Contents

1. **Intel® Stratix® 10 Thermal Modeling and Management** ... 3
 1.1. List of Abbreviations .. 3
 1.2. Introduction ... 3
 1.3. Intel Stratix 10 Early Power Estimator Tool (EPE) .. 4
 1.4. Intel Stratix 10 FPGA Package Physical Design .. 4
 1.5. Physical Package Structure ... 5
 1.6. Intel Stratix 10 FPGA Thermal Design Parameters ... 6
 1.7. Intel Stratix 10 Compact Thermal Model (CTM) ... 9
 1.8. Intel Stratix 10 Temperature Sensing Diodes (TSD) ... 10
 1.9. Intel Stratix 10 Thermal Design Process ... 10
 1.10. Early Power Estimator (EPE) ... 11
 1.11. Transceiver Channel Spreading .. 15
 1.12. Thermal Parameter Dependencies .. 15
 1.13. Intel Stratix 10 Thermal Design Example ... 15
 1.13.1. CFD Analysis Setup .. 18
 1.13.2. CFD Analysis Results ... 21
 1.13.3. Transceiver Channel Placement Optimization ... 23
 1.13.4. TSD offset Assessment for the Example .. 25
1. Intel® Stratix® 10 Thermal Modeling and Management

1.1. List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamic, a numerical analysis method for solving the conjugated heat transfer problems.</td>
</tr>
<tr>
<td>CTM</td>
<td>Compact Thermal Model, a geometric model that is used as an input to CFD tool.</td>
</tr>
<tr>
<td>EPE</td>
<td>Early Power Estimator, a tool that estimates the power consumption of the FPGA device.</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>HBM</td>
<td>High Bandwidth Memory</td>
</tr>
<tr>
<td>IHS</td>
<td>Integrated Heat Spreader - case of an Intel® Stratix® 10 FPGA.</td>
</tr>
<tr>
<td>MCM</td>
<td>Multi-Chip Module - an integrated circuit (IC) with more than one die.</td>
</tr>
<tr>
<td>SCM</td>
<td>Single Chip Module</td>
</tr>
<tr>
<td>T_{CASE}</td>
<td>Integrated Heat Spreader or Case Temperature. The case temperature of a component is measured with an attached heat sink. This temperature is measured at the top geometric center of the package case/die.</td>
</tr>
<tr>
<td>TDP</td>
<td>Thermal Design Power, the power dissipated in a die that is used for thermal analysis purposes.</td>
</tr>
<tr>
<td>T_A</td>
<td>Ambient Temperature, measured locally surrounding the FPGA. The ambient temperature should be measured just upstream of a passive heat sink or at the fan inlet for an active heat sink.</td>
</tr>
<tr>
<td>T_{CORE}</td>
<td>Core Fabric Die Temperature</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
</tr>
<tr>
<td>T_{J-MAX}</td>
<td>Maximum Junction Temperature, a maximum allowable absolute temperature rating of the device or a targeted value.</td>
</tr>
<tr>
<td>TTDP</td>
<td>Total Thermal Design Power, the power dissipated in the device that is used for thermal analysis purposes.</td>
</tr>
<tr>
<td>TIM</td>
<td>Thermal Interface Material</td>
</tr>
<tr>
<td>TSD</td>
<td>Temperature Sensor Diode</td>
</tr>
</tbody>
</table>

1.2. Introduction

An Intel Stratix 10 device family, as compared to its predecessors, has a Multi-Chip Module (MCM) structure. It can contain between two and nine dies. One die is always the main FPGA core fabric die, and there can be between one and six transceiver dies, and up to two High Bandwidth Memory (HBM) dies. Due to complex construction and no uniform power density in some of the dies, the thermal engineering of an Intel Stratix 10 device requires a specific process and familiarity with the following:
1.3. Intel Stratix 10 Early Power Estimator Tool (EPE)

The Early Power Estimator (EPE) is a tool that estimates the power consumption of an FPGA device early in the design process. It allows you to enter and select the relevant information for a specific FPGA design and obtain the power and the relevant thermal design information for electrical and thermal design purposes. The data provided to the EPE is divided into two categories, general and thermal. Both inputs affect the overall power dissipation of each die and the thermal characteristic of the package to be used for system thermal modeling. Below are the necessary inputs provided to the EPE.

- **General information**
 - FPGA package size
 - FPGA core fabric size and grade
 - Transceiver type, protocol, grade and placement per transceiver die
 - Utilization of FPGA hardware blocks
 - Clock rates, toggle rates and frequencies
 - HBM specification
- **Thermal information**
 - Ambient air temperature (T_A) of the design
 - Maximum allowable junction temperature ($T_{J\,-MAX}$) of any die in the FPGA, at the provided T_A
 - Recommended power margin application

1.4. Intel Stratix 10 FPGA Package Physical Design

An Intel Stratix 10 FPGA complex is contained in a BGA package with a copper IHS and it can contain up to three types of dies:

- **Core Fabric Die** or the main FPGA die: This is the die that contains the basic logic resources and it is provided in different sizes and grades. Each package can only have a single core fabric die.

- **Transceiver Die**: Transceiver dies are offered in three types: L-Tile, H-Tile and E-Tile. Packages with E-Tile are always equipped with one H-Tile. Each transceiver tile type supports certain protocols and transceiver speeds. Depending on the package size, an Intel Stratix 10 device can support between one and six transceiver dies and each die has 24 transceiver channels.

- **HBM Die**: This die is provided in two configurations, 4 high or 8 high, which refers to the number of memory die stacks in each HBM. Not all Intel Stratix 10 packages have HBM, and the ones that do, can have either one or two HBMs.
1.5. Physical Package Structure

Figure 1. Physical Package Structure

This is a typical package structure relevant to thermal analysis and as laid out in the compact thermal models. This package only shows the core fabric die and transceiver dies.
1.6. Intel Stratix 10 FPGA Thermal Design Parameters

The Intel Stratix 10 FPGA thermal parameters do not contain the traditional θ_{JC} and θ_{JB} values due to its MCM construction. Therefore, you cannot use the two resistor models for the thermal modeling of the package. Intel offers a Compact Thermal Model (CTM) which will be discussed in the next section. You will need a combination of CTM and the following thermal parameters for the thermal engineering of an Intel Stratix 10 device.
Table 2. Thermal Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_A</td>
<td>Ambient temperature, measured locally surrounding the FPGA. Measure the ambient temperature just upstream of a passive heat sink or at the fan inlet for an active heat sink. This value affects the junction temperature of the main FPGA core fabric die and its power dissipation.</td>
</tr>
<tr>
<td>$T_{J\text{-MAX}}$</td>
<td>$T_{J\text{-MAX}}$ is the maximum junction temperature value that the design allows for the given T_A. For example, a design may allow the device maximum rated junction temperature at its maximum T_A, but for a lower ambient temperature, the junction temperature requirements may be lower than the maximum rated value. These two cases require two sets of thermal entries to the EPE tool to determine the design parameters.</td>
</tr>
<tr>
<td>T_{CORE}</td>
<td>Core fabric die temperature. EPE tool evaluates the thermal design parameters over a range of T_{CORE} values.</td>
</tr>
<tr>
<td>Power</td>
<td>EPE tool reports the power dissipation of each die individually.</td>
</tr>
<tr>
<td>TTDP</td>
<td>Total Thermal Design Power is the total power dissipation of the device, EPE tool reports TTDP for each main FPGA core fabric die temperature.</td>
</tr>
<tr>
<td>$\Psi_{J\text{C}}$</td>
<td>$\Psi_{J\text{C}}$ is the thermal resistance between each of the dies in the package and the center of the package IHS. An MCM like the Intel Stratix 10 device will have as many $\Psi_{J\text{C}}$ values as the number of dies in the package. For example, if an Intel Stratix 10 contains five dies, there will be five $\Psi_{J\text{C}}$ values reported by the EPE tool. However, the focus of thermal design is always on the die with maximum $\Psi_{J\text{C}}$ and that is the one that is used for calculating the $T_{J\text{-MAX}}$. The $\Psi_{J\text{C}}$ value is calculated from the following equation: $\Psi_{J\text{C}} = (T_{J\text{-MAX}} - T_{\text{CASE}}) / \text{TTDP}$</td>
</tr>
<tr>
<td>Ψ_{CA}</td>
<td>Ψ_{CA} is the other thermal resistance value reported by the EPE tool. It is the thermal resistance between the center of the package IHS and ambient temperature. Ψ_{CA} can be used as a figure of merit in assessment of the required cooling solution for a design. For example, the lower the Ψ_{CA} value, the more aggressive cooling solution is needed. The value of Ψ_{CA} is calculated from the following equation: $\Psi_{\text{CA}} = (T_{\text{CASE}} - T_A) / \text{TTDP}$</td>
</tr>
<tr>
<td>T_{CASE}</td>
<td>Integrated heat spreader or case temperature is the temperature at the top center of IHS. If the cooling solution maintains a T_{CASE} equal to the T_{CASE} value reported by the EPE tool, then the $T_{J\text{-MAX}}$ value will be same as entered in the tool. A higher T_{CASE} points to a higher T_J than $T_{J\text{-MAX}}$. Therefore, the goal of the cooling design should be to keep the T_{CASE} at or below the value reported by the EPE tool.</td>
</tr>
</tbody>
</table>
Figure 3. Individual Die Thermal Resistance to the Top of IHS
Figure 4. **Thermal Resistance**
The diagram shows the thermal resistance from each die to the IHS top surface and also to the air.

![Thermal Resistance Diagram](image)

1.7. Intel Stratix 10 Compact Thermal Model (CTM)

The Intel Stratix 10 FPGA thermal analysis requires the use of its CTMs in a Computational Fluid Dynamic (CFD) tool. The results of the CFD analysis are only valid to determine the core fabric power and IHS temperature. These values are used to determine the junction temperature of all the dies.

This methodology is used because the construction of the CTM does not capture the details of transceiver channel placements; therefore, it cannot be used to predict the correct junction temperature of a transceiver die. The transceiver junction temperature is calculated using the total power dissipation, IHS temperature and thermal resistance of each die which will be covered in later sections.

The Intel Stratix 10 CTMs are offered in the following formats:
- Icepak* from ANSYS
- Flotherm* from Mentor Graphics
- 6SigmaET* from Future Facilities
- Thermal Analysis* from SolidWorks

Please contact your support representative to obtain the CTM models.

Related Information
- [Intel Stratix 10 Thermal Design Example](#) on page 15
1.8. Intel Stratix 10 Temperature Sensing Diodes (TSD)

Each die in an Intel Stratix 10 FPGA device contains a Temperature Sensing Diode (TSD). Intel provides a Temperature Sensor IP core to obtain the temperature of each die. However, with flexibility in Intel Stratix 10 devices, the location of hot spots on the transceiver die may vary based on your application, and it may not always be in the same location as the temperature sensor. Therefore, a temperature sensor may not report the actual temperature of the hot spot. The EPE calculates the offset values for each transceiver die and reports them on its Thermal worksheet. Addition of these values to the temperatures reported by the appropriate TSDs results in the correct values for the maximum junction temperature of each die. The accuracy of the TSD is +/- 5°C. Therefore, you may need to adjust the $T_{J\text{-MAX}}$ for some designs to ensure the threshold temperature is never crossed.

1.9. Intel Stratix 10 Thermal Design Process

The Stratix 10 FPGA thermal design process consists of the steps shown below:

Figure 5. Intel Stratix 10 Thermal Design Process
• **Supply Design Information to EPE**
 This is the first step in the thermal design process of an Intel Stratix 10 device that provides the tool with the necessary data to estimate the power dissipation of each die. The inputs include the FPGA design information as well as the thermal design requirements of T_A and T_{J-MAX} and power margin selection.

• **Obtain Thermal Design Parameters**
 The EPE tool provides the thermal design parameters. The power dissipation of the transceiver die is provided as a constant value, but the main core die power dissipation is provided as a function of its junction temperature and it should be used accordingly in the CFD analysis.

• **Obtain CTM**
 Obtain the applicable CTM for the CFD analysis. Each CTM is provided with the maximum number of dies possible in a package. Unused dies can be ignored and left in the model without affecting the end results.

• **Run CFD Analysis**
 Model the system in the CFD tool and apply all the applicable power values to the corresponding dies. The CFD solution provides the core die TDP and temperature and the T_{CASE}. The transceiver and HBM die temperatures cannot be predicted by the CFD and are calculated manually.

• **Calculate Junction Temperatures and Ψ_{CA}**
 Junction temperatures of all the dies and Ψ_{CA} of the cooling solution are calculated using the following equations:
 \[
 T_J = T_{CASE} + TTDP \cdot \Psi_{JC}
 \]
 \[
 \Psi_{CA} = \frac{T_{CASE} - T_A}{TTDP}
 \]
 You can verify the CFD modeling results by comparing the above calculated Ψ_{CA} with the value provided by the EPE tool for the corresponding TTDP. If the two values are the same, then the calculated $T_J = T_{J-MAX}$.

1.10. Early Power Estimator (EPE)

Note: To speed the EPE calculation Intel suggests to assign all the design information in the EPE before activating the **Thermal** worksheet.

Use the EPE tool to estimate the power dissipation of the dies in an Intel Stratix 10 FPGA. An Excel spreadsheet provides the interface to the tool, and it contains multiple worksheets, each applicable to a part of the design. The EPE tool calculates thermal design parameters that are unique to each design. To activate the **Thermal** worksheet of the EPE, the following parameters need to be modified in the **Main** worksheet of the EPE:

1. Set the **Power Characteristics** to **Maximum**.
2. Set the **Junction Temp Mode** to **Detailed Thermal Model**.
Figure 6. Main Worksheet of the EPE

This activates the **Thermal** worksheet of the EPE tool, and as a result, any changes made to the EPE affect the values in this worksheet. To obtain the correct thermal values for the analysis, you must enter all the necessary design information and settings in the subsequent worksheets of the EPE.

Selecting the device, package, and transceiver in the **Main** worksheet of EPE will enable selection of appropriate transceiver and HBM die types and counts in **XCVR** and **HBM** worksheets. In the **XCVR** worksheet you must specify placement of each transceiver in the exact tile and channel location (0-23) to be used in the design. This is necessary to obtain the correct power and thermal parameters. Similarly, in the **HBM** worksheet you must select the correct HBM and channel numbers (0-7) for your application.

For an example of transceiver placement refer to **Figure 7** on page 13 showing an Intel Stratix 10 device with 4 H-Tiles configured to use 54 transceiver channels placed in specific channel locations.
After you have entered all the design data and activated the Thermal worksheet, set the proper thermal variables in the Thermal worksheet.

- **Apply Recommended Margin:** Intel recommends that you turn on the recommended margin to ensure sufficient cooling and account for approximations in power modeling.
- **Ambient Temp, \(T_A(°C)\):** Temperature of the air or other coolant that flows over the heat sink.
- **Max. Junction Temp, \(T_{J-MAX}(°C)\):** Allowed maximum temperature of any die in the package, regardless of its type. The Max \(T_J\) setting can be set to any value that a design requires below the max rating of device.
Once you have entered the thermal settings, the EPE updates the power dissipation of all dies based on the required thermal solution. For example, if the maximum allowed junction temperature is 95°C, the EPE calculates a cooling solution that satisfies this requirement. That is, at least one die is operating at 95°C, while other dies are operating at lower temperatures due to their lower power consumption or power density.

The EPE also provides a solution table which consists of three rows and depicts three sets of solutions. The middle row (Operating Point) is the same as the above solution, and the other two rows represent solutions that are 5°C above and below the core operating temperature resulting from the design. Using this table, you can create the temperature dependent core die power curve which is used in the CFD modeling.
1.11. Transceiver Channel Spreading

Reducing the thermal resistances of the package in each design improves the efficiency of the cooling system. One way to achieve this is by spreading out the transceiver channels or use an extra transceiver tile to reduce the power density of a transceiver die. Targeted spreading can reduce Ψ_{JC} and increase Ψ_{CA}, thereby reducing the cooling requirement.

Related Information

AN-778 Stratix 10 Transceiver Usage
Provides more information about transceiver layout and channel placement.

1.12. Thermal Parameter Dependencies

The Intel Stratix 10 FPGA thermal design parameters are unique for every project. Thermal design parameters are mainly determined by the power, local power density and power ratio of dies. For this, any changes to the design require design information to be updated accordingly in the EPE so that all the thermal parameters are recalculated.

1.13. Intel Stratix 10 Thermal Design Example

In this section, we will demonstrate the necessary steps for the thermal analysis of an Intel Stratix 10 device by using an example.

Design Statement: Design a forced convection cooling system for an Intel Stratix 10 device as shown in Table 3 on page 15 and the specified thermal requirements as shown in Table 4 on page 16. Transceiver channel placement and HBM data are shown in Figure 12 on page 16 and Figure 13 on page 16. The core functionality and other activities are set such that the core die reaches a typical power for the Intel Stratix 10 FPGA.

Table 3. FPGA Designation

<table>
<thead>
<tr>
<th>FPGA</th>
<th>Intel Stratix 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>1SM21CH</td>
</tr>
<tr>
<td>Device Grade</td>
<td>Extended-1 Smart-VID</td>
</tr>
<tr>
<td>Package</td>
<td>F53</td>
</tr>
<tr>
<td>Transceiver Grade</td>
<td>HU3</td>
</tr>
<tr>
<td>Number of Transceiver Channels</td>
<td>96</td>
</tr>
</tbody>
</table>

continued...
The **Main** worksheet power values are associated with a function and not necessarily dissipated in the die providing the function. So the **Thermal** worksheet may show a different value for HBM than the **Main** worksheet. For thermal analysis, always use the power values in the **Thermal** worksheet.
After entering all the design data into the EPE and activating the Thermal worksheet, the following two tables are updated with all the thermal design parameters. For example in this design the case temperature should be kept below 84 °C and the maximum Ψ_{JC} of any die is 0.067 °C/W.
1.13.1. CFD Analysis Setup

The next step in the thermal analysis process is to create a CFD model of the system using the required CTM as shown in row 9 of Thermal worksheet. In the CFD setup, the power dissipation of transceivers and HBMs are set as fixed values and the power dissipation of the core as a temperature-dependent value from the first two columns of the solution table (see the "EPE Thermal Worksheet Solution Table").
Figure 17. Die Power Assignment for the CFD Model
This figure shows the FPGA power dissipation assignment to be used in the CFD analysis.

The CFD set up for this example is shown below. FPGA is set in 120 x 35 mm duct with an airflow of 21 CFM. The extruded aluminum heat sink dimensions are: 100 x 100 x 30 mm 40 1x27 mm fins. Air temperature entering the duct is 35 °C.
1.13.2. CFD Analysis Results

The CFD analysis provides the Intel Stratix 10 case and die temperatures.

The Intel Stratix 10 case temperature profile shown below indicates a maximum temperature of 83.6 °C (T\textsubscript{CASE}) which is less than the 84 °C required by the EPE. This means that the maximum junction temperature will also be less than the design limit of 95 °C.

Figure 19. Case Temperature Profile from CFD Analysis

The Intel Stratix 10 die temperature profile shown below is only valid for the core fabric die temperature and not the transceiver die temperatures.
Calculate the transceiver die temperatures manually as follows.

1. Determine the maximum core fabric temperature calculated by CFD (92.1 °C from the "Die Temperature Profile from CFD Analysis" figure above). This value is the core die operating temperature or **FPGA Core Junction Temperature**.

2. Using the "EPE Thermal Worksheet Solution Table" and **FPGA Core Junction Temperature** (90.26 °C), linearly interpolate **Overall Total Power** (TTDP) and **ΨJC**.

3. Calculate the junction temperature (TJ) using the following equation:

 \[T_J = T_{CASE} + TTDP \times \Psi_{JC}, \]

 - **T_{CASE}** = maximum case temperature of 83.6 °C from the "Case Temperature Profile from CFD Analysis" figure above
 - **TTDP** = 148 W from the table above
 - **ΨJC** = for **T_{J,max}**, use the highest **ΨJC** value of any die which is 0.069 °C/W for the HSSI_2_0 transceiver die from the table above

 Result: TJ,max = 83.6 °C + (148 W * 0.069 °C/W) = 93.82 °C

 Notice that the calculated HSSI_2_0 junction temperature (TJ,max) is almost 7 °C higher than temperature calculated by CFD for this die. This is because CFD uses uniform power dissipation for the transceiver dies and, therefore, cannot calculate the local hot spots.
Other junction temperatures can be calculated in the same way.

Related Information

Intel Stratix 10 Thermal Design Example on page 15
Refer to the "EPE Thermal Worksheet Solution Table."

1.13.3. Transceiver Channel Placement Optimization

In some designs, it might be possible to further reduce the transceiver temperatures by spreading the channels to reduce the power density. For example, in the above design the HSSI_2_0 transceiver has 8 high speed transceiver channels that are laid out in half of the die. The effect of spreading these channels to all the die area can be shown in the EPE by the following transceiver placement.

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>XCVR Die ID</th>
<th>Starting Channel Location</th>
<th># of Channels</th>
<th>Operation Mode</th>
<th>Data Rate (Gb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>H-Me</td>
<td>HSSI_0_0</td>
<td>0</td>
<td>0</td>
<td>Receiver and Transmitter</td>
<td>17000</td>
</tr>
<tr>
<td>26</td>
<td>H-Me</td>
<td>HSSI_0_1</td>
<td>6</td>
<td>12</td>
<td>Receiver and Transmitter</td>
<td>17000</td>
</tr>
<tr>
<td>27</td>
<td>H-Me</td>
<td>HSSI_2_0</td>
<td>6</td>
<td>2</td>
<td>Receiver and Transmitter</td>
<td>20000</td>
</tr>
<tr>
<td>28</td>
<td>H-Me</td>
<td>HSSI_2_0</td>
<td>3</td>
<td>0</td>
<td>Receiver and Transmitter</td>
<td>20000</td>
</tr>
<tr>
<td>29</td>
<td>H-Me</td>
<td>HSSI_2_0</td>
<td>6</td>
<td>2</td>
<td>Receiver and Transmitter</td>
<td>20000</td>
</tr>
<tr>
<td>30</td>
<td>H-Me</td>
<td>HSSI_2_0</td>
<td>6</td>
<td>2</td>
<td>Receiver and Transmitter</td>
<td>20000</td>
</tr>
<tr>
<td>31</td>
<td>H-Me</td>
<td>HSSI_2_0</td>
<td>9</td>
<td>0</td>
<td>Receiver and Transmitter</td>
<td>20000</td>
</tr>
<tr>
<td>32</td>
<td>H-Me</td>
<td>HSSI_2_0</td>
<td>12</td>
<td>2</td>
<td>Receiver and Transmitter</td>
<td>20000</td>
</tr>
<tr>
<td>33</td>
<td>H-Me</td>
<td>HSSI_2_0</td>
<td>15</td>
<td>0</td>
<td>Receiver and Transmitter</td>
<td>20000</td>
</tr>
<tr>
<td>34</td>
<td>H-Me</td>
<td>HSSI_2_0</td>
<td>18</td>
<td>2</td>
<td>Receiver and Transmitter</td>
<td>20000</td>
</tr>
<tr>
<td>35</td>
<td>H-Me</td>
<td>HSSI_2_1</td>
<td>0</td>
<td>24</td>
<td>Receiver and Transmitter</td>
<td>8000</td>
</tr>
</tbody>
</table>
The new placement relaxes the cooling requirement from a Ψ_{CA} of 0.332 to 0.342 °C/W and now the core fabric die has the highest Ψ_{JC}. Repeating the CFD analysis using the original cooling solution with the new power dissipations results in the following IHS temperature results.
Calculating the new junction temperatures with the updated power values and CFD results:

HSSI_2_0 die temperature: $T_J = 84 + (150 \times 0.042) = 90.3 \, ^\circ C$

Core fabric temperature: $T_J = 84 + (150 \times 0.052) = 91.8 \, ^\circ C$

This example demonstrates that the channel spreading could reduce the cooling requirement or result in lower junction temperatures for the same cooling solution.

1.13.4. TSD offset Assessment for the Example

As indicated previously the temperature sensors are not always in the exact position of the hot spots on the transceivers and depending on the transceiver placement, the EPE calculates the offset value which needs to be added to the field reading.

The transceiver TSDs in the first example should report the following values:

TSD_HSSI_2_0 = 85.5 °C
TSD_HSSI_0_0 = 85.5 °C
TSD_HSSI_2_1 = 81.2 °C
TSD_HSSI_0_1 = 80 °C
Adding the offset values to these numbers provide the actual temperatures shown below:

\[
\begin{align*}
T_{J,HSSI,2,0} &= 85.5 + 8 = 93.8 \, ^\circ C \\
T_{J,HSSI,0,0} &= 85.5 + 5 = 90.5 \, ^\circ C \\
T_{J,HSSI,2,1} &= 81.2 + 7 = 88.2 \, ^\circ C \\
T_{J,HSSI,0,1} &= 80 + 10 = 90 \, ^\circ C
\end{align*}
\]

Note: The TSDs have an accuracy of ±5 °C; therefore, the reported temperature can be off by 5 °C. In order not to exceed the operating temperature, Intel recommends building a 5 °C margin to the thermal design.

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018.08.20</td>
<td>In Section 1.2, Introduction, changed an Intel Stratix 10 device "can contain between two and seven dies" to "can contain between two and nine dies"</td>
</tr>
<tr>
<td>2018.01.26</td>
<td>Updated to account for changes in the latest EPE with HBM and E-Tile updates</td>
</tr>
<tr>
<td>2017.06.19</td>
<td>Added methodology to use the Thermal worksheet of the EPE tool</td>
</tr>
<tr>
<td>2017.02.03</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>