1. Transceiver Layout

1.1. L-Tile and H-Tile Overview

1.1.1. PLLs

1.1.2. Transmitter Clock Network

1.1.3. GXT Clock Network

1.1.4. Calibration

2. Tile Architecture Constraints

2.1. Transceiver Channel Placement

2.1.1. Possible Combinations of GX and GXT Channels

2.1.2. GX Channels

2.1.3. GXT Channels

2.1.4. Reference Clock Guidelines for L-Tile and H-Tile

2.1.5. PLL Placement

2.2. Unsupported Dynamic Reconfiguration Features

2.3. Intel Stratix 10 L-Tile Transceiver to H-Tile Transceiver Migration

2.4. Thermal Guidelines

3. PCIe Guidelines

3.1. PCIe Hard IP

3.1.1. Channel Placement for PCIe Hard IP

3.1.2. PLL Placement for PCIe Hard IP

3.2. PHY Interface for PCIe Express (PIPE)

3.2.1. Channel Placement for PIPE

3.2.2. PLL Placement for PIPE

4. Document Revision History
1. Transceiver Layout

Note: This app note currently covers Intel® Stratix® 10 L-Tile ES1, L-Tile and H-Tile (L-Tile/H-Tile) information. E-Tile information will be available in a future document.

Intel Stratix 10 devices support a transceiver tile architecture. A tile consists of 24 transceiver channels and associated phase locked loops (PLLs), reference clock buffers, and Hard IPs. There are currently four different types of transceiver tiles:

- L-Tile ES1
- L-Tile
- H-Tile
- E-Tile

The range of capabilities in each tile type offers a customized solution suited to the various transceiver applications. The next section describes the L-Tile in greater detail. An Intel Stratix 10 device contains one or more tiles on the left and right side of the device. The types of tiles do not have to be homogeneous.

Figure 1. Transceiver Tile Layout
Example Intel Stratix 10 TX device with two different types of tiles on the left side of the device. An E-Tile is located above an H-Tile.
1.1. L-Tile and H-Tile Overview

The Intel Stratix 10 L-Tile/H-Tile transceivers contain 24 full-duplex channels, grouped into four transceiver banks.

Each tile is divided into banks of six channels each.
- 1 tile = 4 banks * 6 channels = 24 transceiver channels

Each bank contains two triplets of 3 channels each.
- 1 tile = 4 banks * 2 triplets * 3 channels = 24 transceiver channels

In L-Tile up to 8 transceiver channels can be configured as GXT channels, reaching datarates up to 26.6 Gbps. Similarly in an H-Tile, up to 16 channels can be configured as GXT channels reaching datarates up to 28.3 Gbps.

1.1.1. PLLs

Each Intel Stratix 10 L-Tile/H-Tile transceiver bank includes the following TX Phase Locked Loops (PLLs):
- Two Advanced Transmit (ATX) PLLs
- Two Fractional PLLs (fPLL)
- Two Clock Multiplier Unit (CMU) PLLs (Located in channel 1 and channel 4 of each bank)

Table 1. Transmitter PLLs in Stratix 10 L-Tile/H-Tile Devices

<table>
<thead>
<tr>
<th>PLL Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATX PLL</td>
<td>• Best jitter performance</td>
</tr>
<tr>
<td></td>
<td>• LC tank based voltage controlled oscillator (VCO)</td>
</tr>
<tr>
<td></td>
<td>• Supports fractional synthesis mode (in cascade mode only)</td>
</tr>
<tr>
<td></td>
<td>• Used for both bonded and non-bonded channel configurations</td>
</tr>
<tr>
<td>Fractional PLL (fPLL)</td>
<td>• Ring oscillator based VCO</td>
</tr>
<tr>
<td></td>
<td>• Supports fractional synthesis mode</td>
</tr>
<tr>
<td></td>
<td>• Used for both bonded and non-bonded channel configurations</td>
</tr>
<tr>
<td>Clock Multiplier Unit (CMU) PLL or Channel PLL (1)</td>
<td>• Ring oscillator based VCO</td>
</tr>
<tr>
<td></td>
<td>• Used as an additional clock source for non-bonded applications</td>
</tr>
</tbody>
</table>

(1) The CMU PLL or Channel PLL of channel 1 and channel 4 can be used as a transmitter PLL or as a clock data recovery (CDR) block. The channel PLL of all other channels (0, 2, 3, and 5) can only be used as a CDR.
The total number of TX PLLs per tile is:

- Eight ATX PLLs (2 ATX PLLs per bank * 4 banks per tile)
- Eight fPLLs (2 fPLLs per bank * 4 banks per tile)
- Eight CMU PLLs (2 CMU PLLs per bank * 4 banks per tile)
Figure 2. **Stratix 10 PLLs and Clock Networks in Two Banks of Intel Stratix 10 L-Tile/H-Tile**

The ATX PLL, fPLL and CMU PLLs can drive the x1 clock network to support non-bonded transceivers. The ATX PLL and fPLL can drive the x6 clock network to support bonded transceivers within the bank. The x6 clock network can drive the x24 clock network in adjacent banks, allowing ATX PLLs and fPLLs to support up to 24 bonded transceiver channels. The x1, x6, and x24 clock networks are described in the Transceiver Clock Network section.

Note: For further details on CGB, refer to "PLL and Clock Networks" chapter in Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide.
1. Transceiver Layout

1.1.1.1. ATX PLL

The ATX PLLs can be used for bonded and non-bonded applications. The ATX PLLs can access x1, x6, and x24 clock lines. There are spacing rules between two ATX PLLs running at the same VCO frequency. You can find the VCO frequency by looking at your PLL IP Platform Designer parameter. For more details, refer to Transceiver Clock Network and ATX PLL Spacing Requirements.

Figure 3. ATX PLL Block Diagram

Note: 1. The Delta Sigma Modulator is engaged only when the ATX PLL is used in fractional mode.

Related Information
Transmitter Clock Network on page 8

1.1.1.2. fPLL

The fPLLs can be used for bonded and non-bonded applications. The fPLLs can access x1, x6, and x24 clock lines. There are no spacing rules between fPLLs regardless of their VCO frequencies.

Figure 4. fPLL Block Diagram

1.1.1.3. CMU PLL

CMU PLLs can only be used for non-bonded applications and can only access the x1 clock lines.
When using a CMU PLL in channel 1 or channel 4 of a bank, that channel is no longer available to receive data, but the channel can still be used for transmitting data.

Figure 5. CMU PLL Block Diagram

1.1.2. Transmitter Clock Network

The transmitter clock network routes the clock from the transmitter PLL to one or more transmitter channels. It provides two types of clocks to the transmitter channel:

- High-Speed Serial Clock - high-speed clock for the serializer
- Low-Speed Parallel Clock - low-speed clock for the serializer and the PCS

In a bonded channel configuration, both the serial clock and the parallel clock are routed from the transmitter PLL to the transmitter channels. In a non-bonded channel configuration, only the serial clock is routed to the transmitter channels, while the parallel clock is generated locally within each channel.

To support various bonded and non-bonded clocking configurations, three types of transmitter clock network lines are available:

- x1 clock lines: Span a single bank within a tile and are used for non-bonded channel clocking only
- x6 clock lines: Span a single bank within a tile and are used for bonded channel clocking
- x24 clock lines: Span all banks within a tile and are used for both PMA bonded and PMA-PCS bonded transceiver channels.

All clock lines are contained within a single tile and cannot span across multiple tiles.
Figure 6. x1 Clock Lines
Figure 7. x6 Clock Lines
There are two x24 lines available per tile:

- **x24 Up**: Routes clocks to transceiver banks located above the current bank
- **x24 Down**: Routes clocks to transceiver banks located below the current bank

When using the x24 lines, the maximum channel span is two banks above and two banks below the master bank containing the instantiated TX PLL. If using the x24 clock lines across all four banks within the tile, the TX PLL must be instantiated in one of the middle banks to comply with the channel span requirements.
1.1.2.1. Bonded Transceiver Channels - Guidelines for VCCR_GXB and VCCT_GXB

Table 2. Voltage Requirements

For transceiver channels that require bonding via the x6/x24 transceiver clock networks, refer to this table for specific voltage requirements.

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Transceiver Link Type</th>
<th>Data Rate</th>
<th>$V_{CCR, GXB}/V_{CCT, GXB}$ Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>GX</td>
<td>Chip to Chip and Backplane</td>
<td>1 Gbps to 16 Gbps</td>
<td>1 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 Gbps to 17.4 Gbps</td>
<td>1.1 V</td>
</tr>
<tr>
<td>GXT</td>
<td>Chip to Chip and Backplane</td>
<td>> 17.4 Gbps</td>
<td>N/A (Bonding is not supported)</td>
</tr>
</tbody>
</table>

For non-bonded transceiver channels, refer to the "Transceiver Power Supply Operating Conditions" in the Intel Stratix 10 Device Datasheet.

Related Information
Intel Stratix 10 Device Datasheet

1.1.3. GXT Clock Network

Both the L-Tile and H-Tile contains the GXT clock network. The GXT clock network allows an ATX PLL to drive up to six transmitter channels—four in its bank and two in an adjacent bank. The GXT clock network is used for data rates above 17.4 Gbps. For L-Tile and H-Tile GXT channel specification, please refer to "GXT Channels" section for more details.

Note: Intel Stratix 10 L-Tile ES1 does not support GXT clock network.
Figure 9. **Top ATX PLL GXT Network Reach**

If the ATX PLL is in the upper triplet, its drive span is all four GXT channels within its own bank and channels ch0 and ch1 of the bank above.
Figure 10. Bottom ATX PLL GXT Network Reach

If the ATX PLL is in the bottom triplet, its drive span is all four GXT channels within its own bank and channels ch3 and ch4 from the bank below.

Related Information

GXT Channels on page 23
1.1.4. Calibration

The transceiver is calibrated at device power on. The OSC_CLK_1 signal is used for device configuration and by transceiver calibration logic. OSC_CLK_1 must be driven by a free running 25 MHz, 100 MHz, or 125 MHz clock source if the transceiver tiles are used. The internal FPGA oscillator cannot be used for transceiver calibration.

The clock source must be stable at FPGA device configuration and should continue to run during device operation.
2. Tile Architecture Constraints

2.1. Transceiver Channel Placement

The Intel Stratix 10 product family introduces several transceiver tile variants to support a wide variety of protocol implementations.

Table 3. Channel Types

There are a total of 24 channels available per tile. You can configure them as either GX channels or as a combination of GX and (up to 16) GXT channels as long as the total does not exceed 24. You can use a GXT channel as a GX channel, but it would be subject to all of the GX channel placement constraints.

<table>
<thead>
<tr>
<th>Feature</th>
<th>L-Tile Transceivers</th>
<th>H-Tile Transceivers</th>
<th>E-Tile Transceivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Datarate (Chip-to-chip)</td>
<td>GX (2)–17.4 Gbps</td>
<td>GX–17.4 Gbps</td>
<td>GXE–57.8 Gbps Pulse Amplitude Modulation (PAM-4)</td>
</tr>
<tr>
<td></td>
<td>GXT (3)–26.6 Gbps</td>
<td>GXT–28.3 Gbps</td>
<td>GXE–30 Gbps Non-Return to Zero (NRZ)</td>
</tr>
<tr>
<td>Maximum Datarate (Backplane)</td>
<td>GX and GXT–12.5 Gbps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related Information

L-Tile/H-Tile Building Blocks

2.1.1. Possible Combinations of GX and GXT Channels

This section describes the possible combination of GX and GXT channels for L-Tile ES1 and L-Tile/H-Tile.

Related Information

ATX PLL Usage Model When Driving GXT Channels on page 32

2.1.1.1. Possible Combinations of GX and GXT Channels in H-Tile

Table 4. Combination 1: 4 GXT and 2 GX Channels

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Number of Channels per Bank</th>
<th>Channel Capability for H-Tile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Chip-to-Chip</td>
</tr>
<tr>
<td>GX</td>
<td>2</td>
<td>12.5 Gbps</td>
</tr>
<tr>
<td>GXT (3)</td>
<td>4</td>
<td>28.3 Gbps</td>
</tr>
</tbody>
</table>

(2) Refer to the L-Tile/H-Tile Building Blocks section for further descriptions of GX and GXT channels.

(3) If you use GXT channel data rates, the VCCR_GXB and VCCT_GXB voltages must be set to 1.12 V.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.
2. Tile Architecture Constraints

Figure 11. Example Combination 1: 4 GXT and 2 GX Channels

Table 5. Combination 2: 3 GXT and 3 GX Channels

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Number of Channels per Bank</th>
<th>Channel Capability for H-Tile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Chip-to-Chip</td>
</tr>
<tr>
<td>GX</td>
<td>3</td>
<td>12.5 Gbps</td>
</tr>
<tr>
<td>GXT (3)</td>
<td>3</td>
<td>28.3 Gbps</td>
</tr>
</tbody>
</table>

Figure 12. Example Combination 2: 3 GXT and 3 GX Channels

Table 6. Combination 3: 2 GXT and 4 GX Channels

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Number of Channels per Bank</th>
<th>Channel Capability for H-Tile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Chip-to-Chip</td>
</tr>
<tr>
<td>GX</td>
<td>4</td>
<td>12.5 Gbps</td>
</tr>
<tr>
<td>GXT (3)</td>
<td>2</td>
<td>28.3 Gbps</td>
</tr>
</tbody>
</table>

Note:
You cannot use ATX PLL for GX channels when using more than 2 GXT channels per bank.
Figure 13. Example Combination 3: 2 GXT and 4 GX Channels

Table 7. Combination 4: 1 GXT and 5 GX Channels

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Number of Channels per Bank</th>
<th>Channel Capability for H-Tile</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX</td>
<td>5</td>
<td>12.5 Gbps</td>
</tr>
<tr>
<td>GXT (3)</td>
<td>1</td>
<td>28.3 Gbps 28.3 Gbps</td>
</tr>
</tbody>
</table>

Figure 14. Example Combination 4: 1 GXT and 5 GX Channels

Note:
You can place the single GXT channel in channel locations 0, 1, 3 or 4
2.1.1.2. Possible Combinations of GX and GXT Channels in L-Tile Production

GXT channels are only supported in banks GXB1D/H/L and GXB4D/H/L and GXB1F/J/N and GXB4F/J/N.

Table 8. Combination 1: 4 GXT and 0 GX Channels

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Number of Channels per Bank</th>
<th>Channel Capability for L-Tile Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>GXT (4)</td>
<td>4</td>
<td>26.6 Gbps</td>
</tr>
</tbody>
</table>

![Figure 15. Example Combination 1: 4 GXT and 0 GX Channels](image)

Note:
You cannot use ATX PLL for GX channels when using more than 2 GXT channels per bank

Table 9. Combination 2: 3 GXT and 1 GX Channels

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Number of Channels per Bank</th>
<th>Channel Capability for L-Tile Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX</td>
<td>1</td>
<td>12.5 Gbps</td>
</tr>
<tr>
<td>GXT (4)</td>
<td>3</td>
<td>26.6 Gbps</td>
</tr>
</tbody>
</table>

(4) If you use GXT channel data rates, the VCCR_GXB and VCCT_GXB voltages must be set to 1.12 V.
Figure 16. Example Combination 2: 3 GXT and 1 GX Channels

<table>
<thead>
<tr>
<th>Bank</th>
<th>fPLL</th>
<th>ATX PLL</th>
<th>REFCLK0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
You cannot use ATX PLL for GX channels when using more than 2 GXT channels per bank

Table 10. Combination 3: 2 GXT and 2 GX Channels

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Number of Channels per Bank</th>
<th>Channel Capability for L-Tile Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Chip-to-Chip</td>
</tr>
<tr>
<td>GX</td>
<td>2</td>
<td>12.5 Gbps</td>
</tr>
<tr>
<td>GXT (4)</td>
<td>2</td>
<td>26.6 Gbps</td>
</tr>
</tbody>
</table>

Figure 17. Example Combination 3: 2 GXT and 2 GX Channels

Table 11. Combination 4: 1 GXT and 3 GX Channels

<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Number of Channels per Bank</th>
<th>Channel Capability for L-Tile Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Chip-to-Chip</td>
</tr>
<tr>
<td>GX</td>
<td>3</td>
<td>12.5 Gbps</td>
</tr>
<tr>
<td>GXT (4)</td>
<td>1</td>
<td>26.6 Gbps</td>
</tr>
</tbody>
</table>
2.1.2. GX Channels

The Intel Stratix 10 GX transceiver channels can support data rates up to 17.4 Gbps for chip-to-chip applications, and 12.5 Gbps for backplane applications.

The Intel Stratix 10 transceiver clocking architecture supports both bonded and non-bonded transceiver channel configurations. Channel bonding is used to minimize the clock skew between multiple transceiver channels. For Intel Stratix 10 transceivers, the term bonding you can refer to PMA bonding as well as PMA-PCS bonding.

2.1.2.1. Non-bonded GX Channels

Non-bonded channels can be placed anywhere within the transceiver tile.

Separate PHY IP cores, TX PLL, and REFCLK sources are required for each tile even if the transceivers are running at the same data rate with the same functionality.

2.1.2.2. Bonded GX Channels

Bonding across multiple transceiver tiles is not supported. All bonded channels must be placed within the same transceiver tile. A maximum of 24 channels can be bonded.

When PMA bonding is enabled, the channels do not need to be placed contiguously in the transceiver tile. When both PMA and PCS bonding are enabled, the channels must be placed contiguously in transceiver tile and in ascending order.
Figure 19. **x4 Configuration**

The figure below shows a way of placing 4 bonded channels. In this case, the logical PCS Master Channel number 2 must be specified as Physical channel 4 of bank 0.

```
<table>
<thead>
<tr>
<th>Logical Channel</th>
<th>Physical Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH5</td>
<td>CH4</td>
</tr>
<tr>
<td>CH4</td>
<td>CH3</td>
</tr>
<tr>
<td>CH3</td>
<td>CH2</td>
</tr>
<tr>
<td>CH2</td>
<td>CH1</td>
</tr>
<tr>
<td>CH1</td>
<td>CH0</td>
</tr>
<tr>
<td>CH0</td>
<td>CH5</td>
</tr>
</tbody>
</table>
```

Transceiver bank 1

Transceiver bank 0
2.1.3. GXT Channels

The Intel Stratix 10 GXT channels are supported in L-Tile ES2, L-Tile Production and Intel Stratix 10 H-Tile transceivers. These channels are not available in Intel Stratix 10 L-Tile ES1 transceivers.

For more information on different channel types and the data rates supported by them, please refer to table "Channel Types" in the "L-Tile and H-Tile Overview" chapter.
Figure 21. Intel Stratix 10 L-Tile GXT Channel Location

Notes:
1. Refer to table “Channel Types” for GXT channel capabilities.

2. Tile Architecture Constraints

AN 778: Intel® Stratix® 10 Transceiver Usage

24
2. Tile Architecture Constraints

AN-778 | 2018.07.13

Figure 22. Intel Stratix 10 H-Tile GXT Channel Location

Notes:
1. Refer to table "Channel Types" for GXT Channel Capabilities.

AN 778: Intel® Stratix® 10 Transceiver Usage

25
Figure 23. GXT and GX Channel Placement Example for L-Tile

- L-Tile
 - ch5
 - ch4
 - ch3
 - ch2
 - ch1
 - ch0
 - ILKN (C2C)
 - ILKN (C2C)
 - ILKN (C2C)
 - ILKN (C2C)
 - ILKN (C2C)

- Bank 3
 - pPLL
 - REFCLK1
 - ATX PLL

- Bank 2
 - pPLL
 - REFCLK1
 - ATX PLL

- Bank 1
 - pPLL
 - REFCLK1
 - ATX PLL

- Bank 0
 - pPLL
 - REFCLK1
 - ATX PLL

Legend:
- = 26.6 Gbps channel
- = 12.5 Gbps channel
- = PCIe Gen3 x16
- BP = Backplane
- C2C = Chip-to-chip
Figure 24. GXT and GX Channel Placement Example for H-Tile

- ILKN (C2C) = Chip-to-chip
- JESD (C2C) = Chip-to-chip
- Bank 0, Bank 1, Bank 2, Bank 3

Legend:
- = 28.3 Gbps channel
- = 12.5 Gbps channel
Figure 25. GXT and GX Channel Placement Example with PCIe Interface for H-Tile

Refer to the Intel Stratix 10 Device Datasheet for more information about performance specifications.

Related Information
- L-Tile and H-Tile Overview on page 4
- Intel Stratix 10 Device Datasheet
2.1.4. Reference Clock Guidelines for L-Tile and H-Tile

The transmitter PLL and the clock data recovery (CDR) block need an input reference clock source to generate the clocks required for transceiver operation. The input reference clock must be stable and free-running at device power-up for proper PLL calibrations.

Intel Stratix 10 transceiver PLLs have five possible input reference clock sources, depending on jitter requirements:

- Dedicated reference clock pins
- Receiver input pins
- Reference clock network
- PLL cascade output (fPLL only)
- Core clock network (fPLL only)

Note: Each core clock network reference clock pin cannot drive fPLLs located on multiple L/H-Tiles

Intel recommends using the dedicated reference clock pins and the reference clock network for the best jitter performance.

For the best jitter performance, Intel recommends placing the reference clock as close as possible to the transmitter PLL. The following protocols require the reference clock to be placed in same bank as the transmitter PLL:

- OTU2e, OTU2, OC-192 and 10G PON
- 6G and 12G SDI

Note: For optimum performance of GXT channel, the reference clock of transmitter PLL is recommended to be from a dedicated reference clock pin in the same bank.

Figure 26. Input Reference Clock Sources

Note: (1) Any RX pin in the same bank can be used as an input reference clock.

Note: The output of another PLL can be used as an input reference clock source during PLL cascading. Intel Stratix 10 transceivers support PLL to PLL and ATX PLL to fPLL cascading. Refer to “PLL Cascading Clock Network” for more details on PLL cascading.

Note: Core Clock present only for fPLL.

Note: In Intel Stratix 10 devices, the FPGA fabric core clock network can be used as an input reference source for fPLL only.
The input reference clock is a differential signal. Intel recommends using the dedicated reference clock pin in the same bank as the transmitter PLL for optimal jitter performance. The input reference clock must be stable and free-running at device power-up for proper PLL operation and PLL calibration. If the reference clock is not available at device power-up, then PLL must be recalibrated when the reference clock is available.

Figure 27. Dedicated Reference Clock Pins and Other Reference Clock Sources

In Intel Stratix 10 L-Tile and H-Tile devices, dedicated reference clock pins and reference clock network can be used by the transmitter PLL (ATX PLL and fPLL).

Related Information

- Input Reference Clock Source
- Implementing PLL Cascading

2.1.5. PLL Placement

2.1.5.1. ATX PLL Spacing Requirements

When using multiple ATX PLLs operating at the same VCO frequency or within 100 MHz of each other, you must observe the spacing requirements listed in the following table.
Table 12. **ATX PLL Spacing Requirements**

<table>
<thead>
<tr>
<th>ATX PLL Conditions</th>
<th>L-Tile ES1 (skip 3 PLLs)</th>
<th>L-Tile/H-Tile Production (skip 1 PLL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two ATX PLLs providing the serial clock for PCIe/PIPE (PHY Interfaces for PCI Express) Gen3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
| ATX PLL to ATX PLL spacing for non PCIe VCO frequency dependent. Refer to "Intel Stratix 10 L-Tile ES1 Transceiver PHY User Guide" for more details | • None for datarates > 17.4 Gbps (GXT) | "For two ATX PLLs located in the same bank and driving GX channels: 2 ATX PLL apart (skip 1) for datarates < 17.4 Gbps (GX)"
| For two ATX PLLs located in separate banks and driving GX channels: None | | |

There are no ATX PLL placement restrictions between two different tiles.

Figure 28. ATX PLL Placement Example

Related Information

Intel Stratix 10 L- and H-Tile Transceiver PHY User Guide

2.1.5.2. **ATX PLL – fPLL Spacing Requirements**

Table 13. **ATX PLL - fPLL Spacing Requirements**

When using ATX PLL and fPLL operating at the same VCO frequency or within 100 MHz, you must observe the spacing requirements listed in this table.

<table>
<thead>
<tr>
<th>ATX PLL to fPLL Spacing</th>
<th>Spacing Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATX PLL to fPLL spacing</td>
<td>• Skip 1 ATX PLL OR</td>
</tr>
<tr>
<td></td>
<td>• None if fPLL L counter ≥ 2</td>
</tr>
</tbody>
</table>
If fPLL_0, fPLL_1, or both run at the same VCO frequency as ATX_1, this placement is not allowed.

If fPLL_2 runs at the same VCO frequency as ATX_1, this placement is OK.

2.1.5.3. ATX PLL Usage Model When Driving GXT Channels

- If ATX PLL IP is configured as the “Main ATX PLL” (Local ATX PLL output) the ATX PLL Master Clock Generation Block (MCGB) cannot be used.
- If ATX PLL IP is configured as an “Adjacent ATX PLL” (selecting input from ATX PLL below/above), the MCGB in the 3-pack cannot be used.
 - In the same 3-pack as a Main ATX PLL or Adjacent ATX PLL, the fPLL can be configured to drive the x1 clock lines.
Figure 30. Restrictions for ATX PLL GX and MCGB

- Using the ATX PLL for GXT Channels
- GXT Implementation Usage Restrictions for ATX PLL GX & MCGB

2.1.5.4. Simplex Channel Merging

You can merge the following logical instances into a single physical channel:
- RX-only PHY and TX-only PHY instances
- CMU PLL and TX-only PHY instances

Figure 31. Simple Channel Merging: RX-only PHY and TX-only PHY

Figure 32. Channel Merging: CMU PLL and TX-only PHY instances

Rules for Merging
- Reconfiguration interface (reconfig_*) of both instances to be merged must be driven by the same source.
- QSF assignments are needed to specify which two reconfiguration interfaces you want to merge.
 - **Option 1: Using reconfiguration interface names**
 - `set_instance_assignment -name XCVR_RECONFIG_GROUP 0 -to topdesign:topdesign_inst|<TX only instance name>*ct1_hssi_avmm1_if_inst->inst_ct1_xcvr_avmm1`
 - `set_instance_assignment -name XCVR_RECONFIG_GROUP 0 -to topdesign:topdesign_inst|<RX only instance name>*ct1_hssi_avmm1_if_inst->inst_ct1_xcvr_avmm1`
 - **Option 2: Using pin names**
 - `set_instance_assignment -name XCVR_RECONFIG_GROUP 1 -to tx[0]`
 - `set_instance_assignment -name XCVR_RECONFIG_GROUP 0 -to rx[0]`
The simplex channels cannot be merged if any of the following options are enabled in one or both simplex instances:

- Altera Debug Master Endpoint (ADME)
- Optional reconfiguration logic
- Embedded reconfiguration streamer
- Shared reconfiguration interface

Related Information

Reconfiguration Interface and Dynamic Reconfiguration

2.1.5.5. **TX PLL Restrictions when Using PCIe**

Intel recommends that the remaining channels of the tile in L-Tile ES1/L-Tile Production (PIPE) are to be driven by ATX PLL if 4 or more channels of PCIe are used at Gen2 or Gen3 speeds. Using ATX PLL to drive these channels helps achieve better performance. Intel Quartus® Prime issues a critical warning if fPLL is used to drive the remaining channels.

2.2. **Unsupported Dynamic Reconfiguration Features**

The following is a list of the unsupported dynamic reconfiguration features:

- Reconfiguration from a bonded configuration to a non-bonded configuration, or vice versa
- Reconfiguration from a bonded protocol to another bonded protocol
- Reconfiguration from PCIe (with Hard IP) to PCIe (without Hard IP), or non-PCIe bonded protocol switching
- Master clock generation block (MCGB) reconfiguration
- Switching between two master CGBs
- Serialization factor changes on bonded channels
- TX PLL switching on bonded channels

2.3. **Intel Stratix 10 L-Tile Transceiver to H-Tile Transceiver Migration**

All of the L-Tile transceiver constraints apply to H-Tile transceivers as well. The H-Tile transceivers have no further restrictions than the L-Tile transceivers, with the exception of the GXT channels.

If you plan to use GXT channels in the H-Tile, the V_{CCR_GX} and V_{CCT_GX} pins on that tile must be set to 1.12 V.

Note: When migrating from L-Tile to H-Tile transceivers, use the *Stratix 10 Early Power Estimator (EPE)* tool to validate your regulator sizing.

The placement constraints for the GXT channels, which are available in L-Tile Production and H-Tile transceivers, are mentioned in the *GXT Channels* section.
2.4. Thermal Guidelines

Optimal thermal performance can be achieved by reducing the power density within the transceiver tile. Placing many high data rate channels next to each other results in high power density areas within a tile. Following a general guideline of minimizing power density results in a less complex, and cheaper cooling solution for the FPGA.

For best thermal performance you can minimize power density by picking transceiver channel locations early on. Follow these guidelines when placing your transceiver channels within a tile:

- Spread out channels as much as possible
- If all channels in a tile are used, intersperse low and high data rate channels
- The middle of the tile has the best thermal performance, followed by the bottom and then the top of each tile when looking at the Pin Planner

The latest Intel Stratix 10 Early Power Estimator (EPE) contains a Thermal worksheet to help you determine the impact of transceiver placement on your thermal solution requirements. Prior to finalizing your board design you should analyze your transceiver channel placement using the Intel Stratix 10 EPE to ensure it is thermally optimal.

Note: Contact your local FAE to have Intel run a thermal analysis of your board design after you have determined placement of all transceiver channels.
3. PCIe Guidelines

3.1. PCIe Hard IP

There is one PCIe Hard IP available per transceiver tile.

3.1.1. Channel Placement for PCIe Hard IP

The PCIe lane 0 is always mapped to ch0 of the transceiver tile. Channel 0 of the transceiver tile = Bank 0, Channel 0.

The PCIe x1, x2, x4 and x8 configurations always consume a total of eight transceiver channels.

CvP Support

Only the bottom left transceiver tile supports configuration via protocol (CvP).

Figure 33. Transceiver Channel Usage for PCIe x1, x2, x4, x8 and x16

For L-Tile ES1 and L-Tile Production (PIPE only), any transceiver channel running at data rate above 6.5 Gbps that shares a tile with an active PCI Express interface that are Gen2 or Gen3 capable and configured with more than 2 lanes (Gen2/3 x4, x8, x16) may observe momentary bit errors (BER) during a PCI Express rate change event (PCIe link training both up and down, i.e., link down and start of link training). Transceiver channels that share a tile with active PCI Express interfaces that are only Gen1 capable are not impacted.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.
3.1.2. PLL Placement for PCIe Hard IP

If the PCIe Hard IP is configured as Gen1/Gen2 capable IP, the fPLL is used as a transmitter PLL.

If the PCIe Hard IP is configured as Gen3 capable IP, then
- fPLL is used as a transmitter PLL when running at Gen1/Gen2 speeds.
- ATX PLL is used as a transmitter PLL when running at Gen3 speeds.

Figure 34. PLL Placement for Gen1 and Gen2 x1/ x2/ x4/ x8

<table>
<thead>
<tr>
<th>PLL</th>
<th>PMA Channel 5</th>
<th>PCS Channel 5</th>
<th>Ch 15</th>
<th>PCIe Hard IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>fPLL1</td>
<td>PMA Channel 4</td>
<td>PCS Channel 4</td>
<td>Ch 14</td>
<td>Ch 13</td>
</tr>
<tr>
<td>ATXPLL1</td>
<td>PMA Channel 3</td>
<td>PCS Channel 3</td>
<td>Ch 13</td>
<td>Ch 12</td>
</tr>
<tr>
<td>fPLL0</td>
<td>PMA Channel 2</td>
<td>PCS Channel 2</td>
<td>Ch 12</td>
<td>Ch 11</td>
</tr>
<tr>
<td>ATXPLL0</td>
<td>PMA Channel 1</td>
<td>PCS Channel 1</td>
<td>Ch 11</td>
<td>Ch 10</td>
</tr>
<tr>
<td>fPLL1</td>
<td>PMA Channel 0</td>
<td>PCS Channel 0</td>
<td>Ch 10</td>
<td>Ch 9</td>
</tr>
<tr>
<td>ATXPLL1</td>
<td>Ch 9</td>
<td></td>
<td></td>
<td>Ch 8</td>
</tr>
<tr>
<td>fPLL0</td>
<td>Ch 8</td>
<td></td>
<td></td>
<td>Ch 7</td>
</tr>
<tr>
<td>ATXPLL0</td>
<td>Ch 7</td>
<td></td>
<td></td>
<td>Ch 6</td>
</tr>
<tr>
<td>fPLL1</td>
<td>Ch 6</td>
<td></td>
<td></td>
<td>Ch 5</td>
</tr>
<tr>
<td>ATXPLL1</td>
<td>Ch 5</td>
<td></td>
<td></td>
<td>Ch 4</td>
</tr>
<tr>
<td>fPLL0</td>
<td>Ch 4</td>
<td></td>
<td></td>
<td>Ch 3</td>
</tr>
<tr>
<td>ATXPLL0</td>
<td>Ch 3</td>
<td></td>
<td></td>
<td>Ch 3</td>
</tr>
</tbody>
</table>

PCIe Hard IP connects to fPLL0
Figure 35. PLL Placement for Gen1 and Gen2 x16

<table>
<thead>
<tr>
<th>PLL</th>
<th>PMA Channel 5</th>
<th>PCS Channel 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL0</td>
<td>PMA Channel 4</td>
<td>PCS Channel 4</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 3</td>
<td>PCS Channel 3</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 2</td>
<td>PCS Channel 2</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 1</td>
<td>PCS Channel 1</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 0</td>
<td>PCS Channel 0</td>
</tr>
<tr>
<td>PLL1</td>
<td>PMA Channel 5</td>
<td>PCS Channel 5</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 4</td>
<td>PCS Channel 4</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 3</td>
<td>PCS Channel 3</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 2</td>
<td>PCS Channel 2</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 1</td>
<td>PCS Channel 1</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 0</td>
<td>PCS Channel 0</td>
</tr>
<tr>
<td>PLL1</td>
<td>PMA Channel 5</td>
<td>PCS Channel 5</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 4</td>
<td>PCS Channel 4</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 3</td>
<td>PCS Channel 3</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 2</td>
<td>PCS Channel 2</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 1</td>
<td>PCS Channel 1</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 0</td>
<td>PCS Channel 0</td>
</tr>
<tr>
<td>PLL1</td>
<td>PMA Channel 5</td>
<td>PCS Channel 5</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 4</td>
<td>PCS Channel 4</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 3</td>
<td>PCS Channel 3</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 2</td>
<td>PCS Channel 2</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 1</td>
<td>PCS Channel 1</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 0</td>
<td>PCS Channel 0</td>
</tr>
</tbody>
</table>

Figure 36. PLL Placement for Gen3 x1/x2/x4/x8

<table>
<thead>
<tr>
<th>PLL</th>
<th>PMA Channel 5</th>
<th>PCS Channel 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL0</td>
<td>PMA Channel 4</td>
<td>PCS Channel 4</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 3</td>
<td>PCS Channel 3</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 2</td>
<td>PCS Channel 2</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 1</td>
<td>PCS Channel 1</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 0</td>
<td>PCS Channel 0</td>
</tr>
<tr>
<td>PLL1</td>
<td>PMA Channel 5</td>
<td>PCS Channel 5</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 4</td>
<td>PCS Channel 4</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 3</td>
<td>PCS Channel 3</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 2</td>
<td>PCS Channel 2</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 1</td>
<td>PCS Channel 1</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 0</td>
<td>PCS Channel 0</td>
</tr>
<tr>
<td>PLL1</td>
<td>PMA Channel 5</td>
<td>PCS Channel 5</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 4</td>
<td>PCS Channel 4</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 3</td>
<td>PCS Channel 3</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 2</td>
<td>PCS Channel 2</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 1</td>
<td>PCS Channel 1</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 0</td>
<td>PCS Channel 0</td>
</tr>
<tr>
<td>PLL1</td>
<td>PMA Channel 5</td>
<td>PCS Channel 5</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 4</td>
<td>PCS Channel 4</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 3</td>
<td>PCS Channel 3</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 2</td>
<td>PCS Channel 2</td>
</tr>
<tr>
<td>PLL</td>
<td>PMA Channel 1</td>
<td>PCS Channel 1</td>
</tr>
<tr>
<td>PLL0</td>
<td>PMA Channel 0</td>
<td>PCS Channel 0</td>
</tr>
</tbody>
</table>

PCIe Hard IP connects to fPLL0 middle transceiver bank.
TX PLL Guidelines When Using PCIe

1. The remaining channels of the tile in L-Tile ES1 are recommended to be driven by ATX PLL if 4 or more channels of PCIe are used at Gen2 or Gen3 speeds. Using ATX PLL to drive these channels helps achieve better performance. Intel Quartus Prime issues a critical warning if fPLL is used to drive the remaining channels.

<table>
<thead>
<tr>
<th>PCIE CONFIG</th>
<th>Recommended PLL selection for remaining channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIE GEN 1 (All lane widths)</td>
<td>Any PLL</td>
</tr>
<tr>
<td>PCIE GEN 2 (x4,x8,x16)</td>
<td>ATX PLL<sup>(5)</sup></td>
</tr>
<tr>
<td>PCIE GEN 3 (x4,x8,x16)</td>
<td>ATX PLL<sup>(5)</sup></td>
</tr>
</tbody>
</table>

2. When instantiating PIPE interfaces and PCIe Hard IP in the same transceiver tile, be aware of ATX PLL and ATX-fPLL spacing rules. For more details refer to *PLL Placement* section.

Related Information

PLL Placement on page 30

⁽⁵⁾ Quartus will issue a critical warning if FPLL is used instead of ATX PLL
3.2. PHY Interface for PCIe Express (PIPE)

This can be used when you want flexible channel placement or to interface the Intel Stratix 10 PCIe PHY with existing 3rd party PCIe IP cores.

3.2.1. Channel Placement for PIPE

For L-Tile ES1 and L-Tile Production (PIPE only), any transceiver channel running at data rate above 6.5 Gbps that shares a tile with an active PCI Express interface that are Gen2 or Gen3 capable and configured with more than 2 lanes (Gen2/3 x4, x8, x16) may observe momentary bit errors (BER) during a PCI Express rate change event (PCIe link training both up and down, i.e., link down and start of link training). Transceiver channels that share a tile with active PCI Express interfaces that are only Gen1 capable are not impacted.

This is applicable for L-Tile ES1 and L-Tile Production (PIPE only).

For details on channel placement for PIPE, refer to the section "How to place channels for PIPE configurations" in "Intel Stratix 10 Transceiver PHY User Guide"

Related Information
How to Place Channels for PIPE Configurations

3.2.2. PLL Placement for PIPE

When instantiating PIPE interfaces and PCIe Hard IP in the same transceiver tile, be aware of ATX PLL and ATX-fPLL spacing rules. For more details refer to PLL Placement section.

TX PLL Guidelines When Using PCIe

1. Intel recommends that the remaining channels of the tile in L-Tile ES1/L-Tile Production (PIPE only) are to be driven by ATX PLL if 4 or more channels of PCIe are used at Gen2 or Gen3 speeds. Using ATX PLL to drive these channels helps achieve better performance. Intel Quartus Prime issues a critical warning if fPLL is used to drive the remaining channels.

Table 15. TX PLL Guidelines When Using PCIe

<table>
<thead>
<tr>
<th>PCIE CONFIG</th>
<th>Recommended PLL selection for remaining channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIE GEN 1 (All lane widths)</td>
<td>Any PLL</td>
</tr>
<tr>
<td>PCIE GEN 2 (x4,x8,x16)</td>
<td>ATX PLL(6)</td>
</tr>
<tr>
<td>PCIE GEN 3 (x4,x8,x16)</td>
<td>ATX PLL(6)</td>
</tr>
</tbody>
</table>

2. For details on PLL placement for PIPE, refer to the section "How to Connect TX PLLs for PIPE Gen1, Gen2, and Gen3 Modes" in "Intel Stratix 10 Transceiver PHY User Guide"

Related Information
- PLL Placement on page 30
- How to Connect TX PLLs for PIPE Gen1, Gen2, and Gen3 Modes

(6) Quartus issues a critical warning if FPLL is used instead of ATX PLL
Document Revision History

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 2018.07.13 | Made the following changes:
• Updated the "ATX PLL Block Diagram" figure to clearly show that cascaded input from an upstream PLL is not supported.
• Added "These combinations are only applicable for banks GXB1D/H/L and GXB4D/H/L and GXB1F/J/N and GXB4F/J/N." note to Possible Combinations of GX and GXT Channels in L-Tile Production. |
| 2017.11.06 | Made the following changes:
• Added a new diagram "Intel Stratix 10 L-Tile ES2 Production GXT Channel Placement"
• Updated the "Channel Types" table to include L-Tile channels
• Updated the "ATX PLL Spacing Requirements" and "ATX PLL-fPLL Spacing Requirements" table
• Updated the "Thermal Guidelines" section
• Made the following updates in the "Mix and Match GX Channels Design Example" diagram:
 — Changed PCIe Gen 1/2/3 x8 to PCIe HIP Gen 1/2/3x8
 — Changed PCIe Gen 1/2 , 2.5 GHz to PCIe HIP Gen 1/2 , 2.5 GHz
 — Changed PCIe Gen 3, 4 GHz to PCIe HIP Gen 3, 4 GHz
• Updated the description for "TX PLL Restrictions when Using PCIe x16" topic
• Updated the description for "PCIe Hard IP Placement" topic
• Restrictions stated when one or more channels in a bank are used for PCIe/PIPE Gen3
• Updated steps in "How to Place Channels for PIPE Configurations" topic
• Changed value of Logical PCS Master Channel # from 1 to 0 in "Logical PCS Master Channel for PIPE Configuration" table
• Added a note "Each core clock network reference clock pin cannot drive fPLLs located on multiple L/H-Tiles"
• Added a new diagram "x4 Configuration" in "Bonded GX Channels" topic to explain the ascending order of the channel placement |
| 2017.01.13 | Made the following change:
• Added a new section: ATX PLL GXT Channels Placement |
| 2016.12.19 | Made the following changes:
• Clarified the ATX PLL spacing requirements and listed them in the "ATX PLL Spacing Requirements" table. |
| 2016.09.20 | Initial release |