
Intel® High Level Synthesis Compiler
User Guide

Updated for Intel® Quartus® Prime Design Suite: 18.0

Subscribe
Send Feedback

UG-20037 | 2018.07.02
Latest document on the web: PDF | HTML

https://www.altera.com/bin/rssdoc?name=ewa1457708982563
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20User%20Guide%20(UG-20037%202018.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/en_US/pdfs/literature/hb/hls/ug-hls.pdf
https://www.altera.com/documentation/ewa1457708982563.html

Contents

1. Intel® High Level Synthesis Compiler User Guide..3

2. Overview of the Intel High Level Synthesis (HLS) Compiler..4
2.1. High Level Synthesis Design Flow.. 4
2.2. The Project Directory... 5

3. Creating a High-Level Synthesis Component and Testbench... 7
3.1. Compiler-Defined Preprocessor Macros... 8

4. Verifying the Functionality of Your IP Design... 9

5. Optimizing and Refining Your Component...10

6. Verifying Your IP with Simulation...11
6.1. Generation of the Verification Testbench Executable..11
6.2. Debugging during Verification..12
6.3. High-Throughput Simulation (Asynchronous Component Calls) Using Enqueue

Function Calls...12
6.3.1. Execution Model...13
6.3.2. Comparison of Explicit and Enqueued Function Calls..................................... 13

7. Synthesize your Component IP with Intel Quartus Prime... 15

8. Integrating your IP into a System...16
8.1. Adding the HLS Compiler-Generated IP into an Intel Quartus Prime Project..................16
8.2. Adding the HLS Compiler-Generated IP into a Platform Designer System..................... 17

9. Document Revision History for Intel HLS Compiler User Guide..................................... 18

A. Limitations of the Intel HLS Compiler... 20

B. Reviewing the High Level Design Report (report.html) ... 22
B.1. High Level Design Report Layout..22
B.2. Reviewing the Report Summary...24
B.3. Reviewing Loop Information.. 25

B.3.1. Loop Analysis Example... 27
B.4. Reviewing Your Component Area Usage.. 28

B.4.1. Area Analysis Example..30
B.5. Viewing Your Component Design..32

B.5.1. Reviewing Your Component Interfaces.. 32
B.5.2. Reviewing Memory Replication and Stallable LSU Information........................ 43

B.6. Viewing Your Component Memory System ..46
B.7. Reviewing Your Component Verification Results..48
B.8. Accessing HLD FPGA Reports in JSON Format.. 49

Contents

Intel® High Level Synthesis Compiler User Guide
2

1. Intel® High Level Synthesis Compiler User Guide
The Intel® High Level Synthesis Compiler User Guide provides instructions on
synthesizing, verifying, and simulating IP that you design for Intel FPGA products. The
Intel High Level Synthesis (HLS) Compiler is sometimes referred to as the i++
compiler, reflecting the name of the compiler command.

Compared to traditional RTL development, the Intel HLS Compiler offers the following
advantages:

• Fast and easy verification

• Algorithmic development in C++

• Automatic integration of RTL verification with a C++ testbench

• Powerful microarchitecture optimizations

The features and devices supported by the Intel HLS Compiler depend on what edition
of Intel Quartus® Prime you have. The following icons indicate content in this
publication that applies only to the Intel HLS Compiler provided with a certain edition
of Intel Quartus Prime:

Indicates that a feature or content applies only to the Intel HLS Compiler
provided with Intel Quartus Prime Pro Edition.

Indicates that a feature or content applies only to the Intel HLS Compiler
provided with Intel Quartus Prime Standard Edition.

In this publication, <quartus_installdir> refers to the location where you
installed Intel Quartus Prime Design Suite. The Intel High Level Synthesis (HLS)
Compiler is installed as part of your Intel Quartus Prime Design Suite installation.

The default Intel Quartus Prime Design Suite installation location depends on your
operating system and your Intel Quartus Prime edition:

Windows C:\intelFPGA_pro\18.0

Linux /home/<username>/intelFPGA_pro/18.0

Windows C:\intelFPGA_standard\18.0

Linux /home/<username>/intelFPGA_standard/18.0

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

2. Overview of the Intel High Level Synthesis (HLS)
Compiler

The Intel High Level Synthesis (HLS) Compiler parses your design, compiles it to an
x86-64 object or FPGA-targeted RTL code, and creates an executable testbench.

The Intel HLS Compiler is command-line compatible with g++, and supports most of
the g++ compiler flags. See the Intel High Level Synthesis Compiler Reference Manual
for a full list of compiler flags. The Intel HLS Compiler recognizes the same file name
extensions as g++, namely .c, .C, .cc, .cpp, .CPP, .c++, .cp, and .cxx. The
compiler treats all of these file types as C++. The compiler does not explicitly support
C, other than as a subset of C++.

When you target the compilation to an FPGA, the Intel HLS Compiler outputs an
executable and a project directory. The default executable is a.out on Linux and
a.exe on Windows. The default project directory is a.prj, and it contains HLS
results, including the generated IP. It also contains reports and auxiliary information
for verification purposes.

To specify the name of the compiler output, include the -o <result> option in your
i++ command, where <result> is the name of the executable. This command
creates a project directory called <result>.prj.

Running the executable file runs your testbench. When you target the compilation to
an x86-64 architecture, the output executable runs your design on the CPU. The
output executable runs very quickly compared to running a simulation of your
component RTL. When you target the compilation to an FPGA architecture, the output
executable simulates your component RTL. This simulation can take a long time to
run.

2.1. High Level Synthesis Design Flow

The Intel High Level Synthesis (HLS) Compiler helps speed your IP development by
letting you compile your IP component C++ code to different targets, depending on
where you are in your IP development cycle.

The typical design flow when you use the Intel HLS Compiler consists of the following
stages:

1. Creating your component and testbench.

You can write a complete C++ application that contains both your component code
and your testbench code.

For details, see Creating a High-Level Synthesis Component and Testbench on
page 7.

2. Verify the functionality of your component algorithm and testbench.

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Verify the functionality by compiling your design to x86-64 executable and running
the executable. For details, see Verifying the Functionality of Your IP Design on
page 9.

3. Optimize and refine the FPGA performance of your component.

Optimize the FPGA performance of your component by compiling your design to an
FPGA target and reviewing the high-level design report to see where you can
optimize your component. This step generates RTL code for your component. For
details, see Optimizing and Refining Your Component on page 10.

After initial optimizations, you can see where to further refine your component by
compiling it for simulation. For details, see Verifying Your IP with Simulation on
page 11.

4. Synthesize your component with Intel Quartus Prime.

For details, see Synthesize your Component IP with Intel Quartus Prime on page
15.

Synthesizing your component generates accurate quality-of-results (QoR) metrics
like FPGA area utilization and fMAX.

5. Integrate your IP into a system with Intel Quartus Prime or Platform Designer
(formerly Qsys).

For details, see Integrating your IP into a System on page 16.

The following flowchart shows a coarse-grained progression through the stages of a
typical Intel High Level Synthesis (HLS) Compiler design flow.

Figure 1. Overview of Procedure for Synthesizing IP for Intel FPGA Products

Create component and test bench

 Compile design with the following command to generate IP and a testbench
executable to verify your design in simulation:

i++ -march="<FPGA_family_or_part_number>"

Compile design with g++ or i++ -march=x86-64
for functional verification

(Note: You can debug your design using GDB, even for an i++ x86-64 output)

Run a Quartus Prime compilation on the project in the
<result>.prj/quartus directory to generate QoR metrics

from Quartus Prime software

Refine
Algorithm

Optimize
FPGA

Performance

2.2. The Project Directory

The project directory (<result>.prj) that the Intel HLS Compiler outputs has four
main subdirectories.

2. Overview of the Intel High Level Synthesis (HLS) Compiler

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
5

Table 1. Subdirectories within the .prj Directory

Directory Description

components Contains a folder for each component, and all HDL and IP files that are needed to use
that component in a design.

verification Contains all the files for the verification testbench.

reports Contains reports with information that is useful for analyzing the hardware
implementation of the synthesized components.

quartus Contains an Intel Quartus Prime project that instantiates the components. You can
compile this Intel Quartus Prime project to generate more detailed timing and area
reports.

2. Overview of the Intel High Level Synthesis (HLS) Compiler

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
6

3. Creating a High-Level Synthesis Component and
Testbench

The Intel HLS Compiler converts individual functions into RTL code. The components
are part of a C++ application that acts as a testbench for your component functions,
and you can test your components by calling them from your main() function and
verifying that the output is correct.

Write the functions for your components in the OpenCL™-supported subset of C99
whenever possible. The compiler is capable of synthesizing some C++ constructs,
which might be easier for you to use to create cleaner code.

For more information about the supported subset of C99 and its restrictions, see
"Supported Subset for Component Synthesis" in Intel High Level Synthesis Compiler
Reference Manual.

The Intel HLS Compiler synthesizes all the code in the function or functions that you
label as components, and any code that these components call, to an RTL
representation.

You can identify a function in your C++ application that you want to synthesize into an
IP core in one of the following ways:

• Insert the component keyword in the source code before the top-level C++
function to be synthesized.

• Specify the function on the command line by using the --component
<component_list> option of the i++ command.

Important: Components are synthesized for all functions labeled with the component keyword
and all for all components listed in the --component <component_list> option of
the i++ command. Avoid combining these methods because you might unexpectedly
synthesize unwanted components.

If you do not want components synthesized for a function, ensure that you do not
have the component attribute specified in the function and ensure that the function is
not specified in the --component <component_list> option of the i++ command.

You can see which components were synthesized in the Area Analysis by Source
section of the high-level design report (<name>.prj/reports/report.html). For
more information about the high-level design report, see The Intel HLS Compiler High
Level Design Report (report.html) on page 10.

The HLS compiler creates an executable to run on the CPU. The compiler then sends
any calls to functions that you declared as components to simulation of the
synthesized IP core, and the simulation results are returned.

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/ewa1462824960255.html#ewa1462820598764
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

3.1. Compiler-Defined Preprocessor Macros

The Intel HLS Compiler has a built-in macro available that you can use to tailor your
code to create flow-dependent behaviors.

Table 2. Macro Definition for __INTELFPGA_COMPILER__

Tool Invocation __INTELFPGA_COMPILER__

g++ Undefined

i++ -march=x86-64 "18.0"

i++ -march="<FPGA_family_or_part_number>" "18.0"

3. Creating a High-Level Synthesis Component and Testbench

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
8

4. Verifying the Functionality of Your IP Design
Verify the functionality of your design by compiling your component and testbench to
an x86-64 executable that you can debug with your preferred C++ debugger.

Compiling your design to an x86-64 executable is faster than having to compile your
component to hardware or a hardware simulation. This faster compilation time lets
you debug and refine your component algorithms quickly before you move on to see
how your component is implemented in hardware.

You can compile your component and testbench to an x86-64 executable for functional
verification through any of the following methods:

• Use the i++ -march=x86-64 command.

• On Linux systems, use the g++ command.

• On Windows systems, use Microsoft Visual Studio.

Ensure that you set your compiler command to include debug information. The i++
command generates debug information by default. You can use GDB (on Linux
operating systems) or Microsoft Visual Studio (on Windows operating systems) to
debug your component and testbench, even if you used the i++ command to compile
your code for functional verification.

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

5. Optimizing and Refining Your Component
After you have verified the functionality of your component and testbench, you can
compile your component to RTL and review the high-level design report to further
optimize and refine your component design. The high-level design report shows
estimates of various aspects of how your component will be implemented in hardware.
By compiling your component to RTL and reviewing the high-level design report, you
can see how your code changes affect your component hardware implementation
without needing to run a simulation or a full Quartus synthesis.

To compile your component to RTL without running a simulation, issue the following
command:

i++ -march="<FPGA_family_or_part_number>" --simulator none

You can also compile your component with a ModelSim* simulation flow by omitting
the --simulator none option, but a simulation flow compile takes longer. However,
compiling your component with a simulation flow gives you additional information in
the high-level design report.

The Intel HLS Compiler High Level Design Report (report.html)

The high-level design report is an HTML file called report.html that you can open in
a web browser to review. You can find the high-level design report in the
<name>.prj/reports folder created when you compile your component to RTL.

Use the high-level design report to review information about your component,
including the following information:

• Loop information, including unroll status, pipelining status, and initiation interval

• Component visualization including load-store units, component interfaces, loops,
and local memory systems

After you run a simulation flow, the report also shows you verification statistics such
as component latency.

After you synthesize your component with Intel Quartus Prime software, the following
additional information is available in the report:

• Maximum clock frequency

• Area usage

For more information about the high-level design report and how to use it to optimize
and refine your component, see Reviewing the High Level Design Report (report.html)
on page 22.

For information about techniques that you can apply to optimize and refine your
component, see Intel High Level Synthesis Compiler Best Practices Guide.

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

6. Verifying Your IP with Simulation
When compiling your component to an FPGA architecture, the Intel HLS Compiler links
your design C++ testbench with an RTL-compiled version of your component that runs
in an RTL simulator.

The Intel HLS Compiler uses Mentor Graphics® ModelSim software to perform the
simulation. You must have ModelSim installed to use the Intel HLS Compiler. For a list
of supported versions of the ModelSim software, refer to the EDA Interface
Information section in the Intel Quartus Prime Software and Device Support Release
Notes.

• To verify the functional correctness of your IP with your C++ testbench, run the
executable that the compiler generates by targeting the FPGA architecture. By
default,the name of the executable is a.out (Linux) or a.exe (Windows).

Example command you might invoke for a simple single-file design:

Linux: i++ -march="Arria10" --component <component_list> […]
design.cpp && ./a.out

Windows: i++ -march="Arria10" --component <component_list> […]
design.cpp && ./a.exe

Related Information

• Mentor Graphics ModelSim Software Prerequisites for the Intel HLS Compiler

• EDA Interface Information (Intel Quartus Prime Standard Edition) Software

• EDA Interface Information (Intel Quartus Prime Pro Edition) Software

6.1. Generation of the Verification Testbench Executable

When you include -march="<FPGA_family_or_part_number>" in your i++
command, the HLS compiler identifies the components and performs high-level
synthesis on them. It then generates an executable to run a verification testbench.

The HLS compiler performs the following tasks to generate the verification executable:

1. Parses your design, and extracts the functions and symbols necessary for
component synthesis to the FPGA. The HLS compiler also extracts the functions
and symbols necessary for compiling the C++ testbench.

2. Compiles the testbench code to generate an x86-64 executable that also runs the
simulator.

3. Compiles the code for component synthesis to the FPGA. This compilation
generates RTL for the component and an interface to the x86-64 executable
testbench.

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/ewa1462479481465.html#lpd1467738276041__section_hls_requires_modelsim
https://www.altera.com/documentation/hco1416836145555.html#hco1416836645047
https://www.altera.com/documentation/ewa1443722509979.html#hco1416836645047
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

6.2. Debugging during Verification

By default, the HLS compiler instructs the simulator not to log any signals because
logging signals slows the simulation, and the waveforms files can be very large.
However, you can configure the compiler to save these waveforms for debugging
purposes.

To enable signal logging in the simulator, invoke the i++ command with the -ghdl
option in your i++ command, as follows:

i++ -march="<FPGA_family_or_part_number>" -ghdl <input files>

When the simulation finishes, open the vsim.wlf file inside the <result>.prj/
verification directory to view the waveform.

To view the waveform after the simulation finishes:

1. In ModelSim, open the vsim.wlf file inside the <result>.prj/verification
directory.

2. Right-click the <component_name>_inst block and select Add Wave.

You can now view the component top-level signals: start, busy, stall, done,
parameters, and outputs. Use the waveform to see how the component interacts
with its interfaces.

Tip: When you view the simulation waveform in ModelSim, the simulation clock
period is set to a default value of 1000 picoseconds (ps). To synchronize the
Time axis to show one cycle per tick mark, change the time resolution from
picoseconds (ps) to nanoseconds (ns):

a. Right-click the timeline and select Grid, Timeline & Cursor Control.

b. Under Timeline Configuration, set the Time units to ns.

6.3. High-Throughput Simulation (Asynchronous Component Calls)
Using Enqueue Function Calls

An explicit call to a component in simulation is a blocking call. To be consistent with
C++ language conventions, the testbench waits for a return value from the
component before continuing execution. This blocking call results in serial execution of
the component. You can test how well successive invocations of your component can
be pipelined by queuing inputs to the component before executing the component. You
can queue inputs to a component that has explicit interfaces by using enqueue
function calls from the cosimulation library. Estimate the throughput of your
component by dividing the component fMAX by the component initiation interval (II),
which indicates approximately how many times your component is invoked per
second.

Table 3. Functions from Cosimulation Library for Queuing Inputs to the Component
with Explicit Interfaces

Function Description

ihc_hls_enqueue(void* retptr, void*
funcptr, …)

This function enqueues one invocation of an HLS component.
The return value is stored in the first argument which should be a
pointer to the return type.

continued...

6. Verifying Your IP with Simulation

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
12

Function Description

The component does not execute until the
ihc_hls_component_run_all() function is invoked.

ihc_hls_enqueue_noret(void* funcptr,
…)

This function is similar to ihs_hls_enqueue(void* retptr, void*
funcptr, …), except that it does not have an output pointer to
capture return values.

ihc_hls_component_run_all (void*
funcptr)

This function executes all enqueued calls to the specified component in
a pipelined fashion.

6.3.1. Execution Model

Execution of enqueued component calls only occurs when the
ihc_hls_component_run_all(void* funcptr) function is called. All externally
visible side effects of the execution (for example, return data, pointers, or masters)
are not visible in the testbench until the ihc_hls_component_run_all() function
explicitly triggers the execution.

6.3.2. Comparison of Explicit and Enqueued Function Calls

The ihc_hls_enqueue and ihc_hls_enqueue_noret functions allow a new
invocation of a component to start every cycle if the component can be pipelined with
a component initiation interval (II) of one. If the component II is greater than one,
then the component invocation starts after II number of cycles.

Figure 2 on page 13 illustrates the waveform of the signals for the component dut.
The testbench does not include any enqueue function calls.

#include "HLS/hls.h"
#include <stdio.h>

component int dut(int a, int b) {
 return a*b;
}

int main (void) {

 int x1, x2, x3;
 x1 = dut(1, 2);
 x2 = dut(3, 4);
 x3 = dut(5, 6);

 printf("x1 = %d, x2 = %d, x3 = %d\n", x1, x2, x3);

 return 0;
}

Figure 2. Waveform Diagram of the Signals for Component dut Without Enqueue
Function Calls

6. Verifying Your IP with Simulation

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
13

Figure 3 on page 14 illustrates the waveform of the signals for the component dut
when the testbench includes enqueue function calls. Observe how the component is
passed new data each clock cycle, and compare this waveform with the earlier
waveform.

#include "HLS/hls.h"
#include <stdio.h>

component int dut(int a, int b) {
 return a*b;
}

int main (void) {

 int x1, x2, x3;
 ihs_hls_enqueue(&x1, &dut, 1, 2);
 ihs_hls_enqueue(&x2, &dut, 3, 4);
 ihs_hls_enqueue(&x3, &dut, 5, 6);

 ihs_hls_component_run_all(&dut);

 printf("x1 = %d, x2 = %d, x3 = %d\n", x1, x2, x3);

 return 0;
}

Figure 3. Waveform Diagram of the Signals for Component dut With Enqueue Function
Calls

6. Verifying Your IP with Simulation

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
14

7. Synthesize your Component IP with Intel Quartus
Prime

When you are satisfied with the predicted performance of your component, you can
then perform the longer hardware synthesis compilation with Intel Quartus Prime. This
compilation also generates accurate area and performance (fMAX) estimates for your
design.

After the Intel Quartus Prime compilation completes, the high level design report file
shows the area and performance data for your components. These estimates are more
accurate than estimates generated when you compile your component with the Intel
HLS Compiler.

Typical Intel Quartus Prime compilation times can take minutes to hours depending on
the size and complexity of your components.

To synthesize your component IP and generate quality of results (QoR) data, do one of
the following actions:

• Instruct the HLS compiler to run the Intel Quartus Prime compilation flow
automatically after synthesizing the components. Include the
--quartus-compile option in your i++ command.

i++ -march="<FPGA_family_or_part_number>" --quartus-compile --component ...

• If you already have the RTL for you component synthesized, you can navigate to
the quartus directory and compile the Intel Quartus Prime project by invoking
the following command:

quartus_sh --flow compile quartus_compile

Tip: Add the path to quartus_sh (Linux) or quartus_sh.exe (Windows) to
your PATH environment variable.

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

8. Integrating your IP into a System
To integrate your HLS compiler-generated IP into a system with Intel Quartus Prime,
you must be familiar with Intel Quartus Prime Standard Edition or Intel Quartus Prime
Pro Edition as well as the Platform Designer (formerly Qsys/Qsys Pro) system
integration tool included with Intel Quartus Prime.
The <result>.prj/components directory contains all the files you need to include
your IP in an Intel Quartus Prime project.
The IP that the HLS compiler generates for each component is self contained. You can
move the folders in the components directory to a different location or machine if
desired.

Important
prerequsite
for Intel®
Max® 10
FPGA users:

 If you develop your component IP for Intel MAX® 10 devices and you want to
integrate your component IP into a system that you are developing in Intel Quartus
Prime, ensure that the Intel Quartus Prime settings file (.qsf) for your system contains
one of the following lines:

• set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE
IMAGE WITH ERAM"

• set_global_assignment -name INTERNAL_FLASH_UPDATE_MODE "SINGLE
COMP IMAGE WITH ERAM"

When you compile the component IP for an Intel MAX 10 devices with Intel HLS
Compiler, the generated Intel Quartus Prime example project contains all of the
required QSF settings for your component. However, the Intel Quartus Prime project
for the system into which you integrate your component might not have the required
QSF setting.

8.1. Adding the HLS Compiler-Generated IP into an Intel Quartus
Prime Project

To use the IP generated by the Intel HLS Compiler in an Intel Quartus Prime project,
you must first add either the .qsys file or the .ip file to the project.

• For Intel Quartus Prime Standard Edition, add the .qsys file to the project.

• For Intel Quartus Prime Pro Edition, add the .ip file to the project

The .qsys file or the .ip file contains information to add to all of the necessary HDL
files for the component. It also applies to any component-specific Intel Quartus Prime
Settings File (QSF) settings that are necessary for IP synthesis.

1. Create an Intel Quartus Prime project.

2. Click Project ➤ Add/Remove Files in Project.

3. Perform one of the following tasks:

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

— For the Intel Quartus Prime Standard Edition software, in the Settings dialog
box, browse to and select the component's .qsys file.

For example, <result>.prj/components/<component_name>/
<component_name>.qsys

— For the Intel Quartus Prime Pro Edition software, in the Settings dialog box,
browse to and select the component's .ip file.

For example, <result>.prj/components/<component_name>/
<component_name>.ip

4. Instantiate the component top-level module in the Intel Quartus Prime project. For
an example on how to instantiate the component's top-level module, refer to the
<result>.prj/components/<component_name>/
<component_name>_inst.v file.

8.2. Adding the HLS Compiler-Generated IP into a Platform
Designer System

To use the HLS compiler-generated IP in a Platform Designer (formerly Qsys and Qsys
Pro) System, you must first add the directory to the IP search path or the IP Catalog.

In Platform Designer, if your HLS compiler-generated IP does not appear in the IP
Catalog, perform the following tasks:

1. In Intel Quartus Prime, click Tools ➤ Options.

2. In the Options dialog box, under Category, expand IP Settings and click IP
Catalog Search Locations.

3. Perform one of the following tasks:

— For Intel Quartus Prime Standard Edition, in the IP Catalog Search
Locations dialog box, add the path to the directory that contains the .qsys
file to IP Search Paths. To find all the components, specify the path as
<result>.prj/components/**/*.

— For Intel Quartus Prime Pro Edition, in the IP Catalog Search Locations
dialog box, add the path to the directory that contains the .ip file to IP
Search Paths as <result>.prj/components/<component_name>/
<component_name>.

4. In IP Catalog, add your IP to the Platform Designer system by selecting it from
the HLS project directory.

For more information about Platform Designer, see one of the following references,
depending on your version of Intel Quartus Prime:

• "Creating a System with Platform Designer (Standard)" in Intel Quartus Prime
Standard Edition Handbook Volume 1: Design and Compilation

• "Creating a System with Platform Designer" in Intel Quartus Prime Pro Edition
Handbook Volume 1: Design and Compilation

8. Integrating your IP into a System

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
17

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958596582
https://www.altera.com/documentation/jbr1437426657605.html#mwh1409958596582

9. Document Revision History for Intel HLS Compiler User
Guide

Document Version Intel Quartus
Prime Version

Changes

2018.07.02 18.0 • Added information about viewing the high level design report data in
JSON files. See Accessing HLD FPGA Reports in JSON Format on page
49 for details.

• Added related links to Verifying Your IP with Simulation on page 11 for
Mentor Graphics ModelSim prerequisites.

2018.05.07 18.0 • Starting with Intel Quartus Prime Version 18.0, the features and
devices supported by the Intel HLS Compiler depend on what edition of
Intel Quartus Prime you have. Intel HLS Compiler publications now use
icons to indicate content and features that apply only to a specific
edition as follows:

Indicates that a feature or content applies only to the Intel
HLS Compiler provided with Intel Quartus Prime Pro Edition.

Indicates that a feature or content applies only to the Intel
HLS Compiler provided with Intel Quartus Prime Standard
Edition.

•
 Added important prerequisite for Intel MAX 10 users to

Synthesize your Component IP with Intel Quartus Prime on page 15.
• Revised Debugging during Verification on page 12 to clarify how to view

the waveform in ModelSim after simulation.

2017.12.22 17.1.1 • Corrected typos in Execution Model on page 13:
— ihs_hls_component_run_all is now

ihc_hls_component_run_all.
— ihs_hls_run_all_enqueued is now

ihc_hls_component_run_all.

2017.11.06 17.1 • Moved the following content to Intel High Level Synthesis Compiler Best
Practices Guide:
— Moved compiler best practice content from "Creating a High-Level

Synthesis Component and Testbench on page 7" to "Best Practices
for Coding and Compiling Your Component".

• Moved the following content to Intel High Level Synthesis Compiler
Reference Manual"
— Moved "High Level Synthesis Component Interface Definition" to

Component Interface Definition.
— Moved Reset Behavior section to "Reset Behavior.
Added new chapter "Optimizing and Refining Your Component on page
10" to provide a brief introduction to the high-level design report
(report.html).

• Added new chapter "Verifying the Functionality of Your IP Design on
page 9" to provide some details about how to perform functional
verification on your HLS component.

• Rearranged the order of sections to better reflect the user flow of using
the compiler.

continued...

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/documentation/nml1505158467345.html#nwu1505609831891
https://www.altera.com/documentation/nml1505158467345.html#nwu1505609831891
https://www.altera.com/documentation/ewa1462824960255.html#ewa1462825672459
https://www.altera.com/documentation/ewa1462824960255.html#mab1496413141436
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Document Version Intel Quartus
Prime Version

Changes

2017.06.23 — • Minor changes and corrections.

2017.06.09 — • Updated Limitations of the Intel HLS Compiler on page 20 to add,
remove, and change compiler limitations found in this release.

• Rebranding __ALTERA_COMPILER__ and __ALTERA_TYPE__ to
__INTELFPGA_COMPILER__ and __INTELFPGA_TYPE__

• Changed references for the compiler option -march=fpga to -
march="<FPGA_family_or_part_number>". For details about
changes to the -march compiler option, see Command Options that
Customize Compilation in the Intel HLS Compiler Reference Manual

• Added recommendation to compile components with -Wconversion to
Creating a High-Level Synthesis Component and Testbench on page 7.

• Added information about HLS component reset behavior in Reset
Behavior.

2017.02.03 — • Added note about what functions have components synthesized for
them when you run the i++ command.

• Under Reviewing Your Component's report.html File, added Component
memory viewer section to introduce the Component memory viewer
report.

• Under Reviewing Your Component's report.html File, updated examples
and screen captures to reflect examples and tutorials provided with the
Intel HLS Compiler.

• Updated the values for the __ALTERA_COMPILER__ HLS compiler-
defined preprocessor macro.

2016.11.30 — • Under Reviewing Your Component's report.html File, added the
Information on Component Verification Results section to introduce the
Verification Statistics report.

• In Verifying Your HLS IP, noted that information on the supported
versions of the ModelSim software is available in the Intel Quartus
Prime Software and Device Support Release Notes.

• Removed the Latency Measurement during Verification section because
the APIs described within have been removed.

• In Adding the Compiler-Generated IP into a Intel Quartus Prime Project
and Adding the Compiler-Generated IP into a Qsys System, specified
that the for the Intel Quartus Prime Standard Edition software, the file
in question is the .qsys file. For the Intel Quartus Prime Pro Edition
software, the file in question is the .ip file.

• Updated the Limitations of the HLS Compiler section:
— Removed the limitation on ModelSim software version support.
— Added the limitation that C++ library calls are not supported on

Windows.

2016.09.12 — • Initial release.

9. Document Revision History for Intel HLS Compiler User Guide

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
19

https://www.altera.com/documentation/ewa1462824960255.html#ewa1462897780080
https://www.altera.com/documentation/ewa1462824960255.html#mab1496413141436
https://www.altera.com/documentation/ewa1462824960255.html#mab1496413141436

A. Limitations of the Intel HLS Compiler
When creating your IP using the HLS compiler, be aware of the current set of software
and programming limitations.

Compiler support

Linux compiler
support

The HLS compiler does not support GCC 4.7.0 or newer. The
compiler requires GCC compiler and C++ Libraries version 4.4.7

Windows compiler
support

The HLS compiler for Windows is compatible with Microsoft
Visual Studio 2010 only.

C++ Language Restrictions

The Intel HLS Compiler accepts C++ code. For the best results when you synthesize
your component, code your component function with C99.

• A component cannot include virtual functions, function pointers, or bit fields.

• Function-scoped static variables that are a part of the component cannot use
function arguments for initialization.

C++11
restrictions

• The HLS compiler does not support certain C++11 features
such as initializer lists and lambda functions.

Class
membership

• HLS component functions cannot be a C++ class member or
part of a declared namespace. However, you can declare your
component function as a wrapper function. This wrapper
function can call a member function of a class or a part of a
namespace.

Exception
handling

• A component cannot contain exception handling.

Library calls • The HLS compiler does not currently call to C++ runtime
libraries on Windows, including calls from the testbench code.

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Library
functions

• A component cannot contain standard C or C++ library
functions, unless they are explicitly supported by header files
provided with the Intel HLS Compiler.

A component that contains printf() or cout calls works in
its x86 implementation. However, the generated RTL does not
include the printf() or cout function calls if you include the
HLS/stdio.h library or the HLS/iostream standard C library
functions provided with the Intel HLS Compiler. If you try to
generate RTL with the regular stdio.h or iostream headers
you will likely experience compiler errors.

Multiple
inheritance

• The HLS compiler does not support classes with multiple
inheritance used as parameters. You may use classes as
parameters provided that each class inherits from, at most, one
class directly.

Namespaces • HLS component functions cannot be a C++ class member or
part of a declared namespace. However, you can declare your
component function as a wrapper function. This wrapper
function can call a member function of a class or a part of a
namespace

Overloading/
Templates

• Components cannot be templated functions or overloaded
functions. If you must use a component this way, create a
component that is not part of a templated function or
overloaded function, then call that component.

Parameters • The HLS compiler does not support classes with multiple
inheritance used as parameters. You may use classes as
parameters as long as each class inherits from, at most, one
class directly.

Recursion • The HLS compiler does not support the synthesis of
components that use recursion; however, tail recursion is
supported.

If a component has an algorithm that uses recursion, and it is
identified for FPGA acceleration, modify the algorithm to use
tail recursion, if possible.

A. Limitations of the Intel HLS Compiler

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
21

B. Reviewing the High Level Design Report (report.html)

After compiling your component, the Intel HLS Compiler generates an HTML report
that helps you analyze various component aspects, such as area, loop structure,
memory usage, and component pipeline. To launch the high level design report, open
the following file in a web browser: <result>.prj/reports/report.html.

B.1. High Level Design Report Layout

The High Level Design Report (report.html) is divided into four main sections:
report menu, analysis pane, source code pane, and details pane.

Report menu

Analysis pane Source code pane

Details pane

Report Menu

From the View reports pull-down menu, you can select a report to see an analysis of
different parts of your component design.

UG-20037 | 2018.07.02

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Analysis Pane

The analysis pane displays detailed information of the report that you selected from
the View reports pull-down menu.

Source Code Pane

The source code pane displays the code for all the source files in your component.

To select between different source files in your component, click the pull-down menu
at the top of the source code pane. To collapse the source code pane, do one of the
following actions:

• Click the X icon beside the source code pane pull- down menu.

• Click the vertical ellipsis icon on the right-hand side of the report menu and then
select Show/Hide source code.

If you previously collapsed the source code pane and want to expand it, click the
vertical ellipsis icon on the right-hand side of the report menu and then select Show/
Hide source code.

Details Pane

For each line that appears in a loop analysis or area report, the details pane shows
additional information, if available, that elaborates on the comment in the Details
column report. To collapse the details pane, do one of the following actions:

• Click the X icon on the right-hand side of the details pane.

• Click the vertical ellipsis icon on the right-hand side of the report menu and then
select Show/Hide details.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
23

B.2. Reviewing the Report Summary

The report summary gives you a quick overview of the results of compiling your
design including a summary of each component in your design and a summary of the
estimated resources that each component in your design uses.

The report summary is divided into four sections: Info, Quartus Fit Summary,
Estimated Resource Usage, and Compile Warnings.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
24

Info

The Info section shows general information about the compile including the following
items:

• Name of the project

• Target FPGA family and device

• Intel Quartus Prime version

• HLS compiler version

• The command that was used to compile the design

• The date and time at which the reports were generated

Quartus Fit Summary

The Quartus Fit Summary section of the report.html Summary page is populated
after compiling your design with Intel Quartus Prime software. After compilation, the
following sections appear on the Summary page:

• Quartus Fit Clock Summary

• Quartus Fit Resource Utilization Summary

The Quartus Fit Clock Summary section shows the maximum clock frequencies that
can be achieved for the design.

The Quartus Fit Resource Utilization Summary section shows the total area utilization
both for the entire design, and for each component individually. There is no
breakdown of area information by source line.

Estimated Resource Usage

The Estimated Resource Usage section shows a summary of the estimated resources
used by each component in your design, as well as the total resources used for all
components.

Compile Warnings

The Compile Warnings section shows the compiler warnings generated during the
compilation.

B.3. Reviewing Loop Information

The High Level Design Report (<result>.prj/reports/report.html) file
contains information about all the loops in your design and their unroll statuses. This
loop analysis report helps you examine whether the Intel HLS Compiler is able to
maximize the throughput of your component.

You can use the loop analysis report to help determine where to deploy one or more of
the following pragmas on your loops:

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
25

• #pragma unroll

For details about #pragma unroll, see "Loop Unrolling (unroll Pragma)" in
Intel High Level Synthesis Compiler Reference Manual.

• #pragma loop_coalesce

For details about #pragma loop_coalesce, see "Loop Coalescing
(loop_coalesce Pragma)" in Intel High Level Synthesis Compiler Reference
Manual.

• #pragma ii

For details about #pragma ii, see "Loop Initiation Interval (ii Pragma)" in Intel
High Level Synthesis Compiler Reference Manual.

1. Click View reports ➤ Loop Analysis.

2. In the analysis pane, select Show fully unrolled loops to obtain information
about the loops in your design.

3. Consult the flowchart below to identify actions you can take to improve the
throughput of your design.

Loop

Fully
unrolled?

Partially
unrolled?

Pipelined?

YES

NO

NO

NO

YESYES

YES

II=1? Loop pipeline
is optimal

Serial execution
Refer to Details pane for information

Refer to Bottleneck or Details
column for information

Details column shows
“Unrolled by #pragma unroll” or

“Auto-unrolled”
Loop structure is optimal

Maximum throughput is achieved

Verify that #pragma unroll value
is correct

NO

Remember: II refers to the initiation interval of a loop, which is the launch
frequency of a new loop iteration. An II value of 1 is ideal; it indicates
that the pipeline is functioning at maximum efficiency because the
pipeline can process a new loop iteration every clock cycle.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
26

https://www.altera.com/documentation/ewa1462824960255.html#hsi1468861028556
https://www.altera.com/documentation/ewa1462824960255.html#yyy1489604310598
https://www.altera.com/documentation/ewa1462824960255.html#yyy1489604310598
https://www.altera.com/documentation/ewa1462824960255.html#flb1489716579362

B.3.1. Loop Analysis Example

Figure 4 on page 27 shows an example High Level Design Report (report.html) file
that shows the loop analysis of a component design taken from the
transpose_and_fold.cpp file (part of the tutorial files provided in
<quartus_installdir>/hls/examples/tutorials/best_practices/
loop_memory_dependency).

Consider the following example code snippet for transpose_and_fold.cpp:

01: #include "HLS/hls.h"
02: #include <stdio.h>
03: #include <stdlib.h>
04:
05: #define SIZE 32
06:
07: typedef ihc::stream_in<int> my_operand;
08: typedef ihc::stream_out<int> my_result;
09:
10: component void transpose_and_fold(my_operand &data_in, my_result &res)
11: {
12: int i;
13: int j;
14: int in_buf[SIZE][SIZE];
15: int tmp_buf[SIZE][SIZE];
16: for (i = 0; i < SIZE * SIZE; i++) {
17: in_buf[i / SIZE][i % SIZE] = data_in.read();
18: tmp_buf[i / SIZE][i % SIZE] = 0;
19: }
20:
21: #ifdef USE_IVDEP
22: #pragma ivdep safelen(SIZE)
23: #endif
24: for (j = 0; j < SIZE * SIZE * SIZE; j++) {
25: #pragma unroll
26: for (i = 0; i < SIZE; i++) {
27: tmp_buf[j % SIZE][i] += in_buf[i][j % SIZE];
28: }
29: }
30: for (i = 0; i < SIZE * SIZE; i++) {
31: res.write(tmp_buf[i / SIZE][i % SIZE]);
32: }
33: }

Figure 4. Loop Analysis Report of the transpose_and_fold Component

The transpose_and_fold component has four loops. The loop analysis report shows
that the compiler performed different kinds of loop optimizations:

• The loop on line 26 is fully unrolled, as defined by #pragma unroll.

• The loops on lines 16 and 30 are pipelined with an II value of ~1. The value is ~1
because both loops contain access to streams that could stall. If these access stall,
then the loop II becomes greater than 1.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
27

The Block1.start loop in the loop analysis report is not present in the code. It is an
implicit infinite loop that the compiler adds to allow the component to run
continuously, instead of only once. In hardware, the component run continuously and
checks its inputs to see if it should start executing.

B.4. Reviewing Your Component Area Usage

The High Level Design Report (report.html) provides a detailed breakdown of the
estimated FPGA area usage. It also provides feedback on key hardware features such
as private memory configuration.

The estimated area usage information correlates with, but does not necessarily match,
the resource usage results from the Intel Quartus Prime software. Use the estimated
area usage to identify parts of the design with large area overhead. You can also use
the estimates to compare area usage between different designs. Do not use the
estimated area usage information for final resource utilization planning.

The Quartus Fit Summary section of the High Level Design Report Summary page is
populated after compiling your design with Intel Quartus Prime software. After that
compilation, the following sections appear on the Summary page:

• Quartus Fit Clock Summary

• Quartus Fit Resource Utilization Summary

The Quartus Fit Clock Summary section shows the maximum clock frequencies that
can be achieved for the design.

The Quartus Fit Resource Utilization Summary section shows the total area utilization
both for the entire design, and for each component individually. There is no
breakdown of area information by source line.

Tip: Compiling your component using the Intel Quartus Prime software might take several
hours. In contrast, the Intel HLS Compiler can generate the High Level Design Report
in minutes for most designs.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
28

Before compiling your design with Intel Quartus Prime software, the High Level Design
Report looks like the following example:

After compiling your design with Intel Quartus Prime software, the High Level Design
Report looks like the following example. The Quartus Fit Summary section is now
populated.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
29

B.4.1. Area Analysis Example

You have the option to review the area analysis of your design based on source line or
system.

Area Analysis by Source

Area analysis by source shows an approximation of how each line of the source code
affects area. In the area analysis by source view, the report shows the area
hierarchically.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
30

The System entry in the area report refers to all the components in the design.
Expanding the System entry allows you to view all the components in the design. In
this example, there is only one component (that is, transpose_and_fold).

Each line in the report contains state and corresponding information. In the figure
below, the example area report shows that on line 17, where a stream of data is
stored to in_buf, the consumed area is used for computing the pointer value and
then storing it. On line 14, area consumption is a result of in_buf using 16 RAM
blocks and some logic.

Figure 5. Breakdown of Area Usage by Source Line

Area Analysis by System

Area analysis of system shows an area breakdown that is closest to the actual
hardware implemented in the FPGA.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
31

Figure 6. Breakdown of Area Usage by System

B.5. Viewing Your Component Design

The Component Viewer in the High Level Design Report (report.html) shows an
abstracted netlist of your component design. You can visualize component interfaces,
load-store units (LSUs), loops, and local memory systems.

B.5.1. Reviewing Your Component Interfaces

The Component Viewer report shows a visual representation of the interfaces in your
component. You can view details about the following interface arguments: default,
pointer, pass-by-reference, Avalon® Memory-Mapped (MM), and Avalon Streaming.

Some interface arguments in your component can be marked as being stable. A stable
interface argument is an argument that does not change while your component
executes, but the argument might change between component executions.

In the Component Viewer report, a stable node does not have any edge connection.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
32

The Component Viewer report displays the different interfaces as outlined in the
following sections:

• Default Interface Arguments on page 33

• Pointer, Pass-By-Reference, and Avalon MM Master Interface Arguments on page
35

• Avalon MM Slave Register Interface Arguments on page 37

• Avalon MM Slave Memory Interface Arguments on page 39

• Avalon Streaming Interface Arguments on page 41

Default Interface Arguments

Default interface arguments are any scalars or simple structs. The Component Viewer
report connects the default argument nodes to the corresponding channel read (RD)
node.

#include "HLS/hls.h"
#include "stdio.h"

struct coordinate_t {
 int x;
 int y;
};

component int default_comp(int b, coordinate_t p) {
 return b + p.x;
}

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
33

For each default interface argument node, you can view details about the node when
you hover over the node:

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
34

Pointer, Pass-By-Reference, and Avalon MM Master Interface Arguments

Pointer interfaces, pass-by-reference interfaces, Avalon MM master interfaces, and
global variables all correspond to addresses to memory outside of your component.
Similarly to the default interface arguments, these nodes connect to the corresponding
channel read (RD) node for your component.

#include "HLS/hls.h"
#include "stdio.h"

component int master_comp(
 int *pointer_d,
 ihc::mm_master<int, ihc::aspace<3>, ihc::awidth<4>,
ihc::dwidth<32>,ihc::latency<1>, ihc::align<4> > &master_i,
 int &result
)
 {
 result = *pointer_d + *master_i;
 return result;
}

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
35

The Component Viewer report shows the following details for these interface
arguments:

Stable Describes whether the interface argument is stable. That is, whether
the hls_stable_argument attribute was applied.

Data width The width of the memory-mapped data bus in bits.

Address width The width of the memory-mapped address bus in bits.

Latency The guaranteed latency from when the read command exits the
component to when the external memory returns valid read data.
The latency is measured in clock cycles.

Maximum
burst

The maximum number of data transfers that can associate with a
read or write transaction. For fixed latency interfaces, this value is
set to 1.

Alignment The byte alignment of the base pointer address. The Intel HLS
Compiler uses this information to determine the amount of
coalescing that is possible for loads and stores to this pointer.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
36

The Component Viewer report shows the following details for global memories:

Memory address space
number

The memory address space number for global memory.

Number of banks The number of memory banks contained in the
memory.

Argument Name: The names of arguments that access the global
memory.

Avalon MM Slave Register Interface Arguments

When you label an interface argument as an Avalon MM slave register
(hls_avalon_slave_register_argument), then the interface argument is
implemented in the control and status register (CSR) slave interface. The Component
Viewer report puts the slave register arguments inside a CSR container.

#include "HLS/hls.h"
#include "stdio.h"

component int slavereg_comp(
 int hls_avalon_slave_register_argument slave_scalar_f,
 int* hls_avalon_slave_register_argument slave_pointer_g

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
37

) {
 return slave_scalar_f + *slave_pointer_g;
}

The resulting memory map is described in the automatically generated header file
<component_name>_csr.h. This header file is available in the menu in the source
code pane. Clicking on the CSR container node in the Component Viewer report also
opens up the header file:

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
38

If you use the hls_avalon_slave_component macro, then the “do” and “return”
streams (control and status registers) are implemented in the CSR interface:

#include "HLS/hls.h"
#include "stdio.h"

hls_avalon_slave_component
component int slavereg_comp(
 int hls_avalon_slave_register_argument slave_scalar_f,
 int* hls_avalon_slave_register_argument slave_pointer_g
) {
 return slave_scalar_f + *slave_pointer_g;
}

Avalon MM Slave Memory Interface Arguments

When you declare a pointer argument as a slave memory, the Component Viewer
report shows the slave memory interface with a <slave memory name> LD/ST
node that is connected to the Local Memory node in the component.

#include "HLS/hls.h"
#include "stdio.h"

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
39

hls_avalon_slave_component
component int slavemem_comp(
 hls_avalon_slave_memory_argument(4096) int* slave_mem_h,
 int index,
 int hls_avalon_slave_register_argument slave_scalar_f
) {
 return slave_mem_h[index] * slave_scalar_f;

If you look at the same Avalon MM slave memory interface in the Component Memory
Viewer report, the same <slave memory name> LD/ST node is shown to be
connected to an external RW port.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
40

Avalon Streaming Interface Arguments

A streaming interface is shown in the Component Viewer report by a <stream
name> node connected to the corresponding RD node (for stream_in<>) or WR
node (for stream_out<>).

#include "HLS/hls.h"
#include "stdio.h"
component int stream_comp(
 ihc::stream_in<int> &stream_in_c,
 ihc::stream_out<int> &stream_out_e,
 int scalar_b
) {

 stream_out_e.write(scalar_b + 1);
 return stream_in_c.read() + scalar_b * 2;
}

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
41

The Component Viewer report shows the following details for streaming interface
arguments:

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
42

Width The width of the data bus in bits.

Depth The depth of the stream in words

The word size of the stream is the size of the stream datatype.

Bits per
symbol

Describes how the data is broken into symbols on the data bus.

Uses Packets Indicates whether the interface exposes the startofpacket and
endofpacket sideband signals on the stream interfaces. The signals
can be access by the packet-based reads and writes.

Uses Valid (stream_in) Indicates whether a valid signal is present on the
stream interface. When Yes, the upstream source must provide valid
data on every cycle that ready is asserted.

Uses Reader (stream_in) Indicates whether a ready signal is present on the
stream interface. When Yes, the downstream sink must be able to
accept data on every cycle that valid is asserted.

B.5.2. Reviewing Memory Replication and Stallable LSU Information

Consider the following code excerpt from the transpose_and_fold component (part
of the tutorial files provided in <QPDS_installdir>/hls/examples/tutorials/
loop_memory_dependency):

01 #include "HLS/hls.h"
02 #include "stdio.h"
03 #include "stdlib.h"
04
05 #define SIZE 32
06
07 typedef altera::stream_in<int> my_operand;
08 typedef altera::stream_out<int> my_result;
09
10 void transpose_and_fold(my_operand &a, my_operand &b, my_result &c)
11 {
12 int i;
13 int j;
14 int a_buf[SIZE][SIZE];
15 int b_buf[SIZE][SIZE];
16 for (i = 0; i < SIZE * SIZE; i++) {
17 a_buf[i / SIZE][i % SIZE] = a.read();
18 b_buf[i / SIZE][i % SIZE] = b.read();
19 }
20 #ifdef USE_IVDEP
21 #pragma ivdep
22 #endif
23 for (j = 0; j < SIZE * SIZE * SIZE; j++) {
24 #pragma unroll
25 for (i = 0; i < SIZE; i++) {
26 b_buf[j % SIZE][i] += a_buf[i][j % SIZE];
27 }
28 }
29 for (i = 0; i < SIZE * SIZE; i++) {

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
43

30 c.write(b_buf[i / SIZE][i % SIZE]);
31 }
32 }

The figure below shows that Block3 on line 23 is highlighted in red to prompt you to
review the loop. Because loop analysis of Block3 shows that it is a pipelined loop with
an II value of 2, the loop pipeline might affect the throughput of your design. The
Component Viewer shows that the II value is caused by a memory dependency on
loads to the b_buf variable.

Figure 7. System View of the transpose_and_fold Component

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
44

By hovering your mouse pointer over a node, you can view the tooltip and details that
provide more information on the LSU. In the figure below, the tooltip shows
information like the latency of the load is 6, and the LSU is stall-free.

Figure 8. Detailed View of Node and Tooltip

The Component Viewer allows you to select the type of connections you want to view.
Selecting Control instructs the system viewer to display the connections between
blocks and loops. Selecting Memory instructs the Component Viewer to display the
connections to and from global and local memories. Selecting Streams instructs the
system viewer to display the connections reading from and writing to streams.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
45

Figure 9. System View of the transpose_and_fold Component without Connections
between Blocks and Loops

B.6. Viewing Your Component Memory System

Data movement is often a bottleneck in many algorithms. The component memory
viewer in the High Level Design Report (report.html) shows you how the Intel High
Level Synthesis (HLS) Compiler interprets the data connections across the memory
system of your component. Use the Component Memory Viewer to help you identify
data movement bottlenecks in your component design.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
46

Also, some patterns in memory accesses can cause undesired arbitration in the load-
store units (LSUs), which can affect the throughput performance of your component.
Use the Component Memory Viewer to find where you might have unwanted
arbitration in the LSUs.

The Component Memory Viewer has the following panes:

Memory List The Memory List pane shows you a hierarchy of components,
memories in that component, and the corresponding memory banks.

Clicking a memory name in the list displays a graphical representation
of the memory in the Component memory viewer pane. Also, the line
in your code where you declared the memory is highlighted in the
Source Code pane.

Clearing a check box for a memory bank collapses that bank in the
Component Memory Viewer pane, which can help you to focus on
specific memory banks when you view a complex memory design. By
default, all banks in component memory are selected and shown in the
Component Memory Viewer pane.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
47

Component
Memory
Viewer

The Component Memory Viewer pane shows you connections between
loads and stores to specific logical ports on the banks in a memory
system. The following types of nodes might be shown in the
Component Memory Viewer pane, depending on the component
memory system:

• Memory node: The component memory.

• Bank node: A bank in the memory. Only banks selected in the
Memory List pane are shown. Select banks in the Memory List
pane to help you focus on specific memory banks when you view a
complex memory design.

• Port node: The logical port for a bank. There are three types of
port:

— R: A read-only port

— W: A write-only port

— RW: A read and write port

• LSU node: A store (ST) or load (LD) node connected to the
memory.

• Arbitration node: An arbitration (ARB) node shows that LSUs
compete for access to a shared port node,which can lead to stalls.

• Port-sharing node: A port-sharing node (SHARE) shows that LSUs
have mutually exclusive access to a shared port node, so the load-
store units are free from stalls.

Hover over any node to view the attributes of that node.

Hover over an LSU node to highlight the path from the LSU node to all
of the ports that the LSU connects to.

Hover over a port node to highlight the path from the port node to all
of the LSUs that store to the port node.

Click a node to select it and have the node attributes displayed in the
Details pane.

Details The Details pane shows the attributes of the node selected in the
Component Memory Viewer pane. For example, when you select a
memory in a component, the Details pane shows information such as
the width and depths of the memory banks, as well as any user-
defined HLS attributes that you specified in your source code.

The content of the Details pane persists until you select a different
node in the Component Memory Viewer pane.

B.7. Reviewing Your Component Verification Results

For each component that the testbench calls, the verification statistics report provides
information such as the number and type of invocations, latency, initiation interval,
and throughput.

The verification statistics report becomes available after you simulate your component.

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
48

Important: • The data presented in the verification statistics report might be dependent on the
input values to the component from the test bench.

• The verification statistics report only reports the component loop initiation interval
(II) values and throughput for enqueued invocations.

The following example verification statistics report is for a component dut that has
been run once as a simple function call and 100 times as an enqueued invocation:

For components that use explicit streams, such as ihc::stream_in<> or
ihc::stream_out<>, the verification statistics report also provides the throughput
for each individual stream, as shown in the details pane:

B.8. Accessing HLD FPGA Reports in JSON Format

The high level design report data for the Intel HLS Compiler is also available as JSON-
formatted data.

The JSON files containing the data are available in the <result>.prj/
reports/lib/json directory. The directory provides the following .json files:

Table 4. JSON Files in the <result>.prj/reports/lib/json Directory

File Description

area.json Area analysis of system

area_src.json Area analysis of source

info.json Summary

lmv.json Component Memory Viewer

loops.json Loop analysis

mav.json Component Viewer

quartus.json Summary

summary.json Summary

warnings.json Summary

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
49

You can read the following .json files without a special parser:

• area.json

• area_src.json

• loops.json

• quartus.json

• summary.json

For example, if you wish to identify all of the values and bottlenecks for the initiation
interval (II) of a loop, you can find the information in the children section in the
loops.json file, as shown below:

“name”:”<block name|Component: component name> # Find the loops which does not
begin with “Component:”

 “data”:[<Yes|No>, <#|n/a>, <II|n/a>] # The data field corresponds to
“Pipelined”, “II”, “Bottleneck”

B. Reviewing the High Level Design Report (report.html)

UG-20037 | 2018.07.02

Intel® High Level Synthesis Compiler User Guide
50

	Intel High Level Synthesis Compiler User Guide
	Contents
	1. Intel® High Level Synthesis Compiler User Guide
	2. Overview of the Intel High Level Synthesis (HLS) Compiler
	2.1. High Level Synthesis Design Flow
	2.2. The Project Directory

	3. Creating a High-Level Synthesis Component and Testbench
	3.1. Compiler-Defined Preprocessor Macros

	4. Verifying the Functionality of Your IP Design
	5. Optimizing and Refining Your Component
	6. Verifying Your IP with Simulation
	6.1. Generation of the Verification Testbench Executable
	6.2. Debugging during Verification
	6.3. High-Throughput Simulation (Asynchronous Component Calls) Using Enqueue Function Calls
	6.3.1. Execution Model
	6.3.2. Comparison of Explicit and Enqueued Function Calls

	7. Synthesize your Component IP with Intel Quartus Prime
	8. Integrating your IP into a System
	8.1. Adding the HLS Compiler-Generated IP into an Intel Quartus Prime Project
	8.2. Adding the HLS Compiler-Generated IP into a Platform Designer System

	9. Document Revision History for Intel HLS Compiler User Guide
	A. Limitations of the Intel HLS Compiler
	B. Reviewing the High Level Design Report (report.html)
	B.1. High Level Design Report Layout
	B.2. Reviewing the Report Summary
	B.3. Reviewing Loop Information
	B.3.1. Loop Analysis Example

	B.4. Reviewing Your Component Area Usage
	B.4.1. Area Analysis Example

	B.5. Viewing Your Component Design
	B.5.1. Reviewing Your Component Interfaces
	B.5.2. Reviewing Memory Replication and Stallable LSU Information

	B.6. Viewing Your Component Memory System
	B.7. Reviewing Your Component Verification Results
	B.8. Accessing HLD FPGA Reports in JSON Format

