Contents

1. Intel® Agilex™ Clocking and PLL Overview.. 3
 1.1. Clock Networks Overview..3
 1.2. PLLs Overview...3

2. Intel Agilex Clocking and PLL Architecture and Features.. 4
 2.1. Clock Networks Architecture and Features...4
 2.1.1. Clock Network Architecture... 4
 2.1.2. Clock Resources.. 6
 2.1.3. Clock Control Features..6
 2.2. PLLs Architecture and Features...9
 2.2.1. PLL Features... 9
 2.2.2. PLL Usage...10
 2.2.3. PLL Locations.. 10
 2.2.4. PLL Architecture...11
 2.2.5. PLL Control Signals...11
 2.2.6. PLL Feedback Modes..12
 2.2.7. Clock Multiplication and Division...17
 2.2.8. Programmable Phase Shift.. 18
 2.2.9. Programmable Duty Cycle.. 18
 2.2.10. PLL Cascading..18
 2.2.11. PLL Input Clock Switchover..19
 2.2.12. PLL Reconfiguration and Dynamic Phase Shift...24
 2.2.13. PLL Calibration...24

3. Intel Agilex Clocking and PLL Design Considerations... 26
 3.1. Guideline: Clock Switchover.. 26
 3.2. Guideline: Timing Closure... 27
 3.3. Guideline: Resetting the PLL..27
 3.4. Guideline: Configuration Constraints...28

1. Intel® Agilex™ Clocking and PLL Overview

1.1. Clock Networks Overview

Intel® Agilex™ devices contain dedicated resources for distributing signals throughout the fabric. These resources are typically used for clock signals and other signals with low-skew requirements. In Intel Agilex devices, these resources are implemented as a programmable clock routing network, which allows for the implementation of various low-skew clock trees.

Related Information
Provides more information about clock assignments in the Intel Quartus® Prime software.

1.2. PLLs Overview

Phase-locked loops (PLLs) provide robust clock management and synthesis for device clock management, external system clock management, and high-speed I/O interfaces.

The Intel Agilex device family contains the following I/O PLLs for core applications. The I/O PLLs can only function as integer PLLs.

- Fabric-feeding I/O PLLs—three C counter outputs available and do not support PLL cascading
- I/O bank I/O PLLs—seven C counter outputs available and support PLL cascading

The I/O PLLs are located adjacent to the hard memory controllers and LVDS serializer/deserializer (SERDES) blocks in the I/O banks. Each I/O bank contains two I/O bank I/O PLLs and one fabric-feeding I/O PLL.
2. Intel Agilex Clocking and PLL Architecture and Features

2.1. Clock Networks Architecture and Features

2.1.1. Clock Network Architecture

Each Intel Agilex device is divided into a number of evenly sized clock sectors.

Figure 1. **Clock Sector Floorplan for Intel Agilex Devices**
This figure shows an example of the clock sectors in an Intel Agilex device, which is implemented as an array of sectors—5 rows and 6 columns in this example. I/O banks are at the top and bottom of the Intel Agilex device.

![Clock Sector Floorplan](image)

2.1.1.1. Clock Network Hierarchy

The Intel Agilex clock network is organized in a hierarchy with 3 levels.

Figure 2. **Clock Network Hierarchy**

![Clock Network Hierarchy](image)
2.1.1.2. Clock Sector

Each clock sector has dedicated sector clock (SCLK) network and row clock network that can be accessed by the programmable clock routing. On each side of the clock sector, there is a channel that contains 64 unidirectional wires in bidirectional pairs, where only one wire in each pair can be used at one time. At each corner, there is a set of programmable clock switch multiplexer that can route between these clock wires.

A signal on a vertical clock wire can enter the sector to its left or right via clock tap multiplexers. The clock tap multiplexer drives a sector clock, which distributes the signal to each row in the clock sector. In each row, there are six row clock resources that route to all core functional blocks, PLLs, and I/O interfaces in the sector, and to adjacent transceivers.

Figure 3. Dedicated Clock Resources Within a Clock Sector

2.1.1.3. Programmable Clock Routing

The Intel Quartus® Prime software automatically configures the clock switch multiplexer, clock tap multiplexer, SCLK multiplexer, and row clock multiplexers to generate skew-balanced clock trees. The resulting routing path distributes the signal from the clock source to all target destinations in one or more clock sectors.

The Intel Quartus Prime software creates efficiently balanced clock trees of various sizes, ranging from a single clock sector to the entire device, as shown in the following figure. By default, the Intel Quartus Prime software automatically determines the size and location of the clock tree. Alternatively, you can directly constrain the clock tree size and location by using either a Clock Region Assignment or Logic Lock Regions.

The total insertion delay for the clock network depends on the number of clock resources needed to implement the clock tree, increasing with the number of clock sectors reached and the distance of the furthest clock destination from the clock source. As delay increases, the worst-case skew for crossing clock sectors using different clock tree branches grows, potentially degrading the maximum performance. For very high-speed clock sources, it is advantageous to reduce the number of clock
sectors driven, which reduces the clock skew, and to reduce the distance between the
clock source and the furthest destination, which reduces both clock skew and total
clock insertion delay.

2.1.2. Clock Resources

Table 1. Programmable Clock Routing Resources for Intel Agilex Devices

<table>
<thead>
<tr>
<th>Number of Resources Available</th>
<th>Source of Clock Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 unidirectional programmable clock routing at the boundary of each clock sector</td>
<td>For transceiver bank:</td>
</tr>
<tr>
<td></td>
<td>• Physical medium attachment (PMA) and physical coding sublayer (PCS) TX and RX clocks per channel</td>
</tr>
<tr>
<td></td>
<td>• PMA and PCS TX and RX divide clocks per channel</td>
</tr>
<tr>
<td></td>
<td>• Hard IP core clock output signals</td>
</tr>
<tr>
<td></td>
<td>• REFCLK pins</td>
</tr>
<tr>
<td></td>
<td>• Core signals (1)</td>
</tr>
</tbody>
</table>

For more information about the clock input pins connections, refer to the pin
connection guidelines.

Related Information

Intel Agilex Device Family Pin Connection Guidelines

2.1.3. Clock Control Features

The following figure shows the high level description of the Intel Agilex clock control
features—clock gating and clock divider. The clock from the I/O PLL output can be
gated dynamically. These clock signals along with other clock sources go to the
periphery distributed clock multiplexer (DCM). In the periphery DCM, the clock signal
can either pass straight through, be gated by the root clock gate, or be divided by the
clock divider.

The Intel Quartus Prime software routes the clock signal on the programmable clock
routing to reach each clock sector. The clock signal can be gated in each sector by the
SCLK gates. The clock enters the SCLK network followed by the row clock network,
and eventually reaches the registers in the core. The LAB registers have a built-in
functional clock enable feature, as shown in the following figure.

(1) Core signals drive directly to programmable clock routing through clock switch multiplexers in
the clock sector instead of the periphery DCM block.
2.1.3.1. Clock Gating

2.1.3.1.1. Root Clock Gate

There is one root clock gate per I/O bank and transceiver bank. This gate is a part of the periphery DCM.

2.1.3.1.2. Sector Clock Gate

Every sector of the device has 32 SCLKs. Each SCLK has a clock gate and bypassable clock gate path. The SCLK gates are controlled by clock enable inputs from the core logic. The Intel Quartus Prime software can route up to eight unique clock enable signals to the 32 SCLKs in a sector.

Intel recommends using the clock gate with a negative latch to provide glitch free gating on the output clock signal (\(\text{outclk}\)). The clock gate captures the enable signal (\(\text{clkena}\)) on the next rising edge of the input clock signal (\(\text{inclk}\)). The following timing diagram shows the relationship of the \(\text{outclk}\) with respect to \(\text{inclk}\) and \(\text{clkena}\).

Figure 5. Clock Gating Timing Diagram

The clock signal going into the SCLK network in a sector can only reach the core logic in that sector. When you instantiate a SCLK gate in your design, the Intel Quartus Prime software automatically duplicates the SCLK gate to create a clock gate in every sector to which the clock signal is routed.

The SCLK gate is suitable for cycle-specific clock gating for high-frequency clocks. The timing of the enable path to the SCLK gate is analyzed by the Intel Quartus Prime software.
Related Information

- **Clock Sector** on page 5
 Provides a diagram that shows the dedicated clock resources within a clock sector.

- **Clock Control Features** on page 6
 Provides a diagram that shows the resources within a SCLK.

2.1.3.1.3. I/O PLL Clock Gate

You can dynamically gate each output counter of the Intel Agilex I/O PLL. This I/O PLL clock gate provides a useful alternative to the root clock gate. The root clock gate can gate only 1 of 7 output counters.

However, the I/O PLL clock gate is not cycle-specific. When you use the I/O PLL clock gate, expect a delay of several clock cycles between the assertion or deassertion of the clock gate and the corresponding change to the clock signal. The number of delay cycles is non-deterministic because the enable signal must be synchronized into the clock domain of the output clock, ensuring a glitch-free gate.

2.1.3.1.4. LAB Clock Gate

The Intel Agilex LAB register has built-in clock gating functionality. The register clock enable mechanism is a hardened data feedback, as shown in the *Clock Gating and Clock Divider in Intel Agilex Clock Network* diagram. The LAB clock gate offers no associated power savings because this is a purely functional clock enable.

The analysis and synthesis phases of the Intel Quartus Prime software infer a LAB clock gate from a behavioral description of clock gating in the register transfer level (RTL). If a physical clock gate is desired, you must instantiate it explicitly.

Related Information

Clock Control Features on page 6
Provides the *Clock Gating and Clock Divider in Intel Agilex Clock Network* diagram.

2.1.3.2. Clock Divider

There is one clock divider per I/O bank and transceiver bank. The clock divider is a part of the periphery DCM block and is located close to the root clock gate. The outputs of the clock divider cannot be gated by the root clock gate in the same periphery DCM block. However, this limitation does not apply to the SCLK gate. The clock divider output in the periphery DCM block can drive a SCLK gate after going through the programmable clock routing.

The clock divider has three outputs as follows:

- First output—passes through the input clock.
- Second output—divides the input clock by two.
- Third output—divides the input clock by four.

These three clock outputs are edge-aligned at the output of the clock divider.
2. Intel Agilex Clocking and PLL Architecture and Features

2.2. PLLs Architecture and Features

2.2.1. PLL Features

Table 2. PLL Features in Intel Agilex Devices—Preliminary

<table>
<thead>
<tr>
<th>Feature</th>
<th>I/O Bank I/O PLL</th>
<th>Fabric-Feeding I/O PLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer PLL</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of C output counter</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>M counter divide factor range</td>
<td>4 to 160</td>
<td>4 to 160</td>
</tr>
<tr>
<td>N counter divide factor range</td>
<td>1 to 110</td>
<td>1 to 110</td>
</tr>
<tr>
<td>C counter divide factor range</td>
<td>1 to 510</td>
<td>1 to 510</td>
</tr>
<tr>
<td>Dedicated external clock outputs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dedicated clock input pins</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External feedback input pin</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Source synchronous compensation (2)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Direct compensation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Normal compensation (2)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zero-delay buffer compensation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External feedback compensation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LVDS compensation</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Voltage-controlled oscillator (VCO) output drives the DPA clock</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Phase shift resolution (3)</td>
<td>78.125 ps</td>
<td>78.125 ps</td>
</tr>
</tbody>
</table>

(2) Non-dedicated feedback path option is available for this compensation mode.

(3) The smallest phase shift is determined by the VCO period divided by eight. For degree increments, the Intel Agilex device can shift all output frequencies in increments of at least 45°. Smaller degree increments are possible depending on the frequency and divide parameters.
2.2.2. PLL Usage

I/O PLLs are optimized for use with memory interfaces and LVDS SERDES. You can use the I/O PLLs to:

- Reduce the number of required oscillators on the board
- Reduce the clock pins used in the FPGA by synthesizing multiple clock frequencies from a single reference clock source
- Simplify the design of external memory interfaces and high-speed LVDS interfaces
- Ease timing closure because the I/O PLLs are tightly coupled with the I/Os
- Compensate for clock network delay
- Zero delay buffering

2.2.3. PLL Locations

Figure 7. I/O PLL Locations in I/O Bank

<table>
<thead>
<tr>
<th>Feature</th>
<th>I/O Bank I/O PLL</th>
<th>Fabric-Feeding I/O PLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable duty cycle</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Power down mode</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bandwidth setting</td>
<td>Low, medium, and high</td>
<td>Medium and high</td>
</tr>
</tbody>
</table>
2.2.4. PLL Architecture

Figure 8. I/O Bank I/O PLL High-Level Block Diagram for Intel Agilex Devices

- For single-ended clock inputs, only the CLKp and CLKn pins have dedicated connection to the PLL.
- Dedicated clock inputs from the same I/O bank.
- Programmable clock routing.
- Cascade input from I/O PLL in the same I/O column or dedicated clock inputs from other I/O banks in the same I/O column.

Figure 9. Fabric-Feeding I/O PLL High-Level Block Diagram for Intel Agilex Devices

- For single-ended clock inputs, only the CLKp and CLKn pins have dedicated connection to the PLL.
- Dedicated clock inputs from the same I/O bank.
- Dedicated clock inputs into the same I/O banks, or inputs from other I/O banks in the same I/O column or PLLs routed over the global clock network.

2.2.5. PLL Control Signals

You can use the reset signal to control PLL operation and resynchronization, and use the locked signal to observe the status of the PLL.

2.2.5.1. Reset

The reset signal port of the IP core for I/O PLL is reset.

The reset signal is the reset or resynchronization input for each I/O PLL. The device input pins or internal logic can drive these input signals.

When the reset signal is driven high, the I/O PLL counters reset, clearing the I/O PLL output and placing the I/O PLL out-of-lock. The VCO is then set back to its nominal setting. When the reset signal is driven low again, the I/O PLL resynchronizes to its input clock source as it re-locks.
You must assert the reset signal every time the I/O PLL loses lock to guarantee the
correct phase relationship between the I/O PLL input and output clocks. You can set
up the I/O PLL to automatically reset (self-reset) after a loss-of-lock condition using
the Intel Quartus Prime parameter editor.

You must include the reset signal if either of the following conditions is true:

- I/O PLL reconfiguration or clock switchover is enabled in the design.
- Phase relationships between the I/O PLL input and output clocks must be
 maintained after a loss-of-lock condition.

Note:
Reset the I/O PLL after the input clock is stable and within specifications, even when
the self-reset feature is enabled, if either one of the following conditions occur:

- The input clock to the I/O PLL is not toggling or is unstable when the FPGA
 transitions into user mode.
- The I/O PLL cannot lock to the reference clock after reconfiguring the I/O PLL.

Related Information
PLL Calibration on page 24

2.2.5.2. Locked

The locked signal port of the IP core for the I/O PLL is **locked**.

The lock detection circuit provides a signal to the core logic. The signal indicates when
the feedback clock locks onto the reference clock both in phase and frequency.

When PLL loses lock, the output of the PLL starts drifting out of the desired frequency.
The downstream logic must be held inactive when PLL has lost lock.

2.2.6. PLL Feedback Modes

PLL feedback modes compensate for clock network delays to align the rising edge of
the output clock with the rising edge of the PLL's reference clock. Select the
appropriate type of compensation for the timing critical clock path in your design.

PLL compensation is not always needed. A PLL should be configured in direct (no
compensation) mode unless a need for compensation is identified. Direct mode
provides the best PLL jitter performance and avoids expending compensation clocking
resources unnecessarily.

The default PLL feedback mode is direct compensation mode.

I/O PLLs support the following PLL feedback modes:

- Direct compensation
- LVDS compensation
- Source synchronous compensation
- Normal compensation
- Zero delay buffer (ZDB) compensation
- External feedback (EFB) compensation
Normal and source synchronous compensation modes compensate for the insertion delay of a routed core clock. For Intel Agilex devices, you can achieve core clock compensation by routing a dedicated feedback clock from the \(M \) counter in the I/O PLL to emulate the insertion delay of the compensated \(C \) counter output clock network.

Intel recommends the non-dedicated feedback mechanism because it uses the clock resources most efficiently.

2.2.6.1. Direct Compensation Mode

In direct mode, the PLL does not compensate for any clock network delays. This mode provides better jitter performance compared to other compensation modes because the clock feedback into the phase frequency detector (PFD) passes through less circuitry. Both the PLL internal- and external-clock outputs are phase-shifted with respect to the PLL clock input.

Figure 10. Example of Phase Relationship Between the PLL Clocks in Direct Mode

The PLL clock outputs lag the PLL input clocks depending on routing delays.

2.2.6.2. LVDS Compensation Mode

LVDS compensation mode maintains the same data and clock timing relationship seen at the pins of the internal serializer/deserializer (SERDES) capture register, except that the clock is inverted (180° phase shift). Thus, LVDS compensation mode ideally compensates for the delay of the LVDS clock network, including the difference in delay between the following two paths:

- Data pin-to-SERDES capture register
- Clock input pin-to-SERDES capture register

The output counter must provide the 180° phase shift.
2.2.6.3. Source Synchronous Compensation Mode

If the data and clock signals arrive at the same time on the input pins, the same phase relationship is maintained at the clock and data ports of any IOE input register. Data and clock signals at the IOE experience similar buffer delays as long as you use the same I/O standard. Only one output clock can be compensated in source synchronous compensation mode.

Intel recommends source synchronous mode for source synchronous data transfers.

The source synchronous mode compensates for the delay of the clock network used and any difference in the delay between the following two paths:
- Data pin to the IOE register input
- Clock input pin to the PLL PFD input

The Intel Agilex PLL can compensate multiple pad-to-input-register paths, such as a data bus when it is set to use source synchronous compensation mode.
2.2.6.4. Normal Compensation Mode

An internal clock in normal compensation mode is phase-aligned to the input clock pin. The external clock output pin has a phase delay relative to the clock input pin if connected in this mode. The Intel Quartus Prime Timing Analyzer reports any phase difference between the two. In normal compensation mode, the delay introduced by the clock network is fully compensated. Only one output clock can be compensated in normal compensation mode.

Figure 13. Example of Phase Relationship Between the PLL Clocks in Normal Compensation Mode

2.2.6.5. Zero-Delay Buffer Mode

In zero-delay buffer (ZDB) mode, the external clock output pin is phase-aligned with the clock input pin for zero delay through the device.

In this mode, you must use the same I/O standard on the input clocks and clock outputs to guarantee clock alignment at the input and output pins. You cannot use differential I/O standards on the PLL clock input or output pins.

To ensure phase alignment between the clk pin and the external clock output (CLKOUT) pin in ZDB mode, instantiate a bidirectional I/O pin in the design. The bidirectional I/O pin serves as the feedback path connecting the fbout and fbin ports of the PLL. The bidirectional I/O pin must always be assigned a single-ended I/O standard. The PLL uses this bidirectional I/O pin to mimic and compensate for the output delay from the clock output port of the PLL to the external clock output pin.

Note: To avoid signal reflection when using ZDB mode, do not place board traces on the bidirectional I/O pin.
Figure 14. Example of Phase Relationship Between the PLL Clocks in ZDB Mode

The internal PLL clock output can lead or lag the external PLL clock outputs.

2.2.6.6. External Feedback Mode

In external feedback (EFB) mode, the output of the M counter ($fbout$) feeds back to the PLL $fbin$ input (using a trace on the board) and becomes part of the feedback loop.

One of the dual-purpose external clock outputs becomes the $fbin$ input pin in this mode. The external feedback input pin, $fbin$ is phase-aligned with the clock input pin. Aligning these clocks allows you to remove clock delay and skew between devices.

In EFB mode, you must use the same I/O standard on the input clock, feedback input, and clock outputs.
2.2.7. Clock Multiplication and Division

An Intel Agilex PLL output frequency is related to its input reference clock source by the scale factor: \(M/(N \times C) \) for I/O PLL.

The input clock is divided by a pre-scale factor, \(N \), and is then multiplied by the \(M \) feedback factor. The control loop drives the VCO to match \(f_{in} \times (M/N) \). When using non-dedicated feedback path in normal or source synchronous compensation mode, the control loop drives the VCO to match \(f_{in} \times ((M \times C_i)/N) \), where \(C_i \) is the compensated \(\text{outclk} \) counter value. The Intel Quartus Prime software automatically chooses the appropriate scale factors according to the input frequency, multiplication, and division values entered into the Intel FPGA IP cores for I/O PLL.

Pre-Scale Counter, \(N \) and Multiply Counter, \(M \)

Each PLL has one pre-scale counter, \(N \), and one multiply counter, \(M \). The \(M \) and \(N \) counters do not use duty-cycle control because the only purpose of these counters is to calculate frequency division.

Post-Scale Counter, \(C \)

Each output port has a unique post-scale counter, \(C \). For multiple \(C \) counter outputs with different frequencies, the VCO is set to the least common multiple of the output frequencies that meets its frequency specifications. For example, if the output frequencies required from one I/O PLL are 55 MHz and 100 MHz, the Intel Quartus...
Prime software sets the VCO frequency to 1.1 GHz (the least common multiple of 55 MHz and 100 MHz within the VCO operating frequency range). Then the post-scale counters, C, scale down the VCO frequency for each output port.

Integer Mode

The I/O PLL can only operate in integer mode.

2.2.8. Programmable Phase Shift

The programmable phase shift feature allows only the I/O PLLs to generate output clocks with a fixed phase offset.

The VCO frequency of the PLL determines the precision of the phase shift. The minimum phase shift increment is 1/8 of the VCO period. For example, if an I/O PLL operates with a VCO frequency of 1000 MHz, phase shift steps of 125 ps are possible.

The Intel Quartus Prime software automatically adjusts the VCO frequency according to the user-specified phase shift values entered into the IP core.

2.2.9. Programmable Duty Cycle

The programmable duty cycle feature allows I/O PLLs to generate clock outputs with a variable duty cycle. This feature is only supported by the I/O PLL post-scale counters, C.

The I/O PLL C counter value determines the precision of the duty cycle. The precision is 50% divided by the post-scale counter value. For example, if the C0 counter is 10, steps of 5% are possible for duty-cycle options from 5% to 90%. If the I/O PLL is in external feedback mode, set the duty cycle for the counter driving the fbin pin to 50%.

The Intel Quartus Prime software automatically adjusts the VCO frequency according to the required duty cycle that you enter in the IP core.

Combining the programmable duty cycle with programmable phase shift allows the generation of precise non-overlapping clocks.

2.2.10. PLL Cascading

Intel Agilex devices support PLL-to-PLL cascading. You can cascade a maximum of two PLLs. PLL cascading synthesizes more output clock frequencies than a single PLL.

If you cascade PLLs in your design, the source (upstream) PLL must have a low-bandwidth setting, and the destination (downstream) PLL must have a high-bandwidth setting for I/O PLL. During cascading, the output of the source PLL serves as the reference clock (input) of the destination PLL. The bandwidth settings of cascaded PLLs must be different. If the bandwidth settings of the cascaded PLLs are the same, the cascaded PLLs may amplify phase noise at certain frequencies.
Intel Agilex devices support the following PLL-to-PLL cascading modes for I/O bank I/O PLL:

- I/O-PLL-to-I/O-PLL cascading via dedicated cascade path—upstream I/O PLL and downstream I/O PLL must be in the same I/O column.
- I/O-PLL-to-I/O-PLL cascading via core clock fabric—no restriction on locations of upstream and downstream I/O PLL.

The `permit_cal` input of the downstream I/O PLL must be connected to the `locked` output of the upstream I/O PLL in both PLL cascading modes.

The following figures show the connectivity required between the upstream and downstream I/O PLL for both the PLL cascading modes.

Figure 16. I/O-PLL-to-I/O-PLL Cascading Via Dedicated Cascade Path

```
<table>
<thead>
<tr>
<th>UPSTREAM_IOPLL</th>
<th>DOWNSTREAM_IOPLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>refclk</td>
<td>adjplin</td>
</tr>
<tr>
<td>reset</td>
<td>permit_cal</td>
</tr>
<tr>
<td>locked</td>
<td>locked</td>
</tr>
<tr>
<td>outclk[8:0]</td>
<td>outclk[8:0]</td>
</tr>
</tbody>
</table>
```

Figure 17. I/O-PLL-to-I/O-PLL Cascading Via Core Clock Fabric

```
<table>
<thead>
<tr>
<th>UPSTREAM_IOPLL</th>
<th>DOWNSTREAM_IOPLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>refclk</td>
<td>refclk</td>
</tr>
<tr>
<td>reset</td>
<td>reset</td>
</tr>
<tr>
<td>locked</td>
<td>locked</td>
</tr>
<tr>
<td>outclk[0] (1)</td>
<td>outclk[8:0]</td>
</tr>
</tbody>
</table>
```

Note:
(1) You may connect any of the outclk from the upstream I/O PLL to the refclk port in the downstream I/O PLL when cascading the I/O PLL via core clock fabric.

2.2.11. PLL Input Clock Switchover

The clock switchover feature allows the I/O PLL to switch between two reference input clocks. Use this feature for clock redundancy or for a dual-clock domain application where a system turns to the redundant clock if the previous clock stops running. The design can perform clock switchover automatically when the clock is no longer toggling or based on a user control signal, `extswitch`.
Intel Agilex I/O PLLs support the following clock switchover modes:

- **Automatic switchover**—the clock sense circuit monitors the current reference clock. If the current reference clock stops toggling, the reference clock automatically switches to \(\text{inclk0} \) or \(\text{inclk1} \) clock.

- **Manual clock switchover**—clock switchover is controlled using the \(\text{extswitch} \) signal. When the \(\text{extswitch} \) signal goes from logic high to logic low, and stays low for at least three clock cycles for the \(\text{inclk} \) being switched to, the reference clock to the I/O PLL is switched from \(\text{inclk0} \) to \(\text{inclk1} \), or vice-versa.

- **Automatic switchover with manual override**—this mode combines automatic switchover and manual clock switchover. When the \(\text{extswitch} \) signal goes low, it overrides the automatic clock switchover function. As long as the \(\text{extswitch} \) signal is low, further switchover action is blocked.

2.2.11.1. Automatic Switchover

Intel Agilex I/O PLLs support a fully configurable clock switchover capability.

Figure 18. Automatic Clock Switchover Circuit Block Diagram

This figure shows a block diagram of the automatic switchover circuit built into the I/O PLL.

When the current reference clock is not present, the clock sense block automatically switches to the backup clock for I/O PLL reference. You can select a clock source as the backup clock by connecting it to the \(\text{inclk1} \) port of the I/O PLL in your design.

The clock switchover circuit sends out three status signals—\(\text{clkbad0} \), \(\text{clkbad1} \), and \(\text{activeclock} \)—from the I/O PLL to implement a custom switchover circuit in the logic array.

In automatic switchover mode, the \(\text{clkbad0} \) and \(\text{clkbad1} \) signals indicate the status of the two clock inputs. When they are asserted, the clock sense block detects that the corresponding clock input has stopped toggling. These two signals are not valid if the frequency difference between \(\text{inclk0} \) and \(\text{inclk1} \) is greater than 20%.
The activeclock signal indicates which of the two clock inputs (inclk0 or inclk1) is being selected as the reference clock to the I/O PLL. When the frequency difference between the two clock inputs is more than 20%, the activeclock signal is the only valid status signal.

Use the switchover circuitry to automatically switch between inclk0 and inclk1 when the current reference clock to the I/O PLL stops toggling. You can switch back and forth between inclk0 and inclk1 any number of times when one of the two clocks fails and the other clock is available.

For example, in applications that require a redundant clock with the same frequency as the reference clock, the switchover state machine generates a signal (clksw) that controls the multiplexer select input. In this case, inclk1 becomes the reference clock for the I/O PLL.

When using automatic clock switchover mode, the following requirements must be satisfied:

- Both clock inputs must be running when the FPGA is configured.
- The period of the two clock inputs can differ by no more than 20%.
- The input clocks must meet the input jitter specifications and I/O standard specifications.

Glitches in the input clock may be seen as a greater than 20% difference in frequency between the input clocks.

If the current clock input stops toggling while the other clock is also not toggling, switchover is not initiated and the clkbad[0..1] signals are not valid. If both clock inputs are not the same frequency, but their period difference is within 20%, the clock sense block detects when a clock stops toggling. However, the I/O PLL may lose lock after the switchover is completed and needs time to relock.

Note: You must reset the I/O PLL using the reset signal to maintain the phase relationships between the I/O PLL input and output clocks when using clock switchover.
Automatic Switchover After Loss of Clock Detection

This figure shows an example waveform of the switchover feature in automatic switchover mode. In this example, the inclk0 signal is held low. After the inclk0 signal is held low for approximately two clock cycles, the clock sense circuitry drives the clkbad0 signal high. As the reference clock signal (inclk0) is not toggling, the switchover state machine controls the multiplexer through the extswitch signal to switch to the backup clock, inclk1.

2.2.11.2. Automatic Switchover with Manual Override

In automatic switchover with manual override mode, you can use the extswitch signal for user- or system-controlled switch conditions. You can use this mode for same-frequency switchover, or to switch between inputs of different frequencies.

For example, if inclk0 is 66 MHz and inclk1 is 200 MHz, you must control switchover using the extswitch signal. The automatic clock-sense circuitry cannot monitor clock input (inclk0 and inclk1) frequencies with a frequency difference of more than 100% (2×).

This feature is useful when the clock sources originate from multiple cards on the backplane, requiring a system-controlled switchover between the frequencies of operation.

You must choose the backup clock frequency and set the M, N, and C counters so that the VCO operates within the recommended operating frequency range. The Intel Quartus Prime software notifies you if a given combination of inclk0 and inclk1 frequencies cannot meet this requirement.
Figure 20. Clock Switchover Using the \texttt{extswitch} (Manual) Control

This figure shows a clock switchover waveform controlled by the \texttt{extswitch} signal. In this case, both clock sources are functional and \texttt{inclk0} is selected as the reference clock. The switchover sequence starts when the \texttt{extswitch} signal goes low. On the falling edge of \texttt{inclk0}, the counter's reference clock, \texttt{muxout}, is gated off to prevent clock glitching. On the falling edge of \texttt{inclk1}, the reference clock multiplexer switches from \texttt{inclk0} to \texttt{inclk1} as the I/O PLL reference. The \texttt{activeclock} signal changes to indicate the clock which is currently feeding the I/O PLL.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{clock_swtchover_waveform.png}
\caption{Clock switchover waveform controlled by the \texttt{extswitch} signal.}
\end{figure}

To initiate a manual clock switchover event, both \texttt{inclk0} and \texttt{inclk1} must be running when the \texttt{extswitch} signal goes low.

In automatic override with manual switchover mode, the \texttt{activeclock} signal inverts after the \texttt{extswitch} signal transitions from logic high to logic low. Since both clocks are still functional during the manual switch, neither \texttt{clkbad} signal goes high. Because the switchover circuit is negative-edge sensitive, the rising edge of the \texttt{extswitch} signal does not cause the circuit to switch back from \texttt{inclk1} to \texttt{inclk0}. When the \texttt{extswitch} signal goes low again, the process repeats.

The \texttt{extswitch} signal and automatic switch work only if the clock being switched to is available. If the clock is not available, the state machine waits until the clock is available.

2.2.11.3. Manual Clock Switchover

In manual clock switchover mode, the \texttt{extswitch} signal controls whether \texttt{inclk0} or \texttt{inclk1} is selected as the input clock to the I/O PLL. By default, \texttt{inclk0} is selected.

A clock switchover event is initiated when the \texttt{extswitch} signal transitions from logic high to logic low, and is held low for at least three \texttt{inclk} cycles for the \texttt{inclk} clock being switched to.

You must bring the \texttt{extswitch} signal back high again to perform another switchover event. If you do not require another switchover event, you can leave the \texttt{extswitch} signal in a logic low state after the initial switch.

If \texttt{inclk0} and \texttt{inclk1} are different frequencies and are always running, the \texttt{extswitch} signal minimum low time must be greater than or equal to three of the slower frequency \texttt{inclk0} and \texttt{inclk1} cycles.
You can delay the clock switchover action by specifying the switchover delay in the Intel FPGA IP cores for the I/O PLL. When you specify the switchover delay, the `extswitch` signal must be held low for at least three `inclk` cycles for the `inclk` being switched to plus the number of the delay cycles that you specify to initiate a clock switchover.

2.2.12. PLL Reconfiguration and Dynamic Phase Shift

Intel Agilex devices support PLL reconfiguration and dynamic phase shift with the following features:

- PLL reconfiguration—I/O PLL can reconfigure the M, N, C counters, and bandwidth setting.
- Dynamic phase shift—I/O PLL can perform positive or negative phase shift. Able to shift multiple phase steps each time, where one phase step is equal to 1/8 of the VCO period.

2.2.13. PLL Calibration

I/O PLLs include both analog and digital blocks that require calibration to compensate for process, voltage, and temperature (PVT) variations. Intel Agilex uses the I/O manager to perform calibration routines.

There are two main types of calibration:

- Power-up calibration—initiates automatically at device power-up and runs during device configuration.
- User calibration—if you perform dynamic reconfiguration or change the reference clock frequency of the I/O PLL, you must perform user recalibration. You must enable the required calibration sequence.

To successfully complete the calibration process, `OSC_CLK_1` clocks and all reference clocks driving the I/O PLLs must be stable and free running at the start of FPGA configuration. If clock switchover is enabled, both reference clocks must be present for calibration. During user mode, when the I/O PLL does not detect a reference clock during configuration, calibration attempts continue periodically. After calibration has completed, the I/O PLL is locked automatically.

2.2.13.1. Power-Up Calibration

After device power-up, the I/O manager automatically initiates the calibration process. The process continues during device programming.
2.2.13.2. User Calibration

The I/O PLL must be recalibrated for any of the following conditions after device power up:

- Dynamic I/O PLL reconfiguration that changes the M or N counter settings is performed.
- Change of the reference clock frequency to the I/O PLL.

Recalibration is not necessary when using clock switchover to a secondary reference clock with a different frequency than the primary reference clock. The I/O PLL stores the calibration settings for both reference clocks after power-up calibration.
3. Intel Agilex Clocking and PLL Design Considerations

3.1. Guideline: Clock Switchover

When implementing clock switchover in Intel Agilex I/O PLLs, refer to the following guidelines:

- **Automatic clock switchover** requires that the \texttt{inclk0} and \texttt{inclk1} frequencies are within 20% of each other. Failing to meet this requirement causes the \texttt{clkbad0} and \texttt{clkbad1} signals to not function properly.

- **When using manual clock switchover**, the difference between \texttt{inclk0} and \texttt{inclk1} can be more than 100% (2\times). However, differences in frequency, phase, or both, of the two clock sources may cause the I/O PLL to lose lock. Resetting the I/O PLL ensures that you maintain the correct phase relationships between the input and output clocks.

- **Both \texttt{inclk0} and \texttt{inclk1} must be running when the extswitch signal goes low to initiate the manual clock switchover event.** Failing to meet this requirement causes the clock switchover to not function properly.

- **Applications that require a clock switchover feature and a small frequency drift must use a low-bandwidth I/O PLL.** When referencing input clock changes, the low-bandwidth I/O PLL reacts more slowly than a high-bandwidth I/O PLL. When switchover happens, a low-bandwidth I/O PLL propagates the stopping of the clock to the output more slowly than a high-bandwidth I/O PLL. However, the low-bandwidth I/O PLL also increases lock time.

- **After a switchover occurs**, there may be a finite resynchronization period for the I/O PLL to lock onto a new clock. The time it takes for the I/O PLL to relock depends on the I/O PLL configuration.

- **If the phase relationship between the input clock to the I/O PLL and the output clock from the I/O PLL is important in your design**, assert the reset signal for at least 10 ns after performing a clock switchover. Wait for the locked signal to go high and be stable before re-enabling the output clocks from the I/O PLL.

- **The VCO frequency gradually decreases** when the current clock is lost and then increases as the VCO locks on to the backup clock, as shown in the following figure.
3.2. Guideline: Timing Closure

For timing closure, refer to the following guidelines:

- Reconfiguring a PLL's counter and loop filter settings changes both the output frequency and the clock uncertainty of that I/O PLL. Dynamic phase shift only affects the output clock phase.
- The Timing Analyzer in the Intel Quartus Prime software performs timing analysis for the initial PLL settings only. You must verify that your design closes timing after dynamic reconfiguration or dynamic phase shift.
- Intel recommends compiling the I/O PLL designs with each intended configuration setting to determine the variation in the clock with the I/O PLL settings.

Related Information

3.3. Guideline: Resetting the PLL

To reset the PLL, refer to the following guidelines:

- When changing the M counter, N counter, or loop filter settings, the I/O PLL may lose and regain lock. To maintain the appropriate phase relationship between the reference clock and output clocks, assert the $areset$ signal to reset the I/O PLL after reconfiguration is complete. Intel recommends always resetting the I/O PLL after any reconfiguration operation to the M counter, N counter, or loop filter settings.
- When changing the C counter settings, you may lose the expected phase relationship between the C counters. Assert the $areset$ signal after reconfiguration is complete to restore the expected phase relationship. Reset is not required if the phase relationships are not important to your application.
- Resetting the I/O PLL does not modify the counter or loop filter settings. However, resetting the I/O PLL undoes any dynamic phase shift operations that were performed. After the I/O PLL is reset, the phase shift on the C counters is restored to the originally programmed settings.
3.4. Guideline: Configuration Constraints

The I/O PLL configuration must obey the following constraints:

- The phase frequency detector (PFD) and VCO each have a legal frequency range of operation.
- The loop filter settings must be appropriate for the \(M \) counter value and user-selected bandwidth mode.

If any of these configuration constraints are violated, the I/O PLL may fail to lock or may exhibit poor jitter performance.
4. Document Revision History for the Intel Agilex Clocking and PLL User Guide

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019.04.02</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>