5. Using MAX V Devices in Multi-Voltage Systems

This chapter describes how to implement Altera® devices in multi-voltage systems without damaging the device or the system.

Technological advancements in deep submicron processes have lowered the supply voltage levels of semiconductor devices, creating a design environment where devices on a system board may potentially use many different supply voltages such as 5.0, 3.3, 2.5, 1.8, 1.5, and 1.2 V, which can ultimately lead to voltage conflicts.

To accommodate interfacing with a variety of devices on system boards, MAX® V devices have MultiVolt I/O interfaces that allow devices in a mixed-voltage design environment to communicate directly with MAX V devices. The MultiVolt interface separates the power supply voltage (VCCINT) from the output voltage (VCCIO), allowing MAX V devices to interface with other devices using a different voltage level on the same PCB. The 1.8-V input directly powers the core of the MAX V devices.

For more information about hot socketing and power-on reset (POR), refer to the Hot Socketing and Power-On Reset in MAX V Devices chapter.

This chapter contains the following sections:

- “I/O Standards” on page 5–1
- “MultiVolt I/O Operation” on page 5–3
- “5.0-V Device Compatibility” on page 5–3
- “Recommended Operating Conditions for 5.0-V Compatibility” on page 5–7
- “Power-Up Sequencing” on page 5–8

I/O Standards

The I/O buffer of MAX V devices is programmable and supports a wide range of I/O voltage standards. You can program each I/O bank in a MAX V device to comply with a different I/O standard. You can configure all I/O banks with the following standards:

- 3.3-V LVTTL/LVCMOS
- 2.5-V LVTTL/LVCMOS
- 1.8-V LVTTL/LVCMOS
- 1.5-V LVCMOS
- 1.2-V LVCMOS (Not supported in Bank 1)
- Emulated LVDS output (LVDS_E_3R)
- Emulated RSDS output (RSDS_E_3R)
The Schmitt trigger input option is supported by the 3.3-V and 2.5-V I/O standards. The I/O Bank 3 also includes the 3.3-V PCI I/O standard interface capability on the 5M1270Z and 5M2210Z devices. Figure 5–1 shows the I/O standards supported by MAX V devices.

Figure 5–1. I/O Standards Supported by MAX V Devices *(Note 1), (2), (3), (4), (5)*

Notes to Figure 5–1:

1. Figure 5–1 is a top view of the silicon die.
2. Figure 5–1 is a graphical representation only. For the exact pin locations, refer to the pin list and the Quartus® II software.
3. 5M40Z, 5M80Z, 5M160Z, 5M240Z, and 5M570Z devices only have two I/O banks.
4. The 3.3-V PCI I/O standard is only supported in 5M1270Z and 5M2210Z devices.
5. The Schmitt trigger input option for 3.3-V and 2.5-V I/O standards is supported for all I/O pins.
6. This I/O standard is not supported in Bank 1.
MultiVolt I/O Operation

MAX V devices allow the device core and I/O blocks to be powered-up with separate supply voltages. The **VCCINT** pins supply power to the device core and the **VCCIO** pins supply power to the device I/O buffers. The **VCCINT** pins are powered-up with 1.8 V for MAX V devices. All the **VCCIO** pins for a given I/O bank that have MultiVolt capability must be supplied from the same voltage level (for example, 5.0, 3.3, 2.5, 1.8, 1.5, or 1.2 V). Figure 5–2 shows how to implement a multiple-voltage system for MAX V devices.

Figure 5–2. Implementing a Multi-Voltage System with a MAX V Device *(Note 1), (2)*

![Diagram of a Multi-Voltage System with a MAX V Device](image)

Notes to Figure 5–2:

1. MAX V devices can drive a 5.0-V transistor-to-transistor logic (TTL) input when **VCCIO** = 3.3 V. To drive a 5.0-V CMOS, you must have an open-drain setting with an internal I/O clamp diode and external resistor.
2. MAX V devices can be 5.0-V tolerant with the use of an external resistor and the internal I/O clamp diode on 5M1270Z and 5M2210Z devices.

5.0-V Device Compatibility

A MAX V device can drive a 5.0-V TTL device by connecting the **VCCIO** pins of the MAX V device to 3.3 V. This is possible because the output high voltage (**VOH**) of a 3.3-V interface meets the minimum high-level voltage of 2.4 V of a 5.0-V TTL device.

A MAX V device may not correctly interoperate with a 5.0-V CMOS device if the output of the MAX V device is connected directly to the input of the 5.0-V CMOS device. If the MAX V device’s **VOUT** is greater than **VCCIO**, the PMOS pull-up transistor still conducts if the pin is driving high, preventing an external pull-up resistor from pulling the signal to 5.0 V. To make MAX V device outputs compatible with 5.0-V CMOS devices, configure the output pins as open-drain pins with the I/O clamp diode enabled and use an external pull-up resistor.
Figure 5–3 shows MAX V device compatibility with 5.0-V CMOS devices.

Figure 5–3. MAX V Device Compatibility with 5.0-V CMOS Devices

The open-drain pin never drives high, only low or tri-state. When the open-drain pin is active, it drives low. When the open-drain pin is inactive, the pin is tri-stated and the trace pulls up to 5.0 V by the external resistor. The purpose of enabling the I/O clamp diode is to protect the MAX V device’s I/O pins. The 3.3-V \(V_{CCIO} \) supplied to the I/O clamp diodes causes the voltage at point A to clamp at 4.0 V, which meets the MAX V device’s reliability limits when the trace voltage exceeds 4.0 V. The device operates successfully because a 5.0-V input is within its input specification.

The I/O clamp diode is only supported in the 5M1270Z and 5M2210Z devices’ I/O Bank 3. You must have an external protection diode for the other I/O banks in the 5M1270Z and 5M2210Z devices and all the I/O pins in the 5M40Z, 5M80Z, 5M160Z, 5M240Z, and 5M570Z devices.

The pull-up resistor value must be small enough for a sufficient signal rise time, but large enough so that it does not violate the \(I_{OL} \) (output low) specification of the MAX V devices.

The maximum MAX V device \(I_{OL} \) depends on the programmable drive strength of the I/O output. Table 5–1 lists the programmable drive strength settings that are available for the 3.3-V LVTTTL/LVCMOS I/O standard for MAX V devices. The Quartus II software uses the maximum current strength as the default setting. The PCI I/O standard is always set to 20 mA with no alternate setting.

Table 5–1. 3.3-V LVTTTL/LVCMOS Programmable Drive Strength (Part 1 of 2)

<table>
<thead>
<tr>
<th>I/O Standard</th>
<th>(I_{OH}/I_{OL}) Current Strength Setting (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3-V LVTTTL</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
5.0-V Device Compatibility

To compute the required value of R_{EXT}, first calculate the model of the open-drain transistors on the MAX V device. You can model this output resistor (R_{EXT}) by dividing V_{OL} by I_{OL} ($R_{\text{EXT}} = \frac{V_{\text{OL}}}{I_{\text{OL}}}$). Table 5–2 lists the maximum V_{OL} for the 3.3-V LVTTL/LVCMOS I/O standard for MAX V devices.

For more information about I/O standard specifications, refer to the DC and Switching Characteristics for MAX V Devices chapter.

Table 5–1. 3.3-V LVTTL/LVCMOS Programmable Drive Strength (Part 2 of 2)

<table>
<thead>
<tr>
<th>I/O Standard</th>
<th>$I_{\text{OH}}/I_{\text{OL}}$ Current Strength Setting (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3-V LVCMOS</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Select R_{EXT} so that the MAX V device’s I_{OL} specification is not violated. You can compute the required pull-up resistor value of R_{EXT} by using the equation: $R_{\text{EXT}} = \frac{(V_{\text{CC}}/I_{\text{OL}}) - R_{\text{INT}}}{V_{\text{OL}}}$, where R_{INT} is the internal resistance of the device. For example, if an I/O pin is configured as a 3.3-V LVTTL with a 16 mA drive strength, given that the maximum power supply (V_{CC}) is 5.5 V, you can calculate the value of R_{EXT} as follows:

$$R_{\text{EXT}} = \frac{(5.5 \, \text{V} - 0.45 \, \text{V})}{16 \, \text{mA}} = 315.6 \, \Omega$$

This resistor value computation assumes worst-case conditions. You can adjust the R_{EXT} value according to the device configuration drive strength. Additionally, if your system does not see a wide variation in voltage-supply levels, you can adjust these calculations accordingly.

Because MAX V devices are 3.3-V, 32-bit, 66-MHz PCI compliant, the input circuitry accepts a maximum high-level input voltage (V_{IH}) of 4.0 V. To drive a MAX V device with a 5.0-V device, you must connect a resistor (R_2) between the MAX V device and the 5.0-V device.
Figure 5–4 shows how to drive a MAX V PCI-compliant device with a 5.0-V device.

Figure 5–4. Driving a MAX V PCI-Compliant Device with a 5.0-V Device

If V_{CCIO} for the MAX V devices is 3.3 V and you enabled the I/O clamp diode, the voltage at point B in Figure 5–4 is 4.0 V, which meets the MAX V devices reliability limits when the trace voltage exceeds 4.0 V. To limit large current draw from the 5.0-V device, R_2 must be small enough for a fast signal rise time and large enough so that it does not violate the high-level output current (I_{OH}) specifications of the devices driving the trace.

To compute the required value of R_2, first calculate the model of the pull-up transistors on the 5.0-V device. You can model this output resistor (R_1) by dividing the 5.0-V device supply voltage (V_{CC}) by I_{OH}: $R_1 = V_{CC}/I_{OH}$.

Figure 5–5. Output Drive Characteristics of a 5.0-V Device
As shown in Figure 5–5, \(R_1 = 5.0 \, \text{V} / 135 \, \text{mA} \).

The values usually shown in the data sheets reflect typical operating conditions. Subtract 20% from the data sheet value for guard band. When you subtract the 20% from the previous example, the \(R_1 \) value is 30.

Select \(R_2 \) so that the MAX V device’s \(I_{OH} \) specification is not violated. For example, if the above device has a maximum \(I_{OH} \) of 8 mA, given the I/O clamp diode, \(V_{IN} = V_{CCIO} + 0.7 \, \text{V} = 3.7 \, \text{V} \). Given that the maximum supply load of a 5.0-V device \((V_{CC}) \) is 5.5 V, calculate value of \(R_2 \) as follows:

Equation 5–2.

\[
R_2 = \frac{(5.5 \, \text{V} - 3.7 \, \text{V}) - (8 \, \text{mA} \times 30 \, \Omega)}{8 \, \text{mA}} = 194 \, \Omega
\]

This analysis assumes worst-case conditions. If your system does not see a wide variation in voltage-supply levels, you can adjust these calculations accordingly.

Because 5.0-V device tolerance in MAX V devices requires the use of the I/O clamp, and this clamp is activated only after power-up, 5.0-V signals may not be driven into the device until it is configured. The I/O clamp diode is only supported in the 5M1270Z and 5M2210Z devices’ I/O Bank 3. You must have an external protection diode for the other I/O banks for the 5M1270Z and 5M2210Z devices and all the I/O pins in the 5M40Z, 5M80Z, 5M160Z, 5M240Z, and 5M570Z devices.

Recommended Operating Conditions for 5.0-V Compatibility

As mentioned earlier, a 5.0-V tolerance can be supported with the I/O clamp diode enabled with external series/pull-up resistance. To guarantee long term reliability of the device’s I/O buffer, there are restrictions on the signal duty cycle that drive the MAX V I/O, which is based on the maximum clamp current. Table 5–3 lists the maximum signal duty cycle for the 3.3-V \(V_{CCIO} \) given a PCI clamp current-handling capability.

Table 5–3. Maximum Signal Duty Cycle

<table>
<thead>
<tr>
<th>(V_{IN}) (V) ((1))</th>
<th>(I_{CH}) (mA) ((2))</th>
<th>Max Duty Cycle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>5.00</td>
<td>100</td>
</tr>
<tr>
<td>4.1</td>
<td>11.67</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>18.33</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>25.00</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>31.67</td>
<td>17</td>
</tr>
<tr>
<td>4.5</td>
<td>38.33</td>
<td>10</td>
</tr>
<tr>
<td>4.6</td>
<td>45.00</td>
<td>5</td>
</tr>
</tbody>
</table>

Notes to Table 5–3:

(1) \(V_{IN} \) is the voltage at the package pin.

(2) The \(I_{CH} \) is calculated with a 3.3-V \(V_{CCIO} \). A higher \(V_{CCIO} \) value will have a lower \(I_{CH} \) value with the same \(V_{IN} \).
For signals with a duty cycle greater than 30% on MAX V input pins, Altera recommends using a VCCIO voltage of 3.0 V to guarantee long-term I/O reliability. For signals with a duty cycle less than 30%, the VCCIO voltage can be 3.3 V.

Power-Up Sequencing

MAX V devices are designed to operate in multi-voltage environments where it may be difficult to control power sequencing. Therefore, MAX V devices are designed to tolerate any possible power-up sequence. Either VCCINT or VCCIO can initially supply power to the device and 3.3-, 2.5-, 1.8-, 1.5-, or 1.2-V input signals can drive the devices without special precautions before VCCINT or VCCIO is applied. MAX V devices can operate with a VCCIO voltage level that is higher than the VCCINT level.

When VCCIO and VCCINT are supplied from different power sources to a MAX V device, a delay between VCCIO and VCCINT may occur. Normal operation does not occur until both power supplies are in their recommended operating range. When VCCINT is powered-up, the IEEE Std. 1149.1 JTAG circuitry is active. If TMS and TCK are connected to VCCIO and VCCIO is not powered-up, the JTAG signals are left floating. Thus, any transition on TCK can cause the state machine to transition to an unknown JTAG state, leading to incorrect operation when VCCIO is finally powered-up. To disable the JTAG state during the power-up sequence, pull TCK low to ensure that an inadvertent rising edge does not occur on TCK.

Document Revision History

Table 5–4 lists the revision history for this chapter.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2017</td>
<td>2017.06.16</td>
<td>Added note to state that 1.2-V LVCMOS is not supported in Bank 1.</td>
</tr>
<tr>
<td>December 2010</td>
<td>1.0</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>