Introduction

Cyclone® III family devices (Cyclone III and Cyclone III LS devices) offer hot socketing, which is also known as hot plug-in or hot swap, and power sequencing support without the use of any external devices. You can insert or remove Cyclone III family devices or a board in a system during system operation without causing undesirable effects to the running system bus or the board that is inserted into the system.

The hot socketing feature removes some of the difficulties that you encounter when you use Cyclone III family devices on a PCB that contains a mixture of 3.0, 2.5, 1.8, 1.5 and 1.2 V devices. With the hot socketing feature of Cyclone III family devices, you no longer need to ensure a proper power up sequence for each device on the board.

Cyclone III family devices hot socketing feature provides:

- Board or device insertion and removal without external components or board manipulation
- Support for any power-up sequence
- Non-intrusive I/O buffers to system buses during hot insertion

This chapter also discusses the power-on reset (POR) circuitry in Cyclone III family devices. The POR circuitry keeps the devices in the reset state until the power supplies are in operating range.

Hot-Socketing Specifications

Cyclone III family devices are hot-socketing compliant without the need for any external components or special design requirements. Hot socketing support in Cyclone III family devices have the following advantages:

- You can drive the device before power up without damaging the device.
- I/O pins remain tristated during power up. The device does not drive out before or during power up, therefore not affecting other buses in operation.

Devices Driven Before Power-Up

You can drive signals into I/O pins, dedicated input pins, and dedicated clock pins of Cyclone III family devices before or during power up or power down without damaging the device. Cyclone III family devices support any power up or power down sequence (\(V_{CCIO}\), \(V_{CCINT}\)) to simplify system level design.
I/O Pins Remain Tristated During Power-Up

The output buffers of Cyclone III family devices are turned off during system power up or power down. Cyclone III family devices do not drive out until the device is configured and working in recommended operating conditions. The I/O pins are tristated until the device enters user mode with a weak pull-up resistor (R) to VCCIO.

You can power up or power down the \(V_{CCIO} \), \(V_{CCA} \), and \(V_{CCINT} \) pins in any sequence. The \(V_{CCIO} \), \(V_{CCA} \), and \(V_{CCINT} \) must have monotonic rise to their steady state levels. The maximum power ramp rate for fast POR time is 3 ms, and 50 ms for standard POR time, respectively. The minimum power ramp rate is 50 µs. \(V_{CCIO} \) for all I/O banks must be powered up during device operation. All \(V_{CCA} \) pins must be powered to 2.5 V (even when PLLs are not used), and must be powered up and powered down at the same time. \(V_{CCD_PLL} \) must always be connected to \(V_{CCINT} \) through a decoupling capacitor and ferrite bead. During hot socketing, the I/O pin capacitance is less than 15 pF and the clock pin capacitance is less than 20 pF.

Cyclone III family devices meet the following hot socketing specification:

- The hot-socketing DC specification is \(|I_{IOPIN}| < 300 \mu A \)
- The hot-socketing AC specification is \(|I_{IOPIN}| < 8 \) mA for the ramp rate of 10 ns or more

For ramp rates faster than 10 ns on I/O pins, \(|I_{IOPIN}| \) is obtained with the equation \(I = C \frac{dv}{dt} \), in which \(C \) is the I/O pin capacitance and \(\frac{dv}{dt} \) is the slew rate. The hot-socketing specification takes into account the pin capacitance but not board trace and external loading capacitance. You must consider additional or separate capacitance for trace, connector, and loading. \(I_{IOPIN} \) is the current for any user I/O pins on the device. The DC specification applies when all \(V_{CC} \) supplied to the device is stable in the powered-up or powered-down conditions.

A possible concern for semiconductor devices in general regarding hot socketing is the potential for latch up. Latch up can occur when electrical subsystems are hot-socketed into an active system. During hot socketing, the signal pins may be connected and driven by the active system before the power supply can provide current to the \(V_{CC} \) of the device and ground planes. This condition can lead to latch up and cause a low-impedance path from \(V_{CC} \) to ground in the device. As a result, the device extends a large amount of current, thus possibly causing electrical damage.

The design of the I/O buffers and hot socketing circuitry ensures that Cyclone III family devices are immune to latch up during hot socketing.

For more information on the hot socketing specification, refer to the Cyclone III Device Data Sheet and Cyclone III LS Device Data Sheet chapters in volume 2 of the Cyclone III Device Handbook and the Hot-Socketing and Power-Sequencing Feature and Testing for Altera Devices white paper.
Hot-Socketing Feature Implementation

Each I/O pin has the following circuitry shown in Figure 10–1. The hot socketing circuit does not include CONF_DONE, nCEO, and nSTATUS pins to ensure that they are able to operate during configuration. Thus, it is expected behavior for these pins to drive out during power up and power down sequences.

Figure 10–1 shows the hot socketing circuit block diagram for Cyclone III family devices.

Figure 10–1. Hot Socketing Circuit Block Diagram for Cyclone III Family Devices

The POR circuit monitors the voltage level of power supplies and keeps the I/O pins tristated until the device is in user mode. The weak pull-up resistor (R) in Cyclone III family devices I/O element (IOE) keeps the I/O pins from floating. The 3.0-V tolerance control circuit permits the I/O pins to be driven by 3.0 V before VCCIO, VCC, and VCCA supplies are powered up, and it prevents the I/O pins from driving out when the device is not in user mode.

Altera® uses GND as reference for hot-socketing operation and I/O buffer designs. To ensure proper operation, Altera recommends connecting the GND between boards before connecting the power supplies. This prevents the GND on your board from being pulled up inadvertently by a path to power through other components on your board. A pulled up GND can otherwise cause an out-of-specification I/O voltage or current condition with the Altera device.
POR Circuitry

Cyclone III family devices contain POR circuitry to keep the device in a reset state until the power supply voltage levels have stabilized during power up. During POR, all user I/O pins are tristated until the \(V_{CC} \) reaches the recommended operating levels. In addition, the POR circuitry also ensures the \(V_{CCIO} \) level of I/O banks 1, 6, 7, and 8 that contains configuration pins reach an acceptable level before configuration is triggered.

The POR circuit of the Cyclone III device monitors the \(V_{CCINT} \), \(V_{CCIO} \), and \(V_{CCA} \) pins during power-on. The enhanced POR circuit of the Cyclone III LS device includes monitoring \(V_{CCBAT} \) to ensure that \(V_{CCBAT} \) is always at the minimum requirement voltage level.

The \(V_{CCBAT} \) power supply is the new design security feature power supply introduced for Cyclone III LS devices only, and Cyclone III devices do not have \(V_{CCBAT} \) power supply.

After Cyclone III family devices enter user mode, the POR circuit continues to monitor the \(V_{CCINT} \) and \(V_{CCA} \) pins so that a brown-out condition during user mode is detected. If the \(V_{CCINT} \) and \(V_{CCA} \) voltage sag below the POR trip point during user mode, the POR circuit resets the device. If the \(V_{CCIO} \) voltage sags during user mode, the POR circuit does not reset the device.

In some applications, it is necessary for a device to wake up very quickly to begin operation. Cyclone III family devices offer the Fast-On feature to support fast wake-up time applications. For Cyclone III family devices, the \(\text{MSEL}[3..0] \) pin settings determine the POR time (\(t_{POR} \)) of the device. Fast POR ranges from 3 ms to 9 ms while standard POR ranges from 50 ms to 200 ms.

For more information on the \(\text{MSEL}[3..0] \) pin settings, refer to the *Configuration, Design Security, and Remote System Upgrades in Cyclone III Devices* chapter in volume 1 of the *Cyclone III Device Handbook*.

For more information on the \(V_{CCBAT} \) pin connection, refer to the *Cyclone III Device Family Pin Connection Guidelines*.
Chapter Revision History

Table 10–1 shows the revision history for this chapter.

<table>
<thead>
<tr>
<th>Date and Document Version</th>
<th>Changes Made</th>
<th>Summary of Changes</th>
</tr>
</thead>
</table>
| June 2009 v3.0 | ■ Updated chapter part number
| | ■ Updated “I/O Pins Remain Tristated During Power-Up” on page 10–2 | ■ Updated to include Cyclone III LS information |
| | ■ Updated “Hot-Socketing Feature Implementation” on page 10–3 | |
| | ■ Updated “POR Circuitry” on page 10–4 | |
| October 2008 v1.2 | ■ Updated chapter to new template | — |
| | ■ Added handnote to the “Cyclone III Hot-Socketing Specifications” section | |
| July 2007 v1.1 | ■ Updated “I/O Pins Remain Tri-stated During Power-Up” section | Added information that the power supply voltages must rise monotonically to their steady state levels |
| | ■ Updated Figure 10–3 | |
| | ■ Added chapter TOC and “Referenced Documents” section | |
| March 2007 v1.0 | Initial release. | — |