AN 908: Enabling 4G Wireless Acceleration in FlexRAN
for the Intel® FPGA Programmable Acceleration Card N3000
1. About the 4G Wireless Acceleration Reference Design ... 3
 1.1. 4G User Image Features.. 3
 1.2. About the Intel PAC N3000.. 4
 1.2.1. Factory Image for 2x2x25 GbE... 5
2. 4G User Image Description.. 7
 2.1. User Image Power Management.. 7
 2.2. 4G Channel Coder... 8
 2.2.1. 4G Channel Coder Throughput... 9
 2.2.2. 4G Turbo-V Encoder and Decoder Tests... 10
 2.2.3. 4G VRAN Universal Verification Methodology.. 10
 2.3. Fronthaul IO.. 11
 2.3.1. O-RAN Compression and Decompression... 11
 2.4. User Image Software.. 12
1. About the 4G Wireless Acceleration Reference Design

The 4G Wireless Acceleration reference design provides additional IP (Intel FPGA IP and software drivers) to support fronthaul I/O and 4G channel coding (forward error correction (FEC)).

The Intel FPGA PAC N3000 provides an on-board PCIe switch that connects fronthaul and 4G channel coding functions to a PCIe Gen3x16 edge connector. The Intel FPGA PAC N3000 is a general-purpose acceleration card for networking.

1.1. 4G User Image Features

FEC features:

- Functionality independent of 25G I/O (look-aside model)
- Support for one physical function (PF) and 8 virtual functions (VFs) simultaneously accessing acceleration
- 64 queues supported equally split between uplink and downlink.
- Long-term evolution (LTE) Turbo encoding with interleaving and rate matching
- LTE Turbo decoding with sub-block de-interleaving of reverse rate matching.
- Load balancer distributes the pending requests to transmitter and receiver
• Early termination CRC24A and CRC24B
• Software enablement by baseband device (bbdev) API (targeted to upstream to Data Plane Development Kit (DPDK)
• Function-level reset

Fronthaul IO features:
• 25G MAC and 25G PHY IP connectivity to retimer and a quad small form factor pluggable (QSFP).
• 40G MAC and 40G PHY IP connectivity to Fortville networking device
• Gearbox to enable 25G connectivity to QSFP.
• In-line compression and decompression.
• Software enablement by Open Platform Acceleration Environment (OPAE), DPDK and bbdev.

1.2. About the Intel PAC N3000

You enable the Intel PAC N3000 through six main firmware components. Five components are not specific to wireless but are for FPGA workload. Intel also provides a software package for the Intel PAC N3000.

The Intel PAC N3000 supports the factory image with RSU capability in on-board 1 Gb flash in page 0 as a fail over image. The user image is stored in 1 Gb flash.

Intel develops and owns all of the following Intel PAC N3000 components (including all updates) except the Intel® Arria® 10 flash page 1 user image:
• Intel MAX® 10 Nios flash.
 — Fixed configuration. RSU capable. Intel loads the binary image.
• PCIe software.
 — Intel flashes the binary images.
 — Fixed configuration for PCIe configuration.
 — Not RSU capable.
• Intel C827 retimer.
 — Intel flashes the binary EEPROM.
 — Power-up configuration initialization by Intel Arria 10 soft Nios processor through Intel MAX 10.
 — Fixed configuration for XCVR.
 — Encrypted.
Intel XL710.
 - Intel flashes the binary images.
 - Fixed configuration for XCVR configuration.
 - RSU capable.

Intel Arria 10 flash factory image page 0.
 - Intel flashes the binary images.
 - Not RSU capable.

Intel Arria 10 flash page 1 user image.
 - RSU capable.
 - Intel provides the top-level reference design under a software license agreement.
 - Contains multiple encrypted IP blocks provided under a software license agreement.
 - You own the production image and design.

Related Information

- Intel® FPGA PAC N3000 AFU Developer Guide
- Intel® FPGA PAC N3000 Data Sheet
- Intel Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card N3000

1.2.1. Factory Image for 2x2x25 GbE

Page 0 of the flash contains the factory image. This image tests and diagnoses the Intel PAC N3000.

The factory image:

- Tests the image that enables PCIe, Ethernet, and memory diagnostics:
 - PCIe near-end loopback testing
 - Memory testing using DMA reads and writes
 - Ethernet loopback test
- Enables the RSU for the user image in flash

If the user image update fails, the Intel PAC N3000 restarts with the factory image, you can then reload the image.
Figure 2. Factory Image Block Diagram for 2x2x25 GbE
2. 4G User Image Description

The user image performs fronthaul IO and 4G channel coding.

Figure 3. 4G User Image

2.1. User Image Power Management

On board power monitoring restricts the board temperature to 100°C. In the event of reaching this limit, the board is automatically shut down. The user image power consumption and thermal profile must fit within this envelope.

For different situations with different functions, the power consumptions are different. As a reference point, the raw power consumption of an FPGA is about 60 W @ 100°C junction temperature. The Intel PAC N3000 card power consumption is about 100 W.
2.2. 4G Channel Coder

You should send and receive code blocks for the encoder and decoder over PCIe to or from the host using the descriptor format defined in the Data Plane Development Kit (DPDK) and the baseband device (bbdev).

The channel coders queue and process these blocks based on the load balancing decisions.

Figure 4. 4G Channel Coder

Figure 5. 4G Channel Downlink FEC Accelerator

The downlink FEC accelerator (Intel Turbo-V FPGA IP) consists of a code block CRC attachment block and a Turbo encoder (Intel Turbo FPGA IP) and rate matcher. The input data is 8-bit wide and the output data is 24-bit wide. The rate matcher consists of three interleavers and bit selector and bit collector.
2.4G User Image Description

Figure 6. **4G Channel Uplink FEC Accelerator**
The uplink FEC accelerator (Intel Turbo-V FPGA IP) consists of an interleaver and a turbo decoder (Intel Turbo FPGA IP).

![Diagram of Uplink FEC Accelerator](image)

Figure 7. **Deinterleaver**

Sub-block De-interleaver

![Diagram of Deinterleaver](image)

Figure 8. **Bit Collector**

Bit Collector

![Diagram of Bit Collector](image)

Related Information
- Data Plane Development Kit Website
- Baseband Device
- Turbo IP Core User Guide

2.2.1. **4G Channel Coder Throughput**
The Intel FPGA PAC N3000 4G channel coder contains four encoders and six decoders. The throughput depends on the traffic model.
Baseline values include:

- Max code block size 6,144 downlink, 5,824 uplink
- Max transport block size 75,376 down and uplink
- 1 ms TTI
- $F_{\text{max}} = 275 \text{ MHz}$

Uplink throughput (decoding path) is $10 \times (75376 + 13 \times 24 + 24)$ bits in 500 μs, which is 1.5142 Gbits/s @ 8 iterations. The decoders can decode $10 \times 13 = 130$ code-blocks of length 5,824 bits in 500 μs @ 8 iterations.

Downlink throughput (encoding path) is $10 \times 2 \times (75376 + 13 \times 24 + 24)$ bits in 333 μs, which is 4.5473 Gbits/s. The encoders can encode $10 \times 2 \times 13 = 260$ code-blocks of length 6,144 bits in 333 μs.

2.2.2. 4G Turbo-V Encoder and Decoder Tests

Intel tests the encoder and decoder by simulating with 5,100 test patterns. Approximately half of these place the rate matcher in bypass mode. Each test uses different values and sizes for E value and K size.

Figure 9. Turbo-V Downlink Tests

The first 10 test cases.

Figure 10. Turbo-V Uplink Tests

The first 10 test cases.

Related Information

- Turbo-V Intel FPGA IP User Guide
- Turbo IP Core User Guide

2.2.3. 4G VRAN Universal Verification Methodology

The vRAN universal verification methodology (UVM) simulation test environment for the 4G channel coder incorporates the encoder and decoder and the DMA subsystem. The test environment does not include the preverified transaction layer packet (TLP) adapter.
The tests use the same test patterns as in the encoder chain to test randomization (and functional coverage) of system scenarios such as PF and VF access, queue flushing, and reset. The reference design includes the UVM test plan, VLAN_UVM_Test_Plan.xls.

Figure 11. UVM Tests

<table>
<thead>
<tr>
<th>Coverage Matrix</th>
<th>Description</th>
<th>Verification Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 access property</td>
<td>R/W : read-write</td>
<td>Based on reg file operation. Every reg file will be tested in PF side. Besides, static configuration reg fields of ‘queue flush status write-back address’ and reg ‘ring control register’ will also be tested in each VF’s side because they support VF write.</td>
</tr>
<tr>
<td>1.2 static configuration registers</td>
<td>Every field in these registers can be configured by PF, and they are read only in each VF’s side, except ‘queue flush status write-back address’ related fields. ‘queue flush status write-back address’ related fields can be configured by each VF’s and PF.</td>
<td>Write reg file with random value by each VF’s and PF, and then read them back by each VF’s and PF. The read data (except ‘queue flush status write-back address’ related fields) should match the write data by PF (based on access property). The read data of ‘queue flush status write-back address’ related fields should match the write data by the same file.</td>
</tr>
<tr>
<td>1.2 queue mapping registers</td>
<td>Every field in these registers can be configured by PF, and they are read only in each VF’s side.</td>
<td>Configure the registers to map the queue to random ID by PF, read them back by each VF’s and PF for check. PF: read data should match the write data. VF’s: read data should be valid. IP’s: set static configuration register field ‘queue PHY mapping’ mapping ID to 1, and then read queue mapping registers back by each VF’s and PF for check. PF: read data should match the write data. VF’s: read data should equal the queue ID if this queue is assigned to VF’s, otherwise, the read data should be 16#FF. Repeat above operations to make sure each Queue has been mapped to each</td>
</tr>
</tbody>
</table>

2.3. Fronthaul IO

The fronthaul IO is a simple passthrough pipe.

Figure 12. Fronthaul IO

2.3.1. O-RAN Compression and Decompression

The compression and decompression IP supports both block floating point and Mu-Law compression methods.

Figure 13. Compression and Decompression IO
Internally, the design collects the 12 resource elements in a resource block and determines the maximum magnitude. It then performs block floating-point shifting and Mu-Law compression or decompression.

Figure 14. Compression and Decompression 16:8 bit Example

```
Physical Resource Block (prbI,prbQ)

Transport

Total 32 x 12 = 384 bits
```

```
CompBitWidth = 8
```

```
prbI
```

```
prbQ
```

```
16
```

```
16
```

```
CompShift
```

```
4
```

```
4
```

```
CompI
```

```
CompQ
```

```
16
```

```
16
```

```
Physical Resource Block (prbI,prbQ)
```

```
Transport
```

```
Total 4 + 4 + (16 x 12) = 200 bits
```

```
Physical Resource Block (prbI,prbQ)
```

```
Transport
```

```
Total 32 x 12 = 384 bits
```

```
CompBitWidth = 8
```

```
prbI
```

```
prbQ
```

```
16
```

```
16
```

```
CompShift
```

```
4
```

```
4
```

```
CompI
```

```
CompQ
```

```
16
```

```
16
```

Related Information

ORAN Alliance

2.4. User Image Software

The user image requires software components and drivers, which support the descriptor format and physical function drivers.

Figure 15. User Image Architecture

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020.01.30</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>