Contents

1. Intel® Agilex™ Power Management Overview...3
 1.1. Power System Design Phases...3
 1.1.1. Choosing a Power Tree...3
 1.1.2. Power Estimation..3
 1.1.3. Power Optimization..4
 1.1.4. Power Generation..4
 1.1.5. Power Distribution...4
 1.1.6. Power Dissipation and Thermal Considerations..4
 1.2. Power Supplies...4

2. Intel Agilex Power Basics...5
 2.1. Power Consumption..5
 2.2. Power Estimation Basics..5
 2.3. Early Power Estimator (EPE)...6
 2.4. Power Analyzer..7

3. Intel Agilex Power and I/O State Sequencing...8
 3.1. Overview...8
 3.2. Power-Up Sequence Requirements...8
 3.3. Power-On Reset...10
 3.3.1. Power Supplies Monitored by the POR Circuitry..11

4. Intel Agilex Sensor Monitoring System...12
 4.1. Voltage Monitoring System...12
 4.1.1. Voltage Sensor Transfer Function...12
 4.2. Temperature Monitoring System...13
 4.2.1. Local Temperature Sensor..13
 4.2.2. Remote Temperature Sensing Diode..14
 4.2.3. Temperature Sensor Channels and Locations..15
 4.3. Intel Agilex Sensors Design Considerations..15
 4.3.1. Intel Agilex Voltage Monitor Design Guidelines..15
 4.3.2. Intel Agilex Temperature Monitor Design Guidelines..................................16

5. Intel Agilex Power Optimization Techniques and Features.......................................17
 5.1. SmartVID Standard Power Devices..17
 5.1.1. SmartVID Feature Implementation in Intel Agilex Devices............................18
 5.1.2. SDM Power Manager..19
 5.1.3. Temperature Compensation..23
 5.1.4. Intel Agilex Power Management and VID Implementation Guide..................24
 5.2. DSP and M20K Power Gating...26
 5.3. Clock Gating..26
 5.4. Power Sense Line...27
 5.5. Power Optimization Techniques in the Intel Quartus Prime Software...............27

1. Intel® Agilex™ Power Management Overview

The Intel® Agilex™ device family offers SmartVID standard power devices in all speed grades. Fixed-voltage devices are also available, but only in –4 speed grade. All SmartVID standard power devices must be driven by the Power Management BUS (PMBus™)-compliant voltage regulator, operating either in the PMBus master or PMBus slave mode.

Intel Agilex devices also offer power-gating feature to the digital signal processing (DSP) blocks, M20K memory blocks, and clock signals that are not in use for static power savings. You can enable this feature through the Intel Quartus® Prime software.

This user guide describes the power-optimizing features of the Intel Agilex device family, and the power-up and power-down sequencing requirements for the Intel Agilex devices.

1.1. Power System Design Phases

Power system design is done in the following logical phases.

1.1.1. Choosing a Power Tree

A power tree topology is chosen based on the requirements of your device.

The requirements of the power supply may not yet be known, but you can access the supply voltage and connection requirements from the Intel Agilex Device Family Pin Connection Guidelines and the power tree selector guides in the Intel Enpirion® Power Resource Center. Any required power supply sequencing and SmartVID usage will impact the power tree topology.

Related Information

- Intel Agilex Device Family Pin Connection Guidelines
 Provides more information about the supply voltage and connection guidelines of each pin.
- Intel Enpirion Power Solutions

1.1.2. Power Estimation

The amount of electrical power required by the various device power supplies is estimated using the Early Power Estimator (EPE) tool and the Power Analyzer tool.

As the design evolves to the final configuration, the quality and type of information available improve and the estimation becomes more accurate.
1.1.3. Power Optimization

The device configuration can be optimized to reduce power.

This step involves the Intel Quartus Prime software power optimization wizard, the SmartVID feature (available in all Intel Agilex devices except for –4F speed grade), system cooling decisions, and/or dynamic workload management strategies. This phase may occur several times during the evolution of the system and device design.

1.1.4. Power Generation

Voltage regulator modules (VRMs) are selected based on the power tree and electrical power estimates. VRM selection is critical to producing high-quality power systems with the minimum number and cost of bypass elements. Intel Enpirion VRMs are featured due to their high quality and fast load transient response.

1.1.5. Power Distribution

The power distribution network (PDN) is designed, producing a list of the required number, value, and quality of bypass capacitors using the PDN tool, power tree, VRMs electrical power estimations, and board physical geometries.

1.1.6. Power Dissipation and Thermal Considerations

Thermal cooling estimates are used to design the cooling solution. The EPE can be used to model the effect of different solutions on junction temperature. The effects of junction temperature on device power consumption and device reliability should be considered in this phase.

1.2. Power Supplies

For more information about the supported power supplies and the nominal voltages, refer to the Intel Agilex Device Data Sheet.

Related Information

Intel Agilex Device Data Sheet
 Provides more information about the supported power supplies and the nominal voltages.
2. Intel Agilex Power Basics

2.1. Power Consumption

The total power consumption of an Intel Agilex device consists of the following components:

- **Static power**—the power that the configured device consumes when powered up but no user clocks are operating, excluding DC bias power of analog blocks, such as I/O and transceiver analog circuitry.
- **Dynamic power**—the additional power consumption of the device due to signal activity or toggling. Dynamic power is dependent on the operating frequency of your design, applied voltage, and load capacitance, which depends on design connectivity.
- **Standby power**—the component of active power that is independent of signal activity or toggling. Standby power includes, but is not limited to, I/O and transceiver DC bias power.

Intel Agilex devices minimize static and dynamic power using advanced process optimizations. These optimizations allow Intel Agilex designs to meet specific performance requirements with the lowest possible power.

2.2. Power Estimation Basics

The Intel power analysis features, including Early Power Estimator (EPE) and the Intel Quartus Prime software Power Analyzer, give you the ability to estimate power consumption from early design concept through design implementation, as shown in the following figure.

As you provide more details about your design characteristics, estimation accuracy is improved. Intel recommends that you switch from the EPE to the Power Analyzer in the Intel Quartus Prime software once your design is available. The Power Analyzer produces more accurate results because it has more detailed information about your design, including routing and configuration information about all the resources in your design.

The accuracy of the power model is determined on a per-power-rail basis for both the Power Analyzer and the EPE. For most designs, the Power Analyzer and the EPE have the following accuracies, with final power models:

- **Power Analyzer**—within 10% of silicon for the majority of power rails and the highest power rails, assuming accurate inputs and toggle rates.
- **EPE**—within 15% of silicon for the majority of power rails and the highest power rails, assuming accurate inputs and toggle rates. Recommended margins are shown in the Report tab.
Figure 1. Power Analysis from Design Concept Through Design Implementation

Table 1. Comparison of EPE and Intel Quartus Prime Power Analyzer Capabilities

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>EPE</th>
<th>Intel Quartus Prime Power Analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>When to use</td>
<td>Any time</td>
<td>Post-fit</td>
</tr>
<tr>
<td>Note: For post-fit power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>analysis, you get better</td>
<td></td>
<td></td>
</tr>
<tr>
<td>results with the Intel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartus Prime Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software requirements</td>
<td>The Intel Quartus Prime software</td>
<td>The Intel Quartus Prime software</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Medium</td>
<td>Medium to very high</td>
</tr>
<tr>
<td>Data inputs</td>
<td>Resource usage estimates</td>
<td>Post-fit design</td>
</tr>
<tr>
<td></td>
<td>Clock requirements</td>
<td>Clock requirements</td>
</tr>
<tr>
<td></td>
<td>Environmental conditions</td>
<td>Signal activity defaults</td>
</tr>
<tr>
<td></td>
<td>Toggle rate</td>
<td>Environmental conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Register transfer level (RTL) simulation results</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(optional)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-fit simulation results (optional)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal activities per node or entity (optional)</td>
</tr>
<tr>
<td>Data outputs</td>
<td>Total thermal power dissipation</td>
<td>Total thermal power dissipation</td>
</tr>
<tr>
<td></td>
<td>Thermal static power</td>
<td>Thermal static power</td>
</tr>
<tr>
<td></td>
<td>Thermal dynamic power</td>
<td>Thermal dynamic power</td>
</tr>
<tr>
<td></td>
<td>Off-chip power dissipation</td>
<td>Thermal I/O power</td>
</tr>
<tr>
<td></td>
<td>Current drawn from voltage supplies</td>
<td>Thermal power by design hierarchy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal power by block type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal power dissipation by clock domain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off-chip (non-thermal) power dissipation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current drawn from voltage supplies</td>
</tr>
</tbody>
</table>

2.3. Early Power Estimator (EPE)

The EPE results for Intel Agilex devices are based on preliminary simulated data.

Any results obtained while using this estimator are preliminary. The EPE for Intel Agilex devices provides a current and power estimate based on various typical conditions such as room temperature and nominal voltage.
The EPE calculations are estimates only and shall not be construed as a specification or a guarantee of any kind. The actual currents must be verified during device operation, as this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

2.4. Power Analyzer

The Intel Quartus Prime Power Analyzer allows you to estimate power consumption for a post-fit design.

To estimate power consumption before you compile the design, use the EPE.

Related Information
3. Intel Agilex Power and I/O State Sequencing

3.1. Overview

The Intel Agilex devices require a specific power-up sequence.

This section describes several power management options and discusses proper I/O management during device power up and power down. Design your power supply solution to properly control the complete power sequence. The requirements in this section must be followed to prevent unpredictable current draw to the FPGA device, which can potentially impact the I/O functionality.

3.2. Power-Up Sequence Requirements

The power rails in the Intel Agilex devices are divided into three groups.

The following figure shows the voltage groups of the Intel Agilex devices and their required power-up sequence.

Figure 2. Power-Up Sequence for the Intel Agilex Devices

Note: V_{CCBAT} is not in any of the groups below. V_{CCBAT} does not have any sequence requirements. V_{CCBAT} holds the content of the security keys.
Table 2. Voltage Rails Group

<table>
<thead>
<tr>
<th>Power Group</th>
<th>Intel Agilex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>V_{CC}, V_{CCP}, V_{CCH}, V_{CC_SDM}, V_{CC_SDM}, V_{CCPLL_SDM}, V_{CC_HPS}, V_{CCPLL_HPS}, *E-tile** V_{CCRT_GXE}, $V_{CCRTPLL_CR3_GXE}$, *P-tile** $V_{CC_HSSI_GXP}$, V_{CCRT_GXP}, V_{CCFUSE_GXP}</td>
</tr>
<tr>
<td>Group 2</td>
<td>V_{CCPT}, V_{CC_PLL}, V_{CCPLL_SDM}, V_{CCADC}, V_{CCPLL_HPS}, $V_{CC_ WORD}$, *E-tile** V_{CC_GXE}, V_{CCCLK_GXE}, *P-tile** V_{CC_GXP}, V_{CCCLK_GXP}</td>
</tr>
<tr>
<td>Group 3</td>
<td>V_{CC_PIO}, $V_{CC_FUSEWR_SDM}$, V_{CC_SDM}, V_{CC_HPS}</td>
</tr>
</tbody>
</table>

All power rails in Group 1 must ramp up (in any order) to a minimum of 90% of their respective nominal voltage before the power rails from Group 2 can start ramping up. The power rails within Group 2 can ramp up in any order after the last power rail in Group 1 ramps to the minimum threshold of 90% of its nominal voltage. All power rails in Group 2 must ramp to a minimum threshold of 90% of their nominal value before the Group 3 power rails can start ramping up. The power rails within Group 3 can ramp up in any order after the last power rail in Group 2 ramps up to a minimum threshold of 90% of their full value. For more information, refer to the *Intel Agilex Device Family Pin Connection Guidelines*.

All power rails must ramp up monotonically. The power-up sequence must meet the POR delay time. For the POR specifications of the Intel Agilex devices, refer to the *POR Specifications* section in the *Intel Agilex Device Data Sheet*.

For configuration via protocol (CvP), the total t_{RAMP} must be less than 10 ms from the first power supply ramp-up to the last power supply ramp-up. For the t_{RAMP} specifications, refer to the *Recommended Operating Conditions* section in the *Intel Agilex Device Data Sheet*.
For Intel Agilex devices, there is no power-down sequence requirement. Intel recommends that you reverse the power-up sequence when you power down your device.

Related Information
- Intel Agilex Device Family Pin Connection Guidelines
 Provides more information about the power supply sharing guidelines.
- Intel Agilex Device Data Sheet
 Provides more information about the t_{RAMP} and POR specifications.

3.3. Power-On Reset

The power-on reset (POR) circuitry keeps the Intel Agilex device in the reset state until the power supply outputs are within the recommended operating range.

A POR event occurs when you power up the Intel Agilex device until all power supplies monitored by the POR circuitry reach the recommended operating range within the maximum power supply ramp time, t_{RAMP}. If t_{RAMP} is not met, the Intel Agilex device I/O pins and programming registers remain tri-stated, which may cause device configuration to fail.

Figure 3. Relationship Between t_{RAMP} and POR Delay

The Intel Agilex POR circuitry uses individual detection circuitry to monitor each of the configuration-related power supplies independently. The POR circuitry is gated by the outputs of all the individual detectors.
POR delay is the time from when the POR trips out to the final reset signal. For POR trip level, you can use the minimum value of the last power supply as a reference.

The Intel Agilex device is held in the POR state until all power supplies have passed their trigger point. After power supplies have passed the trigger point, the Secure Device Manager (SDM) will wait for a configurable delay time and then start device configuration.

Related Information
Intel Agilex Device Data Sheet
Provides more information about the t_{RAMP} and POR specifications.

3.3.1. Power Supplies Monitored by the POR Circuitry

The following power supplies are monitored by the Intel Agilex POR circuitry:

- $V_{\text{CCL_SDM}}$
- V_{CCPT}
- $V_{\text{CCIO_SDM}}$
- V_{CCADC}
- V_{CCBAT}
- V_{CC}
- $V_{\text{CCH_SDM}}$
- $V_{\text{CCL_HPS}}$
- $V_{\text{CCIO_PIO_SDM}}$

Note: For the device to exit POR, you must power the V_{CCBAT} power supply even if you do not use the volatile key.
4. Intel Agilex Sensor Monitoring System

The Intel Agilex device provides you with on-chip voltage and temperature sensors. You can use these sensors to monitor external voltages and on-chip operation conditions such as the internal power rail and on-chip junction temperature.

The Intel Agilex sensor monitoring system stores sampled data in the secure device manager (SDM). You can read the sampled data from the SDM mailbox, or by using the Voltage Sensor Intel FPGA IP and Temperature Sensor Intel FPGA IP.

4.1. Voltage Monitoring System

The Intel Agilex voltage monitoring system uses a built-in 7-bit analog to digital converter (ADC). The ADC can sample up to one kilo samples per second (KSPS).

The voltage sensor has the following capabilities:
- Monitor external voltages up to 1.25 V through two pairs of differential input pins
- Monitor internal power supplies

4.1.1. Voltage Sensor Transfer Function

The Intel Agilex voltage sensor supports the ADC’s unipolar operation mode.
4. Intel Agilex Sensor Monitoring System

4.2. Temperature Monitoring System

The Intel Agilex temperature monitoring system allows you to measure the on-chip temperature ($T_{JUNCTION}$) using a local temperature sensor or a remote temperature sensing diode (TSD).

Table 3. Overview of the Local and Remote Temperature Sensors

<table>
<thead>
<tr>
<th>Feature</th>
<th>Local Temperature Sensor</th>
<th>Remote TSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature sensing</td>
<td>Uses the built-in ADC to sample the on-chip temperature</td>
<td>Interfaces the TSD with an external temperature sensing chip</td>
</tr>
<tr>
<td>Readout access</td>
<td>Through the Temperature Sensor IP</td>
<td>From the external temperature sensing chip</td>
</tr>
<tr>
<td>Operation capability</td>
<td>While the Intel Agilex device is powered on and configured</td>
<td>While the Intel Agilex device is powered on or off</td>
</tr>
</tbody>
</table>

4.2.1. Local Temperature Sensor

The Intel Agilex local temperature sensor uses a built-in 11-bit ADC and provides temperature readouts through the Temperature Sensor IP.
The Intel Agilex provides up to nine local temperature sensor channels for monitoring on-chip temperature:

- Five local temperature sensors in the core fabric allows you to monitor the local temperature of the core fabric location around each sensor.
- Up to four local temperature sensors, one in each transceiver tile, allows you to monitor the tile's temperature. The number of transceiver tiles varies among Intel Agilex device and package options.

The temperature sensors output an alert signal when any of the local temperature reaches a critical threshold.

Related Information
Temperatur Sensor Channels and Locations on page 15

4.2.2. Remote Temperature Sensing Diode

The Intel Agilex remote TSD interface allows you to monitor the temperature of the core fabric and transceiver tiles using an external temperature sensor.

Figure 7. External Temperature Sensor Connection to the Intel Agilex Remote TSD

The remote TSD requires a two-pins connection.

- In the Intel Agilex device pin-out files, the remote TSD pins are marked as TEMPDIODEP and TEMPDIODEN.
- For the remote TSD characteristics, refer to the relevant section in the Intel Agilex device datasheet.

Related Information
Temperatur Sensor Channels and Locations on page 15
4.2.3. Temperature Sensor Channels and Locations

The Intel Agilex local temperature sensors and remote TSDs are located in the core fabric and transceiver tiles.

Figure 8. Locations of Intel Agilex Local Temperature Sensors and Remote TSDs—Preliminary
The local temperature sensor channel names are preliminary.

Note: The availability of the transceiver tiles varies among Intel Agilex devices.

Table 4. Local Temperature Sensor Channels and Equivalent Remote TSD Pin Names—Preliminary
The temperature sensor locations are as shown in the preceding figure. However, the local temperature sensor channel names are preliminary.

<table>
<thead>
<tr>
<th>Local Temperature Sensor Channel</th>
<th>Remote TSD Pin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH0</td>
<td>TEMPDIOE0Ap / TEMPDIOE0An</td>
</tr>
<tr>
<td>CH1</td>
<td>—</td>
</tr>
<tr>
<td>CH2</td>
<td>TEMPDIOE0Cp / TEMPDIOE0Cn</td>
</tr>
<tr>
<td>CH3</td>
<td>—</td>
</tr>
<tr>
<td>CH4</td>
<td>—</td>
</tr>
<tr>
<td>CH5</td>
<td>TEMPDIOE1p / TEMPDIOE1n</td>
</tr>
<tr>
<td>CH6</td>
<td>TEMPDIOE4p / TEMPDIOE4n</td>
</tr>
</tbody>
</table>

4.3. Intel Agilex Sensors Design Considerations

To ensure the success of your designs, follow the recommended design guidelines. These guidelines apply to all variants of the device family unless noted otherwise.

4.3.1. Intel Agilex Voltage Monitor Design Guidelines

- Connect the power pins and VSIG pins according to the requirements in the Intel Agilex pin connection guidelines.
- If you use the voltage sensor in single-ended mode, tie the VSIGN pin to the GND pin.
4.3.2. Intel Agilex Temperature Monitor Design Guidelines

You can measure the on-chip temperature of the core fabric or transceiver tiles through the remote TSDs while the device is powered on or powered off. However, the local temperature sensors are available only after the device is powered up and configured.

- Connect the remote TSD pins to external temperature sensing devices to monitor the on-chip temperature.
- Keep the resistance of both board traces to the remote TSD p and n pins to less than 0.2 Ω.
- Route both traces in equal lengths and shield them.
- Intel recommends a 10-mils width and space for both traces.
- Route both traces through the most minimum number of vias and crossunders possible to minimize the thermocouple effects.
- Ensure that the number of vias for both traces are the same.
- To avoid coupling, insert a GND plane between the remote TSD pins traces and high-frequency toggling signals, such as clocks and I/O signals.
- To filter high-frequency noise, place an external capacitor between the traces close to the external sensors.
- If you use only the local temperature sensors, you can leave the remote TSD p and n pins unconnected.

For details about device specifications and connection guidelines, refer to the external temperature sensor manufacturer's documentation.
5. Intel Agilex Power Optimization Techniques and Features

Intel Agilex devices leverage on advanced 10-nm process technology, an enhanced core architecture, and various optimizations to reduce total power consumption. The power optimization techniques and features are listed below:

- SmartVID Standard Power Devices
 - Temperature Compensation
- DSP and M20K Power Gating
- Clock Gating
- Power Sense Line

5.1. SmartVID Standard Power Devices

The SmartVID feature compensates for process variation by narrowing the process distribution using voltage adaptation.

This feature is supported in all Intel Agilex devices with the –V and –E power options only. For the –V and –E power option devices, you must connect the PWRMGT_SCL and PWRMGT_SDA pins in both the Power Management BUS (PMBus) master and PMBus slave modes. An additional PWRMGT_ALERT pin is required when you configure the Intel Agilex device in the PMBus slave mode. All connections required must be set up on the circuit board and the Intel Quartus Prime software.

For more information about how to connect these pins on the circuit board, refer to the Intel Agilex Device Family Pin Connection Guidelines.

For instructions on how to set up the connections in the Intel Quartus Prime software, refer to the Specifying Parameters and Options section of this document.

Note: Intel Agilex standard power devices (–1V, –2V, –3V, and –3E power grades) are SmartVID devices. The core voltage supplies (V_{CC} and V_{CCP}) for each SmartVID device must be driven by a PMBus-compliant voltage regulator dedicated to the Intel Agilex –V device that is connected to that Intel Agilex device via PMBus. For Intel Agilex standard power devices, use of a PMBus-compliant voltage regulator for each device is mandatory. Intel Agilex devices will not configure or function correctly if the core voltage is driven by a non-PMBus compliant regulator with a fixed output voltage.

Intel programs the optimum voltage level required by each individual Intel Agilex device into a fuse block during device manufacturing. The Secure Device Manager (SDM) Power Manager reads these values and can communicate them to an external power regulator or a system power controller through the PMBus interface.
The SmartVID feature allows a power regulator to provide the Intel Agilex device with V_{CC} and V_{CCP} voltage levels that maintain the performance of the specific device speed grade. When the SmartVID feature is used:

1. Intel Agilex devices are initially powered up to a nominal voltage level of the respective power grade for both V_{CC} and V_{CCP}.
2. After the SmartVID value in the Intel Agilex device is determined and propagated to the external voltage regulator, both the V_{CC} and V_{CCP} voltages are regulated based on the SmartVID value.

Related Information

- [Intel Agilex Device Family Pin Connection Guidelines](#): Provides more information about the connection guidelines of each pin.
- [Specifying Power Management and VID Parameters and Options on page 24](#): Provides instructions on how to set up the connection in the Intel Quartus Prime software.

5.1.1. SmartVID Feature Implementation in Intel Agilex Devices

Devices supporting the SmartVID feature have a SmartVID value programmed into a fuse block during device manufacturing. The SmartVID value represents a voltage level in the range of 0.6 V to 1.0 V. Each device has its own specific SmartVID value.

The SmartVID value is sent to the external regulator or system power controller through the PMBus interface. Upon receiving the SmartVID value, an adjustable regulator tunes the V_{CC} and V_{CCP} voltage levels to the voltage specified by the SmartVID value.

Intel Agilex devices perform the SmartVID setup in the early stage of the configuration process. The SmartVID process will continue to monitor the V_{CC} and V_{CCP} voltage rails in user mode. The Power Manager monitors the temperature and adjusts the voltage when required. For more information, refer to the *Temperature Compensation* section.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage range</td>
<td>0.6 V – 1.0 V</td>
</tr>
<tr>
<td>Voltage step</td>
<td>5 – 10 mV</td>
</tr>
<tr>
<td>Ramp time</td>
<td>• Non-CvP—10 mV/10 ms to 10 mV/20 µs</td>
</tr>
<tr>
<td></td>
<td>• Configuration via Protocol (CvP)—10 mV/60 µs to 10 mV/20 µs (1)</td>
</tr>
</tbody>
</table>

Related Information

[Temperature Compensation on page 23](#)

(1) When the system is required to support the CvP functionality and meet the PCI Express* (PCIe*) link-up timing budget during the initial power up, the minimum ramp time is 10 mV/60 µs.
5.1.2. SDM Power Manager

In Intel Agilex devices, the SmartVID feature is managed by the SDM subsystem. The SDM subsystem is powered up after \(V_{CC} \) and \(V_{CCP} \) voltage levels are powered up to 0.8V. The SDM Power Manager reads the SmartVID programmed value and communicates this value to the external voltage regulator through the PMBus interface.

Figure 9. SDM Power Manager Block Diagram

The SDM Power Manager has the following stages:

- **Initial/Shutdown stage**
 - Powers up \(V_{CC} \) and \(V_{CCP} \) to the voltage level based on the SmartVID programmed value and the device temperature.
 - Configures the FPGA and switches the FPGA to user mode.

- **Monitor stage**
 - Monitors temperature and updates \(V_{CC} \) and \(V_{CCP} \).

The shutdown stage is triggered during device reconfiguration.

5.1.2.1. PMBus Master Mode

In the PMBus master mode, during the initial stage, the SDM Power Manager sets the external voltage regulator to supply \(V_{CC} \) and \(V_{CCP} \) voltage levels based on the SmartVID programmed value and the device temperature before it starts to configure the FPGA.

After entering user mode (in the monitor stage), the SDM Power Manager monitors temperature changes and decides if the \(V_{CC} \) and \(V_{CCP} \) output voltage values need to be updated. If voltages require updating, the SDM Power Manager identifies the voltage value based on the fuse values and the current temperature and sends the desired voltage value to the voltage regulators through the PMBus (\texttt{PWRMGT_SCL} and \texttt{PWRMGT_SDA}).

The PMBus master mode supports the multi-master mode.

Note: The PMBus master mode only supports the 1.8-V single-ended I/O standard.
5.1.2.2. PMBus Slave Mode

Intel Agilex devices can also be configured in the PMBus slave mode with an external power management controller acting as the PMBus master.

Table 6. Supported Commands for the PMBus Master Mode

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Command Code</th>
<th>PMBus Transaction Type</th>
<th>Number of Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGE (2)</td>
<td>00h</td>
<td>Write byte</td>
<td>1</td>
</tr>
<tr>
<td>VOUT_MODE (3)</td>
<td>20h</td>
<td>Read byte</td>
<td>1</td>
</tr>
<tr>
<td>VOUT_COMMAND</td>
<td>21h</td>
<td>Write word</td>
<td>2</td>
</tr>
<tr>
<td>READ_VOUT</td>
<td>8Bh</td>
<td>Read word</td>
<td>2</td>
</tr>
<tr>
<td>MFR_ADC_CONTROL (4)</td>
<td>D8h</td>
<td>Write byte</td>
<td>1</td>
</tr>
</tbody>
</table>

(2) This is an optional command. This command is only applicable if you enable the PAGE command parameter. For more information, refer to the Power Management and VID Parameters section.

(3) This is an optional command. This command is only applicable if you select the Auto discovery in the voltage output format parameter. For more information, refer to the Power Management and VID Parameters section.

(4) This command is sent when you set the device type to LTM4677 only.
When you configure the Intel Agilex device in the PMBus slave mode, you must connect an additional PWRMGT_ALERT pin while connecting the existing PWRMGT_SCL and PWRMGT_SDA pins.

Note: The PMBus slave mode only supports the 1.8-V single-ended I/O standard.

Figure 11. PMBus Slave Mode

![PMBus Slave Mode Diagram](image)

Table 7. Supported Commands for the PMBus Slave Mode

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Command Code</th>
<th>Default</th>
<th>PMBus Transaction Type</th>
<th>Number of Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR_FAULTS</td>
<td>03h</td>
<td>—</td>
<td>Send byte</td>
<td>0</td>
</tr>
<tr>
<td>VOUT_MODE</td>
<td>20h</td>
<td>40h</td>
<td>Read byte</td>
<td>1</td>
</tr>
<tr>
<td>VOUT_COMMAND</td>
<td>21h</td>
<td>—</td>
<td>Read word</td>
<td>2</td>
</tr>
<tr>
<td>STATUS_BYTE</td>
<td>78h</td>
<td>00h</td>
<td>Read byte</td>
<td>1</td>
</tr>
</tbody>
</table>

The following figure shows the stage flow for the external power management controller in the PMBus slave mode.
Figure 12. Stage Flow for the External Power Management Controller in the PMBus Slave Mode

The Intel Agilex device in the PMBus slave mode sends the VOUT_COMMAND value in the direct format only. To read the actual voltage value, use the following equation to convert the VOUT_COMMAND value from the Intel Agilex device.

Figure 13. Direct Format Equation

\[X = \frac{1}{m} (Y \times 10^{-R} - b) \]

The equation shows how to convert the direct format value where:
- \(X \), is the calculated, real value in mV;
- \(m \), is the slope coefficient, a 2-byte two's complement integer;
- \(Y \), is the 2-byte two's complement integer received from the Intel Agilex device;
- \(b \), is the offset, a 2-byte two's complement integer;
- \(R \), is the exponent, a 1-byte two's complement integer.
The following example shows how an external power management controller retrieves values from the Intel Agilex device. Coefficients used in the `VOUT_COMMAND` are as follows:

- $m = 1$
- $b = 0$
- $R = 0$

If the external power management controller retrieved a value of $0384h$, it is equivalent to the following:

$$X = \frac{1}{1} \times (0384h \times 10^{-0} - 0) = 900 \text{ mV} = 0.90 \text{ V}$$

5.1.3. Temperature Compensation

Intel Agilex devices are able to compensate for performance degradation at colder temperatures by raising the voltage. While raising the voltage increases the dynamic power consumption, the increase in dynamic power consumption is countered by lower leakage at cold temperatures, thus enabling total power consumption at cold temperatures to still be lower than at hot temperatures.

The SmartVID feature supports this dynamic voltage adjustment. The SDM Power Manager checks for temperature changes and updates the new VID value if the temperature crosses the threshold point.

Note: The temperature compensation feature is only supported in the industrial device grade.

Figure 14. Temperature Compensation for SmartVID for Intel Agilex Devices—Preliminary

The SDM monitors the temperature, normally at every 100 ms, and adjusts the voltage by communicating with an external power management system. Adjustment is made by the SDM after the sensor detects the temperature setting is below 10 °C or above 20 °C.
5.1.4. Intel Agilex Power Management and VID Implementation Guide

The Intel Agilex SDM Power Management Firmware manages the SmartVID configuration and enables the FPGA to power up before you can access the FPGA. The Intel Agilex device is connected to the external voltage regulator through the PMBus interface.

5.1.4.1. Intel Agilex Power Management and VID Interface Getting Started

The Intel Agilex Power Management and VID interface is installed as part of the Intel Quartus Prime software.

5.1.4.1.1. Specifying Power Management and VID Parameters and Options

1. Create an Intel Quartus Prime project using the New Project Wizard available from the File menu.
2. On the Assignments menu, click Device.
3. On the Device dialog box, click Device and Pin Options.
4. On the Device and Pin Options dialog box, click Configuration.
5. On the Configuration page, specify the VID Operation mode. There are two modes available—PMBus Master and PMBus Slave.
6. The PMBus modes require these pins—PWMGT_SDA, PWMGT_SCL, and PWRMGT_ALERT. To configure these pins, on the Configuration page, click Configuration Pin Options. The PWRMGT_ALERT pin is only available and used in the slave mode. For the configuration pin parameters, refer to Table 8 on page 24.
7. On the Configuration Pin dialog box, assign the appropriate SDM_IO pin to the power management pins. Click OK.
8. On the Device and Pin Options dialog box, click Power Management and VID to specify the device settings if your device is in the PMBus Master mode. Click OK. For the power management and VID parameters, refer to Table 9 on page 25.

This completes the SmartVID setup for the Intel Agilex device.

Configuration Pin Parameters

Table 8. Configuration Pin Parameters

Use the parameter editor to configure these options.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use PWRMGT_SCL output</td>
<td>SDM_IO0</td>
<td>This is a required PMBus interface for the power management when the VID operation mode is the PMBus Master or PMBus Slave mode. Disable this parameter for the non-SmartVID device. Intel recommends using the SDM_IO14 pin for this parameter.</td>
</tr>
<tr>
<td></td>
<td>SDM_IO14</td>
<td></td>
</tr>
<tr>
<td>Use PWRMGT_SDA output</td>
<td>SDM_IO11</td>
<td>This is a required PMBus interface for the power management when the VID operation mode is the PMBus Master or PMBus Slave mode.</td>
</tr>
<tr>
<td></td>
<td>SDM_IO12</td>
<td></td>
</tr>
</tbody>
</table>

...continued...
Power Management and VID Parameters

You can use the following parameters to configure the Power Management and VID interface if the VID operation is in the PMBus Master mode.

Table 9. Power Management and VID Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus speed mode</td>
<td>100 KHz</td>
<td>Bus speed mode of PMBus interface when operating in the PMBus Master mode.</td>
</tr>
<tr>
<td></td>
<td>400 KHz</td>
<td></td>
</tr>
<tr>
<td>Slave device type</td>
<td>ISL82XX</td>
<td>Supported device types.</td>
</tr>
<tr>
<td></td>
<td>LTM4677</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Device address in PMBus Slave mode</td>
<td>7-bit hexadecimal value</td>
<td>Device address in the PMBus Slave mode.</td>
</tr>
<tr>
<td>Slave device_0 address</td>
<td>7-bit hexadecimal value</td>
<td>External power regulator address. This parameter must be non-zero when you are using the PMBus Master mode.</td>
</tr>
<tr>
<td>Slave device_1 address</td>
<td>7-bit hexadecimal value</td>
<td>External power regulator address.</td>
</tr>
<tr>
<td>Slave device_2 address</td>
<td>7-bit hexadecimal value</td>
<td>External power regulator address.</td>
</tr>
<tr>
<td>Slave device_3 address</td>
<td>7-bit hexadecimal value</td>
<td>External power regulator address.</td>
</tr>
<tr>
<td>Slave device_4 address</td>
<td>7-bit hexadecimal value</td>
<td>External power regulator address.</td>
</tr>
<tr>
<td>Slave device_5 address</td>
<td>7-bit hexadecimal value</td>
<td>External power regulator address.</td>
</tr>
<tr>
<td>Slave device_6 address</td>
<td>7-bit hexadecimal value</td>
<td>External power regulator address.</td>
</tr>
<tr>
<td>Slave device_7 address</td>
<td>7-bit hexadecimal value</td>
<td>External power regulator address.</td>
</tr>
<tr>
<td>Voltage output format</td>
<td>Auto discovery</td>
<td>The voltage output format when the operation mode is PMBus Master.</td>
</tr>
<tr>
<td></td>
<td>Direct format</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear format</td>
<td></td>
</tr>
</tbody>
</table>

5. Intel Agilex Power Optimization Techniques and Features

UG-20215 | 2019.04.02

(5) This parameter is used for the PMBus Master mode.

(6) This parameter is used for the PMBus Slave mode.
Parameters and Values

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the voltage output format is the Auto discovery or Direct format, you must set the following parameters:</td>
<td></td>
<td>- Direct format coefficient m</td>
</tr>
<tr>
<td>• Direct format coefficient b</td>
<td></td>
<td>- Direct format coefficient R</td>
</tr>
<tr>
<td>• Direct format coefficient R</td>
<td></td>
<td>If the voltage regulator is the Linear format, you must set the Linear format N parameter.</td>
</tr>
<tr>
<td>Direct format coefficient m</td>
<td>Signed integer: -32768 to 32767</td>
<td>Direct format coefficient m of the slave device type when the operation mode is PMBus Master.</td>
</tr>
<tr>
<td>Direct format coefficient b</td>
<td>Signed integer: -32768 to 32767</td>
<td>Direct format coefficient b of the slave device type when the operation mode is PMBus Master.</td>
</tr>
<tr>
<td>Direct format coefficient R</td>
<td>Signed integer: -128 to 127</td>
<td>Direct format coefficient R of the slave device type when the operation mode is PMBus Master.</td>
</tr>
<tr>
<td>Linear format N</td>
<td>Signed integer: –16 to 15</td>
<td>Output voltage command when the voltage output format is set to the Linear format.</td>
</tr>
<tr>
<td>Translated voltage value unit</td>
<td>millivolts, volts</td>
<td>Indicates the translated output voltage is in millivolts (mV) or volts (V).</td>
</tr>
<tr>
<td>Enable PAGE command</td>
<td>Enable, Disable</td>
<td>By enabling the PAGE command, the FPGA PMBus Master mode will use the PAGE command to set all the output channels on registered regulator modules to respond to VOUT_COMMAND.</td>
</tr>
</tbody>
</table>

5.2. DSP and M20K Power Gating

Power gating of the DSP blocks and M20K memory blocks is enabled via the configuration RAM (CRAM) bits.

Intel Agilex devices support power gating for both DSP blocks and M20K memory blocks. By default, the Intel Quartus Prime software automatically configures unused DSP blocks and M20K memory blocks to be power gated.

5.3. Clock Gating

Clock gating can be used to reduce dynamic power consumption. When an application is idle, its clock can be gated temporarily and ungated based on wake-up events. This is done using user logic to enable or disable the programmable clock routing.

You can perform dynamic power reduction by gating the clock signals of any circuitry not used by the design in the Intel Agilex devices. The sector clock gating is done at the multiplexer level.

(7) N is the exponent of a 5-bit two's compliment integer.
Clock gating a large portion of your FPGA design could cause significant current change over a short time period when the gated circuitry is enabled or disabled. The maximum current step resulting from this clock gating should be sized such that it does not create noise exceeding the maximum allowed AC noise specification, as determined by the PDN decoupling design on your PCB. You can control the current step size by dividing a large gated area into smaller sub-regions and staging those regions to enter or exit power gating sequentially.

For more details, refer to the Clock Gating section in the Intel Agilex Clocking and PLL User Guide.

Related Information
Intel Agilex Clocking and PLL User Guide
Provides more information about clock gating.

5.4. Power Sense Line

Intel Agilex devices support the power sense line feature. VCCLSENSE and GNDSENSE pins are differential remote sense pins used to monitor the VCC power supply.

You must connect the VCCLSENSE and GNDSENSE pins to the remote sense inputs for the regulator supplying VCCL rail that supports the remote voltage sensing feature.

5.5. Power Optimization Techniques in the Intel Quartus Prime Software

The Intel Quartus Prime software offers power-driven compilation to fully optimize device power consumption.

Power-driven compilation focuses on reducing the design’s total power consumption in synthesis and place-and-route stages. For detailed information, refer to the Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization.

Related Information

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019.04.02</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

Other names and brands may be claimed as the property of others.