
Nios II Core Implementation Details
2015.04.02

NII51015 Subscribe Send Feedback

This document describes all of the Nios® II processor core implementations available at the time of
publishing. This document describes only implementation-specific features of each processor core. All
cores support the Nios II instruction set architecture.

For more information regarding the Nios II instruction set architecture, refer to the Instruction Set
Reference chapter of the Nios II Processor Reference Handbook.

For common core information and details on a specific core, refer to the appropriate section:

Table 1: Nios II Processor Cores

Feature
Core

Nios II/e Nios II/s Nios II/f

Objective Minimal core size Small core size Fast execution speed

Performance

DMIPS/MHz(1) 0.15 0.74 1.16

Max. DMIPS 31 127 218

Max. fMAX 200 MHz 165 MHz 185 MHz

Area < 700 LEs;

< 350 ALMs

< 1400 LEs;

< 700 ALMs

Without MMU or MPU:

 < 1800 LEs;

 < 900 ALMs

With MMU:

 < 3000 LEs;

 < 1500 ALMs

With MPU:

 < 2400 LEs;

 < 1200 ALMs

Pipeline 1 stage 5 stages 6 stages

External Address Space 2 GB 2 GB 2 GB without MMU

4 GB with MMU

Instruction Bus

Cache – 512 bytes to 64 KB 512 bytes to 64 KB

Pipelined Memory
Access

– Yes Yes

Branch Prediction – Static Dynamic

Tightly-Coupled
Memory

– Optional Optional

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=NII51015
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(NII51015%202015.04.02)%20Nios%20II%20Core%20Implementation%20Details&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Feature
Core

Nios II/e Nios II/s Nios II/f

Data Bus

Cache – – 512 bytes to 64 KB

Pipelined Memory
Access

– – –

Cache Bypass Methods – – • I/O instructions
• Bit-31 cache bypass
• Optional MMU

Tightly-Coupled
Memory

– – Optional

Arithmetic Logic Unit

Hardware Multiply – 3-cycle(2) 1-cycle(2)

Hardware Divide – Optional Optional

Shifter 1 cycle-per-bit 3-cycle shift(2) 1-cycle barrel

shifter
(2)

JTAG Debug Module

JTAG interface, run
control, software
breakpoints

Optional Optional Optional

Hardware Breakpoints – Optional Optional

Off-Chip Trace Buffer – Optional Optional

Memory Management Unit – – Optional

Memory Protection Unit – – Optional

Exception Handling

Exception Types Software trap,
unimplemented
instruction, illegal
instruction, hardware
interrupt

Software trap,
unimplemented
instruction, illegal
instruction,
hardware interrupt

Software trap, unimplemented
instruction, illegal instruction,
supervisor-only instruction,
supervisor-only instruction
address, supervisor-only data
address, misaligned destination
address, misaligned data address,
division error, fast TLB miss,
double TLB miss, TLB permission
violation, MPU region violation,
internal hardware interrupt,
external hardware interrupt,
nonmaskable interrupt

Integrated Interrupt
Controller

Yes Yes Yes

External Interrupt
Controller Interface

No No Optional

Shadow Register Sets No No Optional, up to 63

User Mode Support No; Permanently in
supervisor mode

No; Permanently in
supervisor mode

Yes; When MMU or MPU present

Custom Instruction Support Yes Yes Yes

ECC support No No Yes

Related Information
Instruction Set Reference

(1) DMIPS performance for the Nios II/s and Nios II/f cores depends on the hardware multiply option.

2 Nios II Core Implementation Details
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device Family Support
All Nios II cores provide the same support for target Altera® device families.

Table 2: Device Family Support

Device Family Support

Arria® GX Final
Arria II GX Final
Arria II GZ Final
Arria V Final
Arria V GZ Final
Cyclone III Final
Cyclone III LS Final
Cyclone IV GX Final
Cyclone IV E Final
Cyclone V Final
Stratix III Final
Stratix IV E Final
Stratix IV GT Final
Stratix IV GX Final
Stratix V Final
Other device families No support

Preliminary support—The core is verified with preliminary timing models for this device family. The
core meets all functional requirements, but might still be undergoing timing analysis for the device family.
It can be used in production designs with caution.

Final support—The core is verified with final timing models for this device family. The core meets all
functional and timing requirements for the device family and can be used in production designs.

Nios II/f Core

The Nios II/f fast core is designed for high execution performance. Performance is gained at the expense
of core size. The base Nios II/f core, without the memory management unit (MMU) or memory
protection unit (MPU), is approximately 25% larger than the Nios II/s core. Altera designed the Nios II/f
core with the following design goals in mind:

(2) Multiply and shift performance depends on the hardware multiply option you use. If no hardware multiply
option is used, multiply operations are emulated in software, and shift operations require one cycle per bit.
For details, refer to the arithmetic logic unit description for each core.

NII51015
2015.04.02 Device Family Support 3

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Maximize the instructions-per-cycle execution efficiency
• Optimize interrupt latency
• Maximize fMAX performance of the processor core

The resulting core is optimal for performance-critical applications, as well as for applications with large
amounts of code and/or data, such as systems running a full-featured operating system.

Overview
The Nios II/f core:

• Has separate optional instruction and data caches
• Provides optional MMU to support operating systems that require an MMU
• Provides optional MPU to support operating systems and runtime environments that desire memory

protection but do not need virtual memory management
• Can access up to 2 GB of external address space when no MMU is present and 4 GB when the MMU is

present
• Supports optional external interrupt controller (EIC) interface to provide customizable interrupt

prioritization
• Supports optional shadow register sets to improve interrupt latency
• Supports optional tightly-coupled memory for instructions and data
• Employs a 6-stage pipeline to achieve maximum DMIPS/MHz
• Performs dynamic branch prediction
• Provides optional hardware multiply, divide, and shift options to improve arithmetic performance
• Supports the addition of custom instructions
• Optional ECC support for internal RAM blocks (instruction cache, MMU TLB, and register file)
• Supports the JTAG debug module
• Supports optional JTAG debug module enhancements, including hardware breakpoints and real-time

trace

The following sections discuss the noteworthy details of the Nios II/f core implementation. This
document does not discuss low-level design issues or implementation details that do not affect Nios II
hardware or software designers.

Arithmetic Logic Unit
The Nios II/f core provides several arithmetic logic unit (ALU) options to improve the performance of
multiply, divide, and shift operations.

Multiply and Divide Performance

The Nios II/f core provides the following hardware multiplier options:

• DSP Block—Includes DSP block multipliers available on the target device. This option is available only
on Altera FPGAs that have DSP Blocks.

• Embedded Multipliers—Includes dedicated embedded multipliers available on the target device. This
option is available only on Altera FPGAs that have embedded multipliers.

• Logic Elements—Includes hardware multipliers built from logic element (LE) resources.
• None—Does not include multiply hardware. In this case, multiply operations are emulated in software.

The Nios II/f core also provides a hardware divide option that includes LE-based divide circuitry in the
ALU.

Including an ALU option improves the performance of one or more arithmetic instructions.

4 Overview
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The performance of the embedded multipliers differ, depending on the target FPGA family.

Table 3: Hardware Multiply and Divide Details for the Nios II/f Core

ALU Option Hardware Details Cycles per
Instruction

Result Latency
Cycles

Supported Instructions

No hardware
multiply or divide

Multiply and divide
instructions generate
an exception

– – None

Logic elements ALU includes 32 x 4-bit
multiplier

11 +2 mul, muli

DSP block on
Stratix III families

ALU includes 32 x 32-
bit multiplier

1 +2 mul, muli, mulxss,
mulxsu, mulxuu

Embedded
multipliers on
Cyclone III
families

ALU includes 32 x 16-
bit multiplier

5 +2 mul, muli

Hardware divide ALU includes
multicycle divide
circuit

4 – 66 +2 div, divu

The cycles per instruction value determines the maximum rate at which the ALU can dispatch instruc‐
tions and produce each result. The latency value determines when the result becomes available. If there is
no data dependency between the results and operands for back-to-back instructions, then the latency does
not affect throughput. However, if an instruction depends on the result of an earlier instruction, then the
processor stalls through any result latency cycles until the result is ready.

In the following code example, a multiply operation (with 1 instruction cycle and 2 result latency cycles) is
followed immediately by an add operation that uses the result of the multiply. On the Nios II/f core, the
addi instruction, like most ALU instructions, executes in a single cycle. However, in this code example,
execution of the addi instruction is delayed by two additional cycles until the multiply operation
completes.

mul r1, r2, r3 ; r1 = r2 * r3
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

In contrast, the following code does not stall the processor.

mul r1, r2, r3 ; r1 = r2 * r3
or r5, r5, r6 ; No dependency on previous results
or r7, r7, r8 ; No dependency on previous results
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

Shift and Rotate Performance
The performance of shift operations depends on the hardware multiply option. When a hardware
multiplier is present, the ALU achieves shift and rotate operations in three or four clock cycles. Otherwise,
the ALU includes dedicated shift circuitry that achieves one-bit-per-cycle shift and rotate performance.

Refer to the "Instruction Execution Performance for Nios II/f Core" table in the "Instruction Performance"
section for details.

NII51015
2015.04.02 Shift and Rotate Performance 5

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Instruction Performance on page 10

Memory Access
The Nios II/f core provides optional instruction and data caches. The cache size for each is user-definable,
between 512 bytes and 64 KB.

The memory address width in the Nios II/f core depends on whether the optional MMU is present.
Without an MMU, the Nios II/f core supports the bit-31 cache bypass method for accessing I/O on the
data master port. Therefore addresses are 31 bits wide, reserving bit 31 for the cache bypass function.
With an MMU, cache bypass is a function of the memory partition and the contents of the translation
lookaside buffer (TLB). Therefore bit-31 cache bypass is disabled, and 32 address bits are available to
address memory.

Instruction and Data Master Ports

The instruction master port is a pipelined Avalon® Memory-Mapped (Avalon-MM) master port. If the
core includes data cache with a line size greater than four bytes, then the data master port is a pipelined
Avalon-MM master port. Otherwise, the data master port is not pipelined.

The instruction and data master ports on the Nios II/f core are optional. A master port can be excluded, as
long as the core includes at least one tightly-coupled memory to take the place of the missing master port.

Note: Although the Nios II processor can operate entirely out of tightly-coupled memory without the
need for Avalon-MM instruction or data masters, software debug is not possible when either the
Avalon-MM instruction or data master is omitted.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous memory with pipeline
latency. The pipelined instruction and data master ports can issue successive read requests before prior
requests complete.

Instruction and Data Caches
This section first describes the similar characteristics of the instruction and data cache memories, and
then describes the differences.

Both the instruction and data cache addresses are divided into fields based on whether or not an MMU is
present in your system.

Table 4: Cache Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

tag line

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

Table 5: Cache Virtual Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

line

6 Memory Access
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

Table 6: Cache Physical Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset

Instruction Cache
The instruction cache memory has the following characteristics:

• Direct-mapped cache implementation.
• 32 bytes (8 words) per cache line.
• The instruction master port reads an entire cache line at a time from memory, and issues one read per

clock cycle.
• Critical word first.
• Virtually-indexed, physically-tagged, when MMU present.

The size of the tag field depends on the size of the cache memory and the physical address size. The size of
the line field depends only on the size of the cache memory. The offset field is always five bits (i.e., a 32-
byte line). The maximum instruction byte address size is 31 bits in systems without an MMU present. In
systems with an MMU, the maximum instruction byte address size is 32 bits and the tag field always
includes all the bits of the physical frame number (PFN).

The instruction cache is optional. However, excluding instruction cache from the Nios II/f core requires
that the core include at least one tightly-coupled instruction memory.

Data Cache

The data cache memory has the following characteristics:

• Direct-mapped cache implementation
• Configurable line size of 4, 16, or 32 bytes
• The data master port reads an entire cache line at a time from memory, and issues one read per clock

cycle.
• Write-back
• Write-allocate (i.e., on a store instruction, a cache miss allocates the line for that address)
• Virtually-indexed, physically-tagged, when MMU present

The size of the tag field depends on the size of the cache memory and the physical address size. The size of
the line field depends only on the size of the cache memory. The size of the offset field depends on the line
size. Line sizes of 4, 16, and 32 bytes have offset widths of 2, 4, and 5 bits respectively. The maximum data
byte address size is 31 bits in systems without an MMU present. In systems with an MMU, the maximum
data byte address size is 32 bits and the tag field always includes all the bits of the PFN.

The data cache is optional. If the data cache is excluded from the core, the data master port can also be
excluded.

NII51015
2015.04.02 Instruction Cache 7

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Nios II instruction set provides several different instructions to clear the data cache. There are two
important questions to answer when determining the instruction to use. Do you need to consider the tag
field when looking for a cache match? Do you need to write dirty cache lines back to memory before
clearing? Below the table lists the most appropriate instruction to use for each case.

Table 7: Data Cache Clearing Instructions

Instruction Ignore Tag Field Consider Tag Field

Write Dirty Lines flushd flushda

Do Not Write Dirty Lines initd initda

Note: The 4-byte line data cache implementation substitutes the flushd instruction for the flushda
instruction and triggers an unimplemented instruction exception for the initda instruction. The
16-byte and 32-byte line data cache implementations fully support the flushda and initda
instructions.

For more information regarding the Nios II instruction set, refer to the Instruction Set Reference chapter
of the Nios II Processor Reference Handbook.

The Nios II/f core implements all the data cache bypass methods.

For information regarding the data cache bypass methods, refer to the Processor Architecture chapter of
the Nios II Processor Reference Handbook
Mixing cached and uncached accesses to the same cache line can result in invalid data reads. For example,
the following sequence of events causes cache incoherency.

1. The Nios II core writes data to cache, creating a dirty data cache line.
2. The Nios II core reads data from the same address, but bypasses the cache.

Note: Avoid mixing cached and uncached accesses to the same cache line, regardless whether you are
reading from or writing to the cache line. If it is necessary to mix cached and uncached data
accesses, flush the corresponding line of the data cache after completing the cached accesses and
before performing the uncached accesses.

Related Information

• Instruction Set Reference
• Processor Architecture

Bursting
When the data cache is enabled, you can enable bursting on the data master port. Consult the
documentation for memory devices connected to the data master port to determine whether bursting can
improve performance.

Tightly-Coupled Memory
The Nios II/f core provides optional tightly-coupled memory interfaces for both instructions and data. A
Nios II/f core can use up to four each of instruction and data tightly-coupled memories. When a tightly-
coupled memory interface is enabled, the Nios II core includes an additional memory interface master
port. Each tightly-coupled memory interface must connect directly to exactly one memory slave port.

When tightly-coupled memory is present, the Nios II core decodes addresses internally to determine if
requested instructions or data reside in tightly-coupled memory. If the address resides in tightly-coupled
memory, the Nios II core fetches the instruction or data through the tightly-coupled memory interface.

8 Bursting
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Software accesses tightly-coupled memory with the usual load and store instructions, such as ldw or
ldwio.

Accessing tightly-coupled memory bypasses cache memory. The processor core functions as if cache were
not present for the address span of the tightly-coupled memory. Instructions for managing cache, such as
initd and flushd, do not affect the tightly-coupled memory, even if the instruction specifies an address
in tightly-coupled memory.

When the MMU is present, tightly-coupled memories are always mapped into the kernel partition and
can only be accessed in supervisor mode.

Memory Management Unit
The Nios II/f core provides options to improve the performance of the Nios II MMU.

For information about the MMU architecture, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Related Information
Programming Model

Micro Translation Lookaside Buffers

The translation lookaside buffer (TLB) consists of one main TLB stored in on-chip RAM and two separate
micro TLBs (μTLB) for instructions μITLB) and data (μDTLB) stored in LE-based registers.

The TLBs have a configurable number of entries and are fully associative. The default configuration has 6
μDTLB entries and 4 μITLB entries. The hardware chooses the least-recently used μTLB entry when
loading a new entry.

The μTLBs are not visible to software. They act as an inclusive cache of the main TLB. The processor firsts
look for a hit in the μTLB. If it misses, it then looks for a hit in the main TLB. If the main TLB misses, the
processor takes an exception. If the main TLB hits, the TLB entry is copied into the μTLB for future
accesses.

The hardware automatically flushes the μTLB on each TLB write operation and on a wrctl to the tlbmisc
register in case the process identifier (PID) has changed.

Memory Protection Unit
The Nios II/f core provides options to improve the performance of the Nios II MPU.

For information about the MPU architecture, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Related Information
Programming Model

Execution Pipeline
This section provides an overview of the pipeline behavior for the benefit of performance-critical
applications. Designers can use this information to minimize unnecessary processor stalling. Most
application programmers never need to analyze the performance of individual instructions.

The Nios II/f core employs a 6-stage pipeline.

NII51015
2015.04.02 Memory Management Unit 9

Nios II Core Implementation Details Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8: Implementation Pipeline Stages for Nios II/f Core

Stage Letter Stage Name

F Fetch
D Decode
E Execute
M Memory
A Align
W Writeback

Up to one instruction is dispatched and/or retired per cycle. Instructions are dispatched and retired in
order. Dynamic branch prediction is implemented using a 2-bit branch history table. The pipeline stalls
for the following conditions:

• Multicycle instructions
• Avalon-MM instruction master port read accesses
• Avalon-MM data master port read/write accesses
• Data dependencies on long latency instructions (e.g., load, multiply, shift).

Pipeline Stalls
The pipeline is set up so that if a stage stalls, no new values enter that stage or any earlier stages. No
“catching up” of pipeline stages is allowed, even if a pipeline stage is empty.

Only the A-stage and D-stage are allowed to create stalls.

The A-stage stall occurs if any of the following conditions occurs:

• An A-stage memory instruction is waiting for Avalon-MM data master requests to complete. Typically
this happens when a load or store misses in the data cache, or a flushd instruction needs to write back
a dirty line.

• An A-stage shift/rotate instruction is still performing its operation. This only occurs with the
multicycle shift circuitry (i.e., when the hardware multiplier is not available).

• An A-stage divide instruction is still performing its operation. This only occurs when the optional
divide circuitry is available.

• An A-stage multicycle custom instruction is asserting its stall signal. This only occurs if the design
includes multicycle custom instructions.

The D-stage stall occurs if an instruction is trying to use the result of a late result instruction too early and
no M-stage pipeline flush is active. The late result instructions are loads, shifts, rotates, rdctl, multiplies
(if hardware multiply is supported), divides (if hardware divide is supported), and multicycle custom
instructions (if present).

Branch Prediction

The Nios II/f core performs dynamic branch prediction to minimize the cycle penalty associated with
taken branches.

Instruction Performance
All instructions take one or more cycles to execute. Some instructions have other penalties associated with
their execution. Late result instructions have two cycles placed between them and an instruction that uses

10 Pipeline Stalls
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

their result. Instructions that flush the pipeline cause up to three instructions after them to be cancelled.
This creates a three-cycle penalty and an execution time of four cycles. Instructions that require Avalon-
MM transfers are stalled until any required Avalon-MM transfers (up to one write and one read) are
completed.

Table 9: Instruction Execution Performance for Nios II/f Core 4byte/line data cache

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1
Combinatorial custom instructions 1
Multicycle custom instructions > 1 Late result
Branch (correctly predicted, taken) 2
Branch (correctly predicted, not taken) 1
Branch (mispredicted) 4 Pipeline flush
trap, break, eret, bret, flushp, wrctl, wrprs; illegal and unimple‐
mented instructions

4 or 5 Pipeline flush

call, jmpi, rdprs 2
jmp, ret, callr 3
rdctl 1 Late result
load (without Avalon-MM transfer) 1 Late result
load (with Avalon-MM transfer) > 1 Late result
store (without Avalon-MM transfer) 1
store (with Avalon-MM transfer) > 1
flushd, flushda (without Avalon-MM transfer) 2
flushd, flushda (with Avalon-MM transfer) > 2
initd, initda 2
flushi, initi 4
Multiply Late result
Divide Late result
Shift/rotate (with hardware multiply using embedded multipliers) 1 Late result
Shift/rotate (with hardware multiply using LE-based multipliers) 2 Late result
Shift/rotate (without hardware multiply present) 1 to 32 Late result
All other instructions 1

For Multiply and Divide, the number of cycles depends on the hardware multiply or divide option. Refer
to "Arithmetic Logic Unit" and "Instruction and Data Caches" s for details.

NII51015
2015.04.02 Instruction Performance 11

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the default Nios II/f configuration, instructions trap, break, eret, bret, flushp, wrctl, wrprs
require four clock cycles. If any of the following options are present, they require five clock cycles:

• MMU
• MPU
• Division exception
• Misaligned load/store address exception
• Extra exception information
• EIC port
• Shadow register sets

Related Information

• Data Cache on page 7
• Instruction and Data Caches on page 6
• Arithmetic Logic Unit on page 4

Exception Handling
The Nios II/f core supports the following exception types:

• Hardware interrupts
• Software trap
• Illegal instruction
• Unimplemented instruction
• Supervisor-only instruction (MMU or MPU only)
• Supervisor-only instruction address (MMU or MPU only)
• Supervisor-only data address (MMU or MPU only)
• Misaligned data address
• Misaligned destination address
• Division error
• Fast translation lookaside buffer (TLB) miss (MMU only)
• Double TLB miss (MMU only)
• TLB permission violation (MMU only)
• MPU region violation (MPU only)

External Interrupt Controller Interface

The EIC interface enables you to speed up interrupt handling in a complex system by adding a custom
interrupt controller.

The EIC interface is an Avalon-ST sink with the following input signals:

• eic_port_valid

• eic_port_data

Signals are rising-edge triggered, and synchronized with the Nios II clock input.

12 Exception Handling
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The EIC interface presents the following signals to the Nios II processor through the eic_port_data
signal:

• Requested handler address (RHA)—The 32-bit address of the interrupt handler associated with the
requested interrupt.

• Requested register set (RRS)—The six-bit number of the register set associated with the requested
interrupt.

• Requested interrupt level (RIL)—The six-bit interrupt level. If RIL is 0, no interrupt is requested.
• Requested nonmaskable interrupt (RNMI) flag—A one-bit flag indicating whether the interrupt is to

be treated as nonmaskable.

Table 10: eic_port_data Signal

Bit Fields

44 ...

RHA

... 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RHA RRS RNMI RIL

Following Avalon-ST protocol requirements, the EIC interface samples eic_port_data only when
eic_port_valid is asserted (high). When eic_port_valid is not asserted, the processor latches the
previous values of RHA, RRS, RIL and RNMI. To present new values on eic_port_data, the EIC must
transmit a new packet, asserting eic_port_valid. An EIC can transmit a new packet once per clock cycle.

For an example of an EIC implementation, refer to the Vectored Interrupt Controller chapter in the
Embedded Peripherals IP User Guide.

Related Information
Embedded Peripherals IP User Guide

ECC
The Nios II/f core has the option to add ECC support for the following Nios II internal RAM blocks.

• Instruction cache

• ECC errors (1, 2, or 3 bits) that occur in the instruction cache are recoverable; the Nios II processor
flushes the cache line and reads from external memory instead of correcting the ECC error.

• Register file

• 1 bit ECC errors are recoverable
• 2 bit ECC errors are not recoverable and generate ECC exceptions

• MMU TLB

• 1 bit ECC errors triggered by hardware reads are recoverable
• 2 bit ECC errors triggered by hardware reads are not recoverable and generate ECC exception.
• 1 or 2 bit ECC errors triggered by software reads to the TLBMISC register do not trigger an

exception, instead, TLBMISC.EE is set to 1. Software must read this field and invalidate/overwrite
the TLB entry.

The ECC interface is an Avalon-ST source with the output signal ecc_event_bus. This interface allows
external logic to monitor ECC errors in the Nios II processor.

NII51015
2015.04.02 ECC 13

Nios II Core Implementation Details Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The ecc_event_bus contains the ECC error signals that are driven to 1 even if ECC checking is disabled
in the Nios II processor (when CONFIG.ECCEN or CONFIG.ECCEXC is 0). The following table describes the
ECC error signals.

Table 11: ECC Error Signals

Bit Field Description Effect on
Software

Available

0 EEH ECC error exception while in exception handler mode (i.e.,
STATUS.EH = 1).

Likely fatal Always

1 RF_RE Recoverable (1 bit) ECC error in register file RAM None Always

2 RF_UE Unrecoverable (2 bit) ECC error in register file RAM Likely fatal Always

3 ICTAG_RE Recoverable (1, 2, or 3 bit) ECC error in instruction cache tag
RAM

None Instruction
cache
present

4 ICDAT_RE Recoverable (1, 2, or 3 bit) ECC error in instruction cache data
RAM.

None Instruction
cache
present

5 Reserved

6 Reserved

7 Reserved

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved

16 Reserved

17 Reserved

18 Reserved

19 TLB_RE Recoverable (1 bit) ECC error in TLB RAM (hardware read of
TLB)

None MMU
present

20 TLB_UE Unrecoverable (2 bit) ECC error in TLB RAM (hardware read of
TLB)

Possibly fatal MMU
present

21 TLB_SW Software-triggered (1, 2, or 3 bit) ECC error in software read of
TLB

Possibly fatal MMU
present

22 Reserved

23 Reserved

14 ECC
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Field Description Effect on
Software

Available

24 Reserved

25 Reserved

26 Reserved

27 Reserved

28 Reserved

29 Reserved

JTAG Debug Module
The Nios II/f core supports the JTAG debug module to provide a JTAG interface to software debugging
tools. The Nios II/f core supports an optional enhanced interface that allows real-time trace data to be
routed out of the processor and stored in an external debug probe.

Note: The Nios II MMU does not support the JTAG debug module trace.

Nios II/s Core
The Nios II/s standard core is designed for small core size. On-chip logic and memory resources are
conserved at the expense of execution performance. The Nios II/s core uses approximately 20% less logic
than the Nios II/f core, but execution performance also drops by roughly 40%. Altera designed the
Nios II/s core with the following design goals in mind:

• Do not cripple performance for the sake of size.
• Remove hardware features that have the highest ratio of resource usage to performance impact.

The resulting core is optimal for cost-sensitive, medium-performance applications. This includes applica‐
tions with large amounts of code and/or data, such as systems running an operating system in which
performance is not the highest priority.

Overview
The Nios II/s core:

• Has an instruction cache, but no data cache
• Can access up to 2 GB of external address space
• Supports optional tightly-coupled memory for instructions
• Employs a 5-stage pipeline
• Performs static branch prediction
• Provides hardware multiply, divide, and shift options to improve arithmetic performance
• Supports the addition of custom instructions
• Supports the JTAG debug module
• Supports optional JTAG debug module enhancements, including hardware breakpoints and real-time

trace

The following sections discuss the noteworthy details of the Nios II/s core implementation. This
document does not discuss low-level design issues or implementation details that do not affect Nios II
hardware or software designers.

NII51015
2015.04.02 JTAG Debug Module 15

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arithmetic Logic Unit
The Nios II/s core provides several ALU options to improve the performance of multiply, divide, and shift
operations.

Multiply and Divide Performance

The Nios II/s core provides the following hardware multiplier options:

• DSP Block—Includes DSP block multipliers available on the target device. This option is available only
on Altera FPGAs that have DSP Blocks.

• Embedded Multipliers—Includes dedicated embedded multipliers available on the target device. This
option is available only on Altera FPGAs that have embedded multipliers.

• Logic Elements—Includes hardware multipliers built from logic element (LE) resources.
• None—Does not include multiply hardware. In this case, multiply operations are emulated in software.

The Nios II/s core also provides a hardware divide option that includes LE-based divide circuitry in the
ALU.

Including an ALU option improves the performance of one or more arithmetic instructions.

Note: The performance of the embedded multipliers differ, depending on the target FPGA family.

Table 12: Hardware Multiply and Divide Details for the Nios II/s Core

ALU Option Hardware Details Cycles per instruc‐
tion

Supported Instructions

No hardware multiply
or divide

Multiply and divide
instructions generate an
exception

– None

LE-based multiplier ALU includes 32 x 4-bit
multiplier

11 mul, muli

Embedded multiplier
on Stratix III families

ALU includes 32 x 32-bit
multiplier

3 mul, muli, mulxss, mulxsu,
mulxuu

Embedded multiplier
on Cyclone III families

ALU includes 32 x 16-bit
multiplier

5 mul, muli

Hardware divide ALU includes multicycle
divide circuit

4 – 66 div, divu

Shift and Rotate Performance
The performance of shift operations depends on the hardware multiply option. When a hardware
multiplier is present, the ALU achieves shift and rotate operations in three or four clock cycles. Otherwise,
the ALU includes dedicated shift circuitry that achieves one-bit-per-cycle shift and rotate performance.

Refer to the "Instruction Execution Performance for Nios II/s Core" table in the "Instruction Perform‐
ance" section for details.

Related Information
Instruction Performance on page 19

16 Arithmetic Logic Unit
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Memory Access
The Nios II/s core provides instruction cache, but no data cache. The instruction cache size is user-
definable, between 512 bytes and 64 KB. The Nios II/s core can address up to 2 GB of external memory.
The Nios II architecture reserves the most-significant bit of data addresses for the bit-31 cache bypass
method. In the Nios II/s core, bit 31 is always zero.

For information regarding data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook.

Related Information
Processor Architecture

Instruction and Data Master Ports

The instruction master port is a pipelined Avalon Memory-Mapped (Avalon-MM) master port. If the
core includes data cache with a line size greater than four bytes, then the data master port is a pipelined
Avalon-MM master port. Otherwise, the data master port is not pipelined.

The instruction and data master ports on the Nios II/f core are optional. A master port can be excluded, as
long as the core includes at least one tightly-coupled memory to take the place of the missing master port.

Note: Although the Nios II processor can operate entirely out of tightly-coupled memory without the
need for Avalon-MM instruction or data masters, software debug is not possible when either the
Avalon-MM instruction or data master is omitted.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous memory with pipeline
latency. The pipelined instruction and data master ports can issue successive read requests before prior
requests complete.

Instruction Cache
The instruction cache for the Nios II/s core is nearly identical to the instruction cache in the Nios II/f
core. The instruction cache memory has the following characteristics:

• Direct-mapped cache implementation
• The instruction master port reads an entire cache line at a time from memory, and issues one read per

clock cycle.
• Critical word first

Table 13: Instruction Byte Address Fields

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

tag line

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

The size of the tag field depends on the size of the cache memory and the physical address size. The size of
the line field depends only on the size of the cache memory. The offset field is always five bits (i.e., a 32-
byte line). The maximum instruction byte address size is 31 bits.

The instruction cache is optional. However, excluding instruction cache from the Nios II/s core requires
that the core include at least one tightly-coupled instruction memory.

NII51015
2015.04.02 Memory Access 17

Nios II Core Implementation Details Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tightly-Coupled Memory
The Nios II/s core provides optional tightly-coupled memory interfaces for instructions. A Nios II/s core
can use up to four tightly-coupled instruction memories. When a tightly-coupled memory interface is
enabled, the Nios II core includes an additional memory interface master port. Each tightly-coupled
memory interface must connect directly to exactly one memory slave port.

When tightly-coupled memory is present, the Nios II core decodes addresses internally to determine if
requested instructions reside in tightly-coupled memory. If the address resides in tightly-coupled
memory, the Nios II core fetches the instruction through the tightly-coupled memory interface. Software
does not require awareness of whether code resides in tightly-coupled memory or not.

Accessing tightly-coupled memory bypasses cache memory. The processor core functions as if cache were
not present for the address span of the tightly-coupled memory. Instructions for managing cache, such as
initi and flushi, do not affect the tightly-coupled memory, even if the instruction specifies an address
in tightly-coupled memory.

Execution Pipeline
This section provides an overview of the pipeline behavior for the benefit of performance-critical
applications. Designers can use this information to minimize unnecessary processor stalling. Most
application programmers never need to analyze the performance of individual instructions.

The Nios II/s core employs a 5-stage pipeline.

Table 14: Implementation Pipeline Stages for Nios II/s Core

Stage Letter Stage Name

F Fetch
D Decode
E Execute
M Memory
W Writeback

Up to one instruction is dispatched and/or retired per cycle. Instructions are dispatched and retired in-
order. Static branch prediction is implemented using the branch offset direction; a negative offset
(backward branch) is predicted as taken, and a positive offset (forward branch) is predicted as not taken.
The pipeline stalls for the following conditions:

• Multicycle instructions (e.g., shift/rotate without hardware multiply)
• Avalon-MM instruction master port read accesses
• Avalon-MM data master port read/write accesses
• Data dependencies on long latency instructions (e.g., load, multiply, shift operations)

Pipeline Stalls
The pipeline is set up so that if a stage stalls, no new values enter that stage or any earlier stages. No
“catching up” of pipeline stages is allowed, even if a pipeline stage is empty.

Only the M-stage is allowed to create stalls.

18 Tightly-Coupled Memory
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The M-stage stall occurs if any of the following conditions occurs:

• An M-stage load/store instruction is waiting for Avalon-MM data master transfer to complete.
• An M-stage shift/rotate instruction is still performing its operation when using the multicycle shift

circuitry (i.e., when the hardware multiplier is not available).
• An M-stage shift/rotate/multiply instruction is still performing its operation when using the hardware

multiplier (which takes three cycles).
• An M-stage multicycle custom instruction is asserting its stall signal. This only occurs if the design

includes multicycle custom instructions.

Branch Prediction
The Nios II/s core performs static branch prediction to minimize the cycle penalty associated with taken
branches.

Instruction Performance
All instructions take one or more cycles to execute. Some instructions have other penalties associated with
their execution. Instructions that flush the pipeline cause up to three instructions after them to be
cancelled. This creates a three-cycle penalty and an execution time of four cycles. Instructions that require
an Avalon-MM transfer are stalled until the transfer completes.

Table 15: Instruction Execution Performance for Nios II/s Core

Instruction Cycles Penalties

Normal ALU instructions (e.g., add,
cmplt)

1

Combinatorial custom instructions 1
Multicycle custom instructions > 1
Branch (correctly predicted taken) 2
Branch (correctly predicted not
taken)

1

Branch (mispredicted) 4 Pipeline flush
trap, break, eret, bret,
flushp, wrctl, unimplemented

4 Pipeline flush

jmp, jmpi, ret, call, callr 4 Pipeline flush
rdctl 1
load, store > 1
flushi, initi 4
Multiply
Divide
Shift/rotate (with hardware multiply
using embedded multipliers)

3

Shift/rotate (with hardware multiply
using LE-based multipliers)

4

NII51015
2015.04.02 Branch Prediction 19

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Cycles Penalties

Shift/rotate (without hardware
multiply present)

1 to 32

All other instructions 1

Exception Handling
The Nios II/s core supports the following exception types:

• Internal hardware interrupt
• Software trap
• Illegal instruction
• Unimplemented instruction

JTAG Debug Module
The Nios II/s core supports the JTAG debug module to provide a JTAG interface to software debugging
tools. The Nios II/s core supports an optional enhanced interface that allows real-time trace data to be
routed out of the processor and stored in an external debug probe.

Nios II/e Core
The Nios II/e economy core is designed to achieve the smallest possible core size. Altera designed the
Nios II/e core with a singular design goal: reduce resource utilization any way possible, while still
maintaining compatibility with the Nios II instruction set architecture. Hardware resources are conserved
at the expense of execution performance. The Nios II/e core is roughly half the size of the Nios II/s core,
but the execution performance is substantially lower.

The resulting core is optimal for cost-sensitive applications as well as applications that require simple
control logic.

Overview
The Nios II/e core:

• Executes at most one instruction per six clock cycles
• Can access up to 2 GB of external address space
• Supports the addition of custom instructions
• Supports the JTAG debug module
• Does not provide hardware support for potential unimplemented instructions
• Has no instruction cache or data cache
• Does not perform branch prediction

The following sections discuss the noteworthy details of the Nios II/e core implementation. This
document does not discuss low-level design issues, or implementation details that do not affect Nios II
hardware or software designers.

Arithmetic Logic Unit
The Nios II/e core does not provide hardware support for any of the potential unimplemented
instructions. All unimplemented instructions are emulated in software.

20 Exception Handling
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Nios II/e core employs dedicated shift circuitry to perform shift and rotate operations. The dedicated
shift circuitry achieves one-bit-per-cycle shift and rotate operations.

Memory Access
The Nios II/e core does not provide instruction cache or data cache. All memory and peripheral accesses
generate an Avalon-MM transfer. The Nios II/e core can address up to 2 GB of external memory. The
Nios II architecture reserves the most-significant bit of data addresses for the bit-31 cache bypass method.
In the Nios II/e core, bit 31 is always zero.

For information regarding data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook.

The Nios II/e core does not provide instruction cache or data cache. All memory and peripheral accesses
generate an Avalon-MM transfer.

For information regarding data cache bypass methods, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook.

Related Information
Processor Architecture

Instruction Execution Stages
This section provides an overview of the pipeline behavior as a means of estimating assembly execution
time. Most application programmers never need to analyze the performance of individual instructions.

Instruction Performance
The Nios II/e core dispatches a single instruction at a time, and the processor waits for an instruction to
complete before fetching and dispatching the next instruction. Because each instruction completes before
the next instruction is dispatched, branch prediction is not necessary. This greatly simplifies the consider‐
ation of processor stalls. Maximum performance is one instruction per six clock cycles. To achieve six
cycles, the Avalon-MM instruction master port must fetch an instruction in one clock cycle. A stall on the
Avalon-MM instruction master port directly extends the execution time of the instruction.

Table 16: Instruction Execution Performance for Nios II/e Core

Instruction Cycles

Normal ALU instructions (e.g., add, cmplt) 6
All branch, jmp, jmpi, ret, call, callr 6
trap, break, eret, bret,
flushp, wrctl, rdctl,
unimplemented

6

All load word 6 + Duration of Avalon-MM read transfer
All load halfword 9 + Duration of Avalon-MM read transfer
All load byte 10 + Duration of Avalon-MM read transfer
All store 6 + Duration of Avalon-MM write transfer
All shift, all rotate 7 to 38
All other instructions 6

NII51015
2015.04.02 Memory Access 21

Nios II Core Implementation Details Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instruction Cycles

Combinatorial custom instructions 6
Multicycle custom instructions 6

Exception Handling
The Nios II/e core supports the following exception types:

• Internal hardware interrupt
• Software trap
• Illegal instruction
• Unimplemented instruction

JTAG Debug Module
The Nios II/e core supports the JTAG debug module to provide a JTAG interface to software debugging
tools. The JTAG debug module on the Nios II/e core does not support hardware breakpoints or trace.

Document Revision History

Table 17: Document Revision History

Date Version Changes

April 2015 2015.04.02 Obsolete devices removed (Stratix II, Cyclone II).

February 2014 13.1.0 • Added information on ECC support
• Removed HardCopy support information
• Removed references to SOPC Builder

May 2011 11.0.0 Maintenance release.

December 2010 10.1.0 Maintenance release.

July 2010 10.0.0 • Updated device support nomenclature
• Corrected HardCopy support information

November 2009 9.1.0 • Added external interrupt controller interface information.
• Added shadow register set information.

March 2009 9.0.0 Maintenance release.

November 2008 8.1.0 Maintenance release.

May 2008 8.0.0 Added text for MMU and MPU.

October 2007 7.2.0 Added jmpi instruction to tables.

May 2007 7.1.0 • Added table of contents to Introduction section.
• Added Referenced Documents section.

22 Exception Handling
NII51015

2015.04.02

Altera Corporation Nios II Core Implementation Details

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

March 2007 7.0.0 Add preliminary Cyclone III device family support

November 2006 6.1.0 Add preliminary Stratix III device family support

May 2006 6.0.0 Performance for flushi and initi instructions changes from 1 to 4
cycles for Nios II/s and Nios II/f cores.

October 2005 5.1.0 Maintenance release.

May 2005 5.0.0 Updates to Nios II/f and Nios II/s cores. Added tightly-coupled
memory and new data cache options. Corrected cycle counts for shift/
rotate operations.

December 2004 1.2 Updates to Multiply and Divide Performance section for Nios II/f and
Nios II/s cores.

September 2004 1.1 Updates for Nios II 1.01 release.

May 2004 1.0 Initial release.

NII51015
2015.04.02 Document Revision History 23

Nios II Core Implementation Details Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Nios%20II%20Core%20Implementation%20Details%20(NII51015%202015.04.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Nios II Core Implementation Details
	Device Family Support
	Nios II/f Core
	Overview
	Arithmetic Logic Unit
	Multiply and Divide Performance
	Shift and Rotate Performance

	Memory Access
	Instruction and Data Master Ports
	Instruction and Data Caches
	Instruction Cache
	Data Cache
	Bursting

	Tightly-Coupled Memory
	Memory Management Unit
	Micro Translation Lookaside Buffers

	Memory Protection Unit
	Execution Pipeline
	Pipeline Stalls
	Branch Prediction

	Instruction Performance
	Exception Handling
	External Interrupt Controller Interface

	ECC
	JTAG Debug Module

	Nios II/s Core
	Overview
	Arithmetic Logic Unit
	Multiply and Divide Performance
	Shift and Rotate Performance

	Memory Access
	Instruction and Data Master Ports
	Instruction Cache

	Tightly-Coupled Memory
	Execution Pipeline
	Pipeline Stalls
	Branch Prediction

	Instruction Performance
	Exception Handling
	JTAG Debug Module

	Nios II/e Core
	Overview
	Arithmetic Logic Unit
	Memory Access
	Instruction Execution Stages
	Instruction Performance
	Exception Handling
	JTAG Debug Module

	Document Revision History

