AN 838: Interoperability between Intel® Arria® 10 NBASE-T Ethernet Solution with Aquantia* Ethernet PHY Reference Design

Updated for Intel® Quartus® Prime Design Suite: 17.1
Contents

AN 838: Interoperability between Intel® Arria® 10 NBASE-T Ethernet Solution and Aquantia Ethernet PHY Reference Design

Reference Design Features........................................................................................................ 4
Reference Design Components.................................................................................................. 4

Getting Started Intel Arria 10 Multi Speed Ethernet Solution and Aquantia Ethernet PHY Reference Design

Hardware Requirements........................................................................................................... 6
Software Requirements............................................................................................................ 6

Generating the 10G USXGMII Ethernet Example Design

Procedure.................................................................................................................................. 7
Design Example Parameters.................................................................................................... 8

Reference Design Walk Through

Setting Up Aquantia AQR105 Evaluation Board......................................................................... 9
Setting Up Intel Arria 10 GX Transceiver SI Development Kit..................................................... 9
Running Basic Packet Transfer............................................................................................... 12
Changing Speed between 1 Gbps to 10Gbps ........................................................................ 12
USXGMII Ethernet PHY Configuration and Status Registers.................................................. 14

Debugging the Reference Design

Setting Up Loopback Mode for Intel Arria 10 GX Transceiver SI Development Kit...................... 17
Setting Aquantia AQR105 Ethernet PHY to Loopback Mode................................................... 18

Document Revision History for AN 838: Interoperability between Intel Arria 10 NBASE-T Ethernet Solution and Aquantia Ethernet PHY Reference Design......................................................... 19
AN 838: Interoperability between Intel® Arria® 10 NBASE-T Ethernet Solution and Aquantia Ethernet PHY Reference Design

The reference design demonstrates packets transfer between the Intel® Arria® 10 NBASE-T Ethernet solution and the Aquantia Ethernet PHY.

The Intel Arria 10 NBASE-T Ethernet solution implements an Intel Arria 10 Low Latency Ethernet 10G MAC with 10G Universal Serial Media Independent Interface (USXGMII) configuration connected to the 1G/2.5G/5G/10G Multi-rate Ethernet PHY IP core, while the Ethernet PHY is using the Aquantia AQR105 Ethernet PHY device. This reference design demonstrates packets transmission using 1, 2.5, 5, and 10 Gigabit per second (Gbps) speed rates.

Figure 1. Reference Design Block Diagram
Reference Design Features

The reference design demonstrates the following features:

- Auto-negotiation procedure between Intel Arria 10 1G/2.5G/5G/10G Multi-rate Ethernet PHY IP core and Aquantia AQR105 Ethernet PHY.
- Ethernet packet transfer between Intel Arria 10 and Aquantia AQR105 Ethernet PHY.
- Sequential random burst transfer with configurable number of packets, payload data type, and payload size for each burst.
- Statistics for Intel Arria 10 Low Latency 10G MAC, traffic generator, and traffic monitor developed by Intel.
- Throughput monitoring using internal tool.

Reference Design Components

The following table describes the components available in the reference design:

Table 1. Reference Design Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
</table>
| **10G USXGMII Design Example Components** | The Intel FPGA Low Latency Ethernet 10G MAC IP core with the following configuration:  
- **Speed**: 1G/2.5G/5G/10G (USXGMII)  
- **Datapath options**: TX & RX  
- **Enable ECC on memory blocks**: Not selected  
- **Enable supplementary address**: Selected  
- **Enable statistics collection**: Selected  
- **Statistics counters**: Memory-based  
- **Use legacy XGMII Interface**: Not selected  
- **Use legacy Avalon Memory-Mapped Interface**: Not selected  
- **Use legacy Avalon Streaming Interface**: Selected  |
| PHY | The 1G/2.5G/5G/10G Multi-rate Ethernet PHY IP with USXGMII variant. |
| Channel address decoder | Decodes the addresses of the components in each Ethernet channel. |
| Multi-channel address decoder | Decodes the addresses of the components used by all channels, such as the Master ToD module. |
| Top address decoder | Decodes the addresses of the top-level components, such as the Traffic Controller. |
| Transceiver Reset Controller | The Intel FPGA Transceiver PHY Reset Controller IP core. Resets the transceiver. |
| ATX PLL | Generates a TX serial clock for the Intel Arria 10 transceiver. |
| fPLL | Generates clocks for all design components |
| Traffic controller | The traffic controller consists of:  
- Traffic generator: generate burst packets to the MAC for transmission.  
- Traffic monitor: receive burst packets from MAC. |
### Component Description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTAG to Avalon Master Bridge</td>
<td>This IP core provides a connection between the System Console and Platform Designer (Standard) through a physical interface. The System Console initiates Avalon® Memory Mapped transactions by sending encoded streams of bytes through the bridge's physical interface.</td>
</tr>
</tbody>
</table>

### Aquantia Ethernet PHY components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquantia AQR105 Ethernet PHY</td>
<td>Ethernet PHY device on the Aquantia 28nm AQrate* ARQ105 evaluation board.</td>
</tr>
</tbody>
</table>

**Related Links**

Getting Started Intel Arria 10 Multi Speed Ethernet Solution and Aquantia Ethernet PHY Reference Design

Hardware Requirements

The reference design requires the following hardware tools:

- Two Intel Arria 10 GX Transceiver Signal Integrity (SI) development kits
- Two Aquantia 28nm AQrate* ARQ105 evaluation boards
- Two 10 GbE SFP+ direct attach copper cables
- One CAT 6A Ethernet cable

Software Requirements

The reference design requires the following software tools:

- Intel Quartus® Prime Standard Edition version 17.1
- Future Technology Device International (FTDI) driver
- Aquantia USXGMII firmware (1)
- Aquantia Ethernet PHY GUI (1)

Related Links

- https://portal.aquantia.com/customer-portal
- FTDI Driver Installation Guides

(1) Download all Aquantia related firmware and software from the Aquantia Customer Portal in the related links.
Generating the 10G USXGMII Ethernet Example Design

Procedure

1. Select **Tools ➤ IP Catalog** to open the IP Catalog and select **Low Latency Ethernet 10G MAC**.
   The IP parameter editor appears.
2. Specify a top-level name and the folder for your custom IP variation, and the target device. Click **OK**.
3. To generate a design example, select a design example preset from the **Presets** library and click **Apply**. When you select a design, the system automatically populates the IP parameters for the design.
   The Parameter Editor automatically sets the parameters required to generate the design example. Do not change the preset parameters in the **IP** tab.
4. Specify the parameters in the **Example Design** tab.
5. Click the **Generate Example Design** button.

The software generates all design files in sub-directories. You require these files to run simulation, compilation, and hardware testing.
Related Links

Design Example Parameters

Table 2. Parameters in the Example Design Tab

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Design</td>
<td>Available example designs for the IP parameter settings. When you select an example design from the Preset library, this field shows the selected design.</td>
</tr>
</tbody>
</table>
| Example Design Files for Simulation or Synthesis | The files to generate for the different development phase.  
• Simulation—generates the necessary files for simulating the example design.  
• Synthesis—generates the synthesis files. Use these files to compile the design in the Intel Quartus Prime software for hardware testing and perform static timing analysis. |
| Generate File Format                           | The format of the RTL files for simulation—Verilog or VHDL.                                                                              |
| Select Board                                   | Supported hardware for design implementation. When you select an Intel FPGA development board, the Target Device is the one that matches the device on the Development Kit.  
If this menu is grayed out, there is no supported board for the options that you select.  
Intel Arria 10 GX Transceiver Signal Integrity Development Kit: This option allows you to test the design example on selected Intel FPGA IP development kit. This selection automatically selects the Target Device to match the device on the Intel FPGA IP development kit. If your board revision has a different device grade, you can change the target device.  
Custom Development Kit: This option allows you to test the design example on a third party development kit with Intel FPGA IP device, a custom designed board with Intel FPGA IP device, or a standard Intel FPGA IP development kit not available for selection. You can also select a custom device for the custom development kit.  
No Development Kit: This option excludes the hardware aspects for the design example. |
| Change Target Device                           | Select this parameter to display and select all devices for the Intel FPGA IP development kit.                                           |
| Specify Number of Channels                     | The number of Ethernet channels.                                                                                                       |
| Enable ADME support                            | Turn on this option to enable Transceiver ADME feature.                                                                                    |
| Partial Reconfiguration Ready                  | When this option is enabled, the generated hierarchy of the design example is compliance with the partial reconfiguration flow, where there is clear separation between hard IP and soft IP, without any functionality changes. Hard IPs such as Native PHY, JTAG, transmitter PLL, and FPLL are instantiated at the top-level wrapper of design example. |
Reference Design Walk Through

Setting Up Aquantia AQR105 Evaluation Board

To set up the Aquantia 28nm AQrate* AQR105 evaluation board, refer to Aquantia Customer Portal in the related links.

Related Links
• https://portal.aquantia.com/customer-portal
• FTDI Driver Installation Guides

Setting Up Intel Arria 10 GX Transceiver SI Development Kit

Follow the steps to setup the Intel Arria 10 GX transceiver SI development kit.


2. Connect Intel FPGA Download Cable from both development kits to your host.

3. Launch the Clock Control (ClockController.exe) tool from the Intel Arria 10 GX Transceiver Signal Integrity Installation Package. The tool is available in arria10GX_10ax115sf45_si_v15.1\examples\board_test_system\ directory.

   If you have two Intel FPGA Download Cables connected to a single host, the following prompt pops up when you launch the Clock Control tool. Select a cable number to set the clocks for each development kit.

   Figure 3. Intel FPGA Download Cable Selection

   ![Select JTAG Cable](image)


5. Set Y5 to 644.53125 MHz and Y6 to 125 MHz to the Intel Arria 10 GX Transceiver SI development kit.
6. Repeat step 3 to set the clocks for the subsequent Intel Arria 10 GX Transceiver SI development kit.

7. In Intel Quartus Prime software, open altera_eth_top.qpf file.

8. Click Processing ➤ Start Compilation to compile the design example.

9. Configure the FPGA using the generated configuration file, altera_eth_top.sof.

10. This reference design uses the same host to control both Intel Arria 10 GX Transceiver SI development kits. Duplicate the system console folder from LL10G_10G_USXGMII/hwtesting directory and rename the folders to identify system console for each development kit. This reference design uses system_console_pod13_A and system_console_pod13_B folder names as an example.

11. Open basic.tcl file from LL10G_10G_USXGMII/hwtesting/system_console_pod13_B/basic and set the System Console path from the system_console_pod13_B to 1 using the following command:

   ```
   set port_id [lindex [get_service_paths master] 1];
   ```

12. In the Intel Quartus Prime software, launch the System Console tool from Tools ➤ System Debugging Tools ➤ System Console.
13. In the System Console, change the working directory to `LL10G_10G_USXGMII/hwtesting/system_console_pod13_A`.

14. Initialize the design command list using the following command:
   ```shell```
   source main.tcl
   ```shell```

15. Initialize the Ethernet channel and enable auto-negotiation test using the following command:
   ```bash```
   SET_CHANNEL_BASE_ADDR 1
   SETPHY_USXGMII_AN
   ```bash```

16. Repeat step 12 to launch a new system console.

17. In the System Console, change the working directory to `LL10G_10G_USXGMII/hwtesting/system_console_pod13_B`.

18. Repeat step 14 and 15 to initialize the Ethernet channel, enable auto-negotiation, and the design command list.

19. The Aquantia evaluation board shows auto-negotiation status as completed and system is connected once auto-negotiation between Intel 1G/2.5G/5G/10G Multi-rate Ethernet PHY and Aquantia AQR105 Ethernet PHY has completed successfully.

Figure 5. **Aquantia Ethernet PHY GUI**

Related Links

Running Basic Packet Transfer

Follow these steps to run basic packet transfer using the reference design once the links between Intel 1G/2.5G/5G/10G Multi-rate Ethernet PHY and Aquantia AQR105 Ethernet PHY are successfully connected:

1. Depending on which Intel Arria 10 GX Transceiver SI development kit you would like the loop back mechanism to be, enable the Avalon ST interface loop back in the System Console using the following command:

   SET_TRAFFIC_CONTROLLER_STD_CHANNEL_BASE_ADDR 1
   SET_AVALON_ST_LOOPBACK_ENA

2. In the System Console from the Intel Arria 10 GX Transceiver SI development kit without the Avalon ST interface loop back, use the following command to start packets transfer. This reference design connects channel 1 of the transceiver to the SFP+ interface.

   TEST_EXT_LB <channel> <speed> <burst_size>.

   Example: TEST_EXT_LB 1 10G 80000000.

The following diagram shows an example of successful packets transfer during basic packet transfer test.

Figure 6. Example of Basic Transfer Test Result

Changing Speed between 1 Gbps to 10Gbps

Follow these steps to change the transfer speed for the reference design. The following table shows the reference design supported speeds.
### Table 3. Speed Mode Supported by the Reference Design

<table>
<thead>
<tr>
<th>Speed Mode set in Aquantia AQR105 Ethernet PHY</th>
<th>Speed Mode set in Intel Arria 10 USXGMII Ethernet PHY</th>
<th>Speed set after Auto-negotiation Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Gb/2.5 Gb/5 Gb/10 Gb</td>
<td>1 Gbps/2.5 Gbps/5 Gbps/10 Gbps</td>
<td>10 Gbps</td>
</tr>
<tr>
<td></td>
<td>1 Gbps/2.5 Gbps/5 Gbps</td>
<td>5 Gbps</td>
</tr>
<tr>
<td></td>
<td>1 Gbps/2.5 Gbps</td>
<td>2.5 Gbps</td>
</tr>
<tr>
<td></td>
<td>1 Gbps</td>
<td>1 Gbps</td>
</tr>
<tr>
<td>1 Gb/2.5 Gb/5 Gb</td>
<td>1 Gbps/2.5 Gbps/5 Gbps/10 Gbps</td>
<td>5 Gbps</td>
</tr>
<tr>
<td></td>
<td>1 Gbps/2.5 Gbps/5 Gbps</td>
<td>2.5 Gbps</td>
</tr>
<tr>
<td></td>
<td>1 Gbps</td>
<td>1 Gbps</td>
</tr>
<tr>
<td>1 Gb/2.5 Gb</td>
<td>1 Gbps/2.5 Gbps/5 Gbps/10 Gbps</td>
<td>2.5 Gbps</td>
</tr>
<tr>
<td></td>
<td>1 Gbps/2.5 Gbps/5 Gbps</td>
<td>1 Gbps</td>
</tr>
<tr>
<td>1 Gb</td>
<td>1 Gbps/2.5 Gbps/5 Gbps/10 Gbps</td>
<td>1 Gbps</td>
</tr>
</tbody>
</table>

**Important:** Ensure all transfers have completed before starting these procedures.

1. To change speed on the Aquantia AQR105 Ethernet PHY, turn off the current selected speed and enable the desired new speed in the Aquantia GUI.

   During auto-negotiation process, both links advertise the supported speed for each links. Connection is established when both links are operating in the same speed.

2. Click **Restart Autonegotiation** in the Aquantia GUI. Configure the same speed on both the Aquantia evaluation board to have the same speed transfer for the reference design.

3. Restart auto-negotiation on both Intel 1G/2.5G/5G/10G Multi-rate Ethernet PHY IP cores using the following command in System Console:

   ```
   SET_CHANNEL_BASE_ADDR 1
   SETPHY_USXGMII_AN_RESTART
   ```

4. Use the following command to display the Intel 1G/2.5G/5G/10G Multi-rate Ethernet PHY IP cores register settings:

   ```
   CHKPHY_STATUS
   ```
Figure 7. Successful Auto-Negotiation Status for Intel 1G/2.5G/5G/10G Multi-rate Ethernet PHY

Refer to USXGMII Ethernet PHY Configuration and Status Registers on page 14 for register description.

```
CHKPHY_STATUS
USXGMII Control    = 0x3
USXGMII Status     = 0x2D
USXGMII Partner Ability = 0x54C1
USXGMII Link Timer  = 0x7C00
```

5. Repeat the steps in Running Basic Packet Transfer on page 12 to ensure the packet transmission is successfully running in the configured speed.

Related Links
https://portal.aquantia.com/customer-portal

USXGMII Ethernet PHY Configuration and Status Registers

Table 4. 10G USXGMII Ethernet PHY Configuration and Status Registers Description

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Address</th>
<th>Description</th>
<th>Access</th>
<th>HW Reset Value</th>
</tr>
</thead>
</table>
| usxgmii_control | 0x400   | Bit [0]: USXGMII_ENA:  
• 0: 10GBASE-R mode  
• 1: USXGMII mode  | RW    | 0x0         |
|               |         | Bit [1]: USXGMII_AN_ENA is used when USXGMII_ENA is set to 1:  
• 0: Disables USXGMII Auto-Negotiation and manually configures the operating speed with the USXGMII_SPEED register.  
• 1: Enables USXGMII Auto-Negotiation, and automatically configures operating speed with link partner ability advertised during USXGMII Auto-Negotiation.  | RW    | 0x1         |
|               |         | Bit [4:2]: USXGMII_SPEED is the operating speed of the PHY in USXGMII mode and USE_USXGMII_AN is set to 0.  
• 3'b000: Reserved  
• 3'b001: Reserved  
• 3'b010: 1G  
• 3'b011: 10G  
• 3'b100: 2.5G  
• 3'b101: 5G  
• 3'b110: Reserved  
• 3'b111: Reserved  | RW    | 0x0         |
<p>|               |         | Bit [8:5]: Reserved | —     | —              |</p>
<table>
<thead>
<tr>
<th>Register Name</th>
<th>Address</th>
<th>Description</th>
<th>Access</th>
<th>HW Reset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bit [9]: RESTART_AUTO_NEGOTIATION</td>
<td>RWC (hardware self-clear)</td>
<td>0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Write 1 to restart Auto-Negotiation sequence The bit is cleared by hardware when Auto-Negotiation is restarted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [15:10]: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [30:16]: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>usxgmii_status</td>
<td>0x401</td>
<td>Bit [1:0]: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [2]: LINK_STATUS indicates link status for USXGMII all speeds</td>
<td>RO</td>
<td>0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1: Link is established</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0: Link synchronization is lost, a 0 is latched</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [3]: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [4]: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [5]: AUTO_NEGOTIATION_COMPLETE</td>
<td>RO</td>
<td>0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value of 1 indicates the Auto-Negotiation process is completed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [15:6]: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [31:16]: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>0x402:0x404</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>usxgmii_partner_ability</td>
<td>0x405</td>
<td>Bit [0]: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [6:1]: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [7]: EEE_CLOCK_STOP_CAPABILITY</td>
<td>RO</td>
<td>0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates whether or not energy efficient ethernet (EEE) clock stop is supported.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0: Not supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1: Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [8]: EEE_CAPABILITY</td>
<td>RO</td>
<td>0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates whether or not EEE is supported.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0: Not supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1: Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit [11:9]: SPEED</td>
<td>RO</td>
<td>0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3'b000: 10M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3'b001: 100M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3'b010: 1G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3'b011: 10G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3'b100: 2.5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Register Name</td>
<td>Address</td>
<td>Description</td>
<td>Access</td>
<td>HW Reset Value</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>0x406:0x411</td>
<td>Reserved</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>usxgmii_link_timer</td>
<td>0x412</td>
<td>Auto-Negotiation link timer. Sets the link timer value in bit [19:14] from 0 to 2 ms in approximately 0.05-ms steps. You must program the link timer to ensure that it matches the link timer value of the external NBASE-T PHY IP Core. The reset value sets the link timer to approximately 1.6 ms. Bits [13:0] are reserved and always set to 0.</td>
<td>[19:14]: RW [13:0]: RO [19:14]: 0x1F [13:0]: 0x0</td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>0x413:0x41F</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>phy_serial_loopback</td>
<td>0x461</td>
<td>Bit [0]</td>
<td>RW</td>
<td>0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0: Disables the PHY serial loopback</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1: Enables the PHY serial loopback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit [15:1]: Reserved</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bit [31:16]: Reserved</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

### Related Links

Debugging the Reference Design

To debug problems encountered during system bring up, you may change the reference design connection to one of the following setups:

- Loopback mode on Intel Arria 10 GX Transceiver SI development kit using SFP+ loopback adapter module. This setup removes Aquantia 28nm AQrate* ARQ105 evaluation board in the design.
- Loopback modes on Aquantia AQR105 Ethernet PHY. This setup removes Intel Arria 10 NBASE-T Ethernet solution in the design.

Setting Up Loopback Mode for Intel Arria 10 GX Transceiver SI Development Kit

Follow these steps to setup loopback mode on Intel Arria 10 GX Transceiver SI Development Kit.

Figure 8. Loopback Mode Setup for Intel Arria 10 GX Transceiver SI Development Kit

1. Remove the Aquantia’s 28nm AQrate* ARQ105 evaluation board from the Intel Arria 10 GX Transceiver SI Development Kit and connect the SFP+ loopback adapter module to the SFP+ connector on both the development kits.
2. Verify the Clock Control on both the development kit are set to the following values:
3. Set correct port ID for the System Console, if you are using the same host for both Intel Arria 10 GX Transceiver SI Development Kit. Refer to Setting Up Intel Arria 10 GX Transceiver SI Development Kit on page 9 to setup the System Console's port ID.

   Example:
   - System Console from LL10G_10G_USXGMII/hwtesting/system_console_pod13_A is set to 0.
   - System Console from LL10G_10G_USXGMII/hwtesting/system_console_pod13_B is set to 1.

4. Run the basic packet transmission test using the following command and observe the transmission result for error packets.

   TEST_EXT_LB <channel> <speed> <burst_size>

---

### Setting Aquantia AQR105 Ethernet PHY to Loopback Mode

The Aquantia AQR105 Ethernet PHY provides network and system loopback modes for system debug and diagnostic. You may refer to the Aquantia AQR105 Single-Port AQrate* Ethernet PHY Transceiver datasheet in Aquantia Customer Portal to setup loopback mode in AQR105 devices.

**Related Links**

Document Revision History for AN 838: Interoperability between Intel Arria 10 NBASE-T Ethernet Solution and Aquantia Ethernet PHY Reference Design

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2018</td>
<td>2018.01.12</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>