamic or local
executable thread-local storage (TLS) can have more than 64 KB of TLS data. New relocations might be
added to support this in the future.

Several new assembler operators are defined to generate the Linux-specific relocations, as listed in the
table below.

Table 7-6: Relocation and Operator

Relocation Operator

R_NIOS2_GOT16 %got

R_NIOS2_CALL16 %call

R_NIOS2_GOTOFF_LO %gotoff_hiadj

R_NIOS2_GOTOFF_HA %gotoff_lo

R_NIOS2_PCREL_LO %hiadj

R_NIOS2_PCREL_HA %lo

R_NIOS2_TLS_GD16 %tls_gd

R_NIOS2_TLS_LDM16 %tls_ldm

R_NIOS2_TLS_LDO16 %tls_ldo

R_NIOS2_TLS_IE16 %tls_ie

R_NIOS2_TLS_LE16 %tls_le

R_NIOS2_TLS_DTPREL %tls_ldo

R_NIOS2_GOTOFF %gotoff

R_NIOS2_GOT_LO %got_lo

R_NIOS2_GOT_HA %got_hiadj

R_NIOS2_CALL_LO %call_lo

R_NIOS2_CALL_HA %call_hiadj

The %hiadj and %lo operators generate PC-relative or non-PC-relative relocations, depending whether
the expression being relocated is PC-relative. For instance, %hiadj(_gp_got - .) generates

NII5V1 NII51016
2016.06.17 Linux Toolchain Relocation Information 7-13

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

R_NIOS2_PCREL_HA. %tls_ldo generates R_NIOS2_TLS_LDO16 when used as an immediate
operand, and R_NIOS2_TLS_DTPREL when used with the .word directive.

Copy Relocation
The R_NIOS2_COPY relocation is used to mark variables allocated in the executable that are defined in a
shared library. The variable’s initial value is copied from the shared library to the relocated location.

Jump Slot Relocation
Jump slot relocations are used for the PLT.

For information about the PLT, refer to "Procedure Linkage Table" section.

Related Information

• Procedure Linkage Table on page 7-20
• Procedure Linkage Table on page 7-20

Thread-Local Storage
The Nios II processor uses the Variant I model for thread-local storage.

The end of the thread control block (TCB) is located 0x7000 bytes before the thread pointer. The TCB is
eight bytes long. The first word is the dynamic thread pointer (DTV) pointer and the second word is
reserved. Each module’s dynamic thread pointer is biased by 0x8000 (when retrieved using
__tls_get_addr). The thread library can store additional private information before the TCB.

In the GNU Linux toolchain, the GOT pointer (_gp_got) is always kept in r22, and the thread pointer is
always kept in r23.

In the following examples, any registers can be used, except that the argument to __tls_get_addr is
always passed in r4 and its return value is always returned in r2. Calls to __tls_get_addr must use the
normal position-independent code (PIC) calling convention in PIC code; these sequences are for example
only, and the compiler might generate different sequences. No linker relaxations are defined.

Example 7-4: General Dynamic Model

addi r4, r22, %tls_gd(x) # R_NIOS2_TLS_GD16 x
call __tls_get_addr # R_NIOS2_CALL26 __tls_get_addr
Address of x in r2

In the general dynamic model, a two-word GOT slot is allocated for x, as shown in "GOT Slot for General
Dynamic Model" example.

Example 7-5: GOT Slot for General Dynamic Model

GOT[n] R_NIOS2_TLS_DTPMOD x
GOT[n+1] R_NIOS2_TLS_DTPREL x

7-14 Copy Relocation
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-6: Local Dynamic Model

addi r4, r22, %tls_ldm(x) # R_NIOS2_TLS_LDM16 x
call __tls_get_addr # R_NIOS2_CALL26 __tls_get_addr
addi r5, r2, %tls_ldo(x) # R_NIOS2_TLS_LDO16 x
Address of x in r5
ldw r6, %tls_ldo(x2)(r2) # R_NIOS2_TLS_LDO16 x2
Value of x2 in r6

One 2-word GOT slot is allocated for all R_NIOS2_TLS_LDM16 operations in the linked object. Any
thread-local symbol in this object can be used, as shown in "GOT Slot with Thread-Local Storage"
example.

Example 7-7: GOT Slot with Thread-Local Storage

GOT[n] R_NIOS2_TLS_DTPMOD x
GOT[n+1] 0

Example 7-8: Initial Exec Model

ldw r4, %tls_ie(x)(r22) # R_NIOS2_TLS_IE16 x
add r4, r23, r4
Address of x in r4

A single GOT slot is allocated to hold the offset of x from the thread pointer, as shown in "GOT SLot for
Initial Exec Model" example.

Example 7-9: GOT Slot for Initial Exec Model

GOT[n] R_NIOS2_TLS_TPREL x

Example 7-10: Local Exec Model

addi r4, r23, %tls_le(x) # R_NIOS2_TLS_LE16 x
Address of x in r4

There is no GOT slot associated with the local exec model.

Debug information uses the GNU extension DW_OP_GNU_push_tls_address.

Example 7-11: Debug Information

.byte 0x03 # DW_OP_addr

NII5V1 NII51016
2016.06.17 Thread-Local Storage 7-15

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

.word %tls_ldo(x) # R_NIOS2_TLS_DTPREL x

.byte 0xe0 # DW_OP_GNU_push_tls_address

Linux Function Calls
Register r23 is reserved for the thread pointer on GNU Linux systems. It is initialized by the C library and
it may be used directly for TLS access, but not modified. On non-Linux systems r23 is a general-purpose,
callee-saved register.

The global pointer, r26 or gp, is globally fixed. It is initialized in startup code and always valid on entry to
a function. This method does not allow for multiple gp values, so gp-relative data references are only
possible in the main application (that is, from position dependent code). gp is only used for small data
access, not GOT access, because code compiled as PIC may be used from shared libraries. The linker may
take advantage of gp for shorter PLT sequences when the addresses are in range. The compiler needs an
option to disable use of gprel; the option is necessary for applications with excessive amounts of small
data. For comparison, XUL (Mozilla display engine, 16 MB code, 2 MB data) has only 27 KB of small data
and the limit is 64 KB. This option is separate from -G 0, because -G 0 creates ABI incompatibility. A file
compiled with -G 0 puts global int variables into .data but files compiled with -G 8 expect such int
variables to be in .sdata.

PIC code which needs a GOT pointer needs to initialize the pointer locally using nextpc; the GOT pointer
is not passed during function calls. This approach is compatible with both static relocatable binaries and
System V style shared objects. A separate ABI is needed for shared objects with independently relocatable
text and data.

Stack alignment is 32-bit. The frame pointer points at the top of the stack when it is in use, to simplify
backtracing. Insert alloca between the local variables and the outgoing arguments. The stack pointer
points to the bottom of the outgoing argument area.

A large struct return value is handled by passing a pointer in the first argument register (not the disjoint
return value register).

Linux Operating System Call Interface

Table 7-7: Signals for Unhandled Instruction-Related Exceptions

Exception Signal

Supervisor-only instruction address SIGSEGV

TLB permission violation (execute) SIGSEGV

Supervisor-only instruction SIGILL

Unimplemented instruction SIGILL

Illegal instruction SIGILL

Break instruction SIGTRAP

Supervisor-only data address SIGSEGV

Misaligned data address SIGBUS

Misaligned destination address SIGBUS

Division error SIGFPE

7-16 Linux Function Calls
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exception Signal

TLB Permission Violation (read) SIGSEGV

TLB Permission Violation (write) SIGSEGV

There are no floating-point exceptions. The optional floating point unit (FPU) does not support exceptions
and any process wanting exact IEEE conformance needs to use a soft-float library (possibly accelerated by
use of the attached FPU).

The break instruction in a user process might generate a SIGTRAP signal for that process, but is not
required to. Userspace programs should not use the break instruction and userspace debuggers should not
insert one. If no hardware debugger is connected, the OS should assure that the break instruction does
not cause the system to stop responding.

For information about userspace debugging, refer to "Userspace Breakpoints”.

The page size is 4 KB. Virtual addresses in user mode are all below 2 GB due to the MMU design. The
NULL page is not mapped.

Related Information
Userspace Breakpoints on page 7-23

Linux Process Initialization
The stack pointer, sp, points to the argument count on the stack.

Table 7-8: Stack Initial State at User Process Start

Purpose Start Address Length

Unspecified High addresses
Referenced strings Varies
Unspecified
Null auxilliary vector entry 4 bytes
Auxilliary vector entries 8 bytes each
NULL terminator for envp 4 bytes
Environment pointers sp + 8 + 4 × argc 4 bytes each
NULL terminator for argv sp + 4 + 4 × argc 4 bytes
Argument pointers sp + 4 4 bytes each
Argument count sp 4 bytes
Unspecified Low addresses

If the application should register a destructor function with atexit, the pointer is placed in r4. Otherwise
r4 is zero.

The contents of all other registers are unspecified. User code should set fp to zero to mark the end of the
frame chain.

The auxiliary vector is a series of pairs of 32-bit tag and 32-bit value, terminated by an AT_NULL tag.

NII5V1 NII51016
2016.06.17 Linux Process Initialization 7-17

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Linux Position-Independent Code
Every position-independent code (PIC) function which uses global data or global functions must load the
value of the GOT pointer into a register. Any available register may be used. If a caller-saved register is
used the function must save and restore it around calls. If a callee-saved register is used it must be saved
and restored around the current function. Examples in this document use r22 for the GOT pointer.

The GOT pointer is loaded using a PC-relative offset to the _gp_got symbol, as shown below.

Example 7-12: Loading the GOT Pointer

nextpc r22
1:
 orhi r1, %hiadj(_gp_got - 1b) # R_NIOS2_PCREL_HA _gp_got
 addi r1, r1, %lo(_gp_got - 1b) # R_NIOS2_PCREL_LO _gp_got - 4
 add r22, r22, r1
 # GOT pointer in r22

Data may be accessed by loading its location from the GOT. A single word GOT entry is generated for
each referenced symbol.

Example 7-13: Small GOT Model Entry for Global Symbols

addi r3, r22, %got(x) # R_NIOS2_GOT16

GOT[n] R_NIOS2_GLOB_DAT x

Example 7-14: Large GOT Model Entry for Global Symbols

movhi r3, %got_hiadj(x) # R_NIOS2_GOT_HA
addi r3, r3, %got_lo(x) # R_NIOS2_GOT_LO
add r3, r3, r22

GOT[n] R_NIOS2_GLOB_DAT x

For local symbols, the symbolic reference to x is replaced by a relative relocation against symbol zero, with
the link time address of x as an addend, as shown in the example below.

Example 7-15: Local Symbols for small GOT Model

addi r3, r22, %got(x) # R_NIOS2_GOT16

GOT[n] R_NIOS2_RELATIVE +x

7-18 Linux Position-Independent Code
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-16: Local Symbols for large GOT Model

movhi r3, %got_hiadj(x) # R_NIOS2_GOT_HA
addi r3, r3, %got_lo(x) # R_NIOS2_GOT_LO
add r3, r3, r22

GOT[n] R_NIOS2_RELATIVE +x

The call and jmpi instructions are not available in position-independent code. Instead, all calls are made
through the GOT. Function addresses may be loaded with %call, which allows lazy binding. To initialize a
function pointer, load the address of the function with %got instead. If no input object requires the address
of the function its GOT entry is placed in the PLT GOT for lazy binding, as shown in the example below.

For information about the PLT, refer to the "Procedure Linkage Table" section.

Example 7-17: Small GOT Model entry in PLT GOT

ldw r3, %call(fun)(r22) # R_NIOS2_CALL16 fun
callr r3

PLTGOT[n] R_NIOS_JUMP_SLOT fun

Example 7-18: Large GOT Model entry in PLT GOT

movhi r3, %call_hiadj(x) # R_NIOS2_CALL_HA
addi r3, r3, %call_lo(x) # R_NIOS2_CALL_LO
add r3, r3, r22
ldw r3, 0(r3)
callr r3

PLTGOT[n] R_NIOS_JUMP_SLOT fun

When a function or variable resides in the current shared object at compile time, it can be accessed via a
PC-relative or GOT-relative offset, as shown below.

Example 7-19: Accessing Function or Variable in Current Shared Object

orhi r3, %gotoff_hiadj(x) # R_NIOS2_GOTOFF_HA x
addi r3, r3, %gotoff_lo(x) # R_NIOS2_GOTOFF_LO x
add r3, r22, r3
Address of x in r3

Multiway branches such as switch statements can be implemented with a table of GOT-relative offsets, as
shown below.

NII5V1 NII51016
2016.06.17 Linux Position-Independent Code 7-19

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-20: Switch Statement Implemented with Table

Scaled table offset in r4
 orhi r3, %gotoff_hiadj(Ltable) # R_NIOS2_GOTOFF_HA Ltable
 addi r3, r3, %gotoff_lo(Ltable) # R_NIOS2_GOTOFF_LO Ltable
 add r3, r22, r3 # r3 == &Ltable
 add r3, r3, r4
 ldw r4, 0(r3) # r3 == Ltable[index]
 add r4, r4, r22 # Convert offset into destina-
tion
 jmp r4
 ...
Ltable:
 .word %gotoff(Label1)
 .word %gotoff(Label2)
 .word %gotoff(Label3)

Related Information
Procedure Linkage Table on page 7-20

Linux Program Loading and Dynamic Linking

Global Offset Table
Because shared libraries are position-independent, they can not contain absolute addresses for symbols.
Instead, addresses are loaded from the GOT.

The first word of the GOT is filled in by the link editor with the unrelocated address of the _DYNAMIC,
which is at the start of the dynamic section. The second and third words are reserved for the dynamic
linker.

For information about the dynamic linker, refer to the "Procedure Linkage Table” section.

The linker-defined symbol _GLOBAL_OFFSET_TABLE_ points to the reserved entries at the beginning of the
GOT. The linker-defined symbol _gp_got points to the base address used for GOT-relative relocations.
The value of _gp_got might vary between object files if the linker creates multiple GOT sections.

Related Information
Procedure Linkage Table on page 7-20

Function Addresses
Function addresses use the same SHN_UNDEF and st_value convention for PLT entries as in other
architectures, such as x86_64.

Procedure Linkage Table

Function calls in a position-dependent executable may use the call and jmpi instructions, which address
the contents of a 256-MB segment. They may also use the %lo, %hi, and %hiadj operators to take the
address of a function. If the function is in another shared object, the link editor creates a callable stub in
the executable called a PLT entry. The PLT entry loads the address of the called function from the PLT
GOT (a region at the start of the GOT) and transfers control to it.

The PLT GOT entry needs a relocation referring to the final symbol, of type R_NIOS2_JUMP_SLOT. The
dynamic linker may immediately resolve it, or may leave it unmodified for lazy binding. The link editor
fills in an initial value pointing to the lazy binding stubs at the start of the PLT section.

7-20 Linux Program Loading and Dynamic Linking
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each PLT entry appears as shown in the example below.

Example 7-21: PLT Entry

.PLTn:
 orhi r15, r0, %hiadj(plt_got_slot_address)
 ldw r15, %lo(plt_got_slot_address)(r15)
 jmp r15

The example below shows the PLT entry when the PLT GOT is close enough to the small data area for a
relative jump.

Example 7-22: PLT Entry Near Small Data Area

.PLTn:
 ldw r15, %gprel(plt_got_slot_address)(gp)
 jmp r15

Example 7-23: Initial PLT Entry

res_0:
 br .PLTresolve
 ...
.PLTresolve:
 orhi r14, r0, %hiadj(res_0)
 addi r14, r14, %lo(res_0)
 sub r15, r15, r14
 orhi r13, %hiadj(_GLOBAL_OFFSET_TABLE_)
 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
 ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
 jmp r13

In front of the initial PLT entry, a series of branches start of the initial entry (the nextpc instruction).
There is one branch for each PLT entry, labelled res_0 through res_N. The last several branches may be
replaced by nop instructions to improve performance. The link editor arranges for the Nth PLT entry to
point to the Nth branch; res_N – res_0 is four times the index into the .rela.plt section for the
corresponding R_JUMP_SLOT relocation.

The dynamic linker initializes GOT[1] to a unique identifier for each library and GOT[2] to the address of
the runtime resolver routine. In order for the two loads in .PLTresolve to share the same %hiadj,
_GLOBAL_OFFSET_TABLE_ must be aligned to a 16-byte boundary.

The runtime resolver receives the original function arguments in r4 through r7, the shared library
identifier from GOT[1] in r14, and the relocation index times four in r15. The resolver updates the
corresponding PLT GOT entry so that the PLT entry transfers control directly to the target in the future,
and then transfers control to the target.

In shared objects, the call and jmpi instructions can not be used because the library load address is not
known at link time. Calls to functions outside the current shared object must pass through the GOT. The
program loads function addresses using %call, and the link editor may arrange for such entries to be

NII5V1 NII51016
2016.06.17 Procedure Linkage Table 7-21

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

lazily bound. Because PLT entries are only used for lazy binding, shared object PLTs are smaller, as shown
below.

Example 7-24: Shared Object PLT

.PLTn:
 orhi r15, r0, %hiadj(index * 4)
 addi r15, r15, %lo(index * 4)
 br .PLTresolve

Example 7-25: Initial PLT Entry

.PLTresolve:
 nextpc r14
 orhi r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_)
 add r13, r13, r14
 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
 ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
 jmp r13

If the initial PLT entry is out of range, the resolver can be inline, because it is only one instruction longer
than a long branch, as shown below.

Example 7-26: Initial PLT Entry Out of Range

.PLTn:
 orhi r15, r0, %hiadj(index * 4)
 addi r15, r15, %lo(index * 4)
 nextpc r14
 orhi r13, r0, %hiadj(_GLOBAL_OFFSET_TABLE_)
 add r13, r13, r14
 ldw r14, %lo(_GLOBAL_OFFSET_TABLE_+4)(r13)
 ldw r13, %lo(_GLOBAL_OFFSET_TABLE_+8)(r13)
 jmp r13

Linux Program Interpreter
The program interpreter is /lib/ld.so.1.

Linux Initialization and Termination Functions
The implementation is responsible for calling DT_INIT(), DT_INIT_ARRAY(), DT_PREINIT_ARRAY(),
DT_FINI(), and DT_FINI_ARRAY().

Linux Conventions

System Calls
The Linux system call interface relies on the trap instruction with immediate argument zero. The system
call number is passed in register r2. The arguments are passed in r4, r5, r6, r7, r8, and r9 as necessary.
The return value is written in r2 on success, or a positive error number is written to r2 on failure. A flag

7-22 Linux Program Interpreter
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

indicating successful completion, to distinguish error values from valid results, is written to r7; 0 indicates
syscall success and 1 indicates r2 contains a positive errno value.

Userspace Breakpoints
Userspace breakpoints are accomplished using the trap instruction with immediate operand 31 (all ones).
The OS must distinguish this instruction from a trap 0 system call and generate a trap signal.

Atomic Operations
The Nios II architecture does not have atomic operations (such as load linked and store conditional).
Atomic operations are emulated using a kernel system call via the trap instruction. The toolchain provides
intrinsic functions which perform the system call. Applications must use those functions rather than the
system call directly. Atomic operations may be added in a future processor extension.

Processor Requirements
Linux requires that a hardware multiplier be present. The full 64-bit multiplier (mulx instructions) is not
required.

Development Environment
The following symbols are defined:

• __nios2

• __nios2__

• __NIOS2

• __NIOS2__

Document Revision History

Table 7-9: Document Revision History

Date Version Changes

April 2015 2015.04.02 Updated Tables:

• Nios II Relocation Calculation
• Relocation and Operator

New examples in Linux Position-Independent Code section:

• Large GOT Entry for Global Symbols
• Local Symbols for large GOT Model
• Large GOT Model entry in PLT GOT

Linux Toolchain Relocation Information section updated.

February 2014 13.1.0 Removed references to SOPC Builder.

May 2011 11.0.0 Maintenance release.

December 2010 10.1.0 Added Linux ABI section.

NII5V1 NII51016
2016.06.17 Userspace Breakpoints 7-23

Application Binary Interface Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

July 2010 10.0.0 • DWARF-2 register assignments
• ELF header values
• r23 used as thread pointer for Linux
• Linux toolchain relocation information
• Symbol definitions for development environment

November 2009 9.1.0 Maintenance release.

March 2009 9.0.0 Backwards-compatible change to the eret instruction B field
encoding.

November 2008 8.1.0 Maintenance release.

May 2008 8.0.0 • Frame pointer description updated.
• Relocation table added.

October 2007 7.2.0 Maintenance release.

May 2007 7.1.0 • Added table of contents to Introduction section.
• Added Referenced Documents section.

March 2007 7.0.0 Maintenance release.

November 2006 6.1.0 Maintenance release.

May 2006 6.0.0 Maintenance release.

October 2005 5.1.0 Maintenance release.

May 2005 5.0.0 Maintenance release.

September 2004 1.1 Maintenance release.

May 2004 1.0 Initial release.

7-24 Document Revision History
NII5V1 NII51016

2016.06.17

Altera Corporation Application Binary Interface

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Application%20Binary%20Interface%20(NII5V1%20NII51016%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Set Reference 8
2016.06.17

NII5V1 NII51017 Subscribe Send Feedback

This section introduces the Nios® II instruction word format and provides a detailed reference of the
Nios II instruction set.

Word Formats
There are three types of Nios II instruction word format: I-type, R-type, and J-type.

I-Type
The defining characteristic of the I-type instruction word format is that it contains an immediate value
embedded within the instruction word. I-type instructions words contain:

• A 6-bit opcode field OP
• Two 5-bit register fields A and B
• A 16-bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field B specifies the destination
register. IMM16 is considered signed except for logical operations and unsigned comparisons.

I-type instructions include arithmetic and logical operations such as addi and andi; branch operations;
load and store operations; and cache management operations.

Table 8-1: I-Type Instruction Format

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 OP

R-Type
The defining characteristic of the R-type instruction word format is that all arguments and results are
specified as registers. R-type instructions contain:

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII5V1 NII51017
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII5V1%20NII51017%202016.06.17)%20Instruction%20Set%20Reference&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• A 6-bit opcode field OP
• Three 5-bit register fields A, B, and C
• An 11-bit opcode-extension field OPX

In most cases, fields A and B specify the source operands, and field C specifies the destination register.

Some R-Type instructions embed a small immediate value in the five low-order bits of OPX. Unused bits
in OPX are always 0.

R-type instructions include arithmetic and logical operations such as add and nor; comparison operations
such as cmpeq and cmplt; the custom instruction; and other operations that need only register operands.

Table 8-2: R-Type Instruction Format

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C OPX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPX OP

J-Type
J-type instructions contain:

• A 6-bit opcode field
• A 26-bit immediate data field

J-type instructions, such as call and jmpi, transfer execution anywhere within a 256-MB range.

Table 8-3: J-Type Instruction Format

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IMM26

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 OP

Instruction Opcodes
The OP field in the Nios II instruction word specifies the major class of an opcode as listed in the two
tables below. Most values of OP are encodings for I-type instructions. One encoding, OP = 0x00, is the J-
type instruction call. Another encoding, OP = 0x3a, is used for all R-type instructions, in which case, the
OPX field differentiates the instructions. All undefined encodings of OP and OPX are reserved.

Table 8-4: OP Encodings

OP Instruction OP Instruction OP Instruction OP Instruction

0x00 call 0x10 cmplti 0x20 cmpeqi 0x30 cmpltui

8-2 J-Type
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

OP Instruction OP Instruction OP Instruction OP Instruction

0x01 jmpi 0x11 0x21 0x31

0x02 0x12 0x22 0x32 custom

0x03 ldbu 0x13 initda 0x23 ldbuio 0x33 initd

0x04 addi 0x14 ori 0x24 muli 0x34 orhi

0x05 stb 0x15 stw 0x25 stbio 0x35 stwio

0x06 br 0x16 blt 0x26 beq 0x36 bltu

0x07 ldb 0x17 ldw 0x27 ldbio 0x37 ldwio

0x08 cmpgei 0x18 cmpnei 0x28 cmpgeui 0x38 rdprs

0x09 0x19 0x29 0x39

0x0A 0x1A 0x2A 0x3A R-type
0x0B ldhu 0x1B flushda 0x2B ldhuio 0x3B flushd

0x0C andi 0x1C xori 0x2C andhi 0x3C xorhi

0x0D sth 0x1D 0x2D sthio 0x3D

0x0E bge 0x1E bne 0x2E bgeu 0x3E

0x0F ldh 0x1F 0x2F ldhio 0x3F

Table 8-5: OPX Encodings for R-Type Instructions

OPX Instruction OPX Instruction OPX Instruction OPX Instruction

0x00 0x10 cmplt 0x20 cmpeq 0x30 cmpltu

0x01 eret 0x11 0x21 0x31 add

0x02 roli 0x12 slli 0x22 0x32

0x03 rol 0x13 sll 0x23 0x33

0x04 flushp 0x14 wrprs 0x24 divu 0x34 break

0x05 ret 0x15 0x25 div 0x35

0x06 nor 0x16 or 0x26 rdctl 0x36 sync

0x07 mulxuu 0x17 mulxsu 0x27 mul 0x37

0x08 cmpge 0x18 cmpne 0x28 cmpgeu 0x38

0x09 bret 0x19 0x29 initi 0x39 sub

0x0A 0x1A srli 0x2A 0x3A srai

0x0B ror 0x1B srl 0x2B 0x3B sra

0x0C flushi 0x1C nextpc 0x2C 0x3C

0x0D jmp 0x1D callr 0x2D trap 0x3D

0x0E and 0x1E xor 0x2E wrctl 0x3E

0x0F 0x1F mulxss 0x2F 0x3F

NII5V1 NII51017
2016.06.17 Instruction Opcodes 8-3

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Pseudo-Instructions
Pseudo-instructions are used in assembly source code like regular assembly instructions. Each pseudo-
instruction is implemented at the machine level using an equivalent instruction. The movia pseudo-
instruction is the only exception, being implemented with two instructions. Most pseudo-instructions do
not appear in disassembly views of machine code.

Table 8-6: Assembler Pseudo-Instructions

Pseudo-Instruction Equivalent Instruction

bgt rA, rB, label blt rB, rA, label

bgtu rA, rB, label bltu rB, rA, label

ble rA, rB, label bge rB, rA, label

bleu rA, rB, label bgeu rB, rA, label

cmpgt rC, rA, rB cmplt rC, rB, rA

cmpgti rB, rA, IMMED cmpgei rB, rA, (IMMED+1)

cmpgtu rC, rA, rB cmpltu rC, rB, rA

cmpgtui rB, rA, IMMED cmpgeui rB, rA, (IMMED+1)

cmple rC, rA, rB cmpge rC, rB, rA

cmplei rB, rA, IMMED cmplti rB, rA, (IMMED+1)

cmpleu rC, rA, rB cmpgeu rC, rB, rA

cmpleui rB, rA, IMMED cmpltui rB, rA, (IMMED+1)

mov rC, rA add rC, rA, r0

movhi rB, IMMED orhi rB, r0, IMMED

movi rB, IMMED addi, rB, r0, IMMED

movia rB, label orhi rB, r0, %hiadj(label)

addi, rB, r0, %lo(label)

movui rB, IMMED ori rB, r0, IMMED

nop add r0, r0, r0

subi rB, rA, IMMED addi rB, rA, (-IMMED)

Refer to the Application Binary Interface chapter of the Nios II Processor Reference Handbook for more
information about global pointers.

Related Information

• Application Binary Interface on page 7-1
• Application Binary Interface

8-4 Assembler Pseudo-Instructions
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Macros
The Nios II assembler provides macros to extract halfwords from labels and from 32-bit immediate values.
These macros return 16-bit signed values or 16-bit unsigned values depending on where they are used.
When used with an instruction that requires a 16-bit signed immediate value, these macros return a value
ranging from –32768 to 32767. When used with an instruction that requires a 16-bit unsigned immediate
value, these macros return a value ranging from 0 to 65535.

Table 8-7: Assembler Macros

Macro Description Operation

%lo(immed32) Extract bits [15..0] of immed32 immed32 & 0xFFFF
%hi(immed32) Extract bits [31..16] of immed32 (immed32 >> 16) & 0xFFFF
%hiadj(immed32) Extract bits [31..16] and adds bit 15 of

immed32
((immed32 >> 16) & 0xFFFF) +

((immed32 >> 15) & 0x1)

%gprel(immed32) Replace the immed32 address with an
offset from the global pointer

immed32 –_gp

Refer to the Application Binary Interface chapter of the Nios II Processor Reference Handbook for more
information about global pointers.

Related Information

• Application Binary Interface on page 7-1
• Application Binary Interface

Instruction Set Reference
The following pages list all Nios II instruction mnemonics in alphabetical order.

Table 8-8: Notation Conventions

Notation Meaning

X ← Y X is written with Y
PC ← X The program counter (PC) is written with address X; the instruction at X is the

next instruction to execute
PC The address of the assembly instruction in question
rA, rB, rC One of the 32-bit general-purpose registers
prs.rA General-purpose register rA in the previous register set
IMMn An n-bit immediate value, embedded in the instruction word
IMMED An immediate value
Xn The nth bit of X, where n = 0 is the LSB
Xn..m Consecutive bits n through m of X

NII5V1 NII51017
2016.06.17 Assembler Macros 8-5

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Notation Meaning

0xNNMM Hexadecimal notation
X : Y Bitwise concatenation

For example, (0x12 : 0x34) = 0x1234
σ(X) The value of X after being sign-extended to a full register-sized signed integer
X >> n The value X after being right-shifted n bit positions
X << n The value X after being left-shifted n bit positions
X & Y Bitwise logical AND
X | Y Bitwise logical OR
X ^ Y Bitwise logical XOR
~X Bitwise logical NOT (one’s complement)
Mem8[X] The byte located in data memory at byte address X
Mem16[X] The halfword located in data memory at byte address X
Mem32[X] The word located in data memory at byte address X
label An address label specified in the assembly file
(signed) rX The value of rX treated as a signed number
(unsigned) rX The value of rX treated as an unsigned number

Note: All register operations apply to the current register set, except as noted.

The following exceptions are not listed for each instruction because they can occur on any instruction
fetch:

• Supervisor-only instruction address
• Fast TLB miss (instruction)
• Double TLB miss (instruction)
• TLB permission violation (execute)
• MPU region violation (instruction)

For information about these and all Nios II exceptions, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.

Related Information

• Programming Model on page 3-1
• Programming Model

add

Instruction add
Operation rC ← rA + rB

Assembler Syntax add rC, rA, rB

8-6 add
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example add r6, r7, r8

Description Calculates the sum of rA and rB. Stores the result in rC. Used
for both signed and unsigned addition.

Usage Carry Detection (unsigned operands):

Following an add operation, a carry out of the MSB can be
detected by checking whether the unsigned sum is less than one
of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the
carry condition. The following code shows both cases:

add rC, rA, rB

cmpltu rD, rC, rA

add rC, rA, rB

bltu rC, rA, label

The original add operation

rD is written with the carry bit

The original add operation

Branch if carry generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the
sum is negative, or when two negatives are added and the sum
is positive. The overflow condition can control a conditional
branch, as shown in the following code:

add rC, rA, rB

xor rD, rC, rA

xor rE, rC, rB

and rD, rD, rE

blt rD, r0,label

The original add operation

Compare signs of sum and rA

Compare signs of sum and rB

Combine comparisons

Branch if overflow occurred

Exceptions None

Instruction Type R

NII5V1 NII51017
2016.06.17 add 8-7

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x31 0 0x3A

addi

Instruction addi
Operation rB ← rA + σ(IMM16)

Assembler Syntax addi rB, rA, IMM16

Example addi r6, r7, -100

Description Sign-extends the 16-bit immediate value and adds it to the
value of rA. Stores the sum in rB.

8-8 addi
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Carry Detection (unsigned operands):

Following an addi operation, a carry out of the MSB can be
detected by checking whether the unsigned sum is less than one
of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the
carry condition. The following code shows both cases:

addi rB, rA, IMM16

cmpltu rD, rB, rA

addi rB, rA, IMM16

bltu rB, rA, label

The original add operation

rD is written with the carry bit

The original add operation

Branch if carry generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the
sum is negative, or when two negatives are added and the sum
is positive. The overflow condition can control a conditional
branch, as shown in the following code:

addi rB, rA, IMM16

xor rC, rB, rA

xorhi rD, rB, IMM16

and rC, rC, rD

blt rC, r0,label

The original add operation

Compare signs of sum and rA

Compare signs of sum and IMM16

Combine comparisons

Branch if overflow occurred

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

NII5V1 NII51017
2016.06.17 addi 8-9

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x04

and

Instruction bitwise logical and
Operation rC ← rA & rB

Assembler Syntax and rC, rA, rB

Example and r6, r7, r8

Description Calculates the bitwise logical AND of rA and rB and stores the
result in rC.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x0e

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0e 0 0x3A

andhi

Instruction bitwise logical and immediate into high halfword
Operation rB ← rA & (IMM16 : 0x0000)

Assembler Syntax andhi rB, rA, IMM16

Example andhi r6, r7, 100

8-10 and
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Calculates the bitwise logical AND of rA and (IMM16 : 0x0000)
and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2c

andi

Instruction bitwise logical and immediate
Operation rB ← rA & (0x0000 : IMM16)

Assembler Syntax andi rB, rA, IMM16

Example andi r6, r7, 100

Description Calculates the bitwise logical AND of rA and (0x0000 : IMM16)
and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0c

NII5V1 NII51017
2016.06.17 andi 8-11

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

beq

Instruction branch if equal
Operation if (rA == rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax beq rA, rB, label

Example beq r6, r7, label

Description If rA == rB, then beq transfers program control to the instruc‐
tion at label. In the instruction encoding, the offset given by
IMM16 is treated as a signed number of bytes relative to the
instruction immediately following beq. The two least-significant
bits of IMM16 are always zero, because instruction addresses
must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x26

bge

Instruction branch if greater than or equal signed
Operation if ((signed) rA >= (signed) rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax bge rA, rB, label

Example bge r6, r7, top_of_loop

8-12 beq
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If (signed) rA >= (signed) rB, then bge transfers program
control to the instruction at label. In the instruction encoding,
the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bge. The
two least-significant bits of IMM16 are always zero, because
instruction addresses must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0e

bgeu

Instruction branch if greater than or equal unsigned
Operation if ((unsigned) rA >= (unsigned) rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax bgeu rA, rB, label

Example bgeu r6, r7, top_of_loop

Description If (unsigned) rA >= (unsigned) rB, then bgeu transfers program
control to the instruction at label. In the instruction encoding,
the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bgeu.
The two least-significant bits of IMM16 are always zero, because
instruction addresses must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

NII5V1 NII51017
2016.06.17 bgeu 8-13

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2e

bgt

Instruction branch if greater than signed
Operation if ((signed) rA > (signed) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax bgt rA, rB, label

Example bgt r6, r7, top_of_loop

Description If (signed) rA > (signed) rB, then bgt transfers program control
to the instruction at label.

Pseudo-instruction bgt is implemented with the blt instruction by swapping the
register operands.

bgtu

Instruction branch if greater than unsigned
Operation if ((unsigned) rA > (unsigned) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax bgtu rA, rB, label

Example bgtu r6, r7, top_of_loop

Description If (unsigned) rA > (unsigned) rB, then bgtu transfers program
control to the instruction at label.

8-14 bgt
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pseudo-instruction bgtu is implemented with the bltu instruction by swapping the
register operands.

ble

Instruction branch if less than or equal signed
Operation if ((signed) rA <= (signed) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax ble rA, rB, label

Example ble r6, r7, top_of_loop

Description If (signed) rA <= (signed) rB, then ble transfers program
control to the instruction at label.

Pseudo-instruction ble is implemented with the bge instruction by swapping the
register operands.

bleu

Instruction branch if less than or equal to unsigned
Operation if ((unsigned) rA <= (unsigned) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax bleu rA, rB, label

Example bleu r6, r7, top_of_loop

Description If (unsigned) rA <= (unsigned) rB, then bleu transfers program
counter to the instruction at label.

Pseudo-instruction bleu is implemented with the bgeu instruction by swapping the
register operands.

blt

Instruction branch if less than signed
Operation if ((signed) rA < (signed) rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

NII5V1 NII51017
2016.06.17 ble 8-15

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Syntax blt rA, rB, label

Example blt r6, r7, top_of_loop

Description If (signed) rA < (signed) rB, then blt transfers program control
to the instruction at label. In the instruction encoding, the
offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following blt. The two
least-significant bits of IMM16 are always zero, because instruc‐
tion addresses must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x16

bltu

Instruction branch if less than unsigned
Operation if ((unsigned) rA < (unsigned) rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax bltu rA, rB, label

Example bltu r6, r7, top_of_loop

Description If (unsigned) rA < (unsigned) rB, then bltu transfers program
control to the instruction at label. In the instruction encoding,
the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bltu.
The two least-significant bits of IMM16 are always zero, because
instruction addresses must be word-aligned.

Exceptions Misaligned destination address

8-16 bltu
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x36

bne

Instruction branch if not equal
Operation if (rA != rB)

then PC ← PC + 4 + σ(IMM16)

else PC ← PC + 4

Assembler Syntax bne rA, rB, label

Example bne r6, r7, top_of_loop

Description If rA != rB, then bne transfers program control to the instruc‐
tion at label. In the instruction encoding, the offset given by
IMM16 is treated as a signed number of bytes relative to the
instruction immediately following bne. The two least-significant
bits of IMM16 are always zero, because instruction addresses
must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NII5V1 NII51017
2016.06.17 bne 8-17

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

IMM16 0x1e

br

Instruction unconditional branch
Operation PC ← PC + 4 + σ(IMM16)

Assembler Syntax br label

Example br top_of_loop

Description Transfers program control to the instruction at label. In the
instruction encoding, the offset given by IMM16 is treated as a
signed number of bytes relative to the instruction immediately
following br. The two least-significant bits of IMM16 are always
zero, because instruction addresses must be word-aligned.

Exceptions Misaligned destination address

Instruction Type I

Instruction Fields IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x06

break

Instruction debugging breakpoint
Operation bstatus ← status

PIE ← 0

U ← 0

ba ← PC + 4

PC ← break handler address

Assembler Syntax break

break imm5

8-18 br
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example break

Description Breaks program execution and transfers control to the debugger
break-processing routine. Saves the address of the next instruc‐
tion in register ba and saves the contents of the status register
in bstatus. Disables interrupts, then transfers execution to the
break handler.

The 5-bit immediate field imm5 is ignored by the processor, but
it can be used by the debugger.

break with no argument is the same as break 0.

Usage break is used by debuggers exclusively. Only debuggers should
place break in a user program, operating system, or exception
handler. The address of the break handler is specified with the
Nios_II Processor parameter editor in Qsys.

Some debuggers support break and break 0 instructions in
source code. These debuggers treat the break instruction as a
normal breakpoint.

Exceptions Break

Instruction Type R

Instruction Fields IMM5 = Type of breakpoint

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0x1e 0x34

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x34 IMM5 0x3a

bret

Instruction breakpoint return
Operation status ← bstatus

PC ← ba

Assembler Syntax bret

Example bret

Description Copies the value of bstatus to the status register, then
transfers execution to the address in ba.

NII5V1 NII51017
2016.06.17 bret 8-19

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage bret is used by debuggers exclusively and should not appear in
user programs, operating systems, or exception handlers.

Exceptions Misaligned destination address

Supervisor-only instruction

Instruction Type R

Instruction Fields None

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x1e 0 0x1e 0x09

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x09 0 0x3a

call

Instruction call subroutine
Operation ra ← PC + 4

PC ← (PC31..28 : IMM26 x 4)

Assembler Syntax call label

Example call write_char

Description Saves the address of the next instruction in register ra, and
transfers execution to the instruction at address (PC31..28 :
IMM26 x 4).

Usage call can transfer execution anywhere within the 256-MB range
determined by PC31..28. The Nios II GNU linker does not
automatically handle cases in which the address is out of this
range.

Exceptions None

Instruction Type J

Instruction Fields IMM26 = 26-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IMM26

8-20 call
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0

callr

Instruction call subroutine in register
Operation ra ← PC + 4

PC ← rA

Assembler Syntax callr rA

Example callr r6

Description Saves the address of the next instruction in the return address
register, and transfers execution to the address contained in
register rA.

Usage callr is used to dereference C-language function pointers.

Exceptions Misaligned destination address

Instruction Type R

Instruction Fields A = Register index of operand rA

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0x1f 0x1d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1d 0 0x3a

cmpeq

Instruction compare equal
Operation if (rA == rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpeq rC, rA, rB

Example cmpeq r6, r7, r8

NII5V1 NII51017
2016.06.17 callr 8-21

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If rA == rB, then stores 1 to rC; otherwise, stores 0 to rC.

Usage cmpeq performs the == operation of the C programming
language. Also, cmpeq can be used to implement the C logical
negation operator “!”.

cmpeq rC, rA, r0

Implements rC = !rA

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x20 0 0x3a

cmpeqi

Instruction compare equal immediate
Operation if (rA σ(IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpeqi rB, rA, IMM16

Example cmpeqi r6, r7, 100

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA == σ(IMM16), cmpeqi
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpeqi performs the == operation of the C programming
language.

Exceptions None

Instruction Type I

8-22 cmpeqi
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x20

cmpge

Instruction compare greater than or equal signed
Operation if ((signed) rA >= (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpge rC, rA, rB

Example cmpge r6, r7, r8

Description If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpge performs the signed >= operation of the C programming
language.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x08 0 0x3a

NII5V1 NII51017
2016.06.17 cmpge 8-23

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

cmpgei

Instruction compare greater than or equal signed immediate
Operation if ((signed) rA >= (signed) σ(IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpgei rB, rA, IMM16

Example cmpgei r6, r7, 100

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA >= σ(IMM16), then cmpgei
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpgei performs the signed >= operation of the C program‐
ming language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x08

cmpgeu

Instruction compare greater than or equal unsigned
Operation if ((unsigned) rA >= (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpgeu rC, rA, rB

Example cmpgeu r6, r7, r8

8-24 cmpgei
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpgeu performs the unsigned >= operation of the C program‐
ming language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x28

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x28 0 0x3a

cmpgeui

Instruction compare greater than or equal unsigned immediate
Operation if ((unsigned) rA >= (unsigned) (0x0000 : IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpgeui rB, rA, IMM16

Example cmpgeui r6, r7, 100

Description Zero-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA >= (0x0000 : IMM16), then
cmpgeui stores 1 to rB; otherwise stores 0 to rB.

Usage cmpgeui performs the unsigned >= operation of the C
programming language.

Exceptions None

Instruction Type I

NII5V1 NII51017
2016.06.17 cmpgeui 8-25

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x28

cmpgt

Instruction compare greater than signed
Operation if ((signed) rA > (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpgt rC, rA, rB

Example cmpgt r6, r7, r8

Description If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpgt performs the signed > operation of the C programming
language.

Pseudo-instruction cmpgt is implemented with the cmplt instruction by swapping
its rA and rB operands.

cmpgti

Instruction compare greater than signed immediate
Operation if ((signed) rA > (signed) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax cmpgti rB, rA, IMMED

Example cmpgti r6, r7, 100

8-26 cmpgt
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Sign-extends the immediate value IMMED to 32 bits and
compares it to the value of rA. If rA > σ(IMMED), then cmpgti
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpgti performs the signed > operation of the C programming
language. The maximum allowed value of IMMED is 32766.
The minimum allowed value is –32769.

Pseudo-instruction cmpgti is implemented using a cmpgei instruction with an
IMM16 immediate value of IMMED + 1.

cmpgtu

Instruction compare greater than unsigned
Operation if ((unsigned) rA > (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpgtu rC, rA, rB

Example cmpgtu r6, r7, r8

Description If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpgtu performs the unsigned > operation of the C program‐
ming language.

Pseudo-instruction cmpgtu is implemented with the cmpltu instruction by
swapping its rA and rB operands.

cmpgtui

Instruction compare greater than unsigned immediate
Operation if ((unsigned) rA > (unsigned) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax cmpgtui rB, rA, IMMED

Example cmpgtui r6, r7, 100

Description Zero-extends the immediate value IMMED to 32 bits and
compares it to the value of rA. If rA > IMMED, then cmpgtui
stores 1 to rB; otherwise stores 0 to rB.

NII5V1 NII51017
2016.06.17 cmpgtu 8-27

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage cmpgtui performs the unsigned > operation of the C program‐
ming language. The maximum allowed value of IMMED is
65534. The minimum allowed value is 0.

Pseudo-instruction cmpgtui is implemented using a cmpgeui instruction with an
IMM16 immediate value of IMMED + 1.

cmple

Instruction compare less than or equal signed
Operation if ((signed) rA <= (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmple rC, rA, rB

Example cmple r6, r7, r8

Description If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmple performs the signed <= operation of the C programming
language.

Pseudo-instruction cmple is implemented with the cmpge instruction by swapping
its rA and rB operands.

cmplei

Instruction compare less than or equal signed immediate
Operation if ((signed) rA < (signed) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax cmplei rB, rA, IMMED

Example cmplei r6, r7, 100

Description Sign-extends the immediate value IMMED to 32 bits and
compares it to the value of rA. If rA <= σ(IMMED), then
cmplei stores 1 to rB; otherwise stores 0 to rB.

Usage cmplei performs the signed <= operation of the C program‐
ming language. The maximum allowed value of IMMED is
32766. The minimum allowed value is –32769.

8-28 cmple
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pseudo-instruction cmplei is implemented using a cmplti instruction with an
IMM16 immediate value of IMMED + 1.

cmpleu

Instruction compare less than or equal unsigned
Operation if ((unsigned) rA < (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpleu rC, rA, rB

Example cmpleu r6, r7, r8

Description If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpleu performs the unsigned <= operation of the C program‐
ming language.

Pseudo-instruction cmpleu is implemented with the cmpgeu instruction by
swapping its rA and rB operands.

cmpleui

Instruction compare less than or equal unsigned immediate
Operation if ((unsigned) rA <= (unsigned) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax cmpleui rB, rA, IMMED

Example cmpleui r6, r7, 100

Description Zero-extends the immediate value IMMED to 32 bits and
compares it to the value of rA. If rA <= IMMED, then cmpleui
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpleui performs the unsigned <= operation of the C
programming language. The maximum allowed value of
IMMED is 65534. The minimum allowed value is 0.

Pseudo-instruction cmpleui is implemented using a cmpltui instruction with an
IMM16 immediate value of IMMED + 1.

NII5V1 NII51017
2016.06.17 cmpleu 8-29

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

cmplt

Instruction compare less than signed
Operation if ((signed) rA < (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmplt rC, rA, rB

Example cmplt r6, r7, r8

Description If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmplt performs the signed < operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x10 0 0x3a

cmplti

Instruction compare less than signed immediate
Operation if ((signed) rA < (signed) σ(IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmplti rB, rA, IMM16

Example cmplti r6, r7, 100

8-30 cmplt
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA < σ(IMM16), then cmplti
stores 1 to rB; otherwise stores 0 to rB.

Usage cmplti performs the signed < operation of the C programming
language.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x10

cmpltu

Instruction compare less than unsigned
Operation if ((unsigned) rA < (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpltu rC, rA, rB

Example cmpltu r6, r7, r8

Description If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpltu performs the unsigned < operation of the C program‐
ming language.

Exceptions None

Instruction Type R

NII5V1 NII51017
2016.06.17 cmpltu 8-31

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x30 0 0x3a

cmpltui

Instruction compare less than unsigned immediate
Operation if ((unsigned) rA < (unsigned) (0x0000 : IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpltui rB, rA, IMM16

Example cmpltui r6, r7, 100

Description Zero-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA < (0x0000 : IMM16), then
cmpltui stores 1 to rB; otherwise stores 0 to rB.

Usage cmpltui performs the unsigned < operation of the C program‐
ming language.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x30

8-32 cmpltui
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

cmpne

Instruction compare not equal
Operation if (rA != rB)

then rC ← 1

else rC ← 0

Assembler Syntax cmpne rC, rA, rB

Example cmpne r6, r7, r8

Description If rA != rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage cmpne performs the != operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x18 0 0x3a

cmpnei

Instruction compare not equal immediate
Operation if (rA != σ(IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax cmpnei rB, rA, IMM16

Example cmpnei r6, r7, 100

NII5V1 NII51017
2016.06.17 cmpne 8-33

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
compares it to the value of rA. If rA != σ(IMM16), then cmpnei
stores 1 to rB; otherwise stores 0 to rB.

Usage cmpnei performs the != operation of the C programming
language.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x18

custom

Instruction custom instruction
Operation if c == 1

then rC ← fN(rA, rB, A, B, C)

else Ø ← fN(rA, rB, A, B, C)

Assembler Syntax custom N, xC, xA, xB

Where xA means either general purpose register rA, or custom
register cA.

Example custom 0, c6, r7, r8

Description The custom opcode provides access to up to 256 custom
instructions allowed by the Nios II architecture. The function
implemented by a custom instruction is user-defined and is
specified with the Nios_II Processor parameter editor in Qsys.
The 8-bit immediate N field specifies which custom instruction
to use. Custom instructions can use up to two parameters, xA
and xB, and can optionally write the result to a register xC.

8-34 custom
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage To access a custom register inside the custom instruction logic,
clear the bit readra, readrb, or writerc that corresponds to the
register field. In assembler syntax, the notation cN refers to
register N in the custom register file and causes the assembler to
clear the c bit of the opcode. For example,
custom 0, c3, r5, r0 performs custom instruction 0,
operating on general-purpose registers r5 and r0, and stores the
result in custom register 3.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand A

B = Register index of operand B

C = Register index of operand C

readra = 1 if instruction uses rA, 0 otherwise

readrb = 1 if instruction uses rB, 0 otherwise

writerc = 1 if instruction provides result for rC, 0 otherwise

N = 8-bit number that selects instruction

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C readra

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

readrb readrc N 0x32

div

Instruction divide
Operation rC ← rA ÷ rB

Assembler Syntax div rC, rA, rB

Example div r6, r7, r8

NII5V1 NII51017
2016.06.17 div 8-35

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Treating rA and rB as signed integers, this instruction divides
rA by rB and then stores the integer portion of the resulting
quotient to rC. After attempted division by zero, the value of rC
is undefined. There is no divide-by-zero exception. After
dividing –2147483648 by –1, the value of rC is undefined (the
number +2147483648 is not representable in 32 bits). There is
no overflow exception.

Nios II processors that do not implement the div instruction
cause an unimplemented instruction exception.

Usage Remainder of Division:

If the result of the division is defined, then the remainder can be
computed in rD using the following instruction sequence:

div rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

The original div operation

rD = remainder

Exceptions Division error

Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x25 0 0x3a

divu

Instruction divide unsigned
Operation rC ← rA ÷ rB

Assembler Syntax divu rC, rA, rB

Example divu r6, r7, r8

8-36 divu
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Treating rA and rB as unsigned integers, this instruction divides
rA by rB and then stores the integer portion of the resulting
quotient to rC. After attempted division by zero, the value of rC
is undefined. There is no divide-by-zero exception.

Nios II processors that do not implement the divu instruction
cause an unimplemented instruction exception.

Usage Remainder of Division:

If the result of the division is defined, then the remainder can be
computed in rD using the following instruction sequence:

divu rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

The original divu operation

rD = remainder

Exceptions Division error

Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x24 0 0x3a

eret

Instruction exception return
Operation status ← estatus

PC ← ea

Assembler Syntax eret

Example eret

NII5V1 NII51017
2016.06.17 eret 8-37

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Copies the value of estatus into the status register, and
transfers execution to the address in ea.

Usage Use eret to return from traps, external interrupts, and other
exception handling routines. Note that before returning from
hardware interrupt exceptions, the exception handler must
adjust the ea register.

Exceptions Misaligned destination address

Supervisor-only instruction

Instruction Type R

Instruction Fields None

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x1d 0x1e C 0x01

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x01 0 0x3a

flushd

Instruction flush data cache line
Operation Flushes the data cache line associated with address

rA + σ(IMM16).

Assembler Syntax flushd IMM16(rA)

Example flushd -100(r6)

8-38 flushd
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If the Nios II processor implements a direct mapped data cache,
flushd writes the data cache line that is mapped to the
specified address back to memory if the line is dirty, and then
clears the data cache line. Unlike flushda, flushd writes the
dirty data back to memory even when the addressed data is not
currently in the cache. This process comprises the following
steps:

• Compute the effective address specified by the sum of rA
and the signed 16-bit immediate value.

• Identify the data cache line associated with the computed
effective address. Each data cache effective address
comprises a tag field and a line field. When identifying the
data cache line, flushd ignores the tag field and only uses
the line field to select the data cache line to clear.

• Skip comparing the cache line tag with the effective address
to determine if the addressed data is currently cached.
Because flushd ignores the cache line tag, flushd flushes
the cache line regardless of whether the specified data
location is currently cached.

• If the data cache line is dirty, write the line back to memory.
A cache line is dirty when one or more words of the cache
line have been modified by the processor, but are not yet
written to memory.

• Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the
flushd instruction performs no operation.

Usage Use flushd to write dirty lines back to memory even if the
addressed memory location is not in the cache, and then flush
the cache line. By contrast, refer to “flushda flush data cache
address”, “initd initialize data cache line”, and “initda initialize
data cache address” for other cache-clearing options.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NII5V1 NII51017
2016.06.17 flushd 8-39

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

IMM16 0x3b

Related Information

• Cache and Tightly-Coupled Memory
• flushda on page 8-40
• initda on page 8-44
• initd on page 8-43

flushda

Instruction flush data cache address
Operation Flushes the data cache line currently caching address

rA + σ(IMM16)

Assembler Syntax flushda IMM16(rA)

Example flushda -100(r6)

Description If the Nios II processor implements a direct mapped data cache,
flushda writes the data cache line that is mapped to the
specified address back to memory if the line is dirty, and then
clears the data cache line. Unlike flushd, flushda writes the
dirty data back to memory only when the addressed data is
currently in the cache. This process comprises the following
steps:

• Compute the effective address specified by the sum of rA
and the signed 16-bit immediate value.

• Identify the data cache line associated with the computed
effective address. Each data cache effective address
comprises a tag field and a line field. When identifying the
line, flushda uses both the tag field and the line field.

• Compare the cache line tag with the effective address to
determine if the addressed data is currently cached. If the
tag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

• If the data cache line is dirty and the tag fields match, write
the dirty cache line back to memory. A cache line is dirty
when one or more words of the cache line have been
modified by the processor, but are not yet written to
memory.

• Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the
flushda instruction performs no operation.

8-40 flushda
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Use flushda to write dirty lines back to memory only if the
addressed memory location is currently in the cache, and then
flush the cache line. By contrast, refer to “flushd flush data
cache line”, “initd initialize data cache line”, and “initda initialize
data cache address” for other cache-clearing options.

For more information on the Nios II data cache, refer to the
Cache and Tightly Coupled Memory chapter of the Nios II
Software Developer’s Handbook.

Exceptions Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x1b

Related Information

• Cache and Tightly-Coupled Memory
• initda on page 8-44
• initd on page 8-43
• flushd on page 8-38

flushi

Instruction flush instruction cache line
Operation Flushes the instruction cache line associated with address rA.

Assembler Syntax flushi rA

Example flushi r6

NII5V1 NII51017
2016.06.17 flushi 8-41

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Ignoring the tag, flushi identifies the instruction cache line
associated with the byte address in rA, and invalidates that line.

If the Nios II processor core does not have an instruction cache,
the flushi instruction performs no operation.

For more information about the data cache, refer to the Cache
and Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x0c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0c 0 0x3a

Related Information
Cache and Tightly-Coupled Memory

flushp

Instruction flush pipeline
Operation Flushes the processor pipeline of any prefetched instructions.

Assembler Syntax flushp

Example flushp

Description Ensures that any instructions prefetched after the flushp
instruction are removed from the pipeline.

Usage Use flushp before transferring control to newly updated
instruction memory.

Exceptions None

Instruction Type R

Instruction Fields None

8-42 flushp
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x04 0 0x3a

initd

Instruction initialize data cache line
Operation Initializes the data cache line associated with address

rA + σ(IMM16).

Assembler Syntax initd IMM16(rA)

Example initd 0(r6)

Description If the Nios II processor implements a direct mapped data cache,
initd clears the data cache line without checking for (or
writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike initda, initd clears the cache
line regardless of whether the addressed data is currently
cached. This process comprises the following steps:

• Compute the effective address specified by the sum of rA
and the signed 16-bit immediate value.

• Identify the data cache line associated with the computed
effective address. Each data cache effective address
comprises a tag field and a line field. When identifying the
line, initd ignores the tag field and only uses the line field
to select the data cache line to clear.

• Skip comparing the cache line tag with the effective address
to determine if the addressed data is currently cached.
Because initd ignores the cache line tag, initd flushes the
cache line regardless of whether the specified data location is
currently cached.

• Skip checking if the data cache line is dirty. Because initd
skips the dirty cache line check, data that has been modified
by the processor, but not yet written to memory is lost.

• Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the
initd instruction performs no operation.

NII5V1 NII51017
2016.06.17 initd 8-43

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Use initd after processor reset and before accessing data
memory to initialize the processor’s data cache. Use initd with
caution because it does not write back dirty data. By contrast,
refer to “flushd flush data cache line”, “flushda flush data cache
address”, and “initda initialize data cache address” for other
cache-clearing options. Altera recommends using initd only
when the processor comes out of reset.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only instruction

Instruction Type I

Instruction Fields A = Register index of operand rA

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x33

Related Information

• Cache and Tightly-Coupled Memory
• flushda on page 8-40
• initda on page 8-44
• flushd on page 8-38

initda

Instruction initialize data cache address
Operation Initializes the data cache line currently caching address

rA + σ(IMM16)

Assembler Syntax initda IMM16(rA)

Example initda -100(r6)

8-44 initda
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description If the Nios II processor implements a direct mapped data cache,
initda clears the data cache line without checking for (or
writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike initd, initda clears the cache
line only when the addressed data is currently cached. This
process comprises the following steps:

• Compute the effective address specified by the sum of rA
and the signed 16-bit immediate value.

• Identify the data cache line associated with the computed
effective address. Each data cache effective address
comprises a tag field and a line field. When identifying the
line, initda uses both the tag field and the line field.

• Compare the cache line tag with the effective address to
determine if the addressed data is currently cached. If the
tag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

• Skip checking if the data cache line is dirty. Because initd
skips the dirty cache line check, data that has been modified
by the processor, but not yet written to memory is lost.

• Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the
initda instruction performs no operation.

Usage Use initda to skip writing dirty lines back to memory and to
flush the cache line only if the addressed memory location is
currently in the cache. By contrast, refer to “flushd flush data
cache line”, “flushda flush data cache address”, and “initd
initialize data cache line” on page 8–55 for other cache-clearing
options. Use initda with caution because it does not write back
dirty data.

For more information on the Nios II data cache, refer to the
Cache and Tightly Coupled Memory chapter of the Nios II
Software Developer’s Handbook.

Exceptions Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Unimplemented instruction

Instruction Type I

Instruction Fields A = Register index of operand rA

IMM16 = 16-bit signed immediate value

NII5V1 NII51017
2016.06.17 initda 8-45

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x13

Related Information

• Cache and Tightly-Coupled Memory
• flushda on page 8-40
• initd on page 8-43
• flushd on page 8-38

initi

Instruction initialize instruction cache line
Operation Initializes the instruction cache line associated with address rA.

Assembler Syntax initi rA

Example initi r6

Description Ignoring the tag, initi identifies the instruction cache line
associated with the byte address in ra, and initi invalidates
that line.

If the Nios II processor core does not have an instruction cache,
the initi instruction performs no operation.

Usage This instruction is used to initialize the processor’s instruction
cache. Immediately after processor reset, use initi to
invalidate each line of the instruction cache.

For more information on instruction cache, refer to the Cache
and Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x29

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8-46 initi
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

0x29 0 0x3a

Related Information
Cache and Tightly-Coupled Memory

jmp

Instruction computed jump
Operation PC ← rA

Assembler Syntax jmp rA

Example jmp r12

Description Transfers execution to the address contained in register rA.

Usage It is illegal to jump to the address contained in register r31. To
return from subroutines called by call or callr, use ret
instead of jmp.

Exceptions Misaligned destination address

Instruction Type R

Instruction Fields A = Register index of operand rA

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x0d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0d 0 0x3a

jmpi

Instruction jump immediate
Operation PC ← (PC31..28 : IMM26 x 4)

Assembler Syntax jmpi label

Example jmpi write_char

Description Transfers execution to the instruction at address (PC31..28 :
IMM26 x 4).

NII5V1 NII51017
2016.06.17 jmp 8-47

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage jmpi is a low-overhead local jump. jmpi can transfer execution
anywhere within the 256-MB range determined by PC31..28. The
Nios II GNU linker does not automatically handle cases in
which the address is out of this range.

Exceptions None

Instruction Type J

Instruction Fields IMM26 = 26-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IMM26

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0x01

ldb / ldbio

Instruction load byte from memory or I/O peripheral
Operation rB ← σ(Mem8[rA + σ(IMM16)])

Assembler Syntax ldb rB, byte_offset(rA)

ldbio rB, byte_offset(rA)

Example ldb r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the desired memory byte, sign extending the 8-
bit value to 32 bits. In Nios II processor cores with a data cache,
this instruction may retrieve the desired data from the cache
instead of from memory.

Usage Use the ldbio instruction for peripheral I/O. In processors with
a data cache, ldbio bypasses the cache and is guaranteed to
generate an Avalon-MM data transfer. In processors without a
data cache, ldbio acts like ldb.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

8-48 ldb / ldbio
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-9: ldb

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x07

Table 8-10: ldbio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x27

Related Information
Cache and Tightly-Coupled Memory

ldbu / ldbuio

Instruction load unsigned byte from memory or I/O peripheral
Operation rB ← 0x000000 : Mem8[rA + σ(IMM16)]

Assembler Syntax ldbu rB, byte_offset(rA)

ldbuio rB, byte_offset(rA)

Example ldbu r6, 100(r5)

NII5V1 NII51017
2016.06.17 ldbu / ldbuio 8-49

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the desired memory byte, zero extending the 8-
bit value to 32 bits.

Usage In processors with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory. Use
the ldbuio instruction for peripheral I/O. In processors with a
data cache, ldbuio bypasses the cache and is guaranteed to
generate an Avalon-MM data transfer. In processors without a
data cache, ldbuio acts like ldbu.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-11: ldbu

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x03

Table 8-12: ldbuio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8-50 ldbu / ldbuio
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

IMM16 0x23

Related Information
Cache and Tightly-Coupled Memory

ldh / ldhio

Instruction load halfword from memory or I/O peripheral
Operation rB ← σ(Mem16[rA + σ(IMM16)])

Assembler Syntax ldh rB, byte_offset(rA)

ldhio rB, byte_offset(rA)

Example ldh r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the memory halfword located at the effective
byte address, sign extending the 16-bit value to 32 bits. The
effective byte address must be halfword aligned. If the byte
address is not a multiple of 2, the operation is undefined.

Usage In processors with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory. Use
the ldhio instruction for peripheral I/O. In processors with a
data cache, ldhio bypasses the cache and is guaranteed to
generate an Avalon-MM data transfer. In processors without a
data cache, ldhio acts like ldh.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

NII5V1 NII51017
2016.06.17 ldh / ldhio 8-51

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-13: ldh

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0f

Table 8-14: ldhio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2f

Related Information
Cache and Tightly-Coupled Memory

ldhu / ldhuio

Instruction load unsigned halfword from memory or I/O peripheral
Operation rB ← 0x0000 : Mem16[rA + σ(IMM16)]

Assembler Syntax ldhu rB, byte_offset(rA)

ldhuio rB, byte_offset(rA)

Example ldhu r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the memory halfword located at the effective
byte address, zero extending the 16-bit value to 32 bits. The
effective byte address must be halfword aligned. If the byte
address is not a multiple of 2, the operation is undefined.

Usage In processors with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory. Use
the ldhuio instruction for peripheral I/O. In processors with a
data cache, ldhuio bypasses the cache and is guaranteed to
generate an Avalon-MM data transfer. In processors without a
data cache, ldhuio acts like ldhu.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

8-52 ldhu / ldhuio
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-15: ldhu

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0b

Table 8-16: ldhuio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2b

Related Information
Cache and Tightly-Coupled Memory

ldw / ldwio

Instruction load 32-bit word from memory or I/O peripheral
Operation rB ← Mem32[rA + σ(IMM14)]

Assembler Syntax ldw rB, byte_offset(rA)

ldwio rB, byte_offset(rA)

Example ldw r6, 100(r5)

NII5V1 NII51017
2016.06.17 ldw / ldwio 8-53

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Loads
register rB with the memory word located at the effective byte
address. The effective byte address must be word aligned. If the
byte address is not a multiple of 4, the operation is undefined.

Usage In processors with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory. Use
the ldwio instruction for peripheral I/O. In processors with a
data cache, ldwio bypasses the cache and memory. Use the
ldwio instruction for peripheral I/O. In processors with a data
cache, ldwio bypasses the cache and is guaranteed to generate
an Avalon-MM data transfer. In processors without a data
cache, ldwio acts like ldw.

For more information on data cache, refer to the Cache and
Tightly Coupled Memory chapter of the Nios II Software
Developer’s Handbook.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-17: ldw

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x17

Table 8-18: ldwio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

8-54 ldw / ldwio
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x37

Related Information
Cache and Tightly-Coupled Memory

mov

Instruction move register to register
Operation rC ← rA

Assembler Syntax mov rC, rA

Example mov r6, r7

Description Moves the contents of rA to rC.

Pseudo-instruction mov is implemented as add rC, rA, r0.

movhi

Instruction move immediate into high halfword
Operation rB ← (IMMED : 0x0000)

Assembler Syntax movhi rB, IMMED

Example movhi r6, 0x8000

Description Writes the immediate value IMMED into the high halfword of
rB, and clears the lower halfword of rB to 0x0000.

NII5V1 NII51017
2016.06.17 mov 8-55

Instruction Set Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage The maximum allowed value of IMMED is 65535. The
minimum allowed value is 0. To load a 32-bit constant into a
register, first load the upper 16 bits using a movhi pseudo-
instruction. The %hi() macro can be used to extract the upper
16 bits of a constant or a label. Then, load the lower 16 bits with
an ori instruction. The %lo() macro can be used to extract the
lower 16 bits of a constant or label as shown in the following
code:

movhi rB, %hi(value)

ori rB, rB, %lo(value)

An alternative method to load a 32-bit constant into a register
uses the %hiadj() macro and the addi instruction as shown in
the following code:

movhi rB, %hiadj(value)

addi rB, rB, %lo(value)

Pseudo-instruction movhi is implemented as orhi rB, r0, IMMED.

movi

Instruction move signed immediate into word
Operation rB ← σ(IMMED)

Assembler Syntax movi rB, IMMED

Example movi r6, -30

Description Sign-extends the immediate value IMMED to 32 bits and writes
it to rB.

Usage The maximum allowed value of IMMED is 32767. The
minimum allowed value is

–32768. To load a 32-bit constant into a register, refer to the
movhi instruction.

Pseudo-instruction movi is implemented as addi rB, r0, IMMED.

movia

Instruction move immediate address into word
Operation rB ← label

Assembler Syntax movia rB, label

8-56 movi
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example movia r6, function_address

Description Writes the address of label to rB.

Pseudo-instruction movia is implemented as:

orhi rB, r0, %hiadj(label)

addi rB, rB, %lo(label)

movui

Instruction move unsigned immediate into word
Operation rB ← (0x0000 : IMMED)

Assembler Syntax movui rB, IMMED

Example movui r6, 100

Description Zero-extends the immediate value IMMED to 32 bits and
writes it to rB.

Usage The maximum allowed value of IMMED is 65535. The
minimum allowed value is 0. To load a 32-bit constant into a
register, refer to the movhi instruction.

Pseudo-instruction movui is implemented as ori rB, r0, IMMED.

mul

Instruction multiply
Operation rC ← (rA x rB) 31..0

Assembler Syntax mul rC, rA, rB

Example mul r6, r7, r8

Description Multiplies rA times rB and stores the 32 low-order bits of the
product to rC. The result is the same whether the operands are
treated as signed or unsigned integers.

Nios II processors that do not implement the mul instruction
cause an unimplemented instruction exception.

NII5V1 NII51017
2016.06.17 movui 8-57

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Carry Detection (unsigned operands):

Before or after the multiply operation, the carry out of the MSB
of rC can be detected using the following instruction sequence:

mul rC, rA, rB

mulxuu rD, rA, rB

cmpne rD, rD, r0

The mul operation (optional)

rD is nonzero if carry occurred

rD is 1 if carry occurred, 0 if not

The mulxuu instruction writes a nonzero value into rD if the
multiplication of unsigned numbers generates a carry
(unsigned overflow). If a 0/1 result is desired, follow the mulxuu
with the cmpne instruction.

Overflow Detection (signed operands):

After the multiply operation, overflow can be detected using the
following instruction sequence:

mul rC, rA, rB

cmplt rD, rC, r0

mulxss rE, rA, rB

add rD, rD, rE

cmpne rD, rD, r0

The original mul operation

rD is nonzero if overflow

rD is 1 if overflow, 0 if not

The cmplt–mulxss–add instruction sequence writes a nonzero
value into rD if the product in rC cannot be represented in 32
bits (signed overflow). If a 0/1 result is desired, follow the
instruction sequence with the cmpne instruction.

Exceptions Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

8-58 mul
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

A B C 0x27

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x27 0 0x3a

muli

Instruction multiply immediate
Operation rB ← (rA x σ(IMM16)) 31..0

Assembler Syntax muli rB, rA, IMM16

Example muli r6, r7, -100

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits and
multiplies it by the value of rA. Stores the 32 low-order bits of
the product to rB. The result is independent of whether rA is
treated as a signed or unsigned number.

Nios II processors that do not implement the muli instruction
cause an unimplemented instruction exception.

Carry Detection and Overflow Detection:

For a discussion of carry and overflow detection, refer to the
mul instruction.

Exceptions Unimplemented instruction

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x24

mulxss

Instruction multiply extended signed/signed
Operation rC ← ((signed) rA) x ((signed) rB)) 63..32

NII5V1 NII51017
2016.06.17 muli 8-59

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Syntax mulxss rC, rA, rB

Example mulxss r6, r7, r8

Description Treating rA and rB as signed integers, mulxss multiplies rA
times rB, and stores the 32 high-order bits of the product to rC.

Nios II processors that do not implement the mulxss instruc‐
tion cause an unimplemented instruction exception.

Usage Use mulxss and mul to compute the full 64-bit product of two
32-bit signed integers. Furthermore, mulxss can be used as part
of the calculation of a 128-bit product of two 64-bit signed
integers. Given two 64-bit integers, each contained in a pair of
32-bit registers, (S1 : U1) and (S2 : U2), their 128-bit product is
(U1 x U2) + ((S1 x U2) << 32) + ((U1 x S2) << 32) + ((S1 x S2)
<< 64). The mulxss and mul instructions are used to calculate
the 64-bit product S1 x S2.

Exceptions Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x1f

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1f 0 0x3a

mulxsu

Instruction multiply extended signed/unsigned
Operation rC ← ((signed) rA) x ((unsigned) rB)) 63..32

Assembler Syntax mulxsu rC, rA, rB

Example mulxsu r6, r7, r8

8-60 mulxsu
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Treating rA as a signed integer and rB as an unsigned integer,
mulxsu multiplies rA times rB, and stores the 32 high-order bits
of the product to rC.

Nios II processors that do not implement the mulxsu instruc‐
tion cause an unimplemented instruction exception.

Usage mulxsu can be used as part of the calculation of a 128-bit
product of two 64-bit signed integers. Given two 64-bit integers,
each contained in a pair of 32-bit registers, (S1 : U1) and (S2 :
U2), their 128-bit product is: (U1 x U2) + ((S1 x U2) << 32) +
((U1 x S2) << 32) + ((S1 x S2) << 64). The mulxsu and mul
instructions are used to calculate the two 64-bit products S1 x
U2 and U1 x S2.

Exceptions Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x17

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x17 0 0x3a

mulxuu

Instruction multiply extended unsigned/unsigned
Operation rC ← ((unsigned) rA) x ((unsigned) rB)) 63..32

Assembler Syntax mulxuu rC, rA, rB

Example mulxuu r6, r7, r8

Description Treating rA and rB as unsigned integers, mulxuu multiplies rA
times rB and stores the 32 high-order bits of the product to rC.

Nios II processors that do not implement the mulxuu instruc‐
tion cause an unimplemented instruction exception.

NII5V1 NII51017
2016.06.17 mulxuu 8-61

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Use mulxuu and mul to compute the 64-bit product of two 32-
bit unsigned integers. Furthermore, mulxuu can be used as part
of the calculation of a 128-bit product of two 64-bit signed
integers. Given two 64-bit signed integers, each contained in a
pair of 32-bit registers, (S1 : U1) and (S2 : U2), their 128-bit
product is (U1 x U2) + ((S1 x U2) << 32) + ((U1 x S2) << 32) +
((S1 x S2) << 64). The mulxuu and mul instructions are used to
calculate the 64-bit product U1 x U2.

mulxuu also can be used as part of the calculation of a 128-bit
product of two 64-bit unsigned integers. Given two 64-bit
unsigned integers, each contained in a pair of 32-bit registers,
(T1 : U1) and (T2 : U2), their 128-bit product is (U1 x U2) +
((U1 x T2) << 32) + ((T1 x U2) << 32) + ((T1 x T2) << 64). The
mulxuu and mul instructions are used to calculate the four 64-
bit products U1 x U2, U1 x T2, T1 x U2, and T1 x T2.

Exceptions Unimplemented instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x07

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x07 0 0x3a

nextpc

Instruction get address of following instruction
Operation rC ← PC + 4

Assembler Syntax nextpc rC

Example nextpc r6

Description Stores the address of the next instruction to register rC.

Usage A relocatable code fragment can use nextpc to calculate the
address of its data segment. nextpc is the only way to access the
PC directly.

8-62 nextpc
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exceptions None

Instruction Type R

Instruction Fields C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 C 0x1c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1c 0 0x3a

nop

Instruction no operation
Operation None

Assembler Syntax nop

Example nop

Description nop does nothing.

Pseudo-instruction nop is implemented as add r0, r0, r0.

nor

Instruction bitwise logical nor
Operation rC ← ~(rA | rB)

Assembler Syntax nor rC, rA, rB

Example nor r6, r7, r8

Description Calculates the bitwise logical NOR of rA and rB and stores the
result in rC.

Exceptions None

Instruction Type R

NII5V1 NII51017
2016.06.17 nop 8-63

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x06 0 0x3a

or

Instruction bitwise logical or
Operation rC ← rA | rB

Assembler Syntax or rC, rA, rB

Example or r6, r7, r8

Description Calculates the bitwise logical OR of rA and rB and stores the
result in rC.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x16 0 0x3a

orhi

Instruction bitwise logical or immediate into high halfword
Operation rB ← rA | (IMM16 : 0x0000)

Assembler Syntax orhi rB, rA, IMM16

Example orhi r6, r7, 100

8-64 or
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Calculates the bitwise logical OR of rA and (IMM16 : 0x0000)
and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x34

ori

Instruction bitwise logical or immediate
Operation rB ← rA | (0x0000 : IMM16)

Assembler Syntax ori rB, rA, IMM16

Example ori r6, r7, 100

Description Calculates the bitwise logical OR of rA and (0x0000 : IMM16)
and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x14

NII5V1 NII51017
2016.06.17 ori 8-65

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

rdctl

Instruction read from control register
Operation rC ← ctlN

Assembler Syntax rdctl rC, ctlN

Example rdctl r3, ctl31

Description Reads the value contained in control register ctlN and writes it
to register rC.

Exceptions Supervisor-only instruction

Instruction Type R

Instruction Fields C = Register index of operand rC

N = Control register index of operand ctlN

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 C 0x26

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x26 N 0x3a

rdprs

Instruction read from previous register set
Operation rB ← prs.rA + σ(IMM16)

Assembler Syntax rdprs rB, rA, IMM16

Example rdprs r6, r7, 0

Description Sign-extends the 16-bit immediate value IMM16 to 32 bits, and
adds it to the value of rA from the previous register set. Places
the result in rB in the current register set.

8-66 rdctl
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage The previous register set is specified by status.PRS. By default,
status.PRS indicates the register set in use before an exception,
such as an external interrupt, caused a register set change.

To read from an arbitrary register set, software can insert the
desired register set number in status.PRS prior to executing
rdprs.

If shadow register sets are not implemented on the Nios II core,
rdprs is an illegal instruction.

Exceptions Supervisor-only instruction

Illegal instruction

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x38

ret

Instruction return from subroutine
Operation PC ← ra

Assembler Syntax ret

Example ret

Description Transfers execution to the address in ra.

Usage Any subroutine called by call or callr must use ret to return.

Exceptions Misaligned destination address

Instruction Type R

Instruction Fields None

NII5V1 NII51017
2016.06.17 ret 8-67

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x1f 0 0 0x05

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x05 0 0x3a

rol

Instruction rotate left
Operation rC ← rA rotated left rB4..0 bit positions

Assembler Syntax rol rC, rA, rB

Example rol r6, r7, r8

Description Rotates rA left by the number of bits specified in rB4..0 and
stores the result in rC. The bits that shift out of the register
rotate into the least-significant bit positions. Bits 31–5 of rB are
ignored.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x03

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x03 0 0x3a

roli

Instruction rotate left immediate
Operation rC ← rA rotated left IMM5 bit positions

Assembler Syntax roli rC, rA, IMM5

Example roli r6, r7, 3

8-68 rol
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Rotates rA left by the number of bits specified in IMM5 and
stores the result in rC. The bits that shift out of the register
rotate into the least-significant bit positions.

Usage In addition to the rotate-left operation, roli can be used to
implement a rotate-right operation. Rotating left by (32 –
IMM5) bits is the equivalent of rotating right by IMM5 bits.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 C 0x02

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x02 IMM5 0x3a

ror

Instruction rotate right
Operation rC ← rA rotated right rB4..0 bit positions

Assembler Syntax ror rC, rA, rB

Example ror r6, r7, r8

Description Rotates rA right by the number of bits specified in rB4..0 and
stores the result in rC. The bits that shift out of the register
rotate into the most-significant bit positions. Bits 31– 5 of rB
are ignored.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

NII5V1 NII51017
2016.06.17 ror 8-69

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x0b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0b 0 0x3a

sll

Instruction shift left logical
Operation rC ← rA << (rB4..0)

Assembler Syntax sll rC, rA, rB

Example sll r6, r7, r8

Description Shifts rA left by the number of bits specified in rB4..0 (inserting
zeroes), and then stores the result in rC. sll performs the <<
operation of the C programming language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x13

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x13 0 0x3a

slli

Instruction shift left logical immediate
Operation rC ← rA << IMM5

Assembler Syntax slli rC, rA, IMM5

Example slli r6, r7, 3

8-70 sll
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Shifts rA left by the number of bits specified in IMM5 (inserting
zeroes), and then stores the result in rC.

Usage slli performs the << operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 C 0x12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x12 IMM5 0x3a

sra

Instruction shift right arithmetic
Operation rC ← (signed) rA >> ((unsigned) rB4..0)

Assembler Syntax sra rC, rA, rB

Example sra r6, r7, r8

Description Shifts rA right by the number of bits specified in rB4..0
(duplicating the sign bit), and then stores the result in rC. Bits
31–5 are ignored.

Usage sra performs the signed >> operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

NII5V1 NII51017
2016.06.17 sra 8-71

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x3b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3b 0 0x3a

srai

Instruction shift right arithmetic immediate
Operation rC ← (signed) rA >> ((unsigned) IMM5)

Assembler Syntax srai rC, rA, IMM5

Example srai r6, r7, 3

Description Shifts rA right by the number of bits specified in IMM5
(duplicating the sign bit), and then stores the result in rC.

Usage srai performs the signed >> operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 C 0x3a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3a IMM5 0x3a

srl

Instruction shift right logical
Operation rC ← (unsigned) rA >> ((unsigned) rB4..0)

Assembler Syntax srl rC, rA, rB

8-72 srai
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example srl r6, r7, r8

Description Shifts rA right by the number of bits specified in rB4..0
(inserting zeroes), and then stores the result in rC. Bits 31–5 are
ignored.

Usage srl performs the unsigned >> operation of the C programming
language.

Exceptions None

Instruction Type R

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x1b

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1b 0 0x3a

srli

Instruction shift right logical immediate
Operation rC ← (unsigned) rA >> ((unsigned) IMM5)

Assembler Syntax srli rC, rA, IMM5

Example srli r6, r7, 3

Description Shifts rA right by the number of bits specified in IMM5
(inserting zeroes), and then stores the result in rC.

Usage srli performs the unsigned >> operation of the C program‐
ming language.

Exceptions None

Instruction Type R

NII5V1 NII51017
2016.06.17 srli 8-73

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x1a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1a IMM5 0x3a

stb / stbio l

Instruction store byte to memory or I/O periphera
Operation Mem8[rA + σ(IMM16)] ← rB7..0

Assembler Syntax stb rB, byte_offset(rA)

stbio rB, byte_offset(rA)

Example stb r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Stores the
low byte of rB to the memory byte specified by the effective
address.

Usage In processors with a data cache, this instruction may not
generate an Avalon-MM bus cycle to noncache data memory
immediately. Use the stbio instruction for peripheral I/O. In
processors with a data cache, stbio bypasses the cache and is
guaranteed to generate an Avalon-MM data transfer. In
processors without a data cache, stbio acts like stb.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

8-74 stb / stbio l
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-19: stb

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x05

Table 8-20: stbio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x25

sth / sthio

Instruction store halfword to memory or I/O peripheral
Operation Mem16[rA + σ(IMM16)] ← rB15..0

Assembler Syntax sth rB, byte_offset(rA)

sthio rB, byte_offset(rA)

Example sth r6, 100(r5)

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Stores the
low halfword of rB to the memory location specified by the
effective byte address. The effective byte address must be
halfword aligned. If the byte address is not a multiple of 2, the
operation is undefined.

Usage In processors with a data cache, this instruction may not
generate an Avalon-MM data transfer immediately. Use the
sthio instruction for peripheral I/O. In processors with a data
cache, sthio bypasses the cache and is guaranteed to generate
an Avalon-MM data transfer. In processors without a data
cache, sthio acts like sth.

NII5V1 NII51017
2016.06.17 sth / sthio 8-75

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-21: sth

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x0d

Table 8-22: sthio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x2d

stw / stwio

Instruction store word to memory or I/O peripheral
Operation Mem32[rA + σ(IMM16)] ← rB

Assembler Syntax stw rB, byte_offset(rA)

stwio rB, byte_offset(rA)

Example stw r6, 100(r5)

8-76 stw / stwio
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Computes the effective byte address specified by the sum of rA
and the instruction's signed 16-bit immediate value. Stores rB
to the memory location specified by the effective byte address.
The effective byte address must be word aligned. If the byte
address is not a multiple of 4, the operation is undefined.

Usage In processors with a data cache, this instruction may not
generate an Avalon-MM data transfer immediately. Use the
stwio instruction for peripheral I/O. In processors with a data
cache, stwio bypasses the cache and is guaranteed to generate
an Avalon-MM bus cycle. In processors without a data cache,
stwio acts like stw.

Exceptions Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

Table 8-23: stw

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x15

Table 8-24: stwio

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x35

NII5V1 NII51017
2016.06.17 stw / stwio 8-77

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

sub

Instruction subtract
Operation rC ← rA – rB

Assembler Syntax sub rC, rA, rB

Example sub r6, r7, r8

Description Subtract rB from rA and store the result in rC.

8-78 sub
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage Carry Detection (unsigned operands):

The carry bit indicates an unsigned overflow. Before or after a
sub operation, a carry out of the MSB can be detected by
checking whether the first operand is less than the second
operand. The carry bit can be written to a register, or a
conditional branch can be taken based on the carry condition.
Both cases are shown in the following code:

sub rC, rA, rB

cmpltu rD, rA, rB

sub rC, rA, rB

bltu rA, rB, label

The original sub operation (optional)

rD is written with the carry bit

The original sub operation (optional)

Branch if carry generated

Overflow Detection (signed operands):

Detect overflow of signed subtraction by comparing the sign of
the difference that is written to rC with the signs of the
operands. If rA and rB have different signs, and the sign of rC is
different than the sign of rA, an overflow occurred. The
overflow condition can control a conditional branch, as shown
in the following code:

sub rC, rA, rB

xor rD, rA, rB

xor rE, rA, rC

and rD, rD, rE

blt rD, r0, label

The original sub operation

Compare signs of rA and rB

Compare signs of rA and rC

Combine comparisons

Branch if overflow occurred

Exceptions None

Instruction Type R

NII5V1 NII51017
2016.06.17 sub 8-79

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x39

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x39 0 0x3a

subi

Instruction subtract immediate
Operation rB ← rA – σ(IMMED)

Assembler Syntax subi rB, rA, IMMED

Example subi r8, r8, 4

Description Sign-extends the immediate value IMMED to 32 bits, subtracts
it from the value of rA and then stores the result in rB.

Usage The maximum allowed value of IMMED is 32768. The
minimum allowed value is

–32767.

Pseudo-instruction subi is implemented as addi rB, rA, -IMMED

sync

Instruction memory synchronization
Operation None

Assembler Syntax sync

Example sync

Description Forces all pending memory accesses to complete before
allowing execution of subsequent instructions. In processor
cores that support in-order memory accesses only, this instruc‐
tion performs no operation.

Exceptions None

8-80 subi
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Type R

Instruction Fields None

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0x36

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x36 0 0x3a

trap

Instruction trap
Operation estatus ← status

PIE ← 0

U ← 0

ea ← PC + 4

PC ← exception handler address

Assembler Syntax trap

trap imm5

Example trap

Description Saves the address of the next instruction in register ea, saves the
contents of the status register in estatus, disables interrupts,
and transfers execution to the exception handler. The address of
the exception handler is specified with the Nios_II Processor
parameter editor in Qsys.

The 5-bit immediate field imm5 is ignored by the processor, but
it can be used by the debugger.

trap with no argument is the same as trap 0.

Usage To return from the exception handler, execute an eret instruc‐
tion.

Exceptions Trap

Instruction Type R

Instruction Fields IMM5 = Type of breakpoint

NII5V1 NII51017
2016.06.17 trap 8-81

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0x1d 0x2d

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2d IMM5 0x3a

wrctl

Instruction write to control register
Operation ctlN ← rA

Assembler Syntax wrctl ctlN, rA

Example wrctl ctl6, r3

Description Writes the value contained in register rA to the control register
ctlN.

Exceptions Supervisor-only instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

N = Control register index of operand ctlN

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 0 0x2e

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2e N 0x3a

wrprs

Instruction write to previous register set
Operation prs.rC ← rA

Assembler Syntax wrprs rC, rA

Example wrprs r6, r7

Description Copies the value of rA in the current register set to rC in the
previous register set. This instruction can set r0 to 0 in a
shadow register set.

8-82 wrctl
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage The previous register set is specified by status.PRS. By default,
status.PRS indicates the register set in use before an exception,
such as an external interrupt, caused a register set change.

To write to an arbitrary register set, software can insert the
desired register set number in status.PRS prior to executing
wrprs.

System software must use wrprs to initialize r0 to 0 in each
shadow register set before using that register set.

If shadow register sets are not implemented on the Nios II core,
wrprs is an illegal instruction.

Exceptions Supervisor-only instruction

Illegal instruction

Instruction Type R

Instruction Fields A = Register index of operand rA

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A 0 C 0x14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x14 0 0x3a

xor

Instruction bitwise logical exclusive or
Operation rC ← rA ^ rB

Assembler Syntax xor rC, rA, rB

Example xor r6, r7, r8

Description Calculates the bitwise logical exclusive-or of rA and rB and
stores the result in rC.

Exceptions None

Instruction Type R

NII5V1 NII51017
2016.06.17 xor 8-83

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B C 0x1e

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1e 0 0x3a

xorhi

Instruction bitwise logical exclusive or immediate into high halfword
Operation rB ← rA ^ (IMM16 : 0x0000)

Assembler Syntax xorhi rB, rA, IMM16

Example xorhi r6, r7, 100

Description Calculates the bitwise logical exclusive XOR of rA and
(IMM16 : 0x0000) and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x3c

xori

Instruction bitwise logical exclusive or immediate
Operation rB ← rA ^ (0x0000 : IMM16)

8-84 xorhi
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assembler Syntax xori rB, rA, IMM16

Example xori r6, r7, 100

Description Calculates the bitwise logical exclusive OR of rA and (0x0000 :
IMM16) and stores the result in rB.

Exceptions None

Instruction Type I

Instruction Fields A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A B IMM16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM16 0x1c

Document Revision History

Table 8-25: Document Revision History

Date Version Changes

April 2015 2015.04.02 Maintenance release.

February 2014 13.1.0 Removed references to SOPC Builder.

May 2011 11.0.0 Maintenance release.

December 2010 10.1.0 Corrected comments delimiter (#) in instruction usage.

July 2010 10.0.0 Corrected typographical error in cmpgei instruction type.

November 2009 9.1.0 Added shadow register sets and external interrupt controller support,
including rdprs and wrprs instructions.

March 2009 9.0.0 Backwards-compatible change to the eret instruction B field
encoding.

November 2008 8.1.0 Maintenance release.

May 2008 8.0.0 • Added MMU.
• Added an Exceptions section to all instructions.

NII5V1 NII51017
2016.06.17 Document Revision History 8-85

Instruction Set Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

October 2007 7.2.0 Added jmpi instruction.

May 2007 7.1.0 • Added table of contents to Introduction section.
• Added Referenced Documents section.

March 2007 7.0.0 Maintenance release.

November 2006 6.1.0 Maintenance release.

May 2006 6.0.0 Maintenance release.

October 2005 5.1.0 • Correction to the blt instruction.
• Added U bit operation for break and trap instructions.

July 2005 5.0.1 • Added new flushda instruction.
• Updated flushd instruction.
• Instruction Opcode table updated with flushda instruction.

May 2005 5.0.0 Maintenance release.

December 2004 1.2 • break instruction update.
• srli instruction correction.

September 2004 1.1 Updates for Nios II 1.01 release.

May 2004 1.0 Initial release.

8-86 Document Revision History
NII5V1 NII51017

2016.06.17

Altera Corporation Instruction Set Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Instruction%20Set%20Reference%20(NII5V1%20NII51017%202016.06.17)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

